Files
swift-mirror/stdlib/public/core/MathFunctions.swift.gyb
Stephen Canon d2f695935f Add availability information to the new Math function protocols (#24187)
* Add availability information to the new Math function protocols

The protocols ElementaryFunctions, RealFunctions, and Real are new in Swift 5.1 and accordingly need to have availability attached to them for platforms that are ABI-stable. The actual implementation hooks (static functions) are unconditionally defined on scalar types and marked @_alwaysEmitIntoClient, so they are available even when targeting older library versions, but the protocols themselves, and anything defined in terms of them (the global functions and the SIMD extensions) is only available when targeting library versions that have the new protocols.

* Additionally provide concrete implementations of signGamma for each stdlib-builtin floating-point type.

* Remove Real[Functions] protocols pending re-review

Temporarily pull these back so we can make minor tweaks to the design and get a re-review on SE.
2019-04-29 17:39:33 -04:00

174 lines
5.2 KiB
Swift

//===--- MathFunctions.swift ----------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
%from SwiftMathFunctions import *
%from SwiftFloatingPointTypes import all_floating_point_types
/// A type that has elementary functions available.
///
/// An ["elementary function"][elfn] is a function built up from powers, roots,
/// exponentials, logarithms, trigonometric functions (sin, cos, tan) and
/// their inverses, and the hyperbolic functions (sinh, cosh, tanh) and their
/// inverses.
///
/// Conformance to this protocol means that all of these building blocks are
/// available as static functions on the type.
///
/// ```swift
/// let x: Float = 1
/// let y = Float.sin(x) // 0.84147096
/// ```
///
/// Additional operations, such as `atan2(y:x:)`, `hypot(_:_:)` and some
/// special functions, are provided on the Real protocol, which refines both
/// ElementaryFunctions and FloatingPoint.
///
/// [elfn]: http://en.wikipedia.org/wiki/Elementary_function
@available(macOS 9999, iOS 9999, tvOS 9999, watchOS 9999, *)
public protocol ElementaryFunctions {
%for func in ElementaryFunctions:
${func.comment}
static func ${func.decl("Self")}
%end
/// `exp(y log(x))` computed without loss of intermediate precision.
///
/// For real types, if `x` is negative the result is NaN, even if `y` has
/// an integral value. For complex types, there is a branch cut on the
/// negative real axis.
static func pow(_ x: Self, _ y: Self) -> Self
/// `x` raised to the `n`th power.
static func pow(_ x: Self, _ n: Int) -> Self
/// The `n`th root of `x`.
///
/// For real types, if `x` is negative and `n` is even, the result is NaN.
/// For complex types, there is a branch cut along the negative real axis.
static func root(_ x: Self, _ n: Int) -> Self
}
%for type in all_floating_point_types():
% if type.bits == 80:
#if (arch(i386) || arch(x86_64)) && !os(Windows)
% end
% Self = type.stdlib_name
extension ${Self}: ElementaryFunctions {
% for func in ElementaryFunctions + RealFunctions:
@_alwaysEmitIntoClient
public static func ${func.decl(Self)} {
return ${func.impl(type)}
}
% end
@_alwaysEmitIntoClient
public static func pow(_ x: ${Self}, _ y: ${Self}) -> ${Self} {
guard x >= 0 else { return .nan }
return ${Self}(Builtin.int_pow_FPIEEE${type.bits}(x._value, y._value))
}
@_alwaysEmitIntoClient
public static func pow(_ x: ${Self}, _ n: Int) -> ${Self} {
// TODO: this implementation isn't quite right for n so large that
// the conversion to `${Self}` rounds. We could also consider using
// a multiply-chain implementation for small `n`; this would be faster
// for static `n`, but less accurate on platforms with a good `pow`
// implementation.
return ${Self}(Builtin.int_pow_FPIEEE${type.bits}(x._value, ${Self}(n)._value))
}
@_alwaysEmitIntoClient
public static func root(_ x: ${Self}, _ n: Int) -> ${Self} {
guard x >= 0 || n % 2 != 0 else { return .nan }
// TODO: this implementation isn't quite right for n so large that
// the conversion to `${Self}` rounds.
return ${Self}(signOf: x, magnitudeOf: pow(x, 1/${Self}(n)))
}
@_alwaysEmitIntoClient
public static func atan2(y: ${Self}, x: ${Self}) -> ${Self} {
return _swift_stdlib_atan2${type.cFuncSuffix}(y, x)
}
#if !os(Windows)
@_alwaysEmitIntoClient
public static func logGamma(_ x: ${Self}) -> ${Self} {
return _swift_stdlib_lgamma${type.cFuncSuffix}(x)
}
@_alwaysEmitIntoClient
public static func signGamma(_ x: ${Self}) -> FloatingPointSign {
if x >= 0 { return .plus }
let trunc = x.rounded(.towardZero)
if x == trunc { return .plus }
let halfTrunc = trunc/2
if halfTrunc == halfTrunc.rounded(.towardZero) { return .minus }
return .plus
}
#endif
}
% if type.bits == 80:
#endif
% end
%end
@available(macOS 9999, iOS 9999, tvOS 9999, watchOS 9999, *)
extension SIMD where Scalar: ElementaryFunctions {
% for func in ElementaryFunctions:
@_alwaysEmitIntoClient
public static func ${func.decl("Self")} {
var r = Self()
for i in r.indices {
r[i] = Scalar.${func.swiftName}(${func.params(suffix="[i]")})
}
return r
}
% end
@_alwaysEmitIntoClient
public static func pow(_ x: Self, _ y: Self) -> Self {
var r = Self()
for i in r.indices {
r[i] = Scalar.pow(x[i], y[i])
}
return r
}
@_alwaysEmitIntoClient
public static func pow(_ x: Self, _ n: Int) -> Self {
var r = Self()
for i in r.indices {
r[i] = Scalar.pow(x[i], n)
}
return r
}
@_alwaysEmitIntoClient
public static func root(_ x: Self, _ n: Int) -> Self {
var r = Self()
for i in r.indices {
r[i] = Scalar.root(x[i], n)
}
return r
}
}
%for n in [2,3,4,8,16,32,64]:
@available(macOS 9999, iOS 9999, tvOS 9999, watchOS 9999, *)
extension SIMD${n}: ElementaryFunctions where Scalar: ElementaryFunctions { }
%end