Files
swift-mirror/lib/IDE/ArgumentCompletion.cpp
Hamish Knight 91222b9ebe [Completion] Avoid using unbound contextual type in argument completion
Match the logic in `getTypeForCompletion` and avoid using an unbound
generic type as the expected type for a completion.

rdar://155420395
2025-07-09 13:02:32 +01:00

435 lines
16 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- ArgumentCompletion.cpp ---------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Assertions.h"
#include "swift/IDE/ArgumentCompletion.h"
#include "swift/IDE/CodeCompletion.h"
#include "swift/IDE/CompletionLookup.h"
#include "swift/IDE/SelectedOverloadInfo.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/IDETypeChecking.h"
using namespace swift;
using namespace swift::ide;
using namespace swift::constraints;
bool ArgumentTypeCheckCompletionCallback::addPossibleParams(
const ArgumentTypeCheckCompletionCallback::Result &Res,
SmallVectorImpl<PossibleParamInfo> &Params, SmallVectorImpl<Type> &Types) {
if (!Res.ParamIdx || !Res.FuncTy) {
// We don't really know much here. Suggest global results without a specific
// expected type.
return true;
}
if (Res.HasLabel) {
// We already have a parameter label, suggest types
Types.push_back(Res.ExpectedType);
return true;
}
ArrayRef<AnyFunctionType::Param> ParamsToPass = Res.FuncTy->getParams();
bool ShowGlobalCompletions = false;
for (auto Idx : range(*Res.ParamIdx, ParamsToPass.size())) {
bool IsCompletion = (Idx == Res.ParamIdx);
// Stop at the first param claimed by other arguments.
if (!IsCompletion && Res.ClaimedParamIndices.count(Idx) > 0) {
break;
}
const AnyFunctionType::Param *TypeParam = &ParamsToPass[Idx];
bool Required = !Res.DeclParamIsOptional[Idx];
if (Res.FirstTrailingClosureIndex &&
Res.ArgIdx > *Res.FirstTrailingClosureIndex &&
!TypeParam->getPlainType()
->lookThroughAllOptionalTypes()
->is<AnyFunctionType>()) {
// We are completing an argument after the first trailing closure, i.e.
// a multitple trailing closure label but the parameter is not a function
// type. Since we only allow labeled trailing closures after the first
// trailing closure, we cannot pass an argument for this parameter.
// If the parameter is required, stop here since we cannot pass an argument
// for the parameter. If it's optional, keep looking for more trailing
// closures that can be passed.
if (Required) {
break;
} else {
continue;
}
}
if (TypeParam->hasLabel() && !(IsCompletion && Res.IsNoninitialVariadic)) {
// Suggest parameter label if parameter has label, we are completing in it
// and it is not a variadic parameter that already has arguments
PossibleParamInfo PP(TypeParam, Required);
if (!llvm::is_contained(Params, PP)) {
Params.push_back(std::move(PP));
}
} else {
// We have a parameter that doesn't require a label. Suggest global
// results for that type.
ShowGlobalCompletions = true;
Types.push_back(TypeParam->getPlainType());
}
if (Required) {
// The user should only be suggested the first required param. Stop.
break;
}
}
return ShowGlobalCompletions;
}
/// Returns whether `E` has a parent expression with arguments.
static bool hasParentCallLikeExpr(Expr *E, ConstraintSystem &CS) {
E = CS.getParentExpr(E);
while (E) {
if (E->getArgs() || isa<ParenExpr>(E) || isa<TupleExpr>(E) || isa<CollectionExpr>(E)) {
return true;
}
E = CS.getParentExpr(E);
}
return false;
}
void ArgumentTypeCheckCompletionCallback::sawSolutionImpl(const Solution &S) {
Type ExpectedTy = getTypeForCompletion(S, CompletionExpr);
auto &CS = S.getConstraintSystem();
Expr *ParentCall = CompletionExpr;
while (ParentCall && ParentCall->getArgs() == nullptr) {
ParentCall = CS.getParentExpr(ParentCall);
}
if (auto TV = S.getType(CompletionExpr)->getAs<TypeVariableType>()) {
auto Locator = TV->getImpl().getLocator();
if (Locator->isLastElement<LocatorPathElt::PatternMatch>()) {
// The code completion token is inside a pattern, which got rewritten from
// a call by ResolvePattern. Thus, we aren't actually inside a call.
// Rest 'ParentCall' to nullptr to reflect that.
ParentCall = nullptr;
}
}
if (!ParentCall || ParentCall == CompletionExpr) {
// We might not have a call that contains the code completion expression if
// we type-checked the fallback code completion expression that only
// contains the code completion token, but not the surrounding call.
return;
}
auto ArgInfo = getCompletionArgInfo(ParentCall, CS);
if (!ArgInfo) {
assert(false && "bad parent call match?");
return;
}
auto ArgIdx = ArgInfo->completionIdx;
Type ExpectedCallType;
if (auto ArgLoc = S.getConstraintSystem().getArgumentLocator(ParentCall)) {
if (auto FuncArgApplyInfo = S.getFunctionArgApplyInfo(ArgLoc)) {
Type ParamType = FuncArgApplyInfo->getParamType();
ExpectedCallType = S.simplifyTypeForCodeCompletion(ParamType);
}
}
if (!ExpectedCallType) {
if (auto ContextualType = S.getContextualType(ParentCall)) {
ExpectedCallType = ContextualType;
}
}
if (ExpectedCallType &&
(ExpectedCallType->hasUnresolvedType() ||
ExpectedCallType->hasUnboundGenericType())) {
ExpectedCallType = Type();
}
auto *CallLocator = CS.getConstraintLocator(ParentCall);
auto *CalleeLocator = S.getCalleeLocator(CallLocator);
auto Info = getSelectedOverloadInfo(S, CalleeLocator);
if (Info.getValue() && Info.getValue()->shouldHideFromEditor()) {
return;
}
// Disallow invalid initializer references
for (auto Fix : S.Fixes) {
if (Fix->getLocator() == CalleeLocator &&
Fix->getKind() == FixKind::AllowInvalidInitRef) {
return;
}
}
// Find the parameter the completion was bound to (if any), as well as which
// parameters are already bound (so we don't suggest them even when the args
// are out of order).
std::optional<unsigned> ParamIdx;
std::set<unsigned> ClaimedParams;
bool IsNoninitialVariadic = false;
ConstraintLocator *ArgumentLocator;
ArgumentLocator =
CS.getConstraintLocator(CallLocator, ConstraintLocator::ApplyArgument);
auto ArgMatchChoices = S.argumentMatchingChoices.find(ArgumentLocator);
if (ArgMatchChoices != S.argumentMatchingChoices.end()) {
// We might not have argument matching choices when applying a subscript
// found via @dynamicMemberLookup.
auto Bindings = ArgMatchChoices->second.parameterBindings;
for (auto i : indices(Bindings)) {
bool Claimed = false;
for (auto j : Bindings[i]) {
if (j == ArgIdx) {
assert(!ParamIdx);
ParamIdx = i;
IsNoninitialVariadic = llvm::any_of(
Bindings[i], [j](unsigned other) { return other < j; });
}
// Synthesized args don't count.
if (j < ArgInfo->argCount) {
Claimed = true;
}
}
if (Claimed) {
ClaimedParams.insert(i);
}
}
}
bool HasLabel = false;
std::optional<unsigned> FirstTrailingClosureIndex = std::nullopt;
if (auto PE = CS.getParentExpr(CompletionExpr)) {
if (auto Args = PE->getArgs()) {
HasLabel = !Args->getLabel(ArgIdx).empty();
FirstTrailingClosureIndex = Args->getFirstTrailingClosureIndex();
}
}
bool IsAsync = isContextAsync(S, DC);
// If this is a duplicate of any other result, ignore this solution.
if (llvm::any_of(Results, [&](const Result &R) {
return R.FuncD == Info.getValue() &&
nullableTypesEqual(R.FuncTy, Info.ValueTy) &&
nullableTypesEqual(R.BaseType, Info.BaseTy) &&
R.ParamIdx == ParamIdx &&
R.IsNoninitialVariadic == IsNoninitialVariadic;
})) {
return;
}
llvm::SmallDenseMap<const VarDecl *, Type> SolutionSpecificVarTypes;
getSolutionSpecificVarTypes(S, SolutionSpecificVarTypes);
AnyFunctionType *FuncTy = nullptr;
if (Info.ValueTy) {
FuncTy = Info.ValueTy->lookThroughAllOptionalTypes()->getAs<AnyFunctionType>();
}
// Determine which parameters are optional. We need to do this in
// `sawSolutionImpl` because it accesses the substitution map in
// `Info.ValueRef`. This substitution map might contain type variables that
// are allocated in the constraint system's arena and are freed once we reach
// `deliverResults`.
llvm::BitVector DeclParamIsOptional;
if (FuncTy) {
ArrayRef<AnyFunctionType::Param> ParamsToPass = FuncTy->getParams();
for (auto Idx : range(0, ParamsToPass.size())) {
bool Optional = false;
if (Info.ValueRef) {
if (Info.ValueRef.getDecl()->isInstanceMember() &&
!doesMemberRefApplyCurriedSelf(Info.BaseTy,
Info.ValueRef.getDecl())) {
// We are completing in an unapplied instance function, eg.
// struct TestStatic {
// func method() -> Void {}
// }
// TestStatic.method(#^STATIC^#)
// The 'self' parameter is never optional, so don't enter the check
// below (which always assumes that self has been applied).
} else if (const ParamDecl *DeclParam =
getParameterAt(Info.ValueRef, Idx)) {
Optional |= DeclParam->isDefaultArgument();
Optional |= DeclParam->getInterfaceType()->is<PackExpansionType>();
}
}
const AnyFunctionType::Param *TypeParam = &ParamsToPass[Idx];
Optional |= TypeParam->isVariadic();
DeclParamIsOptional.push_back(Optional);
}
}
bool IncludeSignature = false;
if (ParentCall->getArgs()->getUnlabeledUnaryExpr() == CompletionExpr) {
// If the code completion expression is the only expression in the call
// and the code completion token doesnt have a label, we have a case like
// `Point(|)`. Suggest the entire function signature.
IncludeSignature = true;
} else if (!ParentCall->getArgs()->empty() &&
ParentCall->getArgs()->getExpr(0) == CompletionExpr &&
!ParentCall->getArgs()->get(0).hasLabel()) {
if (hasParentCallLikeExpr(ParentCall, CS)) {
// We are completing in cases like `bar(arg: foo(|, option: 1)`
// In these cases, we dont know if `option` belongs to the call to `foo`
// or `bar`. Be defensive and also suggest the signature.
IncludeSignature = true;
}
}
Results.push_back(
{ExpectedTy, ExpectedCallType, isa<SubscriptExpr>(ParentCall),
Info.getValue(), FuncTy, ArgIdx, ParamIdx, std::move(ClaimedParams),
IsNoninitialVariadic, IncludeSignature, Info.BaseTy, HasLabel, FirstTrailingClosureIndex,
IsAsync, DeclParamIsOptional, SolutionSpecificVarTypes});
}
void ArgumentTypeCheckCompletionCallback::computeShadowedDecls(
SmallPtrSetImpl<ValueDecl *> &ShadowedDecls) {
for (size_t i = 0; i < Results.size(); ++i) {
auto &ResultA = Results[i];
for (size_t j = i + 1; j < Results.size(); ++j) {
auto &ResultB = Results[j];
if (!ResultA.FuncD || !ResultB.FuncD || !ResultA.FuncTy ||
!ResultB.FuncTy) {
continue;
}
if (ResultA.FuncD->getName() != ResultB.FuncD->getName()) {
continue;
}
if (!ResultA.FuncTy->isEqual(ResultB.FuncTy)) {
continue;
}
ProtocolDecl *inProtocolExtensionA =
ResultA.FuncD->getDeclContext()->getExtendedProtocolDecl();
ProtocolDecl *inProtocolExtensionB =
ResultB.FuncD->getDeclContext()->getExtendedProtocolDecl();
if (inProtocolExtensionA && !inProtocolExtensionB) {
ShadowedDecls.insert(ResultA.FuncD);
} else if (!inProtocolExtensionA && inProtocolExtensionB) {
ShadowedDecls.insert(ResultB.FuncD);
}
}
}
}
void ArgumentTypeCheckCompletionCallback::collectResults(
bool IsLabeledTrailingClosure, SourceLoc Loc,
DeclContext *DC, ide::CodeCompletionContext &CompletionCtx) {
ASTContext &Ctx = DC->getASTContext();
CompletionLookup Lookup(CompletionCtx.getResultSink(), Ctx, DC,
&CompletionCtx);
SmallPtrSet<ValueDecl *, 4> ShadowedDecls;
computeShadowedDecls(ShadowedDecls);
// Perform global completion as a fallback if we don't have any results.
bool shouldPerformGlobalCompletion = Results.empty();
SmallVector<Type, 4> ExpectedCallTypes;
for (auto &Result : Results) {
ExpectedCallTypes.push_back(Result.ExpectedCallType);
}
SmallVector<Type, 8> ExpectedTypes;
SmallVector<PossibleParamInfo, 8> Params;
for (auto &Result : Results) {
if (Result.IncludeSignature) {
Lookup.setHaveLParen(true);
Lookup.setExpectedTypes(ExpectedCallTypes, /*isImpliedResult=*/false);
auto SemanticContext = SemanticContextKind::None;
NominalTypeDecl *BaseNominal = nullptr;
if (Result.BaseType) {
Type BaseTy = Result.BaseType;
if (auto InstanceTy = BaseTy->getMetatypeInstanceType()) {
BaseTy = InstanceTy;
}
if ((BaseNominal = BaseTy->getAnyNominal())) {
SemanticContext = SemanticContextKind::CurrentNominal;
if (Result.FuncD &&
Result.FuncD->getDeclContext()->getSelfNominalTypeDecl() !=
BaseNominal) {
SemanticContext = SemanticContextKind::Super;
}
} else if (BaseTy->is<TupleType>() || BaseTy->is<SubstitutableType>()) {
SemanticContext = SemanticContextKind::CurrentNominal;
}
}
if (SemanticContext == SemanticContextKind::None && Result.FuncD) {
if (Result.FuncD->getDeclContext()->isTypeContext()) {
SemanticContext = SemanticContextKind::CurrentNominal;
} else if (Result.FuncD->getDeclContext()->isLocalContext()) {
SemanticContext = SemanticContextKind::Local;
} else if (Result.FuncD->getModuleContext() == DC->getParentModule()) {
SemanticContext = SemanticContextKind::CurrentModule;
}
}
if (Result.FuncTy) {
if (auto FuncTy = Result.FuncTy) {
// Only show call pattern completions if the function isn't
// overridden.
if (ShadowedDecls.count(Result.FuncD) == 0) {
if (Result.IsSubscript) {
// The subscript decl may not be preset for e.g the implicit
// `keyPath:` subscript. Such a subscript is allowed on any
// non-nominal type, so the semantic context may be none.
auto *SD = dyn_cast_or_null<SubscriptDecl>(Result.FuncD);
assert(!SD || SemanticContext != SemanticContextKind::None);
Lookup.addSubscriptCallPattern(FuncTy, SD, SemanticContext);
} else {
auto *FD = dyn_cast_or_null<AbstractFunctionDecl>(Result.FuncD);
Lookup.addFunctionCallPattern(FuncTy, FD, SemanticContext);
}
}
}
}
Lookup.setHaveLParen(false);
// We didn't find any function signatures. Perform global completion as a fallback.
shouldPerformGlobalCompletion |=
!Lookup.FoundFunctionCalls || Lookup.FoundFunctionsWithoutFirstKeyword;
} else {
shouldPerformGlobalCompletion |=
addPossibleParams(Result, Params, ExpectedTypes);
}
}
Lookup.addCallArgumentCompletionResults(Params, IsLabeledTrailingClosure);
if (shouldPerformGlobalCompletion) {
llvm::SmallDenseMap<const VarDecl *, Type> SolutionSpecificVarTypes;
if (!Results.empty()) {
SolutionSpecificVarTypes = Results[0].SolutionSpecificVarTypes;
}
WithSolutionSpecificVarTypesRAII VarTypes(SolutionSpecificVarTypes);
for (auto &Result : Results) {
ExpectedTypes.push_back(Result.ExpectedType);
Lookup.setSolutionSpecificVarTypes(Result.SolutionSpecificVarTypes);
}
Lookup.setExpectedTypes(ExpectedTypes, false);
bool IsInAsyncContext = llvm::any_of(
Results, [](const Result &Res) { return Res.IsInAsyncContext; });
Lookup.setCanCurrDeclContextHandleAsync(IsInAsyncContext);
Lookup.getValueCompletionsInDeclContext(Loc);
Lookup.getSelfTypeCompletionInDeclContext(Loc, /*isForDeclResult=*/false);
// Add any keywords that can be used in an argument expr position.
addSuperKeyword(CompletionCtx.getResultSink(), DC);
addExprKeywords(CompletionCtx.getResultSink(), DC);
}
collectCompletionResults(CompletionCtx, Lookup, DC,
*Lookup.getExpectedTypeContext(),
Lookup.canCurrDeclContextHandleAsync());
}