mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
For most uses, some access scopes must be "respected"--if an extended value's original lifetime originally extends beyond an access scope, its canonicalized lifetime must not end _within_ such scopes (although ending before them is fine). Currently, to be conservative, the utility applies this behavior to all access scopes. For move-only values, however, lifetimes end at final consumes without regard to access scopes. Allow this behavior to be controlled by whether or not a NonLocalAccessBlockAnalysis is provided to the utility in its constructor. rdar://104635319
1073 lines
43 KiB
C++
1073 lines
43 KiB
C++
//===-- CanonicalizeOSSALifetime.cpp - Canonicalize OSSA value lifetimes --===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// This top-level API rewrites the extended lifetime of a SILValue:
|
|
///
|
|
/// bool CanonicalizeOSSALifetime::canonicalizeValueLifetime(SILValue def)
|
|
///
|
|
/// Each time it's called on a single OSSA value, `def`, it performs four
|
|
/// steps:
|
|
///
|
|
/// 1. Compute "pruned" liveness of def and its copies, ignoring original
|
|
/// destroys. Initializes `liveness`.
|
|
///
|
|
/// 2. Find the "original" boundary of liveness using
|
|
/// PrunedLiveness::computeBoundary.
|
|
///
|
|
/// 3. (Optional) At Onone, extend liveness up to original extent when possible
|
|
/// without incurring extra copies.
|
|
///
|
|
/// 4. Find the "extended" boundary of liveness by walking out from the boundary
|
|
/// computed by PrunedLiveness out to destroys which aren't separated from
|
|
/// the original destory by "interesting" instructions.
|
|
///
|
|
/// 5. Initializes `consumes` and inserts new destroy_value instructions.
|
|
///
|
|
/// 6. Rewrite `def`s original copies and destroys, inserting new copies where
|
|
/// needed. Deletes original copies and destroys and inserts new copies.
|
|
///
|
|
/// See CanonicalizeOSSALifetime.h for examples.
|
|
///
|
|
/// TODO: Canonicalization currently bails out if any uses of the def has
|
|
/// OperandOwnership::PointerEscape. Once project_box is protected by a borrow
|
|
/// scope and mark_dependence is associated with an end_dependence, those will
|
|
/// no longer be represented as PointerEscapes, and canonicalization will
|
|
/// naturally work everywhere as intended. The intention is to keep the
|
|
/// canonicalization algorithm as simple and robust, leaving the remaining
|
|
/// performance opportunities contingent on fixing the SIL representation.
|
|
///
|
|
/// TODO: Replace BasicBlock SmallDenseMaps with inlined bits;
|
|
/// see BasicBlockDataStructures.h.
|
|
///
|
|
/// TODO: This algorithm would be extraordinarily simple and cheap except for
|
|
/// the following issues:
|
|
///
|
|
/// 1. Liveness is extended by any overlapping begin/end_access scopes. This
|
|
/// avoids calling a destructor within an exclusive access. A simpler
|
|
/// alternative would be to model all end_access instructions as deinit
|
|
/// barriers, but that may significantly limit optimization.
|
|
///
|
|
/// 2. Liveness is extended out to original destroys to avoid spurious changes.
|
|
///
|
|
/// 3. In the Onone mode, liveness is preserved to its previous extent whenever
|
|
/// doing so doesn't incur extra copies compared to what is done in the O mode.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "copy-propagation"
|
|
|
|
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/NodeDatastructures.h"
|
|
#include "swift/SIL/OwnershipUtils.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
|
|
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
|
|
using namespace swift;
|
|
using llvm::SmallSetVector;
|
|
|
|
llvm::Statistic swift::NumCopiesAndMovesEliminated = {
|
|
DEBUG_TYPE, "NumCopiesAndMovesEliminated",
|
|
"number of copy_value and move_value instructions removed"};
|
|
|
|
llvm::Statistic swift::NumCopiesGenerated = {
|
|
DEBUG_TYPE, "NumCopiesGenerated",
|
|
"number of copy_value instructions created"};
|
|
|
|
STATISTIC(NumDestroysEliminated,
|
|
"number of destroy_value instructions removed");
|
|
STATISTIC(NumDestroysGenerated, "number of destroy_value instructions created");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: General utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename... T, typename... U>
|
|
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
|
|
U &&...args) {
|
|
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
|
|
}
|
|
|
|
static DestroyValueInst *dynCastToDestroyOf(SILInstruction *instruction,
|
|
SILValue def) {
|
|
auto *destroy = dyn_cast<DestroyValueInst>(instruction);
|
|
if (!destroy)
|
|
return nullptr;
|
|
auto originalDestroyedDef = destroy->getOperand();
|
|
if (originalDestroyedDef == def)
|
|
return destroy;
|
|
auto underlyingDestroyedDef =
|
|
CanonicalizeOSSALifetime::getCanonicalCopiedDef(originalDestroyedDef);
|
|
if (underlyingDestroyedDef != def)
|
|
return nullptr;
|
|
return destroy;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 1. Compute pruned liveness
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool CanonicalizeOSSALifetime::computeCanonicalLiveness() {
|
|
defUseWorklist.initialize(getCurrentDef());
|
|
// Only the first level of reborrows need to be consider. All nested inner
|
|
// adjacent reborrows and phis are encapsulated within their lifetimes.
|
|
SILPhiArgument *arg;
|
|
if ((arg = dyn_cast<SILPhiArgument>(getCurrentDef())) && arg->isPhi()) {
|
|
visitAdjacentReborrowsOfPhi(arg, [&](SILPhiArgument *reborrow) {
|
|
defUseWorklist.insert(reborrow);
|
|
return true;
|
|
});
|
|
}
|
|
while (SILValue value = defUseWorklist.pop()) {
|
|
for (Operand *use : value->getUses()) {
|
|
auto *user = use->getUser();
|
|
// Recurse through copies.
|
|
if (auto *copy = dyn_cast<CopyValueInst>(user)) {
|
|
defUseWorklist.insert(copy);
|
|
continue;
|
|
}
|
|
// Handle debug_value instructions separately.
|
|
if (pruneDebugMode) {
|
|
if (auto *dvi = dyn_cast<DebugValueInst>(user)) {
|
|
// Only instructions potentially outside current pruned liveness are
|
|
// interesting.
|
|
if (liveness.getBlockLiveness(dvi->getParent())
|
|
!= PrunedLiveBlocks::LiveOut) {
|
|
recordDebugValue(dvi);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
switch (use->getOperandOwnership()) {
|
|
case OperandOwnership::NonUse:
|
|
break;
|
|
case OperandOwnership::TrivialUse:
|
|
llvm_unreachable("this operand cannot handle ownership");
|
|
|
|
// Conservatively treat a conversion to an unowned value as a pointer
|
|
// escape. Is it legal to canonicalize ForwardingUnowned?
|
|
case OperandOwnership::ForwardingUnowned:
|
|
case OperandOwnership::PointerEscape:
|
|
return false;
|
|
case OperandOwnership::InstantaneousUse:
|
|
case OperandOwnership::UnownedInstantaneousUse:
|
|
case OperandOwnership::BitwiseEscape:
|
|
liveness.updateForUse(user, /*lifetimeEnding*/ false);
|
|
break;
|
|
case OperandOwnership::ForwardingConsume:
|
|
recordConsumingUse(use);
|
|
liveness.updateForUse(user, /*lifetimeEnding*/ true);
|
|
break;
|
|
case OperandOwnership::DestroyingConsume:
|
|
if (isa<DestroyValueInst>(user)) {
|
|
destroys.insert(user);
|
|
} else {
|
|
// destroy_value does not force pruned liveness (but store etc. does).
|
|
liveness.updateForUse(user, /*lifetimeEnding*/ true);
|
|
}
|
|
recordConsumingUse(use);
|
|
break;
|
|
case OperandOwnership::Borrow:
|
|
if (liveness.updateForBorrowingOperand(use)
|
|
!= InnerBorrowKind::Contained) {
|
|
return false;
|
|
}
|
|
break;
|
|
case OperandOwnership::InteriorPointer:
|
|
case OperandOwnership::GuaranteedForwarding:
|
|
case OperandOwnership::EndBorrow:
|
|
// Guaranteed values are exposed by inner adjacent reborrows. If user is
|
|
// a guaranteed phi (GuaranteedForwarding), then the owned lifetime
|
|
// either dominates it or its lifetime ends at an outer adjacent
|
|
// reborrow. Only instructions that end the reborrow lifetime should
|
|
// actually affect liveness of the outer owned value.
|
|
liveness.updateForUse(user, /*lifetimeEnding*/ false);
|
|
break;
|
|
case OperandOwnership::Reborrow:
|
|
BranchInst *branch = cast<BranchInst>(user);
|
|
// This is a cheap variation on visitEnclosingDef. We already know that
|
|
// getCurrentDef() is the enclosing def for this use. If the reborrow's
|
|
// has a enclosing def is an outer adjacent phi then this branch must
|
|
// consume getCurrentDef() as the outer phi operand.
|
|
if (is_contained(branch->getOperandValues(), getCurrentDef())) {
|
|
// An adjacent phi consumes the value being reborrowed. Although this
|
|
// use doesn't end the lifetime, this branch does end the lifetime by
|
|
// consuming the owned value.
|
|
liveness.updateForUse(branch, /*lifetimeEnding*/ true);
|
|
break;
|
|
}
|
|
// No adjacent phi consumes the value. This use is not lifetime ending.
|
|
liveness.updateForUse(branch, /*lifetimeEnding*/ false);
|
|
// This branch reborrows a guaranteed phi whose lifetime is dependent on
|
|
// currentDef. Uses of the reborrowing phi extend liveness.
|
|
auto *reborrow = PhiOperand(use).getValue();
|
|
defUseWorklist.insert(reborrow);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Return true if \p inst is an end_access whose access scope overlaps the end
|
|
// of the pruned live range. This means that a hoisted destroy might execute
|
|
// within the access scope which previously executed outside the access scope.
|
|
//
|
|
// Not overlapping (ignored):
|
|
//
|
|
// %def
|
|
// use %def // pruned liveness ends here
|
|
// begin_access // access scope unrelated to def
|
|
// end_access
|
|
//
|
|
// Overlapping (must extend pruned liveness):
|
|
//
|
|
// %def
|
|
// begin_access // access scope unrelated to def
|
|
// use %def // pruned liveness ends here
|
|
// end_access
|
|
//
|
|
// Overlapping (must extend pruned liveness):
|
|
//
|
|
// begin_access // access scope unrelated to def
|
|
// %def
|
|
// use %def // pruned liveness ends here
|
|
// end_access
|
|
//
|
|
bool CanonicalizeOSSALifetime::
|
|
endsAccessOverlappingPrunedBoundary(SILInstruction *inst) {
|
|
if (isa<EndUnpairedAccessInst>(inst)) {
|
|
return true;
|
|
}
|
|
auto *endAccess = dyn_cast<EndAccessInst>(inst);
|
|
if (!endAccess) {
|
|
return false;
|
|
}
|
|
auto *beginAccess = endAccess->getBeginAccess();
|
|
SILBasicBlock *beginBB = beginAccess->getParent();
|
|
switch (liveness.getBlockLiveness(beginBB)) {
|
|
case PrunedLiveBlocks::LiveOut:
|
|
// Found partial overlap of the form:
|
|
// currentDef
|
|
// beginAccess
|
|
// br...
|
|
// bb...
|
|
// use
|
|
// endAccess
|
|
return true;
|
|
case PrunedLiveBlocks::LiveWithin:
|
|
// Check for partial overlap of this form where beginAccess and the last use
|
|
// are in the same block:
|
|
// currentDef
|
|
// beginAccess
|
|
// use
|
|
// endAccess
|
|
if (std::find_if(std::next(beginAccess->getIterator()), beginBB->end(),
|
|
[this](SILInstruction &nextInst) {
|
|
return liveness.isInterestingUser(&nextInst)
|
|
!= PrunedLiveness::NonUser;
|
|
}) != beginBB->end()) {
|
|
// An interesting use after the beginAccess means overlap.
|
|
return true;
|
|
}
|
|
return false;
|
|
case PrunedLiveBlocks::Dead:
|
|
// Check for partial overlap of this form where beginAccess and currentDef
|
|
// are in different blocks:
|
|
// beginAccess
|
|
// br...
|
|
// bb...
|
|
// currentDef
|
|
// endAccess
|
|
//
|
|
// Since beginAccess is not within the canonical live range, its access
|
|
// scope overlaps only if there is a path from beginAccess to currentDef
|
|
// that does not pass through endAccess. endAccess is dominated by
|
|
// both currentDef and begin_access. Therefore, such a path only exists if
|
|
// beginAccess dominates currentDef.
|
|
return domTree->properlyDominates(beginAccess->getParent(),
|
|
getCurrentDef()->getParentBlock());
|
|
}
|
|
llvm_unreachable("covered switch");
|
|
}
|
|
|
|
// Find all overlapping access scopes and extend pruned liveness to cover them:
|
|
//
|
|
// This may also unnecessarily, but conservatively extend liveness over some
|
|
// originally overlapping access, such as:
|
|
//
|
|
// begin_access // access scope unrelated to def
|
|
// %def
|
|
// use %def
|
|
// destroy %def
|
|
// end_access
|
|
//
|
|
// Or:
|
|
//
|
|
// %def
|
|
// begin_access // access scope unrelated to def
|
|
// use %def
|
|
// destroy %def
|
|
// end_access
|
|
//
|
|
// To minimize unnecessary lifetime extension, only search for end_access
|
|
// within dead blocks that are backward reachable from an original destroy.
|
|
//
|
|
// Note that lifetime extension is iterative because adding a new liveness use
|
|
// may create new overlapping access scopes. This can happen because there is no
|
|
// guarantee of strict stack discipline across unrelated access. For example:
|
|
//
|
|
// %def
|
|
// begin_access A
|
|
// use %def // Initial pruned lifetime boundary
|
|
// begin_access B
|
|
// end_access A // Lifetime boundary after first extension
|
|
// end_access B // Lifetime boundary after second extension
|
|
// destroy %def
|
|
//
|
|
// If the lifetime extension did not iterate, then def would be destroyed within
|
|
// B's access scope when originally it was destroyed outside that scope.
|
|
void CanonicalizeOSSALifetime::extendLivenessThroughOverlappingAccess() {
|
|
this->accessBlocks = accessBlockAnalysis->get(getCurrentDef()->getFunction());
|
|
|
|
// Visit each original consuming use or destroy as the starting point for a
|
|
// backward CFG traversal. This traversal must only visit blocks within the
|
|
// original extended lifetime.
|
|
bool changed = true;
|
|
while (changed) {
|
|
changed = false;
|
|
// The blocks in which we may have to extend liveness over access scopes.
|
|
//
|
|
// It must be populated first so that we can test membership during the loop
|
|
// (see findLastConsume).
|
|
BasicBlockSetVector blocksToVisit(getCurrentDef()->getFunction());
|
|
for (auto *block : consumingBlocks) {
|
|
blocksToVisit.insert(block);
|
|
}
|
|
for (auto iterator = blocksToVisit.begin(); iterator != blocksToVisit.end();
|
|
++iterator) {
|
|
auto *bb = *iterator;
|
|
// If the block isn't dead, then we won't need to extend liveness within
|
|
// any of its predecessors (though we may within it).
|
|
if (liveness.getBlockLiveness(bb) != PrunedLiveBlocks::Dead)
|
|
continue;
|
|
// Continue searching upward to find the pruned liveness boundary.
|
|
for (auto *predBB : bb->getPredecessorBlocks()) {
|
|
blocksToVisit.insert(predBB);
|
|
}
|
|
}
|
|
for (auto *bb : blocksToVisit) {
|
|
auto blockLiveness = liveness.getBlockLiveness(bb);
|
|
// Ignore blocks within pruned liveness.
|
|
if (blockLiveness == PrunedLiveBlocks::LiveOut) {
|
|
continue;
|
|
}
|
|
if (blockLiveness == PrunedLiveBlocks::Dead) {
|
|
// Otherwise, ignore dead blocks with no nonlocal end_access.
|
|
if (!accessBlocks->containsNonLocalEndAccess(bb)) {
|
|
continue;
|
|
}
|
|
}
|
|
bool blockHasUse = (blockLiveness == PrunedLiveBlocks::LiveWithin);
|
|
// Find the latest partially overlapping access scope, if one exists:
|
|
// use %def // pruned liveness ends here
|
|
// end_access
|
|
|
|
// Whether to look for the last consume in the block.
|
|
//
|
|
// We need to avoid extending liveness over end_accesses that occur after
|
|
// original liveness ended.
|
|
bool findLastConsume =
|
|
consumingBlocks.contains(bb) &&
|
|
llvm::none_of(bb->getSuccessorBlocks(), [&](auto *successor) {
|
|
return blocksToVisit.contains(successor) &&
|
|
liveness.getBlockLiveness(successor) ==
|
|
PrunedLiveBlocks::Dead;
|
|
});
|
|
for (auto &inst : llvm::reverse(*bb)) {
|
|
if (findLastConsume) {
|
|
findLastConsume = !destroys.contains(&inst);
|
|
continue;
|
|
}
|
|
// Stop at the latest use. An earlier end_access does not overlap.
|
|
if (blockHasUse && liveness.isInterestingUser(&inst) != PrunedLiveness::NonUser) {
|
|
break;
|
|
}
|
|
if (endsAccessOverlappingPrunedBoundary(&inst)) {
|
|
liveness.updateForUse(&inst, /*lifetimeEnding*/ false);
|
|
changed = true;
|
|
break;
|
|
}
|
|
}
|
|
// If liveness changed, might as well restart CFG traversal.
|
|
if (changed) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 2. Find the "original" (unextended) boundary determined by the
|
|
// liveness built up in step 1.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void CanonicalizeOSSALifetime::findOriginalBoundary(
|
|
PrunedLivenessBoundary &boundary) {
|
|
assert(boundary.lastUsers.size() == 0 && boundary.boundaryEdges.size() == 0 &&
|
|
boundary.deadDefs.size() == 0);
|
|
liveness.computeBoundary(boundary, consumingBlocks.getArrayRef());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 3. (Optional) Maximize lifetimes.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// At -Onone, there are some conflicting goals:
|
|
/// On the one hand: good debugging experience.
|
|
/// (1) do not shorten value's lifetime
|
|
/// On the other: demonstrate semantics.
|
|
/// (2) consume value at same places it will be consumed at -O
|
|
/// (3) ensure there are no more copies than there would be at -O
|
|
///
|
|
/// (2) and (3) are equivalent--extra (compared to -O) copies arise from failing
|
|
/// to end lifetimes at consuming uses (which then need their own copies).
|
|
///
|
|
/// We achieve (2) and (3) always. We achieve (1) where possible.
|
|
///
|
|
/// Conceptually, the strategy is the following:
|
|
/// - Collect the blocks in which the value was live before canonicalization.
|
|
/// These are the "original" live blocks (originalLiveBlocks).
|
|
/// [Color these blocks green.]
|
|
/// - From within that collection, collect the blocks which contain a _final_
|
|
/// consuming, non-destroy use, and their successors.
|
|
/// These are the "consumed" blocks (consumedAtExitBlocks).
|
|
/// [Color these blocks red.]
|
|
/// - Extend liveness down to the boundary between originalLiveBlocks and
|
|
/// consumedAtExitBlocks blocks.
|
|
/// [Extend liveness down to the boundary between green blocks and red.]
|
|
/// - In particular, in regions of originalLiveBlocks which have no boundary
|
|
/// with consumedAtExitBlocks, liveness should be extended to its original
|
|
/// extent.
|
|
/// [Extend liveness down to the boundary between green blocks and uncolored.]
|
|
void CanonicalizeOSSALifetime::extendUnconsumedLiveness(
|
|
PrunedLivenessBoundary const &boundary) {
|
|
auto currentDef = getCurrentDef();
|
|
|
|
// First, collect the blocks that were _originally_ live. We can't use
|
|
// liveness here because it doesn't include blocks that occur before a
|
|
// destroy_value.
|
|
BasicBlockSet originalLiveBlocks(currentDef->getFunction());
|
|
{
|
|
// Some of the work here was already done by computeCanonicalLiveness.
|
|
// Specifically, it already discovered all blocks containing (transitive)
|
|
// uses and blocks that appear between them and the def.
|
|
//
|
|
// Seed the set with what it already discovered.
|
|
for (auto *discoveredBlock : liveness.getDiscoveredBlocks())
|
|
originalLiveBlocks.insert(discoveredBlock);
|
|
|
|
// Start the walk from the consuming blocks (which includes destroys as well
|
|
// as the other consuming uses).
|
|
BasicBlockWorklist worklist(currentDef->getFunction());
|
|
for (auto *consumingBlock : consumingBlocks) {
|
|
worklist.push(consumingBlock);
|
|
}
|
|
|
|
// Walk backwards from consuming blocks.
|
|
while (auto *block = worklist.pop()) {
|
|
originalLiveBlocks.insert(block);
|
|
for (auto *predecessor : block->getPredecessorBlocks()) {
|
|
// If the block was discovered by liveness, we already added it to the
|
|
// set.
|
|
if (originalLiveBlocks.contains(predecessor))
|
|
continue;
|
|
worklist.pushIfNotVisited(predecessor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Second, collect the blocks which occur after a _final_ consuming use.
|
|
BasicBlockSet consumedAtExitBlocks(currentDef->getFunction());
|
|
StackList<SILBasicBlock *> consumedAtEntryBlocks(currentDef->getFunction());
|
|
{
|
|
// Start the forward walk from blocks which contain _final_ non-destroy
|
|
// consumes. These are just the instructions on the boundary which aren't
|
|
// destroys.
|
|
BasicBlockWorklist worklist(currentDef->getFunction());
|
|
for (auto *instruction : boundary.lastUsers) {
|
|
if (dynCastToDestroyOf(instruction, getCurrentDef()))
|
|
continue;
|
|
if (liveness.isInterestingUser(instruction) !=
|
|
PrunedLiveness::IsInterestingUser::LifetimeEndingUse)
|
|
continue;
|
|
worklist.push(instruction->getParent());
|
|
}
|
|
while (auto *block = worklist.pop()) {
|
|
consumedAtExitBlocks.insert(block);
|
|
for (auto *successor : block->getSuccessorBlocks()) {
|
|
if (!originalLiveBlocks.contains(successor))
|
|
continue;
|
|
worklist.pushIfNotVisited(successor);
|
|
consumedAtEntryBlocks.push_back(successor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Third, find the blocks on the boundary between the originally-live blocks
|
|
// and the originally-live-but-consumed blocks. Extend liveness "to the end"
|
|
// of these blocks.
|
|
for (auto *block : consumedAtEntryBlocks) {
|
|
for (auto *predecessor : block->getPredecessorBlocks()) {
|
|
if (consumedAtExitBlocks.contains(predecessor))
|
|
continue;
|
|
// Add "the instruction(s) before the terminator" of the predecessor to
|
|
// liveness.
|
|
if (auto *inst = predecessor->getTerminator()->getPreviousInstruction()) {
|
|
liveness.updateForUse(inst, /*lifetimeEnding*/ false);
|
|
} else {
|
|
for (auto *grandPredecessor : predecessor->getPredecessorBlocks()) {
|
|
liveness.updateForUse(grandPredecessor->getTerminator(),
|
|
/*lifetimeEnding*/ false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, preserve the destroys which weren't in the consumed region in
|
|
// place: hoisting such destroys would not avoid copies.
|
|
for (auto *destroy : destroys) {
|
|
auto *block = destroy->getParent();
|
|
// If the destroy is in a consumed block or a final consuming block,
|
|
// hoisting it would avoid a copy.
|
|
if (consumedAtExitBlocks.contains(block))
|
|
continue;
|
|
liveness.updateForUse(destroy, /*lifetimeEnding*/ true);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 4. Extend the "original" boundary from step 2 up to destroys that
|
|
// aren't separated from it by "interesting" instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// Extends the boundary from PrunedLiveness down to preexisting destroys of the
|
|
/// def which aren't separated from the original boundary by "interesting"
|
|
/// instructions.
|
|
///
|
|
/// The motivation for extending the boundary is to avoid "churning" when
|
|
/// iterating to a fixed point by canonicalizing the lifetimes of several
|
|
/// values with overlapping live ranges and failing to find a fixed point
|
|
/// because their destroys are repeatedly hoisted over one another.
|
|
class ExtendBoundaryToDestroys final {
|
|
SSAPrunedLiveness &liveness;
|
|
PrunedLivenessBoundary const &originalBoundary;
|
|
SILValue currentDef;
|
|
BasicBlockSet seenMergePoints;
|
|
|
|
public:
|
|
ExtendBoundaryToDestroys(SSAPrunedLiveness &liveness,
|
|
PrunedLivenessBoundary const &originalBoundary,
|
|
SILValue currentDef)
|
|
: liveness(liveness), originalBoundary(originalBoundary),
|
|
currentDef(currentDef), seenMergePoints(currentDef->getFunction()){};
|
|
ExtendBoundaryToDestroys(ExtendBoundaryToDestroys const &) = delete;
|
|
ExtendBoundaryToDestroys &
|
|
operator=(ExtendBoundaryToDestroys const &) = delete;
|
|
|
|
/// Compute the extended boundary by walking out from the original boundary
|
|
/// (from PrunedLiveness::computeBoundary) down to any destroys that appear
|
|
/// later but which aren't separated from the original boundary by
|
|
/// "interesting" users.
|
|
void extend(PrunedLivenessBoundary &boundary) {
|
|
for (auto *def : originalBoundary.deadDefs) {
|
|
extendBoundaryFromDef(def, boundary);
|
|
}
|
|
for (auto *destination : originalBoundary.boundaryEdges) {
|
|
extendBoundaryFromBoundaryEdge(destination, boundary);
|
|
}
|
|
for (auto *user : originalBoundary.lastUsers) {
|
|
extendBoundaryFromUser(user, boundary);
|
|
}
|
|
}
|
|
|
|
/// Look past ignoreable instructions to find the _last_ destroy after the
|
|
/// specified instruction that destroys \p def.
|
|
static DestroyValueInst *findDestroyAfter(SILInstruction *previous,
|
|
SILValue def) {
|
|
DestroyValueInst *retval = nullptr;
|
|
for (auto *instruction = previous->getNextInstruction(); instruction;
|
|
instruction = instruction->getNextInstruction()) {
|
|
if (!CanonicalizeOSSALifetime::ignoredByDestroyHoisting(
|
|
instruction->getKind()))
|
|
break;
|
|
if (auto destroy = dynCastToDestroyOf(instruction, def))
|
|
retval = destroy;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/// Look past ignoreable instructions to find the _last_ destroy at or after
|
|
/// the specified instruction that destroys \p def.
|
|
static DestroyValueInst *findDestroyAtOrAfter(SILInstruction *start,
|
|
SILValue def) {
|
|
if (auto *dvi = dynCastToDestroyOf(start, def))
|
|
return dvi;
|
|
return findDestroyAfter(start, def);
|
|
}
|
|
|
|
/// Look past ignoreable instructions to find the _first_ destroy in \p
|
|
/// destination that destroys \p def and isn't separated from the beginning
|
|
/// by "interesting" instructions.
|
|
static DestroyValueInst *findDestroyFromBlockBegin(SILBasicBlock *destination,
|
|
SILValue def) {
|
|
return findDestroyAtOrAfter(&*destination->begin(), def);
|
|
}
|
|
|
|
private:
|
|
/// Compute the points on the extended boundary found by walking forward from
|
|
/// the dead def (starting either with the top of the block in the case of a
|
|
/// dead arg or the next instruction in the case of an instruction) down to
|
|
/// any destroys that appear later but which aren't separated from the
|
|
/// original boundary by "interesting" users.
|
|
///
|
|
/// If a destroy is found, it becomes a last user. Otherwise, the boundary
|
|
/// stays in place and \p def remains a dead def.
|
|
void extendBoundaryFromDef(SILNode *def, PrunedLivenessBoundary &boundary) {
|
|
if (auto *arg = dyn_cast<SILArgument>(def)) {
|
|
if (auto *dvi = findDestroyFromBlockBegin(arg->getParent(), currentDef)) {
|
|
boundary.lastUsers.push_back(dvi);
|
|
return;
|
|
}
|
|
} else {
|
|
if (auto *dvi = findDestroyAfter(cast<SILInstruction>(def), currentDef)) {
|
|
boundary.lastUsers.push_back(dvi);
|
|
return;
|
|
}
|
|
}
|
|
boundary.deadDefs.push_back(def);
|
|
}
|
|
|
|
/// Compute the points on the extended boundary found by walking down from the
|
|
/// boundary edge in the original boundary (uniquely determined by the
|
|
/// specified destination edge) down to any destroys that appear later but
|
|
/// which aren't separated from the original boundary by "interesting" users.
|
|
///
|
|
/// If a destroy is found, it becomes a last user. Otherwise, the boundary
|
|
/// stays in place and \p destination remains a boundary edge.
|
|
void extendBoundaryFromBoundaryEdge(SILBasicBlock *destination,
|
|
PrunedLivenessBoundary &boundary) {
|
|
if (auto *dvi = findDestroyFromBlockBegin(destination, currentDef)) {
|
|
boundary.lastUsers.push_back(dvi);
|
|
} else {
|
|
boundary.boundaryEdges.push_back(destination);
|
|
}
|
|
}
|
|
|
|
/// Compute the points on the extended boundary found by walking down from the
|
|
/// specified instruction in the original boundary down to any destroys that
|
|
/// appear later but which aren't separated from the original boundary by
|
|
/// "interesting" users.
|
|
///
|
|
/// If the user is consuming, the boundary remains in place.
|
|
///
|
|
/// If the user is a terminator, see extendBoundaryFromTerminator.
|
|
///
|
|
/// If a destroy is found after the (non-consuming, non-terminator) \p user,
|
|
/// it becomes a last user. Otherwise, the boundary stays in place and \p
|
|
/// user remains a last user.
|
|
void extendBoundaryFromUser(SILInstruction *user,
|
|
PrunedLivenessBoundary &boundary) {
|
|
if (auto *dvi = dynCastToDestroyOf(user, currentDef)) {
|
|
auto *existingDestroy = findDestroyAtOrAfter(dvi, currentDef);
|
|
assert(existingDestroy && "couldn't find a destroy at or after one!?");
|
|
boundary.lastUsers.push_back(existingDestroy);
|
|
return;
|
|
}
|
|
switch (liveness.isInterestingUser(user)) {
|
|
case PrunedLiveness::IsInterestingUser::LifetimeEndingUse:
|
|
// Even if we saw a destroy after this consuming use, we don't want to
|
|
// add it to the boundary. We will rewrite copies so that this user is
|
|
// the final consuming user on this path.
|
|
boundary.lastUsers.push_back(user);
|
|
return;
|
|
case PrunedLiveness::IsInterestingUser::NonLifetimeEndingUse:
|
|
case PrunedLiveness::IsInterestingUser::NonUser:
|
|
if (auto *terminator = dyn_cast<TermInst>(user)) {
|
|
extendBoundaryFromTerminator(terminator, boundary);
|
|
return;
|
|
}
|
|
if (auto *existingDestroy = findDestroyAfter(user, currentDef)) {
|
|
boundary.lastUsers.push_back(existingDestroy);
|
|
return;
|
|
}
|
|
boundary.lastUsers.push_back(user);
|
|
}
|
|
}
|
|
|
|
/// Compute the points on the extended boundary by walking into \p user's
|
|
/// parent's successors and looking for destroys.
|
|
///
|
|
/// If any destroys are found, they become last users and all other successors
|
|
/// (which lack destroys) become boundary edges. If no destroys are found,
|
|
/// the boundary stays in place and \p user remains a last user.
|
|
void extendBoundaryFromTerminator(TermInst *user,
|
|
PrunedLivenessBoundary &boundary) {
|
|
auto *block = user->getParent();
|
|
// Record the successors at the beginning of which we didn't find destroys.
|
|
// If we found a destroy at the beginning of any other successor, then all
|
|
// the other edges become boundary edges.
|
|
SmallVector<SILBasicBlock *, 4> successorsWithoutDestroys;
|
|
bool foundDestroy = false;
|
|
for (auto *successor : block->getSuccessorBlocks()) {
|
|
// If multiple terminators were live and had the same successor, only
|
|
// record the boundary corresponding to that destination block once.
|
|
if (!seenMergePoints.insert(successor)) {
|
|
// Thanks to the lack of critical edges, having seen this successor
|
|
// before means it has multiple predecessors, so this must be \p block's
|
|
// unique successor.
|
|
assert(block->getSingleSuccessorBlock() == successor);
|
|
continue;
|
|
}
|
|
if (auto *dvi = findDestroyFromBlockBegin(successor, currentDef)) {
|
|
boundary.lastUsers.push_back(dvi);
|
|
foundDestroy = true;
|
|
} else {
|
|
successorsWithoutDestroys.push_back(successor);
|
|
}
|
|
}
|
|
if (foundDestroy) {
|
|
// If we found a destroy in any successor, then every block at the
|
|
// beginning of which we didn't find a destroy becomes a boundary edge.
|
|
for (auto *successor : successorsWithoutDestroys) {
|
|
boundary.boundaryEdges.push_back(successor);
|
|
}
|
|
} else {
|
|
boundary.lastUsers.push_back(user);
|
|
}
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
void CanonicalizeOSSALifetime::findExtendedBoundary(
|
|
PrunedLivenessBoundary const &originalBoundary,
|
|
PrunedLivenessBoundary &boundary) {
|
|
assert(boundary.lastUsers.size() == 0 && boundary.boundaryEdges.size() == 0 &&
|
|
boundary.deadDefs.size() == 0);
|
|
ExtendBoundaryToDestroys extender(liveness, originalBoundary,
|
|
getCurrentDef());
|
|
extender.extend(boundary);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 5. Insert destroys onto the boundary found in step 3 where needed.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new destroy_value instruction before the specified instruction and
|
|
/// record it as a final consume.
|
|
static void insertDestroyBeforeInstruction(SILInstruction *nextInstruction,
|
|
SILValue currentDef,
|
|
CanonicalOSSAConsumeInfo &consumes,
|
|
InstModCallbacks &callbacks) {
|
|
SILBuilderWithScope builder(nextInstruction);
|
|
auto loc =
|
|
RegularLocation::getAutoGeneratedLocation(nextInstruction->getLoc());
|
|
auto *dvi = builder.createDestroyValue(loc, currentDef);
|
|
callbacks.createdNewInst(dvi);
|
|
consumes.recordFinalConsume(dvi);
|
|
++NumDestroysGenerated;
|
|
}
|
|
|
|
/// Inserts destroys along the boundary where needed and records all final
|
|
/// consuming uses.
|
|
///
|
|
/// Observations:
|
|
/// - currentDef must be postdominated by some subset of its
|
|
/// consuming uses, including destroys on all return paths.
|
|
/// - The postdominating consumes cannot be within nested loops.
|
|
/// - Any blocks in nested loops are now marked LiveOut.
|
|
void CanonicalizeOSSALifetime::insertDestroysOnBoundary(
|
|
PrunedLivenessBoundary const &boundary) {
|
|
BasicBlockSet seenMergePoints(getCurrentDef()->getFunction());
|
|
for (auto *instruction : boundary.lastUsers) {
|
|
if (auto *dvi = dynCastToDestroyOf(instruction, getCurrentDef())) {
|
|
consumes.recordFinalConsume(dvi);
|
|
continue;
|
|
}
|
|
switch (liveness.isInterestingUser(instruction)) {
|
|
case PrunedLiveness::IsInterestingUser::LifetimeEndingUse:
|
|
consumes.recordFinalConsume(instruction);
|
|
continue;
|
|
case PrunedLiveness::IsInterestingUser::NonLifetimeEndingUse:
|
|
case PrunedLiveness::IsInterestingUser::NonUser:
|
|
if (isa<TermInst>(instruction)) {
|
|
auto *block = instruction->getParent();
|
|
for (auto *successor : block->getSuccessorBlocks()) {
|
|
if (!seenMergePoints.insert(successor)) {
|
|
assert(block->getSingleSuccessorBlock() == successor);
|
|
continue;
|
|
}
|
|
auto *insertionPoint = &*successor->begin();
|
|
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
|
|
consumes, getCallbacks());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Destroy after terminator " << instruction
|
|
<< " at beginning of " << successor << "\n");
|
|
}
|
|
continue;
|
|
}
|
|
auto *insertionPoint = instruction->getNextInstruction();
|
|
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(), consumes,
|
|
getCallbacks());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Destroy at last use " << insertionPoint << "\n");
|
|
continue;
|
|
}
|
|
}
|
|
for (auto *edgeDestination : boundary.boundaryEdges) {
|
|
auto *insertionPoint = &*edgeDestination->begin();
|
|
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(), consumes,
|
|
getCallbacks());
|
|
LLVM_DEBUG(llvm::dbgs() << " Destroy on edge " << edgeDestination << "\n");
|
|
}
|
|
for (auto *def : boundary.deadDefs) {
|
|
if (auto *arg = dyn_cast<SILArgument>(def)) {
|
|
auto *insertionPoint = &*arg->getParent()->begin();
|
|
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(), consumes,
|
|
getCallbacks());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Destroy after dead def arg " << arg << "\n");
|
|
} else {
|
|
auto *instruction = cast<SILInstruction>(def);
|
|
auto *insertionPoint = instruction->getNextInstruction();
|
|
assert(insertionPoint && "def instruction was a terminator?!");
|
|
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(), consumes,
|
|
getCallbacks());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Destroy after dead def inst " << instruction << "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 6. Rewrite copies and destroys
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// The lifetime extends beyond given consuming use. Copy the value.
|
|
///
|
|
/// This can set the operand value, but cannot invalidate the use iterator.
|
|
void swift::copyLiveUse(Operand *use, InstModCallbacks &instModCallbacks) {
|
|
SILInstruction *user = use->getUser();
|
|
SILBuilderWithScope builder(user->getIterator());
|
|
|
|
auto loc = RegularLocation::getAutoGeneratedLocation(user->getLoc());
|
|
auto *copy = builder.createCopyValue(loc, use->get());
|
|
instModCallbacks.createdNewInst(copy);
|
|
use->set(copy);
|
|
|
|
++NumCopiesGenerated;
|
|
LLVM_DEBUG(llvm::dbgs() << " Copying at last use " << *copy);
|
|
}
|
|
|
|
/// Revisit the def-use chain of currentDef. Mark unneeded original
|
|
/// copies and destroys for deletion. Insert new copies for interior uses that
|
|
/// require ownership of the used operand.
|
|
void CanonicalizeOSSALifetime::rewriteCopies() {
|
|
assert(getCurrentDef()->getOwnershipKind() == OwnershipKind::Owned);
|
|
|
|
InstructionSetVector instsToDelete(getCurrentDef()->getFunction());
|
|
defUseWorklist.clear();
|
|
|
|
// Visit each operand in the def-use chain.
|
|
//
|
|
// Return true if the operand can use the current definition. Return false if
|
|
// it requires a copy.
|
|
auto visitUse = [&](Operand *use) {
|
|
auto *user = use->getUser();
|
|
// Recurse through copies.
|
|
if (auto *copy = dyn_cast<CopyValueInst>(user)) {
|
|
defUseWorklist.insert(copy);
|
|
return true;
|
|
}
|
|
if (auto *destroy = dyn_cast<DestroyValueInst>(user)) {
|
|
// If this destroy was marked as a final destroy, ignore it; otherwise,
|
|
// delete it.
|
|
if (!consumes.claimConsume(destroy)) {
|
|
instsToDelete.insert(destroy);
|
|
LLVM_DEBUG(llvm::dbgs() << " Removing " << *destroy);
|
|
++NumDestroysEliminated;
|
|
} else if (pruneDebugMode) {
|
|
// If this destroy was marked as a final destroy, add it to liveness so
|
|
// that we don't delete any debug instructions that occur before it.
|
|
// (Only relevant in pruneDebugMode).
|
|
liveness.updateForUse(destroy, /*lifetimeEnding*/ true);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Nonconsuming uses do not need copies and cannot be marked as destroys.
|
|
// A lifetime-ending use here must be a consume because EndBorrow/Reborrow
|
|
// uses have been filtered out.
|
|
if (!use->isLifetimeEnding())
|
|
return true;
|
|
|
|
// If this use was not marked as a final destroy *or* this is not the first
|
|
// consumed operand we visited, then it needs a copy.
|
|
if (!consumes.claimConsume(user)) {
|
|
maybeNotifyMoveOnlyCopy(use);
|
|
return false;
|
|
}
|
|
|
|
// Ok, this is a final user that isn't a destroy_value. Notify our caller if
|
|
// we were asked to.
|
|
//
|
|
// If we need this for diagnostics, we will only use it if we found actual
|
|
// uses that required copies.
|
|
maybeNotifyFinalConsumingUse(use);
|
|
|
|
return true;
|
|
};
|
|
|
|
// Perform a def-use traversal, visiting each use operand.
|
|
for (auto useIter = getCurrentDef()->use_begin(),
|
|
endIter = getCurrentDef()->use_end(); useIter != endIter;) {
|
|
Operand *use = *useIter++;
|
|
if (!visitUse(use)) {
|
|
copyLiveUse(use, getCallbacks());
|
|
}
|
|
}
|
|
while (SILValue value = defUseWorklist.pop()) {
|
|
CopyValueInst *srcCopy = cast<CopyValueInst>(value);
|
|
// Recurse through copies while replacing their uses.
|
|
Operand *reusedCopyOp = nullptr;
|
|
for (auto useIter = srcCopy->use_begin(); useIter != srcCopy->use_end();) {
|
|
Operand *use = *useIter++;
|
|
if (!visitUse(use)) {
|
|
if (!reusedCopyOp && srcCopy->getParent() == use->getParentBlock()) {
|
|
reusedCopyOp = use;
|
|
} else {
|
|
copyLiveUse(use, getCallbacks());
|
|
}
|
|
}
|
|
}
|
|
if (!(reusedCopyOp && srcCopy->hasOneUse())) {
|
|
getCallbacks().replaceValueUsesWith(srcCopy, srcCopy->getOperand());
|
|
if (reusedCopyOp) {
|
|
reusedCopyOp->set(srcCopy);
|
|
} else {
|
|
if (instsToDelete.insert(srcCopy)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Removing " << *srcCopy);
|
|
++NumCopiesAndMovesEliminated;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
assert(!consumes.hasUnclaimedConsumes());
|
|
|
|
if (pruneDebugMode) {
|
|
for (auto *dvi : debugValues) {
|
|
if (!liveness.isWithinBoundary(dvi)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Removing debug_value: " << *dvi);
|
|
deleter.forceDelete(dvi);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove the leftover copy_value and destroy_value instructions.
|
|
for (auto iter = instsToDelete.begin(), end = instsToDelete.end();
|
|
iter != end; ++iter) {
|
|
deleter.forceDelete(*iter);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Top-Level API
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Canonicalize a single extended owned lifetime.
|
|
bool CanonicalizeOSSALifetime::canonicalizeValueLifetime(SILValue def) {
|
|
if (def->getOwnershipKind() != OwnershipKind::Owned)
|
|
return false;
|
|
|
|
if (def->isLexical())
|
|
return false;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Canonicalizing: " << def);
|
|
|
|
// Note: There is no need to register callbacks with this utility. 'onDelete'
|
|
// is the only one in use to handle dangling pointers, which could be done
|
|
// instead be registering a temporary handler with the pass. Canonicalization
|
|
// is only allowed to create and delete instructions that are associated with
|
|
// this canonical def (copies and destroys). Each canonical def has a disjoint
|
|
// extended lifetime. Any pass calling this utility should work at the level
|
|
// canonical defs, not individual instructions.
|
|
//
|
|
// NotifyWillBeDeleted will not work because copy rewriting removes operands
|
|
// before deleting instructions. Also prohibit setUse callbacks just because
|
|
// that would simply be insane.
|
|
assert(!getCallbacks().notifyWillBeDeletedFunc
|
|
&& !getCallbacks().setUseValueFunc && "unsupported");
|
|
|
|
initDef(def);
|
|
// Step 1: compute liveness
|
|
if (!computeCanonicalLiveness()) {
|
|
LLVM_DEBUG(llvm::errs() << "Failed to compute canonical liveness?!\n");
|
|
clearLiveness();
|
|
return false;
|
|
}
|
|
if (accessBlockAnalysis) {
|
|
extendLivenessThroughOverlappingAccess();
|
|
}
|
|
// Step 2: compute original boundary
|
|
PrunedLivenessBoundary originalBoundary;
|
|
findOriginalBoundary(originalBoundary);
|
|
PrunedLivenessBoundary boundary;
|
|
if (maximizeLifetime) {
|
|
// Step 3. (optional) maximize lifetimes
|
|
extendUnconsumedLiveness(originalBoundary);
|
|
originalBoundary.clear();
|
|
// Step 2: (again) recompute the original boundary since we've extended
|
|
// liveness
|
|
findOriginalBoundary(originalBoundary);
|
|
// Step 4: extend boundary to destroys
|
|
findExtendedBoundary(originalBoundary, boundary);
|
|
} else {
|
|
// Step 3: (skipped)
|
|
// Step 4: extend boundary to destroys
|
|
findExtendedBoundary(originalBoundary, boundary);
|
|
}
|
|
// Step 5: insert destroys and record consumes
|
|
insertDestroysOnBoundary(boundary);
|
|
// Step 6: rewrite copies and delete extra destroys
|
|
rewriteCopies();
|
|
|
|
clearLiveness();
|
|
consumes.clear();
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Debugging
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SWIFT_ASSERT_ONLY_DECL(
|
|
void CanonicalOSSAConsumeInfo::dump() const {
|
|
llvm::dbgs() << "Consumes:";
|
|
for (auto &blockAndInst : finalBlockConsumes) {
|
|
llvm::dbgs() << " " << *blockAndInst.getSecond();
|
|
}
|
|
})
|