Files
swift-mirror/lib/DriverTool/swift_api_digester_main.cpp
Xi Ge 87687a292f ABI checker: drop usage of AllowDeserializingImplementationOnly
AllowDeserializingImplementationOnly was historically added as a defensive
check against deserailzation issues introduced by @implementationOnly imports.
It's no longer specified by other tools, thus the ABI checker should drop
it as well.

rdar://153683760
2025-06-26 13:40:27 -07:00

2681 lines
96 KiB
C++

//===--- swift-api-digester.cpp - API change detector ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// swift-api-digester is a test utility to detect source-breaking API changes
// during the evolution of a Swift library. The tool works on two phases:
// (1) dumping library contents as a JSON file, and (2) comparing two JSON
// files textually to report interesting changes.
//
// During phase (1), the api-digester looks up every declarations inside
// a module and outputs a singly-rooted tree that encloses interesting
// details of the API level.
//
// During phase (2), api-digester applies structure-information comparison
// algorithms on two given singly root trees, trying to figure out, as
// precise as possible, the branches/leaves in the trees that differ from
// each other. Further analysis decides whether the changed leaves/branches
// can be reflected as source-breaking changes for API users. If they are,
// the output of api-digester will include such changes.
#include "swift/APIDigester/ModuleAnalyzerNodes.h"
#include "swift/APIDigester/ModuleDiagsConsumer.h"
#include "swift/AST/DiagnosticsModuleDiffer.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Platform.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/Frontend/SerializedDiagnosticConsumer.h"
#include "swift/IDE/APIDigesterData.h"
#include "swift/Option/Options.h"
#include "swift/Parse/ParseVersion.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/Support/VirtualOutputBackends.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
using namespace swift;
using namespace ide;
using namespace api;
using namespace swift::options;
namespace {
enum class ActionType {
None,
DumpSDK,
MigratorGen,
DiagnoseSDKs,
// The following two are for testing purposes
DeserializeDiffItems,
DeserializeSDK,
GenerateNameCorrectionTemplate,
FindUsr,
GenerateEmptyBaseline,
};
} // end anonymous namespace
namespace {
using swift::ide::api::KnownProtocolKind;
// A node matcher will traverse two trees of SDKNode and find matched nodes
struct NodeMatcher {
virtual void match() = 0;
virtual ~NodeMatcher() = default;
};
// During the matching phase, any matched node will be reported using this API.
// For update Node left = {Node before change} Right = {Node after change};
// For added Node left = {NilNode} Right = {Node after change};
// For removed Node left = {Node before change} Right = {NilNode}
struct MatchedNodeListener {
virtual void foundMatch(NodePtr Left, NodePtr Right, NodeMatchReason Reason) = 0;
virtual ~MatchedNodeListener() = default;
};
static
void singleMatch(SDKNode* Left, SDKNode *Right, MatchedNodeListener &Listener) {
// Both null, be forgiving.
if (!Left && !Right)
return;
// If both are valid and identical to each other, we don't need to match them.
if (Left && Right && *Left == *Right)
return;
if (!Left || !Right)
Listener.foundMatch(Left, Right,
Left ? NodeMatchReason::Removed : NodeMatchReason::Added);
else
Listener.foundMatch(Left, Right, NodeMatchReason::Sequential);
}
// Given two NodeVector, this matches SDKNode by the order of their appearance
// in the respective NodeVector. We use this in the order-sensitive cases, such
// as parameters in a function decl.
class SequentialNodeMatcher : public NodeMatcher {
ArrayRef<SDKNode*> Left;
ArrayRef<SDKNode*> Right;
MatchedNodeListener &Listener;
public:
SequentialNodeMatcher(ArrayRef<SDKNode*> Left,
ArrayRef<SDKNode*> Right,
MatchedNodeListener &Listener) :
Left(Left), Right(Right), Listener(Listener) {}
void match() override {
for (unsigned long i = 0; i < std::max(Left.size(), Right.size()); i ++) {
auto L = i < Left.size() ? Left[i] : nullptr;
auto R = i < Right.size() ? Right[i] : nullptr;
singleMatch(L, R, Listener);
}
}
};
struct NodeMatch {
NodePtr Left;
NodePtr Right;
};
class BestMatchMatcher : public NodeMatcher {
NodeVector &Left;
NodeVector &Right;
llvm::function_ref<bool(NodePtr, NodePtr)> CanMatch;
llvm::function_ref<bool(NodeMatch, NodeMatch)> IsFirstMatchBetter;
NodeMatchReason Reason;
MatchedNodeListener &Listener;
llvm::SmallPtrSet<NodePtr, 16> MatchedRight;
bool internalCanMatch(NodePtr L, NodePtr R) {
return MatchedRight.count(R) == 0 && CanMatch(L, R);
}
std::optional<NodePtr> findBestMatch(NodePtr Pin, NodeVector &Candidates) {
std::optional<NodePtr> Best;
for (auto Can : Candidates) {
if (!internalCanMatch(Pin, Can))
continue;
if (!Best.has_value() ||
IsFirstMatchBetter({Pin, Can}, {Pin, Best.value()}))
Best = Can;
}
return Best;
}
public:
BestMatchMatcher(NodeVector &Left, NodeVector &Right,
llvm::function_ref<bool(NodePtr, NodePtr)> CanMatch,
llvm::function_ref<bool(NodeMatch, NodeMatch)> IsFirstMatchBetter,
NodeMatchReason Reason,
MatchedNodeListener &Listener) : Left(Left), Right(Right),
CanMatch(CanMatch),
IsFirstMatchBetter(IsFirstMatchBetter), Reason(Reason),
Listener(Listener){}
void match() override {
for (auto L : Left) {
if (auto Best = findBestMatch(L, Right)) {
MatchedRight.insert(Best.value());
Listener.foundMatch(L, Best.value(), Reason);
}
}
}
};
class RemovedAddedNodeMatcher : public NodeMatcher, public MatchedNodeListener {
NodeVector &Removed;
NodeVector &Added;
MatchedNodeListener &Listener;
NodeVector RemovedMatched;
NodeVector AddedMatched;
void handleUnmatch(NodeVector &Matched, NodeVector &All, bool Left) {
for (auto A : All) {
if (llvm::is_contained(Matched, A))
continue;
if (Left)
Listener.foundMatch(A, nullptr, NodeMatchReason::Removed);
else
Listener.foundMatch(nullptr, A, NodeMatchReason::Added);
}
}
bool detectFuncToProperty(SDKNode *R, SDKNode *A) {
if (R->getKind() == SDKNodeKind::DeclFunction) {
if (A->getKind() == SDKNodeKind::DeclVar) {
if (A->getName().compare_insensitive(R->getName()) == 0) {
R->annotate(NodeAnnotation::GetterToProperty);
} else if (R->getName().starts_with("get") &&
R->getName().substr(3).compare_insensitive(A->getName()) ==
0) {
R->annotate(NodeAnnotation::GetterToProperty);
} else if (R->getName().starts_with("set") &&
R->getName().substr(3).compare_insensitive(A->getName()) ==
0) {
R->annotate(NodeAnnotation::SetterToProperty);
} else {
return false;
}
R->annotate(NodeAnnotation::PropertyName, A->getPrintedName());
foundMatch(R, A, NodeMatchReason::FuncToProperty);
return true;
}
}
return false;
}
static bool isAnonymousEnum(SDKNodeDecl *N) {
return N->getKind() == SDKNodeKind::DeclVar &&
N->getUsr().starts_with("c:@Ea@");
}
static bool isNominalEnum(SDKNodeDecl *N) {
return N->getKind() == SDKNodeKind::DeclType &&
N->getUsr().starts_with("c:@E@");
}
static std::optional<StringRef> getLastPartOfUsr(SDKNodeDecl *N) {
auto LastPartIndex = N->getUsr().find_last_of('@');
if (LastPartIndex == StringRef::npos)
return std::nullopt;
return N->getUsr().substr(LastPartIndex + 1);
}
bool detectTypeAliasChange(SDKNodeDecl *R, SDKNodeDecl *A) {
if (R->getPrintedName() != A->getPrintedName())
return false;
if (R->getKind() == SDKNodeKind::DeclType &&
A->getKind() == SDKNodeKind::DeclTypeAlias) {
foundMatch(R, A, NodeMatchReason::TypeToTypeAlias);
return true;
} else {
return false;
}
}
bool detectModernizeEnum(SDKNodeDecl *R, SDKNodeDecl *A) {
if (!isAnonymousEnum(R) || !isNominalEnum(A))
return false;
auto LastPartOfR = getLastPartOfUsr(R);
if (!LastPartOfR)
return false;
for (auto Child : A->getChildren()) {
if (auto VC = dyn_cast<SDKNodeDeclVar>(Child)) {
auto LastPartOfA = getLastPartOfUsr(VC);
if (LastPartOfA && LastPartOfR.value() == LastPartOfA.value()) {
std::string FullName = (llvm::Twine(A->getName()) + "." +
Child->getName()).str();
R->annotate(NodeAnnotation::ModernizeEnum,
R->getSDKContext().buffer(FullName));
foundMatch(R, A, NodeMatchReason::ModernizeEnum);
return true;
}
}
}
return false;
}
bool detectSameAnonymousEnum(SDKNodeDecl *R, SDKNodeDecl *A) {
if (!isAnonymousEnum(R) || !isAnonymousEnum(A))
return false;
auto LastR = getLastPartOfUsr(R);
auto LastA = getLastPartOfUsr(A);
if (LastR && LastA && LastR.value() == LastA.value()) {
foundMatch(R, A, NodeMatchReason::Name);
return true;
}
return false;
}
static bool isNameTooSimple(StringRef N) {
static std::vector<std::string> SimpleNames = {"unit", "data", "log", "coding",
"url", "name", "date", "datecomponents", "notification", "urlrequest",
"personnamecomponents", "measurement", "dateinterval", "indexset"};
return std::find(SimpleNames.begin(), SimpleNames.end(), N) !=
SimpleNames.end();
}
static bool isSimilarName(StringRef L, StringRef R) {
auto LL = L.lower();
auto RR = R.lower();
if (isNameTooSimple(LL) || isNameTooSimple(RR))
return false;
if (((StringRef)LL).starts_with(RR) || ((StringRef)RR).starts_with(LL))
return true;
if (((StringRef)LL).starts_with((llvm::Twine("ns") + RR).str()) ||
((StringRef)RR).starts_with((llvm::Twine("ns") + LL).str()))
return true;
if (((StringRef)LL).ends_with(RR) || ((StringRef)RR).ends_with(LL))
return true;
return false;
}
/// Whether two decls of different decl kinds can be considered as rename.
static bool isDeclKindCrossable(DeclKind DK1, DeclKind DK2, bool First) {
if (DK1 == DK2)
return true;
if (DK1 == DeclKind::Var && DK2 == DeclKind::EnumElement)
return true;
return First && isDeclKindCrossable(DK2, DK1, false);
}
static bool isRename(NodePtr L, NodePtr R) {
if (L->getKind() != R->getKind())
return false;
if (isa<SDKNodeDeclConstructor>(L))
return false;
if (auto LD = dyn_cast<SDKNodeDecl>(L)) {
auto *RD = R->getAs<SDKNodeDecl>();
return isDeclKindCrossable(LD->getDeclKind(), RD->getDeclKind(), true) &&
isSimilarName(LD->getName(), RD->getName());
}
return false;
}
static bool isBetterMatch(NodeMatch Match1, NodeMatch Match2) {
assert(Match1.Left == Match2.Left);
auto Left = Match1.Left;
auto *M1Right = Match1.Right->getAs<SDKNodeDecl>();
auto *M2Right = Match2.Right->getAs<SDKNodeDecl>();
// Consider non-deprecated nodes better matches.
auto Dep1 = M1Right->isDeprecated();
auto Dep2 = M2Right->isDeprecated();
if (Dep1 ^ Dep2) {
return Dep2;
}
// If two names are identical, measure whose printed names is closer.
if (M1Right->getName() == M2Right->getName()) {
return
M1Right->getPrintedName().edit_distance(Left->getPrintedName()) <
M2Right->getPrintedName().edit_distance(Left->getPrintedName());
}
#define DIST(A, B) (std::max(A, B) - std::min(A, B))
return
DIST(Left->getName().size(), Match1.Right->getName().size()) <
DIST(Left->getName().size(), Match2.Right->getName().size());
#undef DIST
}
void foundMatch(NodePtr R, NodePtr A, NodeMatchReason Reason) override {
Listener.foundMatch(R, A, Reason);
RemovedMatched.push_back(R);
AddedMatched.push_back(A);
}
public:
RemovedAddedNodeMatcher(NodeVector &Removed, NodeVector &Added,
MatchedNodeListener &Listener) : Removed(Removed),
Added(Added), Listener(Listener) {}
void match() override {
auto IsDecl = [](NodePtr P) { return isa<SDKNodeDecl>(P); };
for (auto R : SDKNodeVectorViewer(Removed, IsDecl)) {
for (auto A : SDKNodeVectorViewer(Added, IsDecl)) {
auto RD = R->getAs<SDKNodeDecl>();
auto AD = A->getAs<SDKNodeDecl>();
if (detectFuncToProperty(RD, AD) || detectModernizeEnum(RD, AD) ||
detectSameAnonymousEnum(RD, AD) || detectTypeAliasChange(RD, AD)) {
break;
}
}
}
// Rename detection starts.
NodeVector RenameLeft;
NodeVector RenameRight;
for (auto Remain : Removed) {
if (!llvm::is_contained(RemovedMatched, Remain))
RenameLeft.push_back(Remain);
}
for (auto Remain : Added) {
if (!llvm::is_contained(AddedMatched, Remain))
RenameRight.push_back(Remain);
}
BestMatchMatcher RenameMatcher(RenameLeft, RenameRight, isRename,
isBetterMatch, NodeMatchReason::Name, *this);
RenameMatcher.match();
// Rename detection ends.
handleUnmatch(RemovedMatched, Removed, true);
handleUnmatch(AddedMatched, Added, false);
}
};
// Given two NodeVector, this matches SDKNode by the their names; only Nodes with
// the identical names will be matched. We use this in name-sensitive but
// order-insensitive cases, such as matching types in a module.
class SameNameNodeMatcher : public NodeMatcher {
ArrayRef<SDKNode*> Left;
ArrayRef<SDKNode*> Right;
MatchedNodeListener &Listener;
enum class NameMatchKind {
USR,
PrintedName,
PrintedNameAndUSR,
};
static bool isUSRSame(SDKNode *L, SDKNode *R) {
auto *LD = dyn_cast<SDKNodeDecl>(L);
auto *RD = dyn_cast<SDKNodeDecl>(R);
if (!LD || !RD)
return false;
return LD->getUsr() == RD->getUsr();
}
// Given two SDK nodes, figure out the reason for why they have the same name.
std::optional<NameMatchKind> getNameMatchKind(SDKNode *L, SDKNode *R) {
if (L->getKind() != R->getKind())
return std::nullopt;
auto NameEqual = L->getPrintedName() == R->getPrintedName();
auto UsrEqual = isUSRSame(L, R);
if (NameEqual && UsrEqual)
return NameMatchKind::PrintedNameAndUSR;
else if (NameEqual)
return NameMatchKind::PrintedName;
else if (UsrEqual)
return NameMatchKind::USR;
else
return std::nullopt;
}
struct NameMatchCandidate {
SDKNode *Node;
NameMatchKind Kind;
};
// Get the priority for the favored name match kind. Favored name match kind
// locals before less favored ones.
ArrayRef<NameMatchKind> getNameMatchKindPriority(SDKNodeKind Kind) {
if (Kind == SDKNodeKind::DeclFunction) {
static NameMatchKind FuncPriority[] = { NameMatchKind::PrintedNameAndUSR,
NameMatchKind::USR,
NameMatchKind::PrintedName };
return FuncPriority;
} else {
static NameMatchKind OtherPriority[] = { NameMatchKind::PrintedNameAndUSR,
NameMatchKind::PrintedName,
NameMatchKind::USR };
return OtherPriority;
}
}
// Given a list and a priority, find the best matched candidate SDK node.
SDKNode* findBestNameMatch(ArrayRef<NameMatchCandidate> Candidates,
ArrayRef<NameMatchKind> Kinds) {
for (auto Kind : Kinds)
for (auto &Can : Candidates)
if (Kind == Can.Kind)
return Can.Node;
return nullptr;
}
public:
SameNameNodeMatcher(ArrayRef<SDKNode*> Left, ArrayRef<SDKNode*> Right,
MatchedNodeListener &Listener) : Left(Left), Right(Right),
Listener(Listener) {}
void match() override ;
};
void SameNameNodeMatcher::match() {
NodeVector MatchedRight;
NodeVector Removed;
NodeVector Added;
for (auto *LN : Left) {
// This collects all the candidates that can match with LN.
std::vector<NameMatchCandidate> Candidates;
for (auto *RN : Right) {
// If RN has matched before, ignore it.
if (llvm::is_contained(MatchedRight, RN))
continue;
// If LN and RN have the same name for some reason, keep track of RN.
if (auto Kind = getNameMatchKind(LN, RN))
Candidates.push_back({RN, Kind.value()});
}
// Try to find the best match among all the candidates by the priority name
// match kind list.
if (auto Match = findBestNameMatch(Candidates,
getNameMatchKindPriority(LN->getKind()))) {
Listener.foundMatch(LN, Match, NodeMatchReason::Name);
MatchedRight.push_back(Match);
} else {
Removed.push_back(LN);
}
}
for (auto &R : Right) {
if (!llvm::is_contained(MatchedRight, R)) {
Added.push_back(R);
}
}
RemovedAddedNodeMatcher RAMatcher(Removed, Added, Listener);
RAMatcher.match();
}
// The recursive version of sequential matcher. We do not only match two vectors
// of NodePtr but also their descendents.
class SequentialRecursiveMatcher : public NodeMatcher {
NodePtr &Left;
NodePtr &Right;
MatchedNodeListener &Listener;
void matchInternal(NodePtr L, NodePtr R) {
Listener.foundMatch(L, R, NodeMatchReason::Sequential);
if (!L || !R)
return;
for (unsigned I = 0; I < std::max(L->getChildrenCount(),
R->getChildrenCount()); ++ I) {
auto Left = I < L->getChildrenCount() ? L->childAt(I) : nullptr;
auto Right = I < R->getChildrenCount() ? R->childAt(I): nullptr;
matchInternal(Left, Right);
}
}
public:
SequentialRecursiveMatcher(NodePtr &Left, NodePtr &Right,
MatchedNodeListener &Listener) : Left(Left),
Right(Right), Listener(Listener) {}
void match() override {
matchInternal(Left, Right);
}
};
// This is the interface of all passes on the given trees rooted at Left and Right.
class SDKTreeDiffPass {
public:
virtual void pass(NodePtr Left, NodePtr Right) = 0;
virtual ~SDKTreeDiffPass() {}
};
}// End of anonymous namespace
namespace {
static bool isMissingDeclAcceptable(const SDKNodeDecl *D) {
// Don't complain about removing importation of SwiftOnoneSupport.
if (D->getKind() == SDKNodeKind::DeclImport) {
return true;
}
return false;
}
static void diagnoseRemovedDecl(const SDKNodeDecl *D) {
if (D->getSDKContext().checkingABI()) {
// Don't complain about removing @_alwaysEmitIntoClient if we are checking ABI.
// We shouldn't include these decls in the ABI baseline file. This line is
// added so the checker is backward compatible.
if (D->hasDeclAttribute(DeclAttrKind::AlwaysEmitIntoClient))
return;
}
auto &Ctx = D->getSDKContext();
// Don't diagnose removal of deprecated APIs.
if (Ctx.getOpts().SkipRemoveDeprecatedCheck &&
D->isDeprecated())
return;
if (isMissingDeclAcceptable(D)) {
return;
}
D->emitDiag(SourceLoc(), diag::removed_decl, false);
}
// This is first pass on two given SDKNode trees. This pass removes the common part
// of two versions of SDK, leaving only the changed part.
class PrunePass : public MatchedNodeListener, public SDKTreeDiffPass {
static void removeCommon(NodeVector &Left, NodeVector &Right) {
NodeVector LeftMinusRight, RightMinusLeft;
nodeSetDifference(Left, Right, LeftMinusRight, RightMinusLeft);
Left = LeftMinusRight;
Right = RightMinusLeft;
}
static void removeCommonChildren(NodePtr Left, NodePtr Right) {
removeCommon(Left->getChildren(), Right->getChildren());
}
SDKContext &Ctx;
UpdatedNodesMap &UpdateMap;
llvm::StringSet<> ProtocolReqAllowlist;
SDKNodeRoot *LeftRoot;
SDKNodeRoot *RightRoot;
bool DebugMapping;
static void printSpaces(llvm::raw_ostream &OS, SDKNode *N) {
assert(N);
StringRef Space = " ";
// Accessor doesn't have parent.
if (auto *AC = dyn_cast<SDKNodeDeclAccessor>(N)) {
OS << Space;
printSpaces(OS, AC->getStorage());
return;
}
for (auto P = N; !isa<SDKNodeRoot>(P); P = P->getParent())
OS << Space;
}
static void debugMatch(SDKNode *Left, SDKNode *Right, NodeMatchReason Reason,
llvm::raw_ostream &OS) {
if (Left && !isa<SDKNodeDecl>(Left))
return;
if (Right && !isa<SDKNodeDecl>(Right))
return;
StringRef Arrow = " <--------> ";
switch (Reason) {
case NodeMatchReason::Added:
printSpaces(OS, Right);
OS << "<NULL>" << Arrow << Right->getPrintedName() << "\n";
return;
case NodeMatchReason::Removed:
printSpaces(OS, Left);
OS << Left->getPrintedName() << Arrow << "<NULL>\n";
return;
default:
printSpaces(OS, Left);
OS << Left->getPrintedName() << Arrow << Right->getPrintedName() << "\n";
return;
}
}
static StringRef getParentProtocolName(SDKNode *Node) {
if (auto *Acc = dyn_cast<SDKNodeDeclAccessor>(Node)) {
Node = Acc->getStorage();
}
return Node->getParent()->getAs<SDKNodeDecl>()->getFullyQualifiedName();
}
public:
PrunePass(SDKContext &Ctx, bool DebugMapping)
: Ctx(Ctx), UpdateMap(Ctx.getNodeUpdateMap()),
DebugMapping(DebugMapping) {}
PrunePass(SDKContext &Ctx, llvm::StringSet<> prAllowlist, bool DebugMapping)
: Ctx(Ctx), UpdateMap(Ctx.getNodeUpdateMap()),
ProtocolReqAllowlist(std::move(prAllowlist)),
DebugMapping(DebugMapping) {}
void diagnoseMissingAvailable(SDKNodeDecl *D) {
// For extensions of external types, we diagnose individual member's missing
// available attribute instead of the extension itself.
// The reason is we may merge several extensions into a single one; some
// attributes are missing.
if (auto *DT = dyn_cast<SDKNodeDeclType>(D)) {
if (DT->isExtension()) {
for(auto MD: DT->getChildren()) {
diagnoseMissingAvailable(cast<SDKNodeDecl>(MD));
}
return;
}
}
// Diagnose the missing of @available attributes.
// Decls with @_alwaysEmitIntoClient aren't required to have an
// @available attribute.
if (!Ctx.getOpts().SkipOSCheck &&
DeclAttribute::canAttributeAppearOnDeclKind(DeclAttrKind::Available,
D->getDeclKind()) &&
!D->getIntroducingVersion().hasOSAvailability() &&
!D->hasDeclAttribute(DeclAttrKind::AlwaysEmitIntoClient) &&
!D->hasDeclAttribute(DeclAttrKind::Marker)) {
D->emitDiag(D->getLoc(), diag::new_decl_without_intro);
}
}
void foundMatch(NodePtr Left, NodePtr Right, NodeMatchReason Reason) override {
if (DebugMapping)
debugMatch(Left, Right, Reason, llvm::errs());
switch (Reason) {
case NodeMatchReason::Added:
assert(!Left);
Right->annotate(NodeAnnotation::Added);
if (Ctx.checkingABI()) {
// Any order-important decl added to a non-resilient type breaks ABI.
if (auto *D = dyn_cast<SDKNodeDecl>(Right)) {
if (D->hasFixedBinaryOrder()) {
D->emitDiag(D->getLoc(), diag::decl_added);
}
diagnoseMissingAvailable(D);
}
}
// Complain about added protocol requirements
if (auto *D = dyn_cast<SDKNodeDecl>(Right)) {
if (D->isNonOptionalProtocolRequirement()) {
bool ShouldComplain = !D->isOverriding();
// We should allow added associated types with default.
if (auto ATD = dyn_cast<SDKNodeDeclAssociatedType>(D)) {
if (ATD->getDefault())
ShouldComplain = false;
}
if (ShouldComplain &&
ProtocolReqAllowlist.count(getParentProtocolName(D))) {
// Ignore protocol requirement additions if the protocol has been added
// to the allowlist.
ShouldComplain = false;
}
if (ShouldComplain) {
// Providing a default implementation via a protocol extension for
// a protocol requirement is both ABI and API safe.
if (auto *PD = dyn_cast<SDKNodeDecl>(D->getParent())) {
for (auto *SIB: PD->getChildren()) {
if (auto *SIBD = dyn_cast<SDKNodeDecl>(SIB)) {
if (SIBD->isFromExtension() &&
SIBD->getPrintedName() == D->getPrintedName()) {
ShouldComplain = false;
break;
}
}
}
}
}
if (ShouldComplain)
D->emitDiag(D->getLoc(), diag::protocol_req_added);
}
}
// Diagnose an inherited protocol has been added.
if (auto *Conf = dyn_cast<SDKNodeConformance>(Right)) {
auto *TD = Conf->getNominalTypeDecl();
if (TD->isProtocol()) {
TD->emitDiag(TD->getLoc(), diag::conformance_added, Conf->getName());
} else {
// Adding conformance to an existing type can be ABI breaking.
if (Ctx.checkingABI() &&
!LeftRoot->getDescendantsByUsr(Conf->getUsr()).empty()) {
TD->emitDiag(TD->getLoc(), diag::existing_conformance_added,
Conf->getName());
}
}
}
if (auto *CD = dyn_cast<SDKNodeDeclConstructor>(Right)) {
if (auto *TD = dyn_cast<SDKNodeDeclType>(Right->getParent())) {
if (TD->isOpen() && CD->getInitKind() == CtorInitializerKind::Designated) {
// If client's subclass provides an implementation of all of its superclass designated
// initializers, it automatically inherits all of the superclass convenience initializers.
// This means if a new designated init is added to the base class, the inherited
// convenience init may be missing and cause breakage.
CD->emitDiag(CD->getLoc(), diag::desig_init_added);
}
}
}
// Adding an enum case is source-breaking.
if (!Ctx.checkingABI()) {
if (auto *Var = dyn_cast<SDKNodeDeclVar>(Right)) {
if (Var->getDeclKind() == DeclKind::EnumElement) {
if (Var->getParent()->getAs<SDKNodeDeclType>()->isEnumExhaustive()) {
Var->emitDiag(Var->getLoc(), diag::enum_case_added);
}
}
}
}
return;
case NodeMatchReason::Removed:
assert(!Right);
Left->annotate(NodeAnnotation::Removed);
if (auto *LT = dyn_cast<SDKNodeType>(Left)) {
if (auto *AT = dyn_cast<SDKNodeDeclAssociatedType>(LT->getParent())) {
AT->emitDiag(SourceLoc(), diag::default_associated_type_removed,
LT->getPrintedName());
}
}
// Diagnose a protocol conformance has been removed.
if (auto *Conf = dyn_cast<SDKNodeConformance>(Left)) {
auto *TD = Conf->getNominalTypeDecl();
TD->emitDiag(SourceLoc(),
diag::conformance_removed,
Conf->getName(),
TD->isProtocol());
}
if (auto *Acc = dyn_cast<SDKNodeDeclAccessor>(Left)) {
diagnoseRemovedDecl(Acc);
}
return;
case NodeMatchReason::FuncToProperty:
case NodeMatchReason::ModernizeEnum:
case NodeMatchReason::TypeToTypeAlias:
Left->annotate(NodeAnnotation::Removed);
Right->annotate(NodeAnnotation::Added);
return;
case NodeMatchReason::Root:
case NodeMatchReason::Name:
case NodeMatchReason::Sequential:
break;
}
assert(Left && Right);
Left->annotate(NodeAnnotation::Updated);
Right->annotate(NodeAnnotation::Updated);
// Push the updated node to the map for future reference.
UpdateMap.insert(Left, Right);
Left->diagnose(Right);
if (Left->getKind() != Right->getKind()) {
assert(isa<SDKNodeType>(Left) && isa<SDKNodeType>(Right) &&
"only type nodes can match across kinds.");
return;
}
assert(Left->getKind() == Right->getKind());
SDKNodeKind Kind = Left->getKind();
assert(Kind == SDKNodeKind::Root || *Left != *Right);
switch(Kind) {
case SDKNodeKind::DeclType: {
// Remove common conformances and diagnose conformance changes.
auto LConf = cast<SDKNodeDeclType>(Left)->getConformances();
auto RConf = cast<SDKNodeDeclType>(Right)->getConformances();
removeCommon(LConf, RConf);
SameNameNodeMatcher(LConf, RConf, *this).match();
LLVM_FALLTHROUGH;
}
case SDKNodeKind::Conformance:
case SDKNodeKind::Root: {
// If the matched nodes are both modules, remove the contained
// type decls that are identical. If the matched nodes are both type decls,
// remove the contained function decls that are identical.
removeCommonChildren(Left, Right);
SameNameNodeMatcher SNMatcher(Left->getChildren(), Right->getChildren(), *this);
SNMatcher.match();
break;
}
case SDKNodeKind::TypeWitness:
case SDKNodeKind::DeclOperator:
case SDKNodeKind::DeclAssociatedType:
case SDKNodeKind::DeclFunction:
case SDKNodeKind::DeclAccessor:
case SDKNodeKind::DeclConstructor:
case SDKNodeKind::DeclTypeAlias:
case SDKNodeKind::DeclImport:
case SDKNodeKind::TypeFunc:
case SDKNodeKind::TypeNominal:
case SDKNodeKind::TypeAlias:
case SDKNodeKind::DeclMacro: {
// If matched nodes are both function/var/TypeAlias decls, mapping their
// parameters sequentially.
SequentialNodeMatcher SNMatcher(Left->getChildren(), Right->getChildren(),
*this);
SNMatcher.match();
break;
}
case SDKNodeKind::DeclSubscript: {
auto *LSub = dyn_cast<SDKNodeDeclSubscript>(Left);
auto *RSub = dyn_cast<SDKNodeDeclSubscript>(Right);
SequentialNodeMatcher(LSub->getChildren(), RSub->getChildren(), *this).match();
#define ACCESSOR(ID) \
singleMatch(LSub->getAccessor(AccessorKind::ID), \
RSub->getAccessor(AccessorKind::ID), *this);
#include "swift/AST/AccessorKinds.def"
break;
}
case SDKNodeKind::DeclVar: {
auto *LVar = dyn_cast<SDKNodeDeclVar>(Left);
auto *RVar = dyn_cast<SDKNodeDeclVar>(Right);
// Match property type.
singleMatch(LVar->getType(), RVar->getType(), *this);
#define ACCESSOR(ID) \
singleMatch(LVar->getAccessor(AccessorKind::ID), \
RVar->getAccessor(AccessorKind::ID), *this);
#include "swift/AST/AccessorKinds.def"
break;
}
}
}
void pass(NodePtr Left, NodePtr Right) override {
LeftRoot = Left->getAs<SDKNodeRoot>();
RightRoot = Right->getAs<SDKNodeRoot>();
foundMatch(Left, Right, NodeMatchReason::Root);
}
};
// Class to build up a diff of structurally different nodes, based on the given
// USR map for the left (original) side of the diff, based on parent types.
class TypeMemberDiffFinder : public SDKNodeVisitor {
friend class SDKNode; // for visit()
SDKNodeRoot *diffAgainst;
// Vector of {givenNodePtr, diffAgainstPtr}
NodePairVector TypeMemberDiffs;
void visit(NodePtr node) override {
// Skip nodes that we don't have a correlate for
auto declNode = dyn_cast<SDKNodeDecl>(node);
if (!declNode)
return;
auto usr = declNode->getUsr();
auto &usrName = usr;
// If we can find no nodes in the other tree with the same usr, abort.
auto candidates = diffAgainst->getDescendantsByUsr(usrName);
if (candidates.empty())
return;
// If any of the candidates has the same kind and name with the node, we
// shouldn't continue.
for (auto Can : candidates) {
if (Can->getKind() == declNode->getKind() &&
Can->getAs<SDKNodeDecl>()->getFullyQualifiedName() ==
declNode->getFullyQualifiedName())
return;
}
auto diffNode = candidates.front();
assert(node && diffNode && "nullptr visited?");
auto nodeParent = node->getParent();
auto diffParent = diffNode->getParent();
assert(nodeParent && diffParent && "trying to check Root?");
// Move from global variable to a member variable.
if (nodeParent->getKind() == SDKNodeKind::DeclType &&
diffParent->getKind() == SDKNodeKind::Root)
TypeMemberDiffs.insert({diffNode, node});
// Move from a member variable to global variable.
if (nodeParent->getKind() == SDKNodeKind::Root &&
diffParent->getKind() == SDKNodeKind::DeclType)
TypeMemberDiffs.insert({diffNode, node});
// Move from a member variable to another member variable
if (nodeParent->getKind() == SDKNodeKind::DeclType &&
diffParent->getKind() == SDKNodeKind::DeclType &&
declNode->isStatic())
TypeMemberDiffs.insert({diffNode, node});
// Move from a getter/setter function to a property
else if (node->getKind() == SDKNodeKind::DeclAccessor &&
diffNode->getKind() == SDKNodeKind::DeclFunction &&
node->isNameValid()) {
diffNode->annotate(NodeAnnotation::Rename);
diffNode->annotate(NodeAnnotation::RenameOldName,
diffNode->getPrintedName());
diffNode->annotate(NodeAnnotation::RenameNewName,
node->getParent()->getPrintedName());
}
}
public:
TypeMemberDiffFinder(SDKNodeRoot *diffAgainst):
diffAgainst(diffAgainst) {}
void findDiffsFor(NodePtr ptr) { SDKNode::preorderVisit(ptr, *this); }
const NodePairVector &getDiffs() const {
return TypeMemberDiffs;
}
void dump(llvm::raw_ostream &) const;
void dump() const { dump(llvm::errs()); }
private:
TypeMemberDiffFinder(const TypeMemberDiffFinder &) = delete;
TypeMemberDiffFinder &operator=(const TypeMemberDiffFinder &) = delete;
};
/// This is to find type alias of raw types being changed to RawRepresentable.
/// e.g. AttributeName was a typealias of String in the old SDK however it becomes
/// a RawRepresentable struct in the new SDK.
/// This happens typically when we use apinotes to preserve API stability by
/// using SwiftWrapper:none in the old SDK.
class TypeAliasDiffFinder: public SDKNodeVisitor {
SDKNodeRoot *leftRoot;
SDKNodeRoot *rightRoot;
NodeMap &result;
static bool checkTypeMatch(const SDKNodeType* aliasType,
const SDKNodeType* rawType) {
StringRef Left = aliasType->getPrintedName();
StringRef Right = rawType->getPrintedName();
if (Left == "NSString" && Right == "String")
return true;
if (Left == "String" && Right == "String")
return true;
if (Left == "Int" && Right == "Int")
return true;
if (Left == "UInt" && Right == "UInt")
return true;
return false;
}
void visit(NodePtr node) override {
auto alias = dyn_cast<SDKNodeDeclTypeAlias>(node);
if (!alias)
return;
const SDKNodeType* aliasType = alias->getUnderlyingType();
for (auto *counter: rightRoot->getDescendantsByUsr(alias->getUsr())) {
if (auto DT = dyn_cast<SDKNodeDeclType>(counter)) {
if (auto *rawType = DT->getRawValueType()) {
if (checkTypeMatch(aliasType, rawType)) {
result.insert({alias, DT});
return;
}
}
}
}
}
public:
TypeAliasDiffFinder(SDKNodeRoot *leftRoot, SDKNodeRoot *rightRoot,
NodeMap &result): leftRoot(leftRoot), rightRoot(rightRoot),
result(result) {}
void search() {
SDKNode::preorderVisit(leftRoot, *this);
}
};
// Given a condition, search whether a node satisfies that condition exists
// in a tree.
class SearchVisitor : public SDKNodeVisitor {
bool isFound = false;
llvm::function_ref<bool(NodePtr)> Predicate;
public:
SearchVisitor(llvm::function_ref<bool(NodePtr)> Predicate) :
Predicate(Predicate) {}
void visit(NodePtr Node) override {
isFound |= Predicate(Node);
}
bool search(NodePtr Node) {
SDKNode::preorderVisit(Node, *this);
return isFound;
}
};
class InterfaceTypeChangeDetector {
bool IsVisitingLeft;
#define ANNOTATE(Node, Counter, X, Y) \
auto ToAnnotate = IsVisitingLeft ? Node : Counter; \
ToAnnotate->annotate(IsVisitingLeft ? X : Y);
bool detectWrapOptional(SDKNodeType *Node, SDKNodeType *Counter) {
if (Node->getTypeKind() != KnownTypeKind::Optional &&
Node->getTypeKind() != KnownTypeKind::ImplicitlyUnwrappedOptional &&
Counter->getTypeKind() == KnownTypeKind::Optional &&
*Node == *Counter->getOnlyChild()) {
ANNOTATE(Node, Counter, NodeAnnotation::WrapOptional,
NodeAnnotation::UnwrapOptional)
return true;
}
return false;
}
bool detectWrapImplicitOptional(SDKNodeType *Node, SDKNodeType *Counter) {
if (Node->getTypeKind() != KnownTypeKind::Optional &&
Node->getTypeKind() != KnownTypeKind::ImplicitlyUnwrappedOptional &&
Counter->getTypeKind() == KnownTypeKind::ImplicitlyUnwrappedOptional &&
*Node == *Counter->getOnlyChild()) {
ANNOTATE(Node, Counter, NodeAnnotation::WrapImplicitOptional,
NodeAnnotation::UnwrapOptional)
return true;
}
return false;
}
bool detectOptionalUpdate(SDKNodeType *Node, SDKNodeType *Counter) {
if (Node->getTypeKind() == KnownTypeKind::Optional &&
Counter->getTypeKind() == KnownTypeKind::ImplicitlyUnwrappedOptional &&
*Node->getOnlyChild() == *Counter->getOnlyChild()) {
ANNOTATE(Node, Counter,
NodeAnnotation::OptionalToImplicitOptional,
NodeAnnotation::ImplicitOptionalToOptional)
return true;
}
return false;
}
bool detectUnmanagedUpdate(SDKNodeType *Node, SDKNodeType *Counter) {
if (IsVisitingLeft && Node->getTypeKind() == KnownTypeKind::Unmanaged &&
Counter->getTypeKind() != KnownTypeKind::Unmanaged &&
*Node->getOnlyChild() == *Counter) {
Node->annotate(NodeAnnotation::UnwrapUnmanaged);
return true;
}
return false;
}
#undef ANNOTATE
bool detectTypeRewritten(SDKNodeType *Node, SDKNodeType *Counter) {
if (IsVisitingLeft &&
Node->getPrintedName() != Counter->getPrintedName() &&
(Node->getName() != Counter->getName() ||
Node->getChildrenCount() != Counter->getChildrenCount())) {
Node->annotate(NodeAnnotation::TypeRewritten);
Node->annotate(NodeAnnotation::TypeRewrittenLeft, Node->getPrintedName());
Node->annotate(NodeAnnotation::TypeRewrittenRight,
Counter->getPrintedName());
return true;
}
return false;
}
static bool isRawType(const SDKNodeType *T, StringRef &Raw) {
if (auto Alias = dyn_cast<SDKNodeTypeAlias>(T)) {
// In case this type is an alias of the raw type.
return isRawType(Alias->getUnderlyingType(), Raw);
}
switch(T->getTypeKind()) {
case KnownTypeKind::String:
case KnownTypeKind::Int:
Raw = T->getName();
return true;
default:
return false;
}
}
static StringRef getStringRepresentableChange(SDKNode *L, SDKNode *R,
StringRef &Raw) {
if (!isRawType(L->getAs<SDKNodeType>(), Raw))
return StringRef();
auto* RKey = dyn_cast<SDKNodeTypeNominal>(R);
if (!RKey)
return StringRef();
if (Raw.empty())
return StringRef();
auto Results = RKey->getRootNode()->getDescendantsByUsr(RKey->getUsr());
if (Results.empty())
return StringRef();
if (auto DT = dyn_cast<SDKNodeDeclType>(Results.front())) {
if (DT->isConformingTo(KnownProtocolKind::RawRepresentable)) {
return DT->getFullyQualifiedName();
}
}
return StringRef();
}
static StringRef detectDictionaryKeyChangeInternal(SDKNodeType *L,
SDKNodeType *R,
StringRef &Raw) {
if (L->getTypeKind() != KnownTypeKind::Dictionary ||
R->getTypeKind() != KnownTypeKind::Dictionary)
return StringRef();
auto *Left = dyn_cast<SDKNodeTypeNominal>(L);
auto *Right = dyn_cast<SDKNodeTypeNominal>(R);
assert(Left && Right);
assert(Left->getChildrenCount() == 2);
assert(Right->getChildrenCount() == 2);
return getStringRepresentableChange(*Left->getChildBegin(),
*Right->getChildBegin(), Raw);
}
bool detectDictionaryKeyChange(SDKNodeType *L, SDKNodeType *R) {
// We only care if this the top-level type node.
if (!L->isTopLevelType() || !R->isTopLevelType())
return false;
StringRef Raw;
StringRef KeyChangedTo;
bool HasOptional = L->getTypeKind() == KnownTypeKind::Optional &&
R->getTypeKind() == KnownTypeKind::Optional;
if (HasOptional) {
// Detect [String: Any]? to [StringRepresentableStruct: Any]? Change
KeyChangedTo =
detectDictionaryKeyChangeInternal(L->getOnlyChild()->getAs<SDKNodeType>(),
R->getOnlyChild()->getAs<SDKNodeType>(),
Raw);
} else {
// Detect [String: Any] to [StringRepresentableStruct: Any] Change
KeyChangedTo = detectDictionaryKeyChangeInternal(L, R, Raw);
}
if (!KeyChangedTo.empty()) {
if (IsVisitingLeft) {
L->annotate(HasOptional ?
NodeAnnotation::OptionalDictionaryKeyUpdate :
NodeAnnotation::DictionaryKeyUpdate);
L->annotate(NodeAnnotation::RawTypeLeft, Raw);
L->annotate(NodeAnnotation::RawTypeRight, KeyChangedTo);
} else {
R->annotate(HasOptional ?
NodeAnnotation::RevertOptionalDictionaryKeyUpdate :
NodeAnnotation::RevertDictionaryKeyUpdate);
R->annotate(NodeAnnotation::RawTypeLeft, KeyChangedTo);
R->annotate(NodeAnnotation::RawTypeRight, Raw);
}
return true;
}
return false;
}
static StringRef detectArrayMemberChangeInternal(SDKNodeType *L,
SDKNodeType *R, StringRef &Raw) {
if (L->getTypeKind() != KnownTypeKind::Array ||
R->getTypeKind() != KnownTypeKind::Array)
return StringRef();
auto *Left = dyn_cast<SDKNodeTypeNominal>(L);
auto *Right = dyn_cast<SDKNodeTypeNominal>(R);
assert(Left && Right);
assert(Left->getChildrenCount() == 1);
assert(Right->getChildrenCount() == 1);
return getStringRepresentableChange(Left->getOnlyChild(),
Right->getOnlyChild(), Raw);
}
bool detectArrayMemberChange(SDKNodeType* L, SDKNodeType *R) {
// We only care if this the top-level type node.
if (!L->isTopLevelType() || !R->isTopLevelType())
return false;
StringRef Raw;
StringRef KeyChangedTo;
bool HasOptional = L->getTypeKind() == KnownTypeKind::Optional &&
R->getTypeKind() == KnownTypeKind::Optional;
if (HasOptional) {
// Detect [String]? to [StringRepresentableStruct]? Change
KeyChangedTo =
detectArrayMemberChangeInternal(L->getOnlyChild()->getAs<SDKNodeType>(),
R->getOnlyChild()->getAs<SDKNodeType>(),
Raw);
} else {
// Detect [String] to [StringRepresentableStruct] Change
KeyChangedTo = detectArrayMemberChangeInternal(L, R, Raw);
}
if (!KeyChangedTo.empty()) {
if (IsVisitingLeft) {
L->annotate(HasOptional ?
NodeAnnotation::OptionalArrayMemberUpdate :
NodeAnnotation::ArrayMemberUpdate);
L->annotate(NodeAnnotation::RawTypeLeft, Raw);
L->annotate(NodeAnnotation::RawTypeRight, KeyChangedTo);
} else {
R->annotate(HasOptional ?
NodeAnnotation::RevertOptionalArrayMemberUpdate :
NodeAnnotation::RevertArrayMemberUpdate);
R->annotate(NodeAnnotation::RawTypeLeft, KeyChangedTo);
R->annotate(NodeAnnotation::RawTypeRight, Raw);
}
return true;
}
return false;
}
bool detectSimpleStringRepresentableUpdate(SDKNodeType *L, SDKNodeType *R) {
if (!L->isTopLevelType() || !R->isTopLevelType())
return false;
StringRef KeyChangedTo;
StringRef Raw;
bool HasOptional = L->getTypeKind() == KnownTypeKind::Optional &&
R->getTypeKind() == KnownTypeKind::Optional;
if (HasOptional) {
// Detect String? changes to StringRepresentableStruct? change.
KeyChangedTo =
getStringRepresentableChange(L->getOnlyChild()->getAs<SDKNodeType>(),
R->getOnlyChild()->getAs<SDKNodeType>(),
Raw);
} else {
// Detect String changes to StringRepresentableStruct change.
KeyChangedTo = getStringRepresentableChange(L, R, Raw);
}
if (!KeyChangedTo.empty()) {
if (IsVisitingLeft) {
L->annotate(NodeAnnotation::RawTypeLeft, Raw);
L->annotate(NodeAnnotation::RawTypeRight, KeyChangedTo);
L->annotate(HasOptional ?
NodeAnnotation::SimpleOptionalStringRepresentableUpdate:
NodeAnnotation::SimpleStringRepresentableUpdate);
} else {
R->annotate(NodeAnnotation::RawTypeLeft, KeyChangedTo);
R->annotate(NodeAnnotation::RawTypeRight, Raw);
R->annotate(HasOptional ?
NodeAnnotation::RevertSimpleOptionalStringRepresentableUpdate:
NodeAnnotation::RevertSimpleStringRepresentableUpdate);
}
return true;
}
return false;
}
bool isUnhandledCase(SDKNodeType *Node, SDKNodeType *Counter) {
return Node->getTypeKind() == KnownTypeKind::Void ||
Counter->getTypeKind() == KnownTypeKind::Void;
}
static void clearTypeRewritten(SDKNode *N) {
if (!N->isAnnotatedAs(NodeAnnotation::TypeRewritten))
return;
N->removeAnnotate(NodeAnnotation::TypeRewritten);
N->removeAnnotate(NodeAnnotation::TypeRewrittenLeft);
N->removeAnnotate(NodeAnnotation::TypeRewrittenRight);
}
public:
InterfaceTypeChangeDetector(bool IsVisitingLeft):
IsVisitingLeft(IsVisitingLeft) {}
void detect(SDKNode *Left, SDKNode *Right) {
auto *Node = dyn_cast<SDKNodeType>(Left);
auto *Counter = dyn_cast<SDKNodeType>(Right);
if (!Node || !Counter || isUnhandledCase(Node, Counter))
return;
if (detectWrapOptional(Node, Counter) ||
detectOptionalUpdate(Node, Counter) ||
detectWrapImplicitOptional(Node, Counter) ||
detectUnmanagedUpdate(Node, Counter)) {
// we may have detected type rewritten before (when visiting left),
// so clear the annotation here.
clearTypeRewritten(Node);
clearTypeRewritten(Counter);
} else {
// Detect type re-written then.
detectTypeRewritten(Node, Counter);
}
// The raw representable changes can co-exist with above attributes.
auto Result = detectDictionaryKeyChange(Node, Counter) ||
detectArrayMemberChange(Node, Counter) ||
detectSimpleStringRepresentableUpdate(Node, Counter);
(void) Result;
return;
}
};
class ChangeRefinementPass : public SDKTreeDiffPass, public SDKNodeVisitor {
UpdatedNodesMap &UpdateMap;
InterfaceTypeChangeDetector LeftDetector;
InterfaceTypeChangeDetector RightDetector;
InterfaceTypeChangeDetector *Detector;
public:
ChangeRefinementPass(UpdatedNodesMap &UpdateMap) : UpdateMap(UpdateMap),
LeftDetector(true), RightDetector(false), Detector(nullptr) {}
void pass(NodePtr Left, NodePtr Right) override {
// Post-order visit is necessary since we propagate annotations bottom-up
Detector = &LeftDetector;
SDKNode::postorderVisit(Left, *this);
Detector = &RightDetector;
SDKNode::postorderVisit(Right, *this);
}
void visit(NodePtr Node) override {
assert(Detector);
if (!Node || !Node->isAnnotatedAs(NodeAnnotation::Updated))
return;
auto *Counter = UpdateMap.findUpdateCounterpart(Node);
Detector->detect(Node, Counter);
return;
}
};
} // end anonymous namespace
static void findTypeMemberDiffs(NodePtr leftSDKRoot, NodePtr rightSDKRoot,
TypeMemberDiffVector &out);
static void printNode(llvm::raw_ostream &os, NodePtr node) {
os << "{" << node->getName() << " " << node->getKind() << " "
<< node->getPrintedName();
if (auto F = dyn_cast<SDKNodeDeclAbstractFunc>(node)) {
if (F->hasSelfIndex()) {
os << " selfIndex: ";
os << F->getSelfIndex();
}
}
os << "}";
}
void TypeMemberDiffFinder::dump(llvm::raw_ostream &os) const {
for (auto pair : getDiffs()) {
os << " - ";
printNode(os, pair.first);
os << " parent: ";
printNode(os, pair.first->getParent());
os << "\n + ";
printNode(os, pair.second);
os << " parent: ";
printNode(os, pair.second->getParent());
os << "\n\n";
}
}
namespace {
template<typename T>
void removeRedundantAndSort(std::vector<T> &Diffs) {
std::set<T> DiffSet(Diffs.begin(), Diffs.end());
Diffs.assign(DiffSet.begin(), DiffSet.end());
std::sort(Diffs.begin(), Diffs.end());
}
template<typename T>
void serializeDiffs(llvm::raw_ostream &Fs, std::vector<T> &Diffs) {
if (Diffs.empty())
return;
Fs << "\n";
T::describe(Fs);
for (auto &Diff : Diffs) {
Diff.streamDef(Fs);
Fs << "\n";
}
T::undef(Fs);
Fs << "\n";
}
static bool isTypeChangeInterestedFuncNode(NodePtr Decl) {
switch(Decl->getKind()) {
case SDKNodeKind::DeclConstructor:
case SDKNodeKind::DeclFunction:
return true;
default:
return false;
}
}
class DiffItemEmitter : public SDKNodeVisitor {
DiffVector &AllItems;
static bool isInterested(SDKNodeDecl* Decl, NodeAnnotation Anno) {
switch (Anno) {
case NodeAnnotation::WrapOptional:
case NodeAnnotation::UnwrapOptional:
case NodeAnnotation::ImplicitOptionalToOptional:
case NodeAnnotation::OptionalToImplicitOptional:
case NodeAnnotation::UnwrapUnmanaged:
case NodeAnnotation::TypeRewritten:
return isTypeChangeInterestedFuncNode(Decl) &&
Decl->getParent()->getKind() == SDKNodeKind::DeclType;
default:
return true;
}
}
bool doesAncestorHaveTypeRewritten() {
return std::find_if(Ancestors.begin(), Ancestors.end(),[](NodePtr N) {
return N->isAnnotatedAs(NodeAnnotation::TypeRewritten);
}) != Ancestors.end();
}
static StringRef getLeftComment(NodePtr Node, NodeAnnotation Anno) {
switch(Anno) {
case NodeAnnotation::ArrayMemberUpdate:
case NodeAnnotation::OptionalArrayMemberUpdate:
case NodeAnnotation::DictionaryKeyUpdate:
case NodeAnnotation::OptionalDictionaryKeyUpdate:
case NodeAnnotation::SimpleStringRepresentableUpdate:
case NodeAnnotation::SimpleOptionalStringRepresentableUpdate:
case NodeAnnotation::RevertArrayMemberUpdate:
case NodeAnnotation::RevertOptionalArrayMemberUpdate:
case NodeAnnotation::RevertDictionaryKeyUpdate:
case NodeAnnotation::RevertOptionalDictionaryKeyUpdate:
case NodeAnnotation::RevertSimpleStringRepresentableUpdate:
case NodeAnnotation::RevertSimpleOptionalStringRepresentableUpdate:
return Node->getAnnotateComment(NodeAnnotation::RawTypeLeft);
case NodeAnnotation::TypeRewritten:
return Node->getAnnotateComment(NodeAnnotation::TypeRewrittenLeft);
case NodeAnnotation::Rename:
return Node->getAnnotateComment(NodeAnnotation::RenameOldName);
default:
return StringRef();
}
}
static StringRef getRightComment(NodePtr Node, NodeAnnotation Anno) {
switch (Anno) {
case NodeAnnotation::ArrayMemberUpdate:
case NodeAnnotation::OptionalArrayMemberUpdate:
case NodeAnnotation::DictionaryKeyUpdate:
case NodeAnnotation::OptionalDictionaryKeyUpdate:
case NodeAnnotation::SimpleStringRepresentableUpdate:
case NodeAnnotation::SimpleOptionalStringRepresentableUpdate:
case NodeAnnotation::RevertArrayMemberUpdate:
case NodeAnnotation::RevertOptionalArrayMemberUpdate:
case NodeAnnotation::RevertDictionaryKeyUpdate:
case NodeAnnotation::RevertOptionalDictionaryKeyUpdate:
case NodeAnnotation::RevertSimpleStringRepresentableUpdate:
case NodeAnnotation::RevertSimpleOptionalStringRepresentableUpdate:
return Node->getAnnotateComment(NodeAnnotation::RawTypeRight);
case NodeAnnotation::TypeRewritten:
return Node->getAnnotateComment(NodeAnnotation::TypeRewrittenRight);
case NodeAnnotation::ModernizeEnum:
return Node->getAnnotateComment(NodeAnnotation::ModernizeEnum);
case NodeAnnotation::Rename:
return Node->getAnnotateComment(NodeAnnotation::RenameNewName);
case NodeAnnotation::GetterToProperty:
case NodeAnnotation::SetterToProperty:
return Node->getAnnotateComment(NodeAnnotation::PropertyName);
default:
return StringRef();
}
}
void handleAnnotations(NodePtr Node, SDKNodeDecl *NonTypeParent,
StringRef Index, ArrayRef<NodeAnnotation> Annotations) {
for (auto Anno: Annotations) {
if (isInterested(NonTypeParent, Anno) && Node->isAnnotatedAs(Anno)) {
auto Kind = NonTypeParent->getKind();
StringRef LC = getLeftComment(Node, Anno);
StringRef RC = getRightComment(Node, Anno);
AllItems.emplace_back(Kind, Anno, Index,
NonTypeParent->getUsr(), StringRef(), LC, RC,
NonTypeParent->getModuleName());
}
}
}
void visit(NodePtr Node) override {
auto *Parent = dyn_cast<SDKNodeDecl>(Node);
if (!Parent) {
if (auto TN = dyn_cast<SDKNodeType>(Node)) {
Parent = TN->getClosestParentDecl();
}
}
if (!Parent)
return;
if (doesAncestorHaveTypeRewritten())
return;
handleAnnotations(Node, Parent,
isa<SDKNodeType>(Node) ? getIndexString(Node) : "0",
{
#define NODE_ANNOTATION_CHANGE_KIND(NAME) NodeAnnotation::NAME,
#include "swift/IDE/DigesterEnums.def"
});
}
StringRef getIndexString(NodePtr Node) {
llvm::SmallString<32> Builder;
std::vector<int> Indexes;
collectIndexes(Node, Indexes);
auto First = true;
for (auto I : Indexes) {
if (!First)
Builder.append(":");
else
First = false;
Builder.append(std::to_string(I));
}
return Node->getSDKContext().buffer(Builder.str());
}
void collectIndexes(NodePtr Node, std::vector<int> &Indexes) {
for (unsigned I = Ancestors.size(); I > 0 && (I == Ancestors.size() ||
isa<SDKNodeType>(Ancestors[I])); -- I) {
auto Child = I == Ancestors.size() ? Node : Ancestors[I];
auto Parent = Ancestors[I - 1];
Indexes.insert(Indexes.begin(), Parent->getChildIndex(Child));
}
}
DiffItemEmitter(DiffVector &AllItems) : AllItems(AllItems) {}
public:
static void collectDiffItems(NodePtr Root, DiffVector &DV) {
DiffItemEmitter Emitter(DV);
SDKNode::postorderVisit(Root, Emitter);
}
};
class DiagnosisEmitter : public SDKNodeVisitor {
void handle(const SDKNodeDecl *D, NodeAnnotation Anno);
void visitDecl(SDKNodeDecl *D);
void visit(NodePtr Node) override;
SDKNodeDecl *findAddedDecl(const SDKNodeDecl *Node);
bool findTypeAliasDecl(const SDKNodeDecl *Node);
static void collectAddedDecls(NodePtr Root, std::set<SDKNodeDecl*> &Results);
std::set<SDKNodeDecl*> AddedDecls;
UpdatedNodesMap &UpdateMap;
NodeMap &TypeAliasUpdateMap;
TypeMemberDiffVector &MemberChanges;
DiagnosisEmitter(SDKContext &Ctx):
UpdateMap(Ctx.getNodeUpdateMap()),
TypeAliasUpdateMap(Ctx.getTypeAliasUpdateMap()),
MemberChanges(Ctx.getTypeMemberDiffs()) {}
public:
static void diagnosis(NodePtr LeftRoot, NodePtr RightRoot,
SDKContext &Ctx);
};
void DiagnosisEmitter::collectAddedDecls(NodePtr Root,
std::set<SDKNodeDecl*> &Results) {
if (auto *D = dyn_cast<SDKNodeDecl>(Root)) {
if (Root->isAnnotatedAs(NodeAnnotation::Added))
Results.insert(D);
}
for (auto &C : Root->getChildren())
collectAddedDecls(C, Results);
}
SDKNodeDecl *DiagnosisEmitter::findAddedDecl(const SDKNodeDecl *Root) {
for (auto *Added : AddedDecls) {
if (Root->getKind() == Added->getKind() &&
Root->getPrintedName() == Added->getPrintedName() &&
Root->getUsr() == Added->getUsr())
return Added;
}
return nullptr;
}
bool DiagnosisEmitter::findTypeAliasDecl(const SDKNodeDecl *Node) {
if (Node->getKind() != SDKNodeKind::DeclType)
return false;
return std::any_of(AddedDecls.begin(), AddedDecls.end(),
[&](SDKNodeDecl *Added) {
return Added->getKind() == SDKNodeKind::DeclTypeAlias &&
Added->getPrintedName() == Node->getPrintedName();
});
}
void DiagnosisEmitter::diagnosis(NodePtr LeftRoot, NodePtr RightRoot,
SDKContext &Ctx) {
DiagnosisEmitter Emitter(Ctx);
collectAddedDecls(RightRoot, Emitter.AddedDecls);
SDKNode::postorderVisit(LeftRoot, Emitter);
}
static bool diagnoseRemovedExtensionMembers(const SDKNode *Node) {
// If the removed decl is an extension, diagnose each member as being removed rather than
// the extension itself has been removed.
if (auto *DT= dyn_cast<SDKNodeDeclType>(Node)) {
if (DT->isExtension()) {
for (auto *C: DT->getChildren()) {
auto *MD = cast<SDKNodeDecl>(C);
diagnoseRemovedDecl(MD);
}
return true;
}
}
return false;
}
void DiagnosisEmitter::handle(const SDKNodeDecl *Node, NodeAnnotation Anno) {
assert(Node->isAnnotatedAs(Anno));
auto &Ctx = Node->getSDKContext();
switch(Anno) {
case NodeAnnotation::Removed: {
// If we can find a type alias decl with the same name of this type, we
// consider the type is not removed.
if (findTypeAliasDecl(Node))
return;
if (auto *Added = findAddedDecl(Node)) {
if (Node->getDeclKind() != DeclKind::Constructor) {
Node->emitDiag(Added->getLoc(), diag::moved_decl,
Ctx.buffer((Twine(getDeclKindStr(Added->getDeclKind(),
Ctx.getOpts().CompilerStyle)) + " " +
Added->getFullyQualifiedName()).str()));
return;
}
}
// If we can find a hoisted member for this removed declaration, we
// emit the diagnostics as rename instead of removal.
auto It = std::find_if(MemberChanges.begin(), MemberChanges.end(),
[&](TypeMemberDiffItem &Item) { return Item.usr == Node->getUsr(); });
if (It != MemberChanges.end()) {
Node->emitDiag(SourceLoc(), diag::renamed_decl,
Ctx.buffer((Twine(getDeclKindStr(Node->getDeclKind(),
Ctx.getOpts().CompilerStyle)) + " " +
It->newTypeName + "." + It->newPrintedName).str()));
return;
}
// If a type alias of a raw type has been changed to a struct/enum that
// conforms to RawRepresentable in the later version of SDK, we show the
// refine diagnostics message instead of showing the type alias has been
// removed.
if (TypeAliasUpdateMap.find((SDKNode*)Node) != TypeAliasUpdateMap.end()) {
Node->emitDiag(SourceLoc(), diag::raw_type_change,
Node->getAs<SDKNodeDeclTypeAlias>()->getUnderlyingType()->getPrintedName(),
TypeAliasUpdateMap[(SDKNode*)Node]->getAs<SDKNodeDeclType>()->
getRawValueType()->getPrintedName());
return;
}
// We should exclude those declarations that are pulled up to the super classes.
bool FoundInSuperclass = false;
if (auto PD = dyn_cast<SDKNodeDecl>(Node->getParent())) {
if (PD->isAnnotatedAs(NodeAnnotation::Updated)) {
// Get the updated counterpart of the parent decl.
if (auto RTD = dyn_cast<SDKNodeDeclType>(UpdateMap.
findUpdateCounterpart(PD))) {
// Look up by the printed name in the counterpart.
FoundInSuperclass =
RTD->lookupChildByPrintedName(Node->getPrintedName()).has_value();
}
}
}
if (FoundInSuperclass)
return;
// When diagnosing API changes, avoid complaining the removal of these
// synthesized functions since they are compiler implementation details.
// If an enum is no longer equatable, another diagnostic about removing
// conforming protocol will be emitted.
if (!Ctx.checkingABI()) {
if (Node->getName() == Ctx.Id_derived_struct_equals ||
Node->getName() == Ctx.Id_derived_enum_equals) {
return;
}
}
bool handled = diagnoseRemovedExtensionMembers(Node);
if (!handled)
diagnoseRemovedDecl(Node);
return;
}
case NodeAnnotation::Rename: {
SourceLoc DiagLoc;
// Try to get the source location from the later version of this node
// via UpdateMap.
if (auto CD = dyn_cast_or_null<SDKNodeDecl>(UpdateMap
.findUpdateCounterpart(Node))) {
DiagLoc = CD->getLoc();
}
if (isMissingDeclAcceptable(Node))
return;
Node->emitDiag(DiagLoc, diag::renamed_decl,
Ctx.buffer((Twine(getDeclKindStr(Node->getDeclKind(),
Ctx.getOpts().CompilerStyle)) + " " +
Node->getAnnotateComment(NodeAnnotation::RenameNewName)).str()));
return;
}
default:
return;
}
}
void DiagnosisEmitter::visitDecl(SDKNodeDecl *Node) {
std::vector<NodeAnnotation> Scratch;
for (auto Anno : Node->getAnnotations(Scratch))
handle(Node, Anno);
}
void DiagnosisEmitter::visit(NodePtr Node) {
if (auto *DNode = dyn_cast<SDKNodeDecl>(Node)) {
visitDecl(DNode);
}
}
typedef std::vector<NoEscapeFuncParam> NoEscapeFuncParamVector;
class NoEscapingFuncEmitter : public SDKNodeVisitor {
NoEscapeFuncParamVector &AllItems;
NoEscapingFuncEmitter(NoEscapeFuncParamVector &AllItems) : AllItems(AllItems) {}
void visit(NodePtr Node) override {
if (Node->getKind() != SDKNodeKind::TypeFunc)
return;
if (Node->getAs<SDKNodeTypeFunc>()->isEscaping())
return;
auto Parent = Node->getParent();
if (auto ParentFunc = dyn_cast<SDKNodeDeclAbstractFunc>(Parent)) {
if (ParentFunc->isObjc()) {
unsigned Index = ParentFunc->getChildIndex(Node);
AllItems.emplace_back(ParentFunc->getUsr(), Index);
}
}
}
public:
static void collectDiffItems(NodePtr Root, NoEscapeFuncParamVector &DV) {
NoEscapingFuncEmitter Emitter(DV);
SDKNode::postorderVisit(Root, Emitter);
}
};
} // end anonymous namespace
namespace fs = llvm::sys::fs;
namespace path = llvm::sys::path;
class RenameDetectorForMemberDiff : public MatchedNodeListener {
InterfaceTypeChangeDetector LeftDetector;
InterfaceTypeChangeDetector RightDetector;
public:
RenameDetectorForMemberDiff(): LeftDetector(true), RightDetector(false) {}
void foundMatch(NodePtr Left, NodePtr Right, NodeMatchReason Reason) override {
if (!Left || !Right)
return;
swift::ide::api::detectRename(Left, Right);
LeftDetector.detect(Left, Right);
RightDetector.detect(Right, Left);
}
void workOn(NodePtr Left, NodePtr Right) {
if (Left->getKind() == Right->getKind() &&
Left->getKind() == SDKNodeKind::DeclType) {
SameNameNodeMatcher SNMatcher(Left->getChildren(), Right->getChildren(),
*this);
SNMatcher.match();
}
if (Left->getKind() == Right->getKind() &&
Left->getKind() == SDKNodeKind::DeclVar) {
SequentialNodeMatcher Matcher(Left->getChildren(),
Right->getChildren(), *this);
Matcher.match();
}
}
};
static std::optional<uint8_t> findSelfIndex(SDKNode *Node) {
if (auto func = dyn_cast<SDKNodeDeclAbstractFunc>(Node)) {
return func->getSelfIndexOptional();
} else if (auto vd = dyn_cast<SDKNodeDeclVar>(Node)) {
for (auto &C : vd->getChildren()) {
if (isa<SDKNodeDeclAbstractFunc>(C)) {
if (auto Result = findSelfIndex(C))
return Result;
}
}
}
return std::nullopt;
}
/// Find cases where a diff is due to a change to being a type member
static void findTypeMemberDiffs(NodePtr leftSDKRoot, NodePtr rightSDKRoot,
TypeMemberDiffVector &out) {
TypeMemberDiffFinder diffFinder(cast<SDKNodeRoot>(leftSDKRoot));
diffFinder.findDiffsFor(rightSDKRoot);
RenameDetectorForMemberDiff Detector;
for (auto pair : diffFinder.getDiffs()) {
auto left = pair.first;
auto leftParent = left->getParent();
auto right = pair.second;
auto rightParent = right->getParent();
// SDK_CHANGE_TYPE_MEMBER(USR, new type context name, new printed name, self
// index, old printed name)
TypeMemberDiffItem item = {
right->getAs<SDKNodeDecl>()->getUsr(),
rightParent->getKind() == SDKNodeKind::Root
? StringRef()
: rightParent->getAs<SDKNodeDecl>()->getFullyQualifiedName(),
right->getPrintedName(),
findSelfIndex(right),
std::nullopt,
leftParent->getKind() == SDKNodeKind::Root
? StringRef()
: leftParent->getAs<SDKNodeDecl>()->getFullyQualifiedName(),
left->getPrintedName()};
out.emplace_back(item);
Detector.workOn(left, right);
}
}
static std::vector<std::unique_ptr<DiagnosticConsumer>>
createDiagConsumer(llvm::raw_ostream &OS, bool &FailOnError, bool DisableFailOnError,
bool CompilerStyleDiags, StringRef SerializedDiagPath) {
std::vector<std::unique_ptr<DiagnosticConsumer>> results;
if (!SerializedDiagPath.empty()) {
FailOnError = !DisableFailOnError;
results.emplace_back(std::make_unique<PrintingDiagnosticConsumer>());
results.emplace_back(serialized_diagnostics::createConsumer(SerializedDiagPath, false));
} else if (CompilerStyleDiags) {
FailOnError = !DisableFailOnError;
results.emplace_back(std::make_unique<PrintingDiagnosticConsumer>());
} else {
FailOnError = false;
results.emplace_back(std::make_unique<ModuleDifferDiagsConsumer>(true, OS));
}
return results;
}
static int readFileLineByLine(StringRef Path, llvm::StringSet<> &Lines) {
auto FileBufOrErr = llvm::MemoryBuffer::getFile(Path);
if (!FileBufOrErr) {
llvm::errs() << "error opening file '" << Path << "': "
<< FileBufOrErr.getError().message() << '\n';
return 1;
}
StringRef BufferText = FileBufOrErr.get()->getBuffer();
while (!BufferText.empty()) {
StringRef Line;
std::tie(Line, BufferText) = BufferText.split('\n');
Line = Line.trim();
if (Line.empty())
continue;
if (Line.starts_with("// ")) // comment.
continue;
Lines.insert(Line);
}
return 0;
}
static bool readBreakageAllowlist(SDKContext &Ctx, llvm::StringSet<> &lines,
StringRef BreakageAllowlistPath) {
if (BreakageAllowlistPath.empty())
return 0;
CompilerInstance instance;
CompilerInvocation invoke;
invoke.setModuleName("ForClangImporter");
std::string InstanceSetupError;
if (instance.setup(invoke, InstanceSetupError)) {
return 1;
}
auto importer = ClangImporter::create(instance.getASTContext());
SmallString<128> preprocessedFilePath;
if (auto error = llvm::sys::fs::createTemporaryFile(
"breakage-allowlist-", "txt", preprocessedFilePath)) {
return 1;
}
if (importer->runPreprocessor(BreakageAllowlistPath,
preprocessedFilePath.str())) {
return 1;
}
return readFileLineByLine(preprocessedFilePath, lines);
}
static int diagnoseModuleChange(SDKContext &Ctx, SDKNodeRoot *LeftModule,
SDKNodeRoot *RightModule, StringRef OutputPath,
llvm::StringSet<> ProtocolReqAllowlist,
bool DisableFailOnError,
bool CompilerStyleDiags,
bool ExplicitErrOnABIBreakage,
StringRef SerializedDiagPath,
StringRef BreakageAllowlistPath,
bool DebugMapping) {
assert(LeftModule);
assert(RightModule);
llvm::raw_ostream *OS = &llvm::errs();
if (!LeftModule || !RightModule) {
*OS << "Cannot diagnose null SDKNodeRoot";
exit(1);
}
std::unique_ptr<llvm::raw_ostream> FileOS;
if (!OutputPath.empty()) {
std::error_code EC;
FileOS.reset(new llvm::raw_fd_ostream(OutputPath, EC, llvm::sys::fs::OF_None));
OS = FileOS.get();
}
bool FailOnError;
auto allowedBreakages = std::make_unique<llvm::StringSet<>>();
if (readBreakageAllowlist(Ctx, *allowedBreakages, BreakageAllowlistPath)) {
Ctx.getDiags().diagnose(SourceLoc(), diag::cannot_read_allowlist,
BreakageAllowlistPath);
}
auto shouldDowngrade = false;
// If explicitly specified, avoid downgrading ABI breakage errors to warnings.
if (ExplicitErrOnABIBreakage) {
shouldDowngrade = false;
}
auto pConsumer = std::make_unique<FilteringDiagnosticConsumer>(
createDiagConsumer(*OS, FailOnError, DisableFailOnError, CompilerStyleDiags,
SerializedDiagPath),
std::move(allowedBreakages),
/*DowngradeToWarning*/shouldDowngrade);
SWIFT_DEFER { pConsumer->finishProcessing(); };
Ctx.addDiagConsumer(*pConsumer);
Ctx.setCommonVersion(std::min(LeftModule->getJsonFormatVersion(),
RightModule->getJsonFormatVersion()));
TypeAliasDiffFinder(LeftModule, RightModule,
Ctx.getTypeAliasUpdateMap()).search();
PrunePass Prune(Ctx, std::move(ProtocolReqAllowlist), DebugMapping);
Prune.pass(LeftModule, RightModule);
ChangeRefinementPass RefinementPass(Ctx.getNodeUpdateMap());
RefinementPass.pass(LeftModule, RightModule);
// Find member hoist changes to help refine diagnostics.
findTypeMemberDiffs(LeftModule, RightModule, Ctx.getTypeMemberDiffs());
DiagnosisEmitter::diagnosis(LeftModule, RightModule, Ctx);
return FailOnError && pConsumer->hasError() ? 1 : 0;
}
static int diagnoseModuleChange(StringRef LeftPath, StringRef RightPath,
StringRef OutputPath, CheckerOptions Opts,
llvm::StringSet<> ProtocolReqAllowlist,
bool DisableFailOnError,
bool CompilerStyleDiags,
bool ExplicitErrOnABIBreakage,
StringRef SerializedDiagPath,
StringRef BreakageAllowlistPath,
bool DebugMapping) {
if (!fs::exists(LeftPath)) {
llvm::errs() << LeftPath << " does not exist\n";
return 1;
}
if (!fs::exists(RightPath)) {
llvm::errs() << RightPath << " does not exist\n";
return 1;
}
SDKContext Ctx(Opts);
SwiftDeclCollector LeftCollector(Ctx);
LeftCollector.deSerialize(LeftPath);
SwiftDeclCollector RightCollector(Ctx);
RightCollector.deSerialize(RightPath);
return diagnoseModuleChange(
Ctx, LeftCollector.getSDKRoot(), RightCollector.getSDKRoot(), OutputPath,
std::move(ProtocolReqAllowlist), DisableFailOnError,
ExplicitErrOnABIBreakage, CompilerStyleDiags, SerializedDiagPath,
BreakageAllowlistPath, DebugMapping);
}
static void populateAliasChanges(NodeMap &AliasMap, DiffVector &AllItems,
const bool isRevert) {
for (auto Pair: AliasMap) {
auto UnderlyingType = Pair.first->getAs<SDKNodeDeclTypeAlias>()->
getUnderlyingType()->getPrintedName();
auto RawType = AliasMap[(SDKNode*)Pair.first]->getAs<SDKNodeDeclType>()->
getRawValueType()->getPrintedName();
if (isRevert) {
auto *D = Pair.second->getAs<SDKNodeDecl>();
AllItems.emplace_back(SDKNodeKind::DeclType,
NodeAnnotation::RevertTypeAliasDeclToRawRepresentable, "0",
D->getUsr(), "", RawType, UnderlyingType, D->getModuleName());
} else {
auto *D = Pair.first->getAs<SDKNodeDecl>();
AllItems.emplace_back(SDKNodeKind::DeclTypeAlias,
NodeAnnotation::TypeAliasDeclToRawRepresentable, "0",
D->getUsr(), "", UnderlyingType, RawType, D->getModuleName());
}
}
}
static int generateMigrationScript(StringRef LeftPath, StringRef RightPath,
StringRef DiffPath,
llvm::StringSet<> &IgnoredRemoveUsrs,
CheckerOptions Opts, bool OutputInJson,
bool DebugMapping) {
if (!fs::exists(LeftPath)) {
llvm::errs() << LeftPath << " does not exist\n";
return 1;
}
if (!fs::exists(RightPath)) {
llvm::errs() << RightPath << " does not exist\n";
return 1;
}
llvm::errs() << "Diffing: " << LeftPath << " and " << RightPath << "\n";
std::unique_ptr<DiagnosticConsumer> pConsumer =
Opts.CompilerStyle ? std::make_unique<PrintingDiagnosticConsumer>()
: std::make_unique<ModuleDifferDiagsConsumer>(false);
SDKContext Ctx(Opts);
Ctx.addDiagConsumer(*pConsumer);
SwiftDeclCollector LeftCollector(Ctx);
LeftCollector.deSerialize(LeftPath);
SwiftDeclCollector RightCollector(Ctx);
RightCollector.deSerialize(RightPath);
llvm::errs() << "Finished deserializing" << "\n";
auto LeftModule = LeftCollector.getSDKRoot();
auto RightModule = RightCollector.getSDKRoot();
Ctx.setCommonVersion(std::min(LeftModule->getJsonFormatVersion(),
RightModule->getJsonFormatVersion()));
// Structural diffs: not merely name changes but changes in SDK tree
// structure.
llvm::errs() << "Detecting type member diffs" << "\n";
findTypeMemberDiffs(LeftModule, RightModule, Ctx.getTypeMemberDiffs());
PrunePass Prune(Ctx, DebugMapping);
Prune.pass(LeftModule, RightModule);
llvm::errs() << "Finished pruning" << "\n";
ChangeRefinementPass RefinementPass(Ctx.getNodeUpdateMap());
RefinementPass.pass(LeftModule, RightModule);
DiffVector AllItems;
DiffItemEmitter::collectDiffItems(LeftModule, AllItems);
// Find type alias change first.
auto &AliasMap = Ctx.getTypeAliasUpdateMap();
TypeAliasDiffFinder(LeftModule, RightModule, AliasMap).search();
populateAliasChanges(AliasMap, AllItems, /*IsRevert*/false);
// Find type alias revert change.
auto &RevertAliasMap = Ctx.getRevertTypeAliasUpdateMap();
TypeAliasDiffFinder(RightModule, LeftModule, RevertAliasMap).search();
populateAliasChanges(RevertAliasMap, AllItems, /*IsRevert*/true);
AllItems.erase(
std::remove_if(AllItems.begin(), AllItems.end(),
[&](CommonDiffItem &Item) {
return Item.DiffKind == NodeAnnotation::RemovedDecl &&
IgnoredRemoveUsrs.contains(Item.LeftUsr);
}),
AllItems.end());
NoEscapeFuncParamVector AllNoEscapingFuncs;
NoEscapingFuncEmitter::collectDiffItems(RightModule, AllNoEscapingFuncs);
llvm::errs() << "Dumping diff to " << DiffPath << '\n';
std::vector<OverloadedFuncInfo> Overloads;
// OverloadMemberFunctionEmitter::collectDiffItems(RightModule, Overloads);
auto &typeMemberDiffs = Ctx.getTypeMemberDiffs();
std::error_code EC;
llvm::raw_fd_ostream Fs(DiffPath, EC, llvm::sys::fs::OF_None);
removeRedundantAndSort(AllItems);
removeRedundantAndSort(typeMemberDiffs);
removeRedundantAndSort(AllNoEscapingFuncs);
removeRedundantAndSort(Overloads);
if (OutputInJson) {
std::vector<APIDiffItem*> TotalItems;
llvm::transform(AllItems, std::back_inserter(TotalItems),
[](CommonDiffItem &Item) { return &Item; });
llvm::transform(typeMemberDiffs, std::back_inserter(TotalItems),
[](TypeMemberDiffItem &Item) { return &Item; });
llvm::transform(AllNoEscapingFuncs, std::back_inserter(TotalItems),
[](NoEscapeFuncParam &Item) { return &Item; });
llvm::transform(Overloads, std::back_inserter(TotalItems),
[](OverloadedFuncInfo &Item) { return &Item; });
APIDiffItemStore::serialize(Fs, TotalItems);
return 0;
}
serializeDiffs(Fs, AllItems);
serializeDiffs(Fs, typeMemberDiffs);
serializeDiffs(Fs, AllNoEscapingFuncs);
serializeDiffs(Fs, Overloads);
return 0;
}
static void setSDKPath(CompilerInvocation &InitInvoke, bool IsBaseline,
StringRef SDK, StringRef BaselineSDK) {
if (IsBaseline) {
// Set baseline SDK
if (!BaselineSDK.empty()) {
InitInvoke.setSDKPath(BaselineSDK.str());
}
} else {
// Set current SDK
if (!SDK.empty()) {
InitInvoke.setSDKPath(SDK.str());
} else if (const char *SDKROOT = getenv("SDKROOT")) {
InitInvoke.setSDKPath(SDKROOT);
}
}
}
static int deserializeDiffItems(APIDiffItemStore &Store, StringRef DiffPath,
StringRef OutputPath) {
Store.addStorePath(DiffPath);
std::error_code EC;
llvm::raw_fd_ostream FS(OutputPath, EC, llvm::sys::fs::OF_None);
APIDiffItemStore::serialize(FS, Store.getAllDiffItems());
return 0;
}
static int deserializeNameCorrection(APIDiffItemStore &Store,
StringRef OutputPath) {
std::error_code EC;
llvm::raw_fd_ostream FS(OutputPath, EC, llvm::sys::fs::OF_None);
std::set<NameCorrectionInfo> Result;
for (auto *Item: Store.getAllDiffItems()) {
if (auto *CI = dyn_cast<CommonDiffItem>(Item)) {
if (CI->DiffKind == NodeAnnotation::Rename) {
auto NewName = CI->getNewName();
auto Module = CI->ModuleName;
if (CI->rightCommentUnderscored()) {
Result.insert(NameCorrectionInfo(NewName, NewName, Module));
}
}
}
}
std::vector<NameCorrectionInfo> Vec;
Vec.insert(Vec.end(), Result.begin(), Result.end());
APIDiffItemStore::serialize(FS, Vec);
return EC.value();
}
static std::string getDefaultBaselineDir(std::string MainExecutablePath) {
llvm::SmallString<128> BaselineDir;
BaselineDir.append(MainExecutablePath);
llvm::sys::path::remove_filename(BaselineDir); // Remove /swift-api-digester
llvm::sys::path::remove_filename(BaselineDir); // Remove /bin
llvm::sys::path::append(BaselineDir, "lib", "swift", "FrameworkABIBaseline");
return BaselineDir.str().str();
}
static std::string getEmptyBaselinePath(std::string MainExecutablePath) {
llvm::SmallString<128> BaselinePath(
getDefaultBaselineDir(MainExecutablePath));
llvm::sys::path::append(BaselinePath, "nil.json");
return BaselinePath.str().str();
}
static StringRef getBaselineFilename(llvm::Triple Triple) {
if (Triple.isMacCatalystEnvironment())
return "iosmac.json";
else if (Triple.isMacOSX())
return "macos.json";
else if (Triple.isiOS())
return "iphoneos.json";
else if (Triple.isTvOS())
return "appletvos.json";
else if (Triple.isWatchOS())
return "watchos.json";
else if (Triple.isOSLinux())
return "linux.json";
else if (Triple.isOSWindows())
return "windows.json";
else if (Triple.isXROS())
return "xros.json";
else {
llvm::errs() << "Unsupported triple target\n";
exit(1);
}
}
static std::string getDefaultBaselinePath(std::string MainExecutablePath,
StringRef Module, llvm::Triple Triple,
bool ABI) {
llvm::SmallString<128> BaselinePath(
getDefaultBaselineDir(MainExecutablePath));
llvm::sys::path::append(BaselinePath, Module);
// Look for ABI or API baseline
llvm::sys::path::append(BaselinePath, ABI? "ABI": "API");
llvm::sys::path::append(BaselinePath, getBaselineFilename(Triple));
return BaselinePath.str().str();
}
static std::string getCustomBaselinePath(llvm::Triple Triple, bool ABI,
StringRef BaselineDirPath) {
llvm::SmallString<128> BaselinePath(BaselineDirPath);
// Look for ABI or API baseline
llvm::sys::path::append(BaselinePath, ABI? "ABI": "API");
llvm::sys::path::append(BaselinePath, getBaselineFilename(Triple));
return BaselinePath.str().str();
}
static std::string getJsonOutputFilePath(llvm::Triple Triple, bool ABI,
std::string &OutputFile,
std::string &OutputDir) {
if (!OutputFile.empty())
return OutputFile;
if (!OutputDir.empty()) {
llvm::SmallString<128> OutputPath(OutputDir);
llvm::sys::path::append(OutputPath, ABI? "ABI": "API");
if (!llvm::sys::fs::exists(OutputPath.str())) {
llvm::errs() << "Baseline directory " << OutputPath.str()
<< " doesn't exist\n";
exit(1);
}
llvm::sys::path::append(OutputPath, getBaselineFilename(Triple));
return OutputPath.str().str();
}
llvm::errs() << "Unable to decide output file path\n";
exit(1);
}
class SwiftAPIDigesterInvocation {
private:
std::string MainExecutablePath;
std::unique_ptr<llvm::opt::OptTable> Table;
CompilerInvocation InitInvoke;
ActionType Action = ActionType::None;
CheckerOptions CheckerOpts;
llvm::StringSet<> IgnoredUsrs;
std::string ProtReqAllowList;
std::vector<std::string> SDKJsonPaths;
std::string OutputFile;
std::string OutputDir;
bool CompilerStyleDiags;
bool ExplicitErrOnABIBreakage;
std::string SerializedDiagPath;
std::string BaselineFilePath;
std::string BaselineDirPath;
bool UseEmptyBaseline;
bool Verbose;
bool DebugMapping;
std::string BreakageAllowlistPath;
bool OutputInJson;
std::string SDK;
std::string BaselineSDK;
std::string Triple;
std::string SwiftVersion;
std::vector<std::string> CCSystemFrameworkPaths;
std::vector<std::string> BaselineFrameworkPaths;
std::vector<std::string> FrameworkPaths;
std::vector<std::string> BaselineModuleInputPaths;
std::vector<std::string> ModuleInputPaths;
std::string ModuleList;
std::vector<std::string> ModuleNames;
std::vector<std::string> PreferInterfaceForModules;
std::string ResourceDir;
std::string ModuleCachePath;
bool DisableFailOnError;
public:
SwiftAPIDigesterInvocation(const std::string &ExecPath)
: MainExecutablePath(ExecPath), Table(createSwiftOptTable()) {}
int parseArgs(ArrayRef<const char *> Args) {
unsigned MissingIndex;
unsigned MissingCount;
llvm::opt::InputArgList ParsedArgs = Table->ParseArgs(
Args, MissingIndex, MissingCount, SwiftAPIDigesterOption);
if (MissingCount) {
llvm::errs() << "error: missing argument for option '"
<< ParsedArgs.getArgString(MissingIndex) << "'\n";
return 1;
}
if (ParsedArgs.hasArg(OPT_UNKNOWN)) {
for (const auto *A : ParsedArgs.filtered(OPT_UNKNOWN)) {
llvm::errs() << "error: unknown argument '"
<< A->getAsString(ParsedArgs) << "'\n";
}
return 1;
}
if (ParsedArgs.getLastArg(OPT_help)) {
printHelp();
return 1;
}
if (auto *A = ParsedArgs.getLastArg(
OPT_dump_sdk, OPT_generate_migration_script, OPT_diagnose_sdk,
OPT_deserialize_diff, OPT_deserialize_sdk, OPT_find_usr,
OPT_generate_name_correction, OPT_generate_empty_baseline)) {
switch (A->getOption().getID()) {
case OPT_dump_sdk:
Action = ActionType::DumpSDK;
break;
case OPT_generate_migration_script:
Action = ActionType::MigratorGen;
break;
case OPT_diagnose_sdk:
Action = ActionType::DiagnoseSDKs;
break;
case OPT_deserialize_diff:
Action = ActionType::DeserializeDiffItems;
break;
case OPT_deserialize_sdk:
Action = ActionType::DeserializeSDK;
break;
case OPT_find_usr:
Action = ActionType::FindUsr;
break;
case OPT_generate_name_correction:
Action = ActionType::GenerateNameCorrectionTemplate;
break;
case OPT_generate_empty_baseline:
Action = ActionType::GenerateEmptyBaseline;
break;
}
}
if (auto *A = ParsedArgs.getLastArg(OPT_ignored_usrs)) {
auto Path = A->getValue();
if (!fs::exists(Path)) {
llvm::errs() << Path << " does not exist.\n";
return 1;
}
readFileLineByLine(Path, IgnoredUsrs);
}
ProtReqAllowList =
ParsedArgs.getLastArgValue(OPT_protocol_requirement_allow_list).str();
SDKJsonPaths = ParsedArgs.getAllArgValues(OPT_input_paths);
OutputFile = ParsedArgs.getLastArgValue(OPT_o).str();
OutputDir = ParsedArgs.getLastArgValue(OPT_output_dir).str();
CompilerStyleDiags = ParsedArgs.hasArg(OPT_compiler_style_diags);
ExplicitErrOnABIBreakage = ParsedArgs.hasArg(OPT_error_on_abi_breakage);
SerializedDiagPath =
ParsedArgs.getLastArgValue(OPT_serialize_diagnostics_path).str();
BaselineFilePath = ParsedArgs.getLastArgValue(OPT_baseline_path).str();
BaselineDirPath = ParsedArgs.getLastArgValue(OPT_baseline_dir).str();
UseEmptyBaseline = ParsedArgs.hasArg(OPT_empty_baseline);
Verbose = ParsedArgs.hasArg(OPT_v);
BreakageAllowlistPath =
ParsedArgs.getLastArgValue(OPT_breakage_allowlist_path).str();
OutputInJson = ParsedArgs.hasArg(OPT_json);
SDK = ParsedArgs.getLastArgValue(OPT_sdk).str();
BaselineSDK = ParsedArgs.getLastArgValue(OPT_bsdk).str();
Triple = ParsedArgs.getLastArgValue(OPT_target).str();
SwiftVersion = ParsedArgs.getLastArgValue(OPT_swift_version).str();
CCSystemFrameworkPaths = ParsedArgs.getAllArgValues(OPT_iframework);
BaselineFrameworkPaths = ParsedArgs.getAllArgValues(OPT_BF);
FrameworkPaths = ParsedArgs.getAllArgValues(OPT_F);
BaselineModuleInputPaths = ParsedArgs.getAllArgValues(OPT_BI);
ModuleInputPaths = ParsedArgs.getAllArgValues(OPT_I);
ModuleList = ParsedArgs.getLastArgValue(OPT_module_list_file).str();
ModuleNames = ParsedArgs.getAllArgValues(OPT_module);
PreferInterfaceForModules =
ParsedArgs.getAllArgValues(OPT_use_interface_for_module);
ResourceDir = ParsedArgs.getLastArgValue(OPT_resource_dir).str();
ModuleCachePath = ParsedArgs.getLastArgValue(OPT_module_cache_path).str();
DebugMapping = ParsedArgs.hasArg(OPT_debug_mapping);
DisableFailOnError = ParsedArgs.hasArg(OPT_disable_fail_on_error);
CheckerOpts.AvoidLocation = ParsedArgs.hasArg(OPT_avoid_location);
CheckerOpts.AvoidToolArgs = ParsedArgs.hasArg(OPT_avoid_tool_args);
CheckerOpts.ABI = ParsedArgs.hasArg(OPT_abi);
CheckerOpts.Migrator = ParsedArgs.hasArg(OPT_migrator);
CheckerOpts.Verbose = Verbose;
CheckerOpts.AbortOnModuleLoadFailure =
ParsedArgs.hasArg(OPT_abort_on_module_fail);
CheckerOpts.LocationFilter = ParsedArgs.getLastArgValue(OPT_location);
CheckerOpts.PrintModule = ParsedArgs.hasArg(OPT_print_module);
// When ABI checking is enabled, we should only include Swift symbols
// because the checking logics are language-specific.
CheckerOpts.SwiftOnly =
ParsedArgs.hasArg(OPT_abi) || ParsedArgs.hasArg(OPT_swift_only);
CheckerOpts.SkipOSCheck = ParsedArgs.hasArg(OPT_disable_os_checks);
CheckerOpts.SkipRemoveDeprecatedCheck = ParsedArgs.hasArg(OPT_disable_remove_deprecated_check);
if (ParsedArgs.hasArg(OPT_enable_remove_deprecated_check)) {
CheckerOpts.SkipRemoveDeprecatedCheck = false;
}
CheckerOpts.CompilerStyle =
CompilerStyleDiags || !SerializedDiagPath.empty();
for (auto Arg : Args)
CheckerOpts.ToolArgs.push_back(Arg);
for(auto spi: ParsedArgs.getAllArgValues(OPT_ignore_spi_groups))
CheckerOpts.SPIGroupNamesToIgnore.insert(spi);
if (!SDK.empty()) {
auto Ver = getSDKBuildVersion(SDK);
if (!Ver.empty()) {
CheckerOpts.ToolArgs.push_back("-sdk-version");
CheckerOpts.ToolArgs.push_back(Ver);
}
}
return 0;
}
void printHelp() {
std::string ExecutableName =
llvm::sys::path::stem(MainExecutablePath).str();
Table->printHelp(llvm::outs(), ExecutableName.c_str(), "Swift API Digester",
/*IncludedFlagsBitmask*/ SwiftAPIDigesterOption,
/*ExcludedFlagsBitmask*/ 0,
/*ShowAllAliases*/ false);
}
bool hasBaselineInput() {
return !BaselineModuleInputPaths.empty() ||
!BaselineFrameworkPaths.empty() || !BaselineSDK.empty();
}
enum class ComparisonInputMode : uint8_t {
BothJson,
BaselineJson,
BothLoad,
};
ComparisonInputMode checkComparisonInputMode() {
if (SDKJsonPaths.size() == 2)
return ComparisonInputMode::BothJson;
else if (hasBaselineInput())
return ComparisonInputMode::BothLoad;
else
return ComparisonInputMode::BaselineJson;
}
int prepareForDump(CompilerInvocation &InitInvoke, llvm::StringSet<> &Modules,
bool IsBaseline = false) {
InitInvoke.setMainExecutablePath(MainExecutablePath);
InitInvoke.setModuleName("swift_ide_test");
setSDKPath(InitInvoke, IsBaseline, SDK, BaselineSDK);
if (!Triple.empty())
InitInvoke.setTargetTriple(Triple);
// Ensure the tool works on linux properly
InitInvoke.getLangOptions().EnableObjCInterop =
InitInvoke.getLangOptions().Target.isOSDarwin();
InitInvoke.getClangImporterOptions().ModuleCachePath = ModuleCachePath;
if (!SwiftVersion.empty()) {
using version::Version;
bool isValid = false;
if (auto Version = VersionParser::parseVersionString(
SwiftVersion, SourceLoc(), nullptr)) {
if (auto Effective = Version.value().getEffectiveLanguageVersion()) {
InitInvoke.getLangOptions().EffectiveLanguageVersion = *Effective;
isValid = true;
}
}
if (!isValid) {
llvm::errs() << "Unsupported Swift Version.\n";
exit(1);
}
}
if (!ResourceDir.empty()) {
InitInvoke.setRuntimeResourcePath(ResourceDir);
}
std::vector<SearchPathOptions::SearchPath> FramePaths;
for (const auto &path : CCSystemFrameworkPaths) {
FramePaths.push_back({path, /*isSystem=*/true});
}
if (IsBaseline) {
for (const auto &path : BaselineFrameworkPaths) {
FramePaths.push_back({path, /*isSystem=*/false});
}
std::vector<SearchPathOptions::SearchPath> ImportPaths;
for (const auto &path : BaselineModuleInputPaths) {
ImportPaths.push_back({path, /*isSystem=*/false});
}
InitInvoke.setImportSearchPaths(ImportPaths);
} else {
for (const auto &path : FrameworkPaths) {
FramePaths.push_back({path, /*isSystem=*/false});
}
std::vector<SearchPathOptions::SearchPath> ImportPaths;
for (const auto &path : ModuleInputPaths) {
ImportPaths.push_back({path, /*isSystem=*/false});
}
InitInvoke.setImportSearchPaths(ImportPaths);
}
InitInvoke.setFrameworkSearchPaths(FramePaths);
if (!ModuleList.empty()) {
if (readFileLineByLine(ModuleList, Modules))
exit(1);
}
for (auto M : ModuleNames) {
Modules.insert(M);
}
for (auto M : PreferInterfaceForModules) {
InitInvoke.getFrontendOptions().PreferInterfaceForModules.push_back(M);
}
if (Modules.empty()) {
llvm::errs() << "Need to specify -include-all or -module <name>\n";
exit(1);
}
return 0;
}
SDKNodeRoot *getSDKRoot(SDKContext &Ctx, bool IsBaseline) {
CompilerInvocation Invoke;
llvm::StringSet<> Modules;
if (prepareForDump(Invoke, Modules, IsBaseline))
return nullptr;
return getSDKNodeRoot(Ctx, Invoke, Modules);
}
SDKNodeRoot *getBaselineFromJson(SDKContext &Ctx) {
SwiftDeclCollector Collector(Ctx);
CompilerInvocation Invoke;
llvm::StringSet<> Modules;
// We need to call prepareForDump to parse target triple.
if (prepareForDump(Invoke, Modules, true))
return nullptr;
assert(Modules.size() == 1 &&
"Cannot find builtin baseline for more than one module");
std::string Path;
// If the baseline path has been given, honor that.
if (!BaselineFilePath.empty()) {
Path = BaselineFilePath;
} else if (!BaselineDirPath.empty()) {
Path = getCustomBaselinePath(Invoke.getLangOptions().Target,
Ctx.checkingABI(), BaselineDirPath);
} else if (UseEmptyBaseline) {
Path = getEmptyBaselinePath(MainExecutablePath);
} else {
Path = getDefaultBaselinePath(
MainExecutablePath, Modules.begin()->getKey(),
Invoke.getLangOptions().Target, Ctx.checkingABI());
}
if (!fs::exists(Path)) {
llvm::errs() << "Baseline at " << Path << " does not exist\n";
exit(1);
}
if (Verbose) {
llvm::errs() << "Using baseline at " << Path << "\n";
}
Collector.deSerialize(Path);
return Collector.getSDKRoot();
}
int run(ArrayRef<const char *> Args) {
switch (Action) {
case ActionType::DumpSDK: {
llvm::StringSet<> Modules;
if (prepareForDump(InitInvoke, Modules))
return 1;
auto JsonOut =
getJsonOutputFilePath(InitInvoke.getLangOptions().Target,
CheckerOpts.ABI, OutputFile, OutputDir);
std::error_code EC;
llvm::raw_fd_ostream fs(JsonOut, EC);
if (EC) {
llvm::errs() << "Cannot open JSON output file: " << JsonOut << "\n";
return 1;
}
return dumpSDKContent(InitInvoke, Modules, fs, CheckerOpts);
}
case ActionType::MigratorGen:
case ActionType::DiagnoseSDKs: {
ComparisonInputMode Mode = checkComparisonInputMode();
llvm::StringSet<> protocolAllowlist;
if (!ProtReqAllowList.empty()) {
if (readFileLineByLine(ProtReqAllowList, protocolAllowlist))
return 1;
}
if (Action == ActionType::MigratorGen) {
assert(Mode == ComparisonInputMode::BothJson &&
"Only BothJson mode is supported");
return generateMigrationScript(SDKJsonPaths[0], SDKJsonPaths[1],
OutputFile, IgnoredUsrs, CheckerOpts,
OutputInJson, DebugMapping);
}
switch (Mode) {
case ComparisonInputMode::BothJson: {
return diagnoseModuleChange(
SDKJsonPaths[0], SDKJsonPaths[1], OutputFile, CheckerOpts,
std::move(protocolAllowlist), DisableFailOnError, CompilerStyleDiags,
ExplicitErrOnABIBreakage, SerializedDiagPath,
BreakageAllowlistPath, DebugMapping);
}
case ComparisonInputMode::BaselineJson: {
SDKContext Ctx(CheckerOpts);
return diagnoseModuleChange(
Ctx, getBaselineFromJson(Ctx), getSDKRoot(Ctx, false), OutputFile,
std::move(protocolAllowlist), DisableFailOnError, CompilerStyleDiags,
ExplicitErrOnABIBreakage, SerializedDiagPath, BreakageAllowlistPath,
DebugMapping);
}
case ComparisonInputMode::BothLoad: {
SDKContext Ctx(CheckerOpts);
return diagnoseModuleChange(
Ctx, getSDKRoot(Ctx, true), getSDKRoot(Ctx, false), OutputFile,
std::move(protocolAllowlist), DisableFailOnError, CompilerStyleDiags,
ExplicitErrOnABIBreakage, SerializedDiagPath, BreakageAllowlistPath,
DebugMapping);
}
}
}
case ActionType::DeserializeSDK:
case ActionType::DeserializeDiffItems: {
if (SDKJsonPaths.size() != 1) {
printHelp();
return 1;
}
if (Action == ActionType::DeserializeDiffItems) {
CompilerInstance CI;
APIDiffItemStore Store(CI.getDiags());
return deserializeDiffItems(Store, SDKJsonPaths[0], OutputFile);
} else {
return deserializeSDKDump(SDKJsonPaths[0], OutputFile, CheckerOpts);
}
}
case ActionType::GenerateNameCorrectionTemplate: {
CompilerInstance CI;
APIDiffItemStore Store(CI.getDiags());
auto &Paths = SDKJsonPaths;
for (unsigned I = 0; I < Paths.size(); I++)
Store.addStorePath(Paths[I]);
return deserializeNameCorrection(Store, OutputFile);
}
case ActionType::GenerateEmptyBaseline: {
SDKContext Ctx(CheckerOpts);
std::error_code EC;
llvm::raw_fd_ostream fs(OutputFile, EC);
if (EC) {
llvm::errs() << "Cannot open output file: " << OutputFile << "\n";
return 1;
}
dumpSDKRoot(getEmptySDKNodeRoot(Ctx), fs);
return 0;
}
case ActionType::FindUsr: {
if (SDKJsonPaths.size() != 1) {
printHelp();
return 1;
}
return findDeclUsr(SDKJsonPaths[0], CheckerOpts);
}
case ActionType::None:
llvm::errs() << "Action required\n";
printHelp();
return 1;
}
}
};
int swift_api_digester_main(ArrayRef<const char *> Args, const char *Argv0,
void *MainAddr) {
INITIALIZE_LLVM();
std::string MainExecutablePath = fs::getMainExecutable(Argv0, MainAddr);
SwiftAPIDigesterInvocation Invocation(MainExecutablePath);
if (Invocation.parseArgs(Args) != 0)
return EXIT_FAILURE;
if (Invocation.run(Args) != 0)
return EXIT_FAILURE;
return EXIT_SUCCESS;
}