Files
swift-mirror/lib/SILOptimizer/Utils/OwnershipOptUtils.cpp
Andrew Trick f9861ec9c0 Add APIs for terminator results that forward ownership.
Add TermInst::forwardedOperand.

Add SILArgument::forwardedTerminatorResultOperand. This API will be
moved into a proper TerminatorResult abstraction.

Remove getSingleTerminatorOperand, which could be misused because it's
not necessarilly forwarding ownership.

Remove the isTransformationTerminator API, which is not useful or well
defined.

Rewrite several instances of complex logic to handle block arguments
with the simple terminator result API. This defines away potential
bugs where we don't detect casts that perform implicit conversion.

Replace uses of the SILPhiArgument type and code that explicitly
handle block arguments. Control flow is irrelevant in these
situations. SILPhiArgument needs to be deleted ASAP. Instead, use
simple APIs like SILArgument::isTerminatorResult(). Eventually this
will be replaced by a TerminatorResult type.
2022-12-12 12:37:35 -08:00

1919 lines
76 KiB
C++

//===--- OwnershipOptUtils.cpp --------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Ownership Utilities that rely on SILOptimizer functionality.
///
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/Basic/Defer.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/LinearLifetimeChecker.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/ScopedAddressUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Basic scope and lifetime extension API
//===----------------------------------------------------------------------===//
void swift::extendOwnedLifetime(SILValue ownedValue,
PrunedLivenessBoundary &lifetimeBoundary,
InstructionDeleter &deleter) {
// Gather the current set of destroy_values, which may die.
SmallSetVector<Operand *, 4> extraConsumes;
SmallPtrSet<SILInstruction *, 4> extraConsumers;
for (Operand *use : ownedValue->getUses()) {
if (use->isConsuming()) {
extraConsumes.insert(use);
extraConsumers.insert(use->getUser());
}
}
// Insert or reuse a destroy_value at all last users.
auto createDestroy = [&](SILBuilder &builder) {
auto loc = RegularLocation::getAutoGeneratedLocation(
builder.getInsertionPointLoc());
auto *destroy = builder.createDestroyValue(loc, ownedValue);
deleter.getCallbacks().createdNewInst(destroy);
};
for (SILInstruction *lastUser : lifetimeBoundary.lastUsers) {
if (extraConsumers.erase(lastUser))
continue;
SILBuilderWithScope::insertAfter(lastUser, createDestroy);
}
// Insert a destroy_value at all boundary edges.
for (SILBasicBlock *edge : lifetimeBoundary.boundaryEdges) {
SILBuilderWithScope builder(edge->begin());
createDestroy(builder);
}
// Delete or copy extra consumes.
for (auto *consume : extraConsumes) {
auto *consumer = consume->getUser();
if (!extraConsumers.count(consumer))
continue;
if (isa<DestroyValueInst>(consumer)) {
deleter.forceDelete(consumer);
continue;
}
auto loc = RegularLocation::getAutoGeneratedLocation(consumer->getLoc());
auto *copy = SILBuilderWithScope(consumer).createCopyValue(loc, ownedValue);
consume->set(copy);
deleter.getCallbacks().createdNewInst(copy);
}
}
void swift::extendLocalBorrow(BeginBorrowInst *beginBorrow,
PrunedLivenessBoundary &guaranteedBoundary,
InstructionDeleter &deleter) {
// Gather the current set of end_borrows, which may die.
SmallVector<EndBorrowInst *, 4> endBorrows;
SmallPtrSet<EndBorrowInst *, 4> deadEndBorrows;
for (Operand *use : beginBorrow->getUses()) {
if (auto *endBorrow = dyn_cast<EndBorrowInst>(use->getUser())) {
endBorrows.push_back(endBorrow);
deadEndBorrows.insert(endBorrow);
continue;
}
assert(use->getOperandOwnership() != OperandOwnership::EndBorrow
&& use->getOperandOwnership() != OperandOwnership::Reborrow
&& "expecting a purely local borrow scope");
}
// Insert or reuse an end_borrow at all last users.
auto createEndBorrow = [&](SILBuilder &builder) {
auto loc = RegularLocation::getAutoGeneratedLocation(
builder.getInsertionPointLoc());
auto *endBorrow = builder.createEndBorrow(loc, beginBorrow);
deleter.getCallbacks().createdNewInst(endBorrow);
};
for (SILInstruction *lastUser : guaranteedBoundary.lastUsers) {
if (auto *endBorrow = dyn_cast<EndBorrowInst>(lastUser)) {
if (deadEndBorrows.erase(endBorrow))
continue;
}
SILBuilderWithScope::insertAfter(lastUser, createEndBorrow);
}
// Insert an end_borrow at all boundary edges.
for (SILBasicBlock *edge : guaranteedBoundary.boundaryEdges) {
SILBuilderWithScope builder(edge->begin());
createEndBorrow(builder);
}
// Delete dead end_borrows.
for (auto *endBorrow : endBorrows) {
if (deadEndBorrows.count(endBorrow))
deleter.forceDelete(endBorrow);
}
}
bool swift::computeGuaranteedBoundary(SILValue value,
PrunedLivenessBoundary &boundary) {
assert(value->getOwnershipKind() == OwnershipKind::Guaranteed);
// Place end_borrows that cover the load_borrow uses. It is not necessary to
// cover the outer borrow scope of the extract's operand. If a lexical
// borrow scope exists for the outer value, which is now in memory, then
// its alloc_stack will be marked lexical, and the in-memory values will be
// kept alive until the end of the outer scope.
SmallVector<Operand *, 4> usePoints;
bool noEscape = findInnerTransitiveGuaranteedUses(value, &usePoints);
SmallVector<SILBasicBlock *, 4> discoveredBlocks;
SSAPrunedLiveness liveness(&discoveredBlocks);
liveness.initializeDef(value);
for (auto *use : usePoints) {
assert(!use->isLifetimeEnding());
liveness.updateForUse(use->getUser(), /*lifetimeEnding*/ false);
}
liveness.computeBoundary(boundary);
return noEscape;
}
//===----------------------------------------------------------------------===//
// GuaranteedOwnershipExtension
//===----------------------------------------------------------------------===//
// Can the OSSA ownership of the \p parentAddress cover all uses of the \p
// childAddress?
GuaranteedOwnershipExtension::Status
GuaranteedOwnershipExtension::checkAddressOwnership(SILValue parentAddress,
SILValue childAddress) {
AddressOwnership addressOwnership(parentAddress);
if (!addressOwnership.hasLocalOwnershipLifetime()) {
// Indirect Arg, Stack, Global, Unidentified, Yield
// (these have no reference lifetime to extend).
return Valid;
}
SmallVector<Operand *, 8> childUses;
if (findTransitiveUsesForAddress(childAddress, &childUses)
!= AddressUseKind::NonEscaping) {
return Invalid; // pointer escape, so we don't know required lifetime
}
SILValue referenceRoot = addressOwnership.getOwnershipReferenceRoot();
assert(referenceRoot && "expect to find a reference to Box/Class/Tail");
if (referenceRoot->getOwnershipKind() != OwnershipKind::Guaranteed) {
// Note: Addresses are normally guarded by a borrow scope. But eventually,
// an address base can be considered an implicit borrow. This current
// handles project_box, which is not in a borrow scope (it is sadly modeled
// as a PointerEscape). But we can treat project_box like an implicit borrow
// in this context.
return checkLifetimeExtension(referenceRoot, childUses);
}
BorrowedValue parentBorrow(referenceRoot);
if (!parentBorrow)
return Invalid; // unexpected borrow introducer
return checkBorrowExtension(parentBorrow, childUses);
}
// Can the OSSA scope of \p borrow cover all \p newUses?
GuaranteedOwnershipExtension::Status
GuaranteedOwnershipExtension::checkBorrowExtension(
BorrowedValue borrow, ArrayRef<Operand *> newUses) {
if (!borrow.isLocalScope())
return Valid; // arguments have whole-function ownership
assert(guaranteedLiveness.empty());
borrow.computeTransitiveLiveness(guaranteedLiveness);
if (guaranteedLiveness.areUsesWithinBoundary(newUses, &deBlocks))
return Valid; // reuse the borrow scope as-is
beginBorrow = dyn_cast<BeginBorrowInst>(borrow.value);
if (!beginBorrow)
return Invalid; // cannot extend load_borrow without memory lifetime
// Extend liveness to the new uses before returning any status that leads to
// transformation.
for (Operand *use : newUses) {
guaranteedLiveness.updateForUse(use->getUser(), /*lifetimeEnding*/ false);
}
// It is unusual to have a borrow scope that (a) dominates the new uses, (b)
// does not already cover the new uses, but (c) already has a reborrow for
// some other reason.
if (borrow.hasReborrow())
return Invalid; // Can only extend a local scope up to dominated uses
auto status = checkLifetimeExtension(beginBorrow->getOperand(), newUses);
if (status == Valid) {
// The owned lifetime is adequate, but the borrow scope must be extended.
return ExtendBorrow;
}
return status;
}
GuaranteedOwnershipExtension::Status
GuaranteedOwnershipExtension::checkLifetimeExtension(
SILValue ownedValue, ArrayRef<Operand *> newUses) {
assert(ownedLifetime.empty());
auto ownershipKind = ownedValue->getOwnershipKind();
if (ownershipKind == OwnershipKind::None)
return Valid;
// If the ownedValue is not owned, give up for simplicity. We expect nested
// borrows to be removed.
if (ownershipKind != OwnershipKind::Owned)
return Invalid;
ownedLifetime.initializeDef(ownedValue);
for (Operand *use : ownedValue->getUses()) {
auto *user = use->getUser();
if (use->isConsuming()) {
ownedLifetime.updateForUse(user, true);
ownedConsumeBlocks.push_back(user->getParent());
}
}
if (ownedLifetime.areUsesWithinBoundary(newUses, &deBlocks))
return Valid;
return ExtendLifetime; // Can't cover newUses without destroy sinking.
}
void GuaranteedOwnershipExtension::transform(Status status) {
switch (status) {
case Invalid:
case Valid:
return;
case ExtendBorrow: {
PrunedLivenessBoundary guaranteedBoundary;
guaranteedLiveness.computeBoundary(guaranteedBoundary, ownedConsumeBlocks);
extendLocalBorrow(beginBorrow, guaranteedBoundary, deleter);
break;
}
case ExtendLifetime: {
ownedLifetime.extendAcrossLiveness(guaranteedLiveness);
PrunedLivenessBoundary ownedBoundary;
ownedLifetime.computeBoundary(ownedBoundary, ownedConsumeBlocks);
extendOwnedLifetime(beginBorrow->getOperand(), ownedBoundary, deleter);
PrunedLivenessBoundary guaranteedBoundary;
guaranteedLiveness.computeBoundary(guaranteedBoundary, ownedConsumeBlocks);
extendLocalBorrow(beginBorrow, guaranteedBoundary, deleter);
break;
}
}
}
//===----------------------------------------------------------------------===//
// Utility Helper Functions
//===----------------------------------------------------------------------===//
static void cleanupOperandsBeforeDeletion(SILInstruction *oldValue,
InstModCallbacks &callbacks) {
SILBuilderWithScope builder(oldValue);
for (auto &op : oldValue->getAllOperands()) {
if (!op.isLifetimeEnding()) {
continue;
}
switch (op.get()->getOwnershipKind()) {
case OwnershipKind::Any:
llvm_unreachable("Invalid ownership for value");
case OwnershipKind::Owned: {
auto *dvi = builder.createDestroyValue(oldValue->getLoc(), op.get());
callbacks.createdNewInst(dvi);
continue;
}
case OwnershipKind::Guaranteed: {
// Should only happen once we model destructures as true reborrows.
auto *ebi = builder.createEndBorrow(oldValue->getLoc(), op.get());
callbacks.createdNewInst(ebi);
continue;
}
case OwnershipKind::None:
continue;
case OwnershipKind::Unowned:
llvm_unreachable("Unowned object can never be consumed?!");
}
llvm_unreachable("Covered switch isn't covered");
}
}
//===----------------------------------------------------------------------===//
// Ownership RAUW Helper Functions
//===----------------------------------------------------------------------===//
// Determine whether it is valid to replace \p oldValue with \p newValue by
// directly checking ownership requirements. This does not determine whether the
// scope of the newValue can be fully extended.
bool OwnershipRAUWHelper::hasValidRAUWOwnership(SILValue oldValue,
SILValue newValue,
ArrayRef<Operand *> oldUses) {
auto newOwnershipKind = newValue->getOwnershipKind();
// If the either value is lexical, replacing its uses may result in
// shortening or lengthening its lifetime in ways that don't respect lexical
// scope and deinit barriers.
//
// Specifically, we have the following cases:
//
// +--------+--------+
// |oldValue|newValue|
// +--------+--------+
// | not | not | legal
// +--------+--------+
// |lexical | not | illegal
// +--------+--------+
// | * |lexical | legal so long as it doesn't extend newValue's lifetime
// +--------+--------+
if ((oldValue->isLexical() && !newValue->isLexical()) ||
(newValue->isLexical() &&
!areUsesWithinLexicalValueLifetime(newValue, oldUses)))
return false;
// If our new kind is ValueOwnershipKind::None, then we are fine. We
// trivially support that. This check also ensures that we can always
// replace any value with a ValueOwnershipKind::None value.
if (newOwnershipKind == OwnershipKind::None)
return true;
// If our old ownership kind is ValueOwnershipKind::None and our new kind is
// not, we may need to do more work that has not been implemented yet. So
// bail.
//
// Due to our requirement that types line up, this can only occur given a
// non-trivial typed value with None ownership. This can only happen when
// oldValue is a trivial payloaded or no-payload non-trivially typed
// enum. That doesn't occur that often so we just bail on it today until we
// implement this functionality.
if (oldValue->getOwnershipKind() == OwnershipKind::None)
return false;
// First check if oldValue is SILUndef. If it is, then we know that:
//
// 1. SILUndef (and thus oldValue) must have OwnershipKind::None.
// 2. newValue is not OwnershipKind::None due to our check above.
//
// Thus we know that we would be replacing a value with OwnershipKind::None
// with a value with non-None ownership. This is a case we don't support, so
// we can bail now.
if (isa<SILUndef>(oldValue))
return false;
// Ok, we now know that we do not have SILUndef implying that we must be able
// to get a module from our value since we must have an argument or an
// instruction.
auto *m = oldValue->getModule();
assert(m);
// If we are in Raw SIL, just bail at this point. We do not support
// ownership fixups.
if (m->getStage() == SILStage::Raw)
return false;
return true;
}
// Determine whether it is valid to replace \p oldValue with \p newValue and
// extend the lifetime of \p oldValue to cover the new uses.
static bool canFixUpOwnershipForRAUW(SILValue oldValue, SILValue newValue,
OwnershipFixupContext &context) {
switch (oldValue->getOwnershipKind()) {
case OwnershipKind::Guaranteed: {
// Check that the old lifetime can be extended and record the necessary
// book-keeping in the OwnershipFixupContext.
context.clear();
// Check that no transitive uses have a PointerEscape, and record the leaf
// uses for liveness extension.
//
// FIXME: Use findExtendedTransitiveGuaranteedUses and switch the
// implementation of borrowCopyOverGuaranteedUses to
// GuaranteedOwnershipExtension. Utils then, reborrows are considered
// pointer escapes, causing findTransitiveGuaranteedUses to return false. So
// they can be ignored.
auto visitReborrow = [&](Operand *reborrow) {};
if (!findTransitiveGuaranteedUses(oldValue, context.guaranteedUsePoints,
visitReborrow)) {
return false;
}
return OwnershipRAUWHelper::hasValidRAUWOwnership(
oldValue, newValue, context.guaranteedUsePoints);
}
default: {
SmallVector<Operand *, 8> ownedUsePoints;
// If newValue is lexical, find the uses of oldValue so that it can be
// determined whether the replacement would illegally extend the lifetime
// of newValue.
if (newValue->isLexical() &&
!findUsesOfSimpleValue(oldValue, &ownedUsePoints))
return false;
return OwnershipRAUWHelper::hasValidRAUWOwnership(oldValue, newValue,
ownedUsePoints);
}
}
}
bool swift::areUsesWithinLexicalValueLifetime(SILValue value,
ArrayRef<Operand *> uses) {
assert(value->isLexical());
// The lexical lifetime of a function argument is the whole body of the
// function.
if (isa<SILFunctionArgument>(value))
return true;
if (auto borrowedValue = BorrowedValue(value)) {
auto *function = value->getFunction();
MultiDefPrunedLiveness liveness(function);
borrowedValue.computeTransitiveLiveness(liveness);
DeadEndBlocks deadEndBlocks(function);
return liveness.areUsesWithinBoundary(uses, &deadEndBlocks);
}
return false;
}
//===----------------------------------------------------------------------===//
// BorrowedLifetimeExtender
//===----------------------------------------------------------------------===//
/// Model an extended borrow scope, including transitive reborrows. This applies
/// to "local" borrow scopes (begin_borrow, load_borrow, & phi).
///
/// Allow extending the lifetime of an owned value that dominates this borrowed
/// value across that extended borrow scope. This handles uses of reborrows that
/// are not dominated by the owned value by generating phis and copying the
/// borrowed values the reach this borrow scope from non-dominated paths.
///
/// This produces somewhat canonical owned phis, although that isn't a
/// requirement for valid SIL. Given an owned value, a dominated borrowed value,
/// and a reborrow:
///
/// %ownedValue = ...
/// %borrowedValue = ...
/// %reborrow = phi(%borrowedValue, %otherBorrowedValue)
///
/// %otherBorrowedValue will always be copied even if %ownedValue also dominates
/// %otherBorrowedValue, as such:
///
/// %otherCopy = copy_value %borrowedValue
/// %newPhi = phi(%ownedValue, %otherCopy)
///
/// The immediate effect is to produce an unnecessary copy, but it avoids
/// extending %ownedValue's liveness to new paths and hopefully simplifies
/// downstream optimization and debugging. Unnecessary copies could be
/// avoided with simple dominance check if it becomes desirable to do so.
class BorrowedLifetimeExtender {
BorrowedValue borrowedValue;
// Owned value currently being extended over borrowedValue.
SILValue currentOwnedValue;
InstModCallbacks &callbacks;
llvm::SmallVector<PhiValue, 4> reborrowedPhis;
llvm::SmallDenseMap<PhiValue, PhiValue, 4> reborrowedToOwnedPhis;
/// Check that all reaching operands are handled. This can be removed once the
/// utility and OSSA representation are stable.
SWIFT_ASSERT_ONLY_DECL(llvm::SmallDenseSet<PhiOperand, 4> reborrowedOperands);
public:
/// Precondition: \p borrowedValue must introduce a local borrow scope
/// (begin_borrow, load_borrow, & phi).
BorrowedLifetimeExtender(BorrowedValue borrowedValue,
InstModCallbacks &callbacks)
: borrowedValue(borrowedValue), callbacks(callbacks) {
assert(borrowedValue.isLocalScope() && "expect a valid borrowed value");
}
/// Extend \p ownedValue over this extended borrow scope.
///
/// Precondition: \p ownedValue dominates this borrowed value.
void extendOverBorrowScopeAndConsume(SILValue ownedValue);
protected:
/// Initially map the reborrowed phi to an invalid value prior to creating the
/// owned phi.
void discoverReborrow(PhiValue reborrowedPhi) {
if (reborrowedToOwnedPhis.try_emplace(reborrowedPhi, PhiValue()).second) {
reborrowedPhis.push_back(reborrowedPhi);
}
}
/// Remap the reborrowed phi to an valid owned phi after creating it.
void mapOwnedPhi(PhiValue reborrowedPhi, PhiValue ownedPhi) {
reborrowedToOwnedPhis[reborrowedPhi] = ownedPhi;
}
/// Get the owned value associated with this reborrowed operand, or return an
/// invalid SILValue indicating that the borrowed lifetime does not reach this
/// operand.
SILValue getExtendedOwnedValue(PhiOperand reborrowedOper) {
// If this operand reborrows the original borrow, then the currentOwned phi
// reaches it directly.
SILValue borrowSource = reborrowedOper.getSource();
if (borrowSource == borrowedValue.value)
return currentOwnedValue;
// Check if the borrowed operand's source is already mapped to an owned phi.
auto reborrowedAndOwnedPhi = reborrowedToOwnedPhis.find(borrowSource);
if (reborrowedAndOwnedPhi != reborrowedToOwnedPhis.end()) {
// Return the already-mapped owned phi.
assert(reborrowedOperands.erase(reborrowedOper));
return reborrowedAndOwnedPhi->second;
}
// The owned value does not reach this reborrowed operand.
assert(
!reborrowedOperands.count(reborrowedOper)
&& "reachable borrowed phi operand must be mapped to an owned value");
return SILValue();
}
void analyzeExtendedScope();
SILValue createCopyAtEdge(PhiOperand reborrowOper);
void destroyAtScopeEnd(SILValue ownedValue, BorrowedValue pairedBorrow);
};
// Gather all transitive phi-reborrows and check that all the borrowed uses can
// be found with no escapes.
//
// Calls discoverReborrow to populate reborrowedPhis.
void BorrowedLifetimeExtender::analyzeExtendedScope() {
auto visitReborrow = [&](Operand *endScope) {
if (auto borrowingOper = BorrowingOperand(endScope)) {
assert(borrowingOper.isReborrow());
SWIFT_ASSERT_ONLY(reborrowedOperands.insert(endScope));
// TODO: if non-phi reborrows are added, handle multiple results.
discoverReborrow(borrowingOper.getBorrowIntroducingUserResult().value);
}
return true;
};
bool result = borrowedValue.visitLocalScopeEndingUses(visitReborrow);
assert(result && "visitReborrow always succeeds, escapes are irrelevant");
// Note: Iterate in the same manner as findExtendedTransitiveGuaranteedUses(),
// but using BorrowedLifetimeExtender's own reborrowedPhis.
for (unsigned idx = 0; idx < reborrowedPhis.size(); ++idx) {
auto borrowedValue = BorrowedValue(reborrowedPhis[idx]);
result = borrowedValue.visitLocalScopeEndingUses(visitReborrow);
assert(result && "visitReborrow always succeeds, escapes are irrelevant");
}
}
// Insert a copy on this edge. This might not be necessary if the owned
// value dominates this path, but this avoids forcing the owned value to be
// live across new paths.
//
// TODO: consider copying the base of the borrowed value instead of the
// borrowed value directly. It's likely that the copy is used outside of the
// borrow scope, in which case, canonicalizeOSSA will create a copy outside
// the borrow scope anyway. However, we can't be sure that the base is the
// same type.
//
// TODO: consider reusing copies that dominate multiple reborrowed
// operands. However, this requires copying in an earlier block and inserting
// post-dominating destroys, which may be better handled in an ownership phi
// canonicalization pass.
SILValue BorrowedLifetimeExtender::createCopyAtEdge(PhiOperand reborrowOper) {
auto *branch = reborrowOper.getBranch();
auto loc = RegularLocation::getAutoGeneratedLocation(branch->getLoc());
auto *copy = SILBuilderWithScope(branch).createCopyValue(
loc, reborrowOper.getSource());
callbacks.createdNewInst(copy);
return copy;
}
// Destroy \p ownedValue at \p pairedBorrow's scope-ending uses, excluding
// reborrows.
//
// Precondition: ownedValue takes ownership of its value at the same point as
// pairedBorrow. e.g. an owned and guaranteed pair of phis.
void BorrowedLifetimeExtender::destroyAtScopeEnd(SILValue ownedValue,
BorrowedValue pairedBorrow) {
pairedBorrow.visitLocalScopeEndingUses([&](Operand *scopeEnd) {
if (scopeEnd->getOperandOwnership() == OperandOwnership::Reborrow)
return true;
auto *endInst = scopeEnd->getUser();
assert(!isa<TermInst>(endInst) && "branch must be a reborrow");
auto *destroyPt = &*std::next(endInst->getIterator());
auto *destroy = SILBuilderWithScope(destroyPt).createDestroyValue(
destroyPt->getLoc(), ownedValue);
callbacks.createdNewInst(destroy);
return true;
});
}
// Insert and map an owned phi for each reborrowed phi.
//
// For each reborrowed phi, insert a copy on each edge that does not originate
// from the extended borrowedValue.
//
// TODO: If non-phi reborrows are added, they would also need to be
// mapped to their owned counterpart. This means generating new owned
// struct/destructure instructions.
void BorrowedLifetimeExtender::
extendOverBorrowScopeAndConsume(SILValue ownedValue) {
currentOwnedValue = ownedValue;
// Populate the reborrowedPhis vector.
analyzeExtendedScope();
// Warning: don't use the original callbacks in this function after creating a
// deleter.
InstModCallbacks tempCallbacks = callbacks;
InstructionDeleter deleter(std::move(tempCallbacks));
// Generate and map the phis with undef operands first, in case of recursion.
auto undef = SILUndef::get(ownedValue->getType(), *ownedValue->getFunction());
for (PhiValue reborrowedPhi : reborrowedPhis) {
auto *phiBlock = reborrowedPhi.phiBlock;
auto *ownedPhi = phiBlock->createPhiArgument(ownedValue->getType(),
OwnershipKind::Owned);
for (auto *predBlock : phiBlock->getPredecessorBlocks()) {
TermInst *ti = predBlock->getTerminator();
addNewEdgeValueToBranch(ti, phiBlock, undef, deleter);
}
mapOwnedPhi(reborrowedPhi, PhiValue(ownedPhi));
}
// Generate copies and set the phi operands.
for (PhiValue reborrowedPhi : reborrowedPhis) {
PhiValue ownedPhi = reborrowedToOwnedPhis[reborrowedPhi];
reborrowedPhi.getValue()->visitIncomingPhiOperands(
// For each reborrowed operand, get the owned value for that edge,
// and set the owned phi's operand.
[&](Operand *reborrowedOper) {
SILValue ownedVal = getExtendedOwnedValue(reborrowedOper);
if (!ownedVal) {
ownedVal = createCopyAtEdge(reborrowedOper);
}
TermInst *branch = PhiOperand(reborrowedOper).getBranch();
branch->getOperandRef(ownedPhi.argIndex).set(ownedVal);
return true;
});
}
assert(reborrowedOperands.empty() && "not all phi operands are handled");
// Create destroys at the last uses.
destroyAtScopeEnd(ownedValue, borrowedValue);
for (PhiValue reborrowedPhi : reborrowedPhis) {
PhiValue ownedPhi = reborrowedToOwnedPhis[reborrowedPhi];
destroyAtScopeEnd(ownedPhi, BorrowedValue(reborrowedPhi));
}
}
//===----------------------------------------------------------------------===//
// Ownership Lifetime Extender
//===----------------------------------------------------------------------===//
namespace {
struct OwnershipLifetimeExtender {
OwnershipFixupContext &ctx;
/// Create a new copy of \p value assuming that our caller will clean up the
/// copy along all paths that go through consuming point. Operationally this
/// means that the API will insert compensating destroy_value on the copy
/// along all paths that do not go through consuming point.
///
/// DISCUSSION: If \p consumingPoint is an instruction that forwards \p value,
/// calling this and then RAUWing with \p value guarantee that \p value will
/// be consumed by the forwarding instruction's results consuming uses.
CopyValueInst *createPlusOneCopy(SILValue value,
SILInstruction *consumingPoint);
/// Create a copy of \p value that covers all of \p range and insert all
/// needed destroy_values. We assume that no uses in \p range consume \p
/// value.
CopyValueInst *createPlusZeroCopy(SILValue value, ArrayRef<Operand *> range) {
return createPlusZeroCopy<ArrayRef<Operand *>>(value, range);
}
/// Create a copy of \p value that covers all of \p range and insert all
/// needed destroy_values. We assume that all uses in \p range do not consume
/// \p value.
///
/// We return our copy_value to the user at +0 to show that they do not need
/// to insert cleanup destroys.
template <typename RangeTy>
CopyValueInst *createPlusZeroCopy(SILValue value, const RangeTy &range);
/// Borrow \p newValue over the extended lifetime of \p borrowedValue.
BeginBorrowInst *borrowCopyOverScope(SILValue newValue,
BorrowedValue borrowedValue);
/// Borrow-copy \p newValue over \p guaranteedUses. Copy newValue, borrow the
/// copy, and extend the lifetime of the borrow-copy over guaranteedUsePoints.
///
/// \p borrowPoint is a value whose definition will be the location of
/// the new borrow.
template <typename RangeTy>
BeginBorrowInst *
borrowCopyOverGuaranteedUses(SILValue newValue,
SILBasicBlock::iterator borrowPoint,
RangeTy guaranteedUsePoints);
template <typename RangeTy>
BeginBorrowInst *
borrowCopyOverGuaranteedUsers(SILValue newValue,
SILBasicBlock::iterator borrowPoint,
RangeTy guaranteedUsers);
/// Borrow \p newValue over the lifetime of \p guaranteedValue. Return the
/// new guaranteed value.
SILValue borrowOverValue(SILValue newValue, SILValue guaranteedValue);
/// Borrow \p newValue over \p singleGuaranteedUse. Return the
/// new guaranteed value.
///
/// Precondition: if \p use ends a borrow scope, then \p newValue dominates
/// the BorrowedValue that begins the scope.
SILValue borrowOverSingleUse(SILValue newValue,
Operand *singleGuaranteedUse);
SILValue
borrowOverSingleNonLifetimeEndingUser(SILValue newValue,
SILInstruction *nonLifetimeEndingUser);
};
} // end anonymous namespace
/// Lifetime extend \p value over \p consumingPoint, assuming that \p
/// consumingPoint will consume \p value after the client performs replacement
/// (this implicit destruction on the caller-side makes it a "plus-one"
/// copy). Destroy \p copy on all paths that don't reach \p consumingPoint.
///
/// Precondition: \p value is owned
///
/// Precondition: \p consumingPoint is dominated by \p value
CopyValueInst *
OwnershipLifetimeExtender::createPlusOneCopy(SILValue value,
SILInstruction *consumingPoint) {
auto *copyPoint = value->getNextInstruction();
auto loc = copyPoint->getLoc();
auto *copy = SILBuilderWithScope(copyPoint).createCopyValue(loc, value);
auto &callbacks = ctx.callbacks;
callbacks.createdNewInst(copy);
auto *result = copy;
findJointPostDominatingSet(
copy->getParent(), consumingPoint->getParent(),
// inputBlocksFoundDuringWalk.
[&](SILBasicBlock *loopBlock) {
// Since copy dominates consumingPoint, it must be outside the
// loop. Otherwise backward traversal would have stopped at copyPoint.
//
// Create an extra copy when the consumingPoint is inside a loop and the
// original copy is outside the loop. The new copy will be consumed
// within the loop in the same block as the consume. The original copy
// will be destroyed on all paths exiting the loop.
assert(loopBlock == consumingPoint->getParent());
auto front = loopBlock->begin();
SILBuilderWithScope newBuilder(front);
result = newBuilder.createCopyValue(front->getLoc(), copy);
callbacks.createdNewInst(result);
},
// Leaky blocks that never reach consumingPoint.
[&](SILBasicBlock *postDomBlock) {
auto front = postDomBlock->begin();
SILBuilderWithScope newBuilder(front);
auto loc = RegularLocation::getAutoGeneratedLocation(front->getLoc());
auto *dvi = newBuilder.createDestroyValue(loc, copy);
callbacks.createdNewInst(dvi);
});
return result;
}
// A copy_value that we lifetime extend with destroy_value over range. We assume
// all instructions passed into range do not consume value.
template <typename RangeTy>
CopyValueInst *
OwnershipLifetimeExtender::createPlusZeroCopy(SILValue value,
const RangeTy &range) {
auto *newValInsertPt = value->getDefiningInsertionPoint();
assert(newValInsertPt);
CopyValueInst *copy;
if (!isa<SILArgument>(value)) {
SILBuilderWithScope::insertAfter(newValInsertPt, [&](SILBuilder &builder) {
copy = builder.createCopyValue(builder.getInsertionPointLoc(), value);
});
} else {
SILBuilderWithScope builder(newValInsertPt);
copy = builder.createCopyValue(newValInsertPt->getLoc(), value);
}
auto &callbacks = ctx.callbacks;
callbacks.createdNewInst(copy);
auto opRange = makeUserRange(range);
ValueLifetimeAnalysis lifetimeAnalysis(copy, opRange);
ValueLifetimeBoundary boundary;
lifetimeAnalysis.computeLifetimeBoundary(boundary);
boundary.visitInsertionPoints(
[&](SILBasicBlock::iterator insertPt) {
SILBuilderWithScope builder(insertPt);
auto *dvi = builder.createDestroyValue(insertPt->getLoc(), copy);
callbacks.createdNewInst(dvi);
},
&ctx.deBlocks);
return copy;
}
/// Borrow \p newValue over the extended lifetime of \p borrowedValue.
///
/// Precondition: \p newValue dominates borrowedValue.
BeginBorrowInst *
OwnershipLifetimeExtender::borrowCopyOverScope(SILValue newValue,
BorrowedValue borrowedValue) {
assert(borrowedValue.isLocalScope() && "SILFunctionArg is already handled");
SILInstruction *borrowPoint = borrowedValue.value->getNextInstruction();
auto loc = RegularLocation::getAutoGeneratedLocation(borrowPoint->getLoc());
SILBuilderWithScope builder(borrowPoint);
auto *copy = builder.createCopyValue(loc, newValue);
ctx.callbacks.createdNewInst(copy);
// Extend the new copy's lifetime over borrowedValue's scope and destroy it on
// all paths through borrowedValue. Since copy is in the same block as
// borrowedValue, no extra destroys are needed.
BorrowedLifetimeExtender(borrowedValue, ctx.callbacks)
.extendOverBorrowScopeAndConsume(copy);
auto *borrow = builder.createBeginBorrow(loc, copy);
ctx.callbacks.createdNewInst(borrow);
return borrow;
}
/// Borrow-copy \p newValue over \p guaranteedUses. Copy newValue, borrow the
/// copy, and extend the lifetime of the borrow-copy over guaranteedUses.
///
/// \p borrowPoint is a the insertion point of the new borrow.
///
/// Precondition: \p newValue dominates \p borrowPoint which dominates \p
/// guaranteedUses
///
/// Precondition: \p guaranteedUses is not empty.
///
/// Precondition: None of \p guaranteedUses are lifetime ending.
template <typename RangeTy>
BeginBorrowInst *OwnershipLifetimeExtender::borrowCopyOverGuaranteedUsers(
SILValue newValue, SILBasicBlock::iterator borrowPoint,
RangeTy guaranteedUsers) {
auto loc = RegularLocation::getAutoGeneratedLocation(borrowPoint->getLoc());
auto *copy = SILBuilderWithScope(newValue->getNextInstruction())
.createCopyValue(loc, newValue);
auto *borrow = SILBuilderWithScope(borrowPoint).createBeginBorrow(loc, copy);
ctx.callbacks.createdNewInst(copy);
ctx.callbacks.createdNewInst(borrow);
// Create end_borrows at the end of the borrow's lifetime.
{
// We don't expect an empty guaranteedUsers. If it happens, then the
// newly created copy will never be destroyed.
assert(!guaranteedUsers.empty());
ValueLifetimeAnalysis lifetimeAnalysis(borrow, guaranteedUsers);
ValueLifetimeBoundary borrowBoundary;
lifetimeAnalysis.computeLifetimeBoundary(borrowBoundary);
borrowBoundary.visitInsertionPoints(
[&](SILBasicBlock::iterator insertPt) {
SILBuilderWithScope builder(insertPt);
// Use an auto-generated location here, because insertPt may have an
// incompatible LocationKind
auto loc =
RegularLocation::getAutoGeneratedLocation(insertPt->getLoc());
auto *endBorrow = builder.createEndBorrow(loc, borrow);
ctx.callbacks.createdNewInst(endBorrow);
},
&ctx.deBlocks);
}
// Create destroys at the end of copy's lifetime. This only needs to consider
// uses that end the borrow scope.
{
ValueLifetimeAnalysis lifetimeAnalysis(copy, borrow->getEndBorrows());
ValueLifetimeBoundary copyBoundary;
lifetimeAnalysis.computeLifetimeBoundary(copyBoundary);
copyBoundary.visitInsertionPoints(
[&](SILBasicBlock::iterator insertPt) {
SILBuilderWithScope builder(insertPt);
auto *destroy = builder.createDestroyValue(loc, copy);
ctx.callbacks.createdNewInst(destroy);
},
&ctx.deBlocks);
}
return borrow;
}
template <typename RangeTy>
BeginBorrowInst *OwnershipLifetimeExtender::borrowCopyOverGuaranteedUses(
SILValue newValue, SILBasicBlock::iterator borrowPoint,
RangeTy guaranteedUsePoints) {
return borrowCopyOverGuaranteedUsers(newValue, borrowPoint,
makeUserRange(guaranteedUsePoints));
}
// Return the borrow position when replacing guaranteedValue with newValue.
//
// Precondition: newValue's block dominates and reaches guaranteedValue's block.
//
// Postcondition: The returned instruction's block is guaranteedValue's block.
//
// If \p newValue and \p guaranteedValue are in the same block, borrow at the
// newValue just in case it is defined later in the block (to avoid scanning
// instructions). Otherwise, borrow in the guaranteedValue's block to avoid
// introducing the borrow scope too early--not only would this require extra
// cleanup, but it would hinder optimization.
static SILBasicBlock::iterator getBorrowPoint(SILValue newValue,
SILValue guaranteedValue) {
if (newValue->getParentBlock() == guaranteedValue->getParentBlock())
return newValue->getNextInstruction()->getIterator();
return guaranteedValue->getNextInstruction()->getIterator();
}
/// Borrow \p newValue over the lifetime of \p guaranteedValue. Return the
/// new guaranteed value or an empty SILValue when there are no uses.
///
/// TODO: determine whether \p newValue's borrow scope already encompasses all
/// uses of \p guaranteedValue and avoid the copy-borrow. Handle the case where
/// \p newValue is a chain of guaranteed ownership-forwarding operations.
///
/// TODO: Consider replacing all of newValue's uses with the new copy of
/// newValue. This may allow newValue's original borrow scope to be removed,
/// which then allows the copy to be removed. The result would be a single
/// borrow scope over all newValue's and guaranteedValue's uses, which is
/// usually preferable to a new copy and separate borrow scope. When doing
/// this, we can use newValue as the borrow point instead of getBorrowPoint.
SILValue
OwnershipLifetimeExtender::borrowOverValue(SILValue newValue,
SILValue guaranteedValue) {
// Avoid borrowing guaranteed function arguments.
if (isa<SILFunctionArgument>(newValue) &&
newValue->getOwnershipKind() == OwnershipKind::Guaranteed) {
return newValue;
}
auto borrowedValue = BorrowedValue(guaranteedValue);
if (borrowedValue && borrowedValue.isLocalScope()) {
return borrowCopyOverScope(newValue, borrowedValue);
}
if (ctx.guaranteedUsePoints.empty())
return newValue;
// FIXME: use GuaranteedOwnershipExtension
auto borrowPt = getBorrowPoint(newValue, guaranteedValue);
return borrowCopyOverGuaranteedUses(
newValue, borrowPt, ArrayRef<Operand *>(ctx.guaranteedUsePoints));
}
// Borrow \p newValue over \p singleGuaranteedUse. Return the new guaranteed
// value.
//
// Precondition: \p newValue dominates \p singleGuaranteedUse.
//
// Precondition: If \p singleGuaranteedUse ends a borrowed lifetime, the \p
// newValue also dominates the beginning of the borrow scope.
//
// If \p singleGuaranteedUse is lifetime-ending, then two forms
// of cleanup are performed, anticipating that singleGuaranteedUse will be
// replaced with the returned value.
//
// 1. Insert an end_borrow for the original borrow at the point of the replaced
// use.
//
// 2. Insert end_borrows for the new borrow at all the original borrow's
// scope-ending uses that aren't being replaced.
SILValue
OwnershipLifetimeExtender::borrowOverSingleUse(SILValue newValue,
Operand *singleGuaranteedUse) {
// Avoid borrowing guaranteed function arguments.
if (isa<SILFunctionArgument>(newValue) &&
newValue->getOwnershipKind() == OwnershipKind::Guaranteed) {
return newValue;
}
if (!singleGuaranteedUse->isLifetimeEnding()) {
auto borrowPt = newValue->getNextInstruction()->getIterator();
return borrowCopyOverGuaranteedUses(
newValue, borrowPt, ArrayRef<Operand *>(singleGuaranteedUse));
}
// A guaranteed lifetime-ending use is always defined by a BorrowedValue.
auto oldBorrowedVal = BorrowedValue(singleGuaranteedUse->get());
BeginBorrowInst *newBeginBorrow =
borrowCopyOverScope(newValue, oldBorrowedVal);
// Cleanup the original scope, anticipating that it will lose an end-point.
SILInstruction *usePoint = singleGuaranteedUse->getUser();
auto *endOldBorrow = SILBuilderWithScope(usePoint).createEndBorrow(
usePoint->getLoc(), oldBorrowedVal.value);
ctx.callbacks.createdNewInst(endOldBorrow);
// Cleanup the new scope since it only inherits one end-point.
oldBorrowedVal.visitLocalScopeEndingUses([&](Operand *endScope) {
auto borrowingOper = BorrowingOperand(endScope);
if (borrowingOper.isReborrow())
return true;
auto *oldEndBorrow = endScope->getUser();
auto *endNewBorrow =
SILBuilderWithScope(oldEndBorrow)
.createEndBorrow(oldEndBorrow->getLoc(), newBeginBorrow);
ctx.callbacks.createdNewInst(endNewBorrow);
return true;
});
return newBeginBorrow;
}
SILValue OwnershipLifetimeExtender::borrowOverSingleNonLifetimeEndingUser(
SILValue newValue, SILInstruction *nonLifetimeEndingUser) {
// Avoid borrowing guaranteed function arguments.
if (isa<SILFunctionArgument>(newValue) &&
newValue->getOwnershipKind() == OwnershipKind::Guaranteed) {
return newValue;
}
auto borrowPt = newValue->getNextInstruction()->getIterator();
return borrowCopyOverGuaranteedUsers(
newValue, borrowPt, ArrayRef<SILInstruction *>(nonLifetimeEndingUser));
}
SILValue swift::makeGuaranteedValueAvailable(SILValue value,
SILInstruction *user,
DeadEndBlocks &deBlocks,
InstModCallbacks callbacks) {
OwnershipFixupContext ctx{callbacks, deBlocks};
OwnershipLifetimeExtender extender{ctx};
return extender.borrowOverSingleNonLifetimeEndingUser(value, user);
}
//===----------------------------------------------------------------------===//
// OwnershipRAUWUtility - RAUW + fix ownership
//===----------------------------------------------------------------------===//
/// Given an old value and a new value, lifetime extend new value as appropriate
/// so we can RAUW new value with old value and preserve ownership
/// invariants. We leave fixing up the lifetime of old value to our caller.
namespace {
struct OwnershipRAUWPrepare {
SILValue oldValue;
OwnershipFixupContext &ctx;
OwnershipLifetimeExtender getLifetimeExtender() { return {ctx}; }
const InstModCallbacks &getCallbacks() const { return ctx.callbacks; }
// For terminator results, the consuming point is the predecessor's
// terminator. This avoids destroys on unused paths. It is also the
// instruction which will be deleted, thus needs operand cleanup.
SILInstruction *getConsumingPoint() const {
if (auto *blockArg = dyn_cast<SILPhiArgument>(oldValue))
return blockArg->getTerminatorForResult();
return cast<SingleValueInstruction>(oldValue);
}
SILValue prepareReplacement(SILValue newValue);
private:
SILValue prepareUnowned(SILValue newValue);
};
} // anonymous namespace
SILValue OwnershipRAUWPrepare::prepareUnowned(SILValue newValue) {
auto &callbacks = ctx.callbacks;
switch (newValue->getOwnershipKind()) {
case OwnershipKind::None:
llvm_unreachable("Should have been handled elsewhere");
case OwnershipKind::Any:
llvm_unreachable("Invalid for values");
case OwnershipKind::Unowned:
// An unowned value can always be RAUWed with another unowned value.
return newValue;
case OwnershipKind::Guaranteed: {
// If we have an unowned value that we want to replace with a guaranteed
// value, we need to ensure that the guaranteed value is live at all use
// points of the unowned value. If so, just replace and continue.
//
// TODO: Implement this for more interesting cases.
if (isa<SILFunctionArgument>(newValue))
return newValue;
// Otherwise, we need to lifetime extend the borrow over all of the use
// points. To do so, we copy the value, borrow it, and insert an unchecked
// ownership conversion to unowned at all uses that are terminator uses.
//
// We need to insert the conversion since if we have a non-argument
// guaranteed value since its scope will end before the terminator so we
// need to convert the value to unowned early.
//
// TODO: Do we need a separate array here?
SmallVector<Operand *, 8> oldValueUses(oldValue->getUses());
for (auto *use : oldValueUses) {
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
if (ti->isFunctionExiting()) {
SILBuilderWithScope builder(ti);
auto *newInst = builder.createUncheckedOwnershipConversion(
ti->getLoc(), use->get(), OwnershipKind::Unowned);
callbacks.createdNewInst(newInst);
callbacks.setUseValue(use, newInst);
}
}
}
auto extender = getLifetimeExtender();
auto borrowPt = getBorrowPoint(newValue, oldValue);
SILValue borrow = extender.borrowCopyOverGuaranteedUses(
newValue, borrowPt, oldValue->getUses());
return borrow;
}
case OwnershipKind::Owned: {
// If we have an unowned value that we want to replace with an owned value,
// we first check if the owned value is live over all use points of the old
// value. If so, just RAUW and continue.
//
// TODO: Implement this.
// Otherwise, insert a copy of the owned value and lifetime extend that over
// all uses of the value and then RAUW.
//
// NOTE: For terminator uses, we funnel the use through an
// unchecked_ownership_conversion to ensure that we can end the lifetime of
// our owned/guaranteed value before the terminator.
SmallVector<Operand *, 8> oldValueUses(oldValue->getUses());
for (auto *use : oldValueUses) {
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
if (ti->isFunctionExiting()) {
SILBuilderWithScope builder(ti);
auto *newInst = builder.createUncheckedOwnershipConversion(
ti->getLoc(), use->get(), OwnershipKind::Unowned);
callbacks.createdNewInst(newInst);
callbacks.setUseValue(use, newInst);
}
}
}
auto extender = getLifetimeExtender();
SILValue copy = extender.createPlusZeroCopy(newValue, oldValue->getUses());
return copy;
}
}
llvm_unreachable("covered switch isn't covered?!");
}
SILValue OwnershipRAUWPrepare::prepareReplacement(SILValue newValue) {
assert(oldValue->getFunction()->hasOwnership());
// A value with no uses can be "replaced" without fixup.
// (e.g. a dead no-ownership value can be replaced by an owned value even
// though hasValidRAUWOwnership will be false).
if (oldValue->use_empty())
return newValue;
assert(
OwnershipRAUWHelper::hasValidRAUWOwnership(oldValue, newValue,
ctx.guaranteedUsePoints) &&
"Should have checked if can perform this operation before calling it?!");
// If our new value is just none, we can pass anything to it so just RAUW
// and return.
//
// NOTE: This handles RAUWing with undef.
if (newValue->getOwnershipKind() == OwnershipKind::None)
return newValue;
assert(oldValue->getOwnershipKind() != OwnershipKind::None);
switch (oldValue->getOwnershipKind()) {
case OwnershipKind::None:
// If our old value was none and our new value is not, we need to do
// something more complex that we do not support yet, so bail. We should
// have not called this function in such a case.
llvm_unreachable("Should have been handled elsewhere");
case OwnershipKind::Any:
llvm_unreachable("Invalid for values");
case OwnershipKind::Guaranteed: {
return getLifetimeExtender().borrowOverValue(newValue, oldValue);
}
case OwnershipKind::Owned: {
// If we have an owned value that we want to replace with a value with any
// other non-None ownership, we need to copy the other value for a
// lifetimeEnding RAUW, RAUW the value, and insert a destroy_value of
// the original value.
auto extender = getLifetimeExtender();
auto *consumingPoint = getConsumingPoint();
SILValue copy = extender.createPlusOneCopy(newValue, consumingPoint);
cleanupOperandsBeforeDeletion(consumingPoint, ctx.callbacks);
return copy;
}
case OwnershipKind::Unowned: {
return prepareUnowned(newValue);
}
}
llvm_unreachable("Covered switch isn't covered?!");
}
//===----------------------------------------------------------------------===//
// Interior Pointer Operand Rebasing
//===----------------------------------------------------------------------===//
/// Return an address equivalent to \p newValue that can be used to replace all
/// uses of \p oldValue.
///
/// Precondition: RAUW of two addresses
SILValue
OwnershipRAUWHelper::getReplacementAddress() {
assert(oldValue->getType().isAddress() && newValue->getType().isAddress());
// If newValue was not generated by an interior pointer, then it cannot
// be within a borrow scope, so direct replacement works.
if (!requiresCopyBorrowAndClone())
return newValue;
// newValue may be within a borrow scope, and oldValue may have uses that are
// outside of newValue's borrow scope.
//
// So, we need to copy/borrow the base value of the interior pointer to
// lifetime extend the base value over the new uses. Then we clone the
// interior pointer instruction and change the clone to use our new borrowed
// value. Then we RAUW as appropriate.
OwnershipLifetimeExtender extender{*ctx};
auto base = ctx->extraAddressFixupInfo.base;
auto borrowPt = getBorrowPoint(newValue, oldValue);
// FIXME: why does this use allAddressUsesFromOldValue instead of
// guaranteedUsePoints?
BeginBorrowInst *bbi = extender.borrowCopyOverGuaranteedUses(
base.getReference(), borrowPt,
llvm::makeArrayRef(
ctx->extraAddressFixupInfo.allAddressUsesFromOldValue));
auto bbiNext = &*std::next(bbi->getIterator());
auto *refProjection = cast<SingleValueInstruction>(base.getBaseAddress());
auto *newBase = refProjection->clone(bbiNext);
ctx->callbacks.createdNewInst(newBase);
newBase->setOperand(0, bbi);
// Now that we have extended our lifetime as appropriate, we need to recreate
// the access path from newValue to refProjection but upon newBase.
//
// This cloner invocation must match the canCloneUseDefChain check in the
// constructor.
auto checkBase = [&](SILValue srcAddr) {
return (srcAddr == refProjection) ? SILValue(newBase) : SILValue();
};
SILValue clonedAddr = cloneUseDefChain(newValue, bbiNext, checkBase);
assert(clonedAddr != newValue && "expect at least the base to be replaced");
return clonedAddr;
}
//===----------------------------------------------------------------------===//
// OwnershipRAUWHelper
//===----------------------------------------------------------------------===//
OwnershipRAUWHelper::OwnershipRAUWHelper(OwnershipFixupContext &inputCtx,
SILValue inputOldValue,
SILValue inputNewValue)
: ctx(&inputCtx), oldValue(inputOldValue), newValue(inputNewValue) {
// If we are already not valid, just bail.
if (!isValid())
return;
// If we are not in ownership, we can always RAUW successfully so just bail
// and leave the object valid.
if (!oldValue->getFunction()->hasOwnership())
return;
// This utility currently only handles erasing SingleValueInstructions and
// terminator results.
assert(isa<SingleValueInstruction>(inputOldValue)
|| cast<SILPhiArgument>(inputOldValue)->isTerminatorResult());
// Precondition: If \p oldValue is a BorrowedValue that introduces a local
// borrow scope, then \p newValue must either be defined in the same block as
// \p oldValue, or it must dominate \p oldValue (rather than merely
// dominating its uses).
//
// Handling cases where the new value does not dominate the old borrow scope
// would require signficant complexity and such cases are currently impossible
// to test. Consideration would be required for handling a new value within an
// inner loop, while the old borrow scope is introduced outside that
// loop. Since it generally makes no sense to do this kind of replacement,
// we simply rule it out as an RAUW precondition.
//
// TODO: this could be converted to a bailout if we don't want the client code
// to explicitly check this case. But then we may want DominanceInfo to be
// available, which could cheaper in extreme cases because it caches results.
SWIFT_ASSERT_ONLY_DECL(auto borrowedVal = BorrowedValue(inputOldValue));
assert((!borrowedVal || !borrowedVal.isLocalScope()
|| checkDominates(inputNewValue->getParentBlock(),
inputOldValue->getParentBlock()))
&& "OSSA RAUW requires reachability and dominance");
// Clear the context before populating it anew.
ctx->clear();
// A value with no uses can be "replaced" regardless of its uses. Bypass all
// the use-checking logic, which assumes a non-empty use list.
if (oldValue->use_empty()) {
return;
}
// Otherwise, lets check if we can perform this RAUW operation. If we can't,
// set ctx to nullptr to invalidate the helper and return.
if (!canFixUpOwnershipForRAUW(oldValue, newValue, inputCtx)) {
invalidate();
return;
}
// If we have an object, at this point we are good to go so we can just
// return.
if (newValue->getType().isObject())
return;
// But if we have an address, we need to check if new value is from an
// interior pointer or not in a way that the pass understands. What we do is:
//
// 1. Early exit some cases that we know can never have interior pointers.
//
// 2. Compute the AccessPathWithBase of newValue. If we do not get back a
// valid such object, invalidate and then bail.
//
// 3. Then we check if the base address is the result of an interior pointer
// instruction. If we do not find one we bail.
//
// 4. Then grab the base value of the interior pointer operand. We only
// support cases where we have a single BorrowedValue as our base. This is
// a safe future proof assumption since one reborrows are on
// structs/tuple/destructures, a guaranteed value will always be associated
// with a single BorrowedValue, so this will never fail (and the code will
// probably be DCEed).
//
// 5. Then we compute an AccessPathWithBase for oldValue and then find its
// derived uses. If we fail, we bail.
//
// 6. At this point, we know that we can perform this RAUW. The only question
// is if we need to when we RAUW copy the interior pointer base value. We
// perform this check by making sure all of the old value's derived uses
// are within our BorrowedValue's scope. If so, we clear the extra state we
// were tracking (the interior pointer/oldValue's transitive uses), so we
// perform just a normal RAUW (without inserting the copy) when we RAUW.
//
// We can always RAUW an address with a pointer_to_address since if there
// were any interior pointer constraints on whatever address pointer came
// from, the address_to_pointer producing that value erases that
// information, so we can RAUW without worrying.
//
// NOTE: We also need to handle this here since a pointer_to_address is not a
// valid base value for an access path since it doesn't refer to any storage.
AddressOwnership addressOwnership(newValue);
if (!addressOwnership.hasLocalOwnershipLifetime())
return;
ctx->extraAddressFixupInfo.base = addressOwnership.base;
SILValue baseAddress = ctx->extraAddressFixupInfo.base.getBaseAddress();
// For now, just gather up uses
//
// FIXME: get rid of allAddressUsesFromOldValue. Shouldn't this already be
// included in guaranteedUsePoints?
auto &oldValueUses = ctx->extraAddressFixupInfo.allAddressUsesFromOldValue;
if (findTransitiveUsesForAddress(oldValue, &oldValueUses)
!= AddressUseKind::NonEscaping) {
invalidate();
return;
}
if (addressOwnership.areUsesWithinLifetime(oldValueUses, ctx->deBlocks)) {
// We do not need to copy the base value! Clear the extra info we have.
ctx->extraAddressFixupInfo.clear();
return;
}
// This cloner check must match the later cloner invocation in
// getReplacementAddress()
auto *baseInst = cast<SingleValueInstruction>(baseAddress);
auto checkBase = [&](SILValue srcAddr) {
return (srcAddr == baseInst) ? SILValue(baseInst) : SILValue();
};
if (!canCloneUseDefChain(newValue, checkBase)) {
invalidate();
return;
}
}
SILValue OwnershipRAUWHelper::prepareReplacement(SILValue rewrittenNewValue) {
assert(isValid() && "OwnershipRAUWHelper invalid?!");
if (rewrittenNewValue) {
// Everything about \n newValue that the constructor checks should also be
// true for rewrittenNewValue.
// FIXME: enable these...
// assert(rewrittenNewValue->getType() == newValue->getType());
// assert(rewrittenNewValue->getOwnershipKind()
// == newValue->getOwnershipKind());
// assert(rewrittenNewValue->getParentBlock() == newValue->getParentBlock());
assert(!newValue->getType().isAddress() ||
AddressOwnership(rewrittenNewValue) == AddressOwnership(newValue));
newValue = rewrittenNewValue;
}
assert(newValue && "prepareReplacement can only be called once");
SWIFT_DEFER { newValue = SILValue(); };
if (!oldValue->getFunction()->hasOwnership())
return newValue;
if (oldValue->getType().isAddress()) {
return getReplacementAddress();
}
OwnershipRAUWPrepare rauwPrepare{oldValue, *ctx};
return rauwPrepare.prepareReplacement(newValue);
}
SILBasicBlock::iterator
OwnershipRAUWHelper::perform(SILValue replacementValue) {
if (!replacementValue)
replacementValue = prepareReplacement();
assert(!newValue && "prepareReplacement() must be called");
// Make sure to always clear our context after we transform.
SWIFT_DEFER { ctx->clear(); };
if (auto *svi = dyn_cast<SingleValueInstruction>(oldValue))
return replaceAllUsesAndErase(svi, replacementValue, ctx->callbacks);
// The caller must rewrite the terminator after RAUW.
auto *term = cast<SILPhiArgument>(oldValue)->getTerminatorForResult();
auto nextII = term->getParent()->end();
return replaceAllUses(oldValue, replacementValue, nextII, ctx->callbacks);
}
//===----------------------------------------------------------------------===//
// Single Use Replacement
//===----------------------------------------------------------------------===//
namespace {
/// Given a use and a new value, lifetime extend new value as appropriate so we
/// can replace use->get() with newValue and preserve ownership invariants. We
/// assume that old value will be left alone and not deleted so we insert
/// compensating cleanups.
struct SingleUseReplacementUtility {
Operand *use;
SILValue newValue;
OwnershipFixupContext &ctx;
SILBasicBlock::iterator handleUnowned();
SILBasicBlock::iterator handleOwned();
SILBasicBlock::iterator handleGuaranteed();
SILBasicBlock::iterator perform();
OwnershipLifetimeExtender getLifetimeExtender() { return {ctx}; }
const InstModCallbacks &getCallbacks() const { return ctx.callbacks; }
};
} // anonymous namespace
SILBasicBlock::iterator SingleUseReplacementUtility::handleUnowned() {
auto &callbacks = ctx.callbacks;
switch (newValue->getOwnershipKind()) {
case OwnershipKind::None:
llvm_unreachable("Should have been handled elsewhere");
case OwnershipKind::Any:
llvm_unreachable("Invalid for values");
case OwnershipKind::Unowned:
// An unowned value can always be RAUWed with another unowned value.
return replaceSingleUse(use, newValue, callbacks);
case OwnershipKind::Guaranteed: {
// If we have an unowned value use that we want to replace with a guaranteed
// value, we need to ensure that the guaranteed value is live at that use
// point. If we know that is always true, just perform the replace.
//
// FIXME: Expand the cases here.
if (isa<SILFunctionArgument>(newValue))
return replaceSingleUse(use, newValue, callbacks);
// Otherwise, we need to lifetime extend newValue to the use. If the actual
// use is a terminator, we need to insert an unchecked_ownership_conversion
// since our value can not be live at the terminator itself.
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
if (ti->isFunctionExiting()) {
SILBuilderWithScope builder(ti);
auto *newInst = builder.createUncheckedOwnershipConversion(
ti->getLoc(), use->get(), OwnershipKind::Unowned);
callbacks.createdNewInst(newInst);
callbacks.setUseValue(use, newInst);
}
}
auto extender = getLifetimeExtender();
SILValue borrow = extender.borrowOverSingleUse(newValue, use);
assert(!use->isLifetimeEnding()
&& "Test single-use replacement of a scope-ending instruction");
return replaceSingleUse(use, borrow, callbacks);
}
case OwnershipKind::Owned: {
// If we have an unowned value use that we want to replace with an owned
// value use. we first check if the owned value is live over all use points
// of the old value. If so, just RAUW and continue.
//
// TODO: Implement this.
// Otherwise, insert a copy of the owned value and lifetime extend that over
// the use.
//
// NOTE: For terminator uses, we funnel the use through an
// unchecked_ownership_conversion to ensure that we can end the lifetime of
// our owned/guaranteed value before the terminator.
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
if (ti->isFunctionExiting()) {
SILBuilderWithScope builder(ti);
auto *newInst = builder.createUncheckedOwnershipConversion(
ti->getLoc(), use->get(), OwnershipKind::Unowned);
callbacks.createdNewInst(newInst);
callbacks.setUseValue(use, newInst);
}
}
auto extender = getLifetimeExtender();
SILValue copy = extender.createPlusZeroCopy(newValue, {use});
return replaceSingleUse(use, copy, callbacks);
}
}
llvm_unreachable("covered switch isn't covered?!");
}
SILBasicBlock::iterator SingleUseReplacementUtility::handleGuaranteed() {
// Ok, our use is guaranteed and our new value may not be guaranteed.
auto extender = getLifetimeExtender();
// If we don't have a lifetime ending use, just create the borrow.
SILValue copy = extender.borrowOverSingleUse(newValue, use);
// Then replace use->get() with this copy. We will insert compensating end
// scope instructions on use->get() if we need to.
return replaceSingleUse(use, copy, ctx.callbacks);
}
SILBasicBlock::iterator SingleUseReplacementUtility::handleOwned() {
// Ok, our old value is owned and our new value may not be owned. First
// lifetime extend newValue to use->getUser() inserting destroy_values along
// any paths that do not go through use->getUser().
auto extender = getLifetimeExtender();
if (use->isLifetimeEnding()) {
// If our use is a lifetime ending use, then create a plus one copy and
// RAUW.
SILValue copy = extender.createPlusOneCopy(newValue, use->getUser());
// Then replace use->get() with this copy. We will insert compensating end
// scope instructions on use->get() if we need to.
return replaceSingleUse(use, copy, ctx.callbacks);
}
// If we don't have a lifetime ending use, just create a +0 copy and set the
// use. All destroys will be placed for us.
SILValue copy =
extender.createPlusZeroCopy<ArrayRef<Operand *>>(newValue, {use});
// Then replace use->get() with this copy. We will insert compensating end
// scope instructions on use->get() if we need to.
return replaceSingleUse(use, copy, ctx.callbacks);
}
SILBasicBlock::iterator SingleUseReplacementUtility::perform() {
auto oldValue = use->get();
assert(oldValue->getFunction()->hasOwnership());
// If our new value is just none, we can pass anything to do it so just RAUW
// and return.
//
// NOTE: This handles RAUWing with undef.
if (newValue->getOwnershipKind() == OwnershipKind::None)
return replaceSingleUse(use, newValue, ctx.callbacks);
assert(SILValue(oldValue)->getOwnershipKind() != OwnershipKind::None);
switch (SILValue(oldValue)->getOwnershipKind()) {
case OwnershipKind::None:
// If our old value was none and our new value is not, we need to do
// something more complex that we do not support yet, so bail. We should
// have not called this function in such a case.
llvm_unreachable("Should have been handled elsewhere");
case OwnershipKind::Any:
llvm_unreachable("Invalid for values");
case OwnershipKind::Guaranteed:
return handleGuaranteed();
case OwnershipKind::Owned:
return handleOwned();
case OwnershipKind::Unowned:
return handleUnowned();
}
llvm_unreachable("Covered switch isn't covered?!");
}
//===----------------------------------------------------------------------===//
// OwnershipReplaceSingleUseHelper
//===----------------------------------------------------------------------===//
OwnershipReplaceSingleUseHelper::OwnershipReplaceSingleUseHelper(
OwnershipFixupContext &inputCtx, Operand *inputUse, SILValue inputNewValue)
: ctx(&inputCtx), use(inputUse), newValue(inputNewValue) {
// If we are already not valid, just bail.
if (!isValid())
return;
// If we do not have ownership, we are already done.
if (!inputUse->getUser()->getFunction()->hasOwnership())
return;
// If we have an address, bail. We don't support this.
if (newValue->getType().isAddress()) {
invalidate();
return;
}
// Otherwise, lets check if we can perform this RAUW operation. If we can't,
// set ctx to nullptr to invalidate the helper and return.
SmallVector<Operand *, 1> oldUses;
oldUses.push_back(use);
if (!OwnershipRAUWHelper::hasValidRAUWOwnership(use->get(), newValue,
oldUses)) {
invalidate();
return;
}
if (inputUse->getOperandOwnership() == OperandOwnership::Reborrow) {
// FIXME: Use GuaranteedPhiBorrowFixup to handle this case during perform().
invalidate();
return;
}
}
SILBasicBlock::iterator OwnershipReplaceSingleUseHelper::perform() {
assert(isValid() && "OwnershipReplaceSingleUseHelper invalid?!");
if (!use->getUser()->getFunction()->hasOwnership())
return replaceSingleUse(use, newValue, ctx->callbacks);
// Make sure to always clear our context after we transform.
SWIFT_DEFER { ctx->clear(); };
SingleUseReplacementUtility utility{use, newValue, *ctx};
return utility.perform();
}
//===----------------------------------------------------------------------===//
// createBorrowScopeForPhiOperands
//===----------------------------------------------------------------------===//
/// Given a phi that has been newly created or converted from terminator
/// results, check if any of the phi's operands are inner guaranteed values.
/// This is invalid OSSA because the phi is a reborrow. Like all
/// borrow-scope-ending instructions a phi must directly use the BorrowedValue
/// that introduces the scope.
///
/// Create nested borrow scopes for its operands.
///
/// Transitively follow its phi uses.
///
/// Create end_borrows at all points that cover the inner uses.
///
/// The client must check canCloneTerminator() first to make sure that the
/// search for transitive uses does not encounter a PointerEscape.
class GuaranteedPhiBorrowFixup {
// A phi in mustConvertPhis has already been determined to be part of this
// new nested borrow scope.
SmallSetVector<SILPhiArgument *, 8> mustConvertPhis;
// Phi operands that are already within the new nested borrow scope.
llvm::SmallDenseSet<PhiOperand, 8> nestedPhiOperands;
public:
/// Return true if an extended nested borrow scope was created.
bool createExtendedNestedBorrowScope(SILPhiArgument *newPhi);
protected:
bool phiOperandNeedsBorrow(Operand *operand) {
SILValue inVal = operand->get();
if (inVal->getOwnershipKind() != OwnershipKind::Guaranteed) {
assert(inVal->getOwnershipKind() == OwnershipKind::None);
return false;
}
// This operand needs a nested borrow if inVal is not a BorrowedValue.
return !bool(BorrowedValue(inVal));
}
void borrowPhiOperand(Operand *oper) {
// Begin the borrow just before the branch.
SILInstruction *borrowPoint = oper->getUser();
auto loc = RegularLocation::getAutoGeneratedLocation(borrowPoint->getLoc());
auto *borrow =
SILBuilderWithScope(borrowPoint).createBeginBorrow(loc, oper->get());
oper->set(borrow);
}
EndBorrowInst *createEndBorrow(SILValue guaranteedValue,
SILBasicBlock::iterator borrowPoint) {
auto loc = borrowPoint->getLoc();
return SILBuilderWithScope(borrowPoint)
.createEndBorrow(loc, guaranteedValue);
}
void insertEndBorrowsAndFindPhis(SILPhiArgument *phi);
};
void GuaranteedPhiBorrowFixup::insertEndBorrowsAndFindPhis(
SILPhiArgument *phi) {
// Scope ending instructions are only needed for nontrivial results.
if (phi->getOwnershipKind() != OwnershipKind::Guaranteed) {
assert(phi->getOwnershipKind() == OwnershipKind::None);
return;
}
SmallVector<Operand *, 16> usePoints;
bool result = findInnerTransitiveGuaranteedUses(phi, &usePoints);
assert(result && "should be checked by canCloneTerminator");
(void)result;
// Add usePoints to a set for phi membership checking.
//
// FIXME: consider integrating with ValueLifetimeBoundary instead.
SmallPtrSet<Operand *, 16> useSet(usePoints.begin(), usePoints.end());
auto phiUsers = llvm::map_range(usePoints, ValueBase::UseToUser());
ValueLifetimeAnalysis lifetimeAnalysis(phi, phiUsers);
ValueLifetimeBoundary boundary;
lifetimeAnalysis.computeLifetimeBoundary(boundary);
for (auto *boundaryEdge : boundary.boundaryEdges) {
createEndBorrow(phi, boundaryEdge->begin());
}
for (SILInstruction *lastUser : boundary.lastUsers) {
// If the last use is a branch, transitively process the phi.
if (isa<BranchInst>(lastUser)) {
for (Operand &oper : lastUser->getAllOperands()) {
if (!useSet.count(&oper))
continue;
PhiOperand phiOper(&oper);
nestedPhiOperands.insert(phiOper);
mustConvertPhis.insert(phiOper.getValue());
continue;
}
}
// If the last user is a terminator, add the successors as boundary edges.
if (isa<TermInst>(lastUser)) {
for (auto *succBB : lastUser->getParent()->getSuccessorBlocks()) {
// succBB cannot already be in boundaryEdges. It has a
// single predecessor with liveness ending at the terminator, which
// means it was not live into any successor blocks.
createEndBorrow(phi, succBB->begin());
}
continue;
}
// Otherwise, just plop down an end_borrow after the last use.
createEndBorrow(phi, std::next(lastUser->getIterator()));
}
}
// For each phi that transitively uses an inner guaranteed value, create nested
// borrow scopes so that it is a well-formed reborrow.
bool GuaranteedPhiBorrowFixup::
createExtendedNestedBorrowScope(SILPhiArgument *newPhi) {
// Determine if this new phi needs a nested borrow scope. If so, seed the
// Visit phi operands, returning false as soon as one needs a borrow.
if (!newPhi->visitIncomingPhiOperands(
[&](Operand *op) { return !phiOperandNeedsBorrow(op); })) {
mustConvertPhis.insert(newPhi);
}
if (mustConvertPhis.empty())
return false;
// mustConvertPhis grows in this loop.
for (unsigned mustConvertIdx = 0; mustConvertIdx < mustConvertPhis.size();
++mustConvertIdx) {
SILPhiArgument *phi = mustConvertPhis[mustConvertIdx];
insertEndBorrowsAndFindPhis(phi);
}
// To handle recursive phis, first discover all phis before attempting to
// borrow any phi operands.
for (SILPhiArgument *phi : mustConvertPhis) {
phi->visitIncomingPhiOperands([&](Operand *op) {
if (!nestedPhiOperands.count(op))
borrowPhiOperand(op);
return true;
});
}
return true;
}
// Note: \p newPhi itself might not have Guaranteed ownership. A phi that
// converts Guaranteed to None ownership still needs nested borrows.
//
// Note: This may be called on partially invalid OSSA form, where multiple
// newly created phis do not yet have a borrow scope. The implementation
// assumes that this API will eventually be called for all such new phis until
// OSSA is fully valid.
bool swift::createBorrowScopeForPhiOperands(SILPhiArgument *newPhi) {
if (newPhi->getOwnershipKind() != OwnershipKind::Guaranteed
&& newPhi->getOwnershipKind() != OwnershipKind::None) {
return false;
}
return GuaranteedPhiBorrowFixup().createExtendedNestedBorrowScope(newPhi);
}
bool swift::extendStoreBorrow(StoreBorrowInst *sbi,
SmallVectorImpl<Operand *> &newUses,
DeadEndBlocks *deadEndBlocks,
InstModCallbacks callbacks) {
ScopedAddressValue scopedAddress(sbi);
SmallVector<SILBasicBlock *, 4> discoveredBlocks;
SSAPrunedLiveness storeBorrowLiveness(&discoveredBlocks);
// FIXME: if OSSA lifetimes are complete, then we don't need transitive
// liveness here.
AddressUseKind useKind =
scopedAddress.computeTransitiveLiveness(storeBorrowLiveness);
// If all new uses are within store_borrow boundary, no need for extension.
if (storeBorrowLiveness.areUsesWithinBoundary(newUses, deadEndBlocks)) {
return true;
}
if (useKind != AddressUseKind::NonEscaping) {
return false;
}
// store_borrow extension is possible only when there are no other
// store_borrows to the same destination within the store_borrow's lifetime
// built from newUsers.
if (hasOtherStoreBorrowsInLifetime(sbi, &storeBorrowLiveness,
deadEndBlocks)) {
return false;
}
InstModCallbacks tempCallbacks = callbacks;
InstructionDeleter deleter(std::move(tempCallbacks));
GuaranteedOwnershipExtension borrowExtension(deleter, *deadEndBlocks,
sbi->getFunction());
auto status = borrowExtension.checkBorrowExtension(
BorrowedValue(sbi->getSrc()), newUses);
if (status == GuaranteedOwnershipExtension::Invalid) {
return false;
}
borrowExtension.transform(status);
SmallVector<Operand *, 4> endBorrowUses;
// Collect old scope-ending instructions.
scopedAddress.visitScopeEndingUses([&](Operand *op) {
endBorrowUses.push_back(op);
return true;
});
for (auto *use : newUses) {
// Update newUsers as non-lifetime ending.
storeBorrowLiveness.updateForUse(use->getUser(),
/* lifetimeEnding */ false);
}
// Add new scope-ending instructions.
scopedAddress.endScopeAtLivenessBoundary(&storeBorrowLiveness);
// Remove old scope-ending instructions.
for (auto *endBorrowUse : endBorrowUses) {
callbacks.deleteInst(endBorrowUse->getUser());
}
return true;
}