mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Instead of caching alias results globally for the module, make AliasAnalysis a FunctionAnalysisBase which caches the alias results per function.
Why?
* So far the result caches could only grow. They were reset when they reached a certain size. This was not ideal. Now, they are invalidated whenever the function changes.
* It was not possible to actually invalidate an alias analysis result. This is required, for example in TempRValueOpt and TempLValueOpt (so far it was done manually with invalidateInstruction).
* Type based alias analysis results were also cached for the whole module, while it is actually dependent on the function, because it depends on the function's resilience expansion. This was a potential bug.
I also added a new PassManager API to directly get a function-base analysis:
getAnalysis(SILFunction *f)
The second change of this commit is the removal of the instruction-index indirection for the cache keys. Now the cache keys directly work on instruction pointers instead of instruction indices. This reduces the number of hash table lookups for a cache lookup from 3 to 1.
This indirection was needed to avoid dangling instruction pointers in the cache keys. But this is not needed anymore, because of the new delayed instruction deletion mechanism.
811 lines
30 KiB
C++
811 lines
30 KiB
C++
//===--- AliasAnalysis.cpp - SIL Alias Analysis ---------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-aa"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILValue.h"
|
|
#include "swift/SILOptimizer/Analysis/EscapeAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "swift/SILOptimizer/PassManager/PassManager.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace swift;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AA Debugging
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef NDEBUG
|
|
|
|
namespace {
|
|
|
|
enum class AAKind : unsigned {
|
|
None=0,
|
|
BasicAA=1,
|
|
TypedAccessTBAA=2,
|
|
All=3,
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static llvm::cl::opt<AAKind>
|
|
DebugAAKinds("aa-kind", llvm::cl::desc("Alias Analysis Kinds:"),
|
|
llvm::cl::init(AAKind::All),
|
|
llvm::cl::values(clEnumValN(AAKind::None,
|
|
"none",
|
|
"Do not perform any AA"),
|
|
clEnumValN(AAKind::BasicAA,
|
|
"basic-aa",
|
|
"basic-aa"),
|
|
clEnumValN(AAKind::TypedAccessTBAA,
|
|
"typed-access-tb-aa",
|
|
"typed-access-tb-aa"),
|
|
clEnumValN(AAKind::All,
|
|
"all",
|
|
"all")));
|
|
|
|
static inline bool shouldRunAA() {
|
|
return unsigned(AAKind(DebugAAKinds));
|
|
}
|
|
|
|
static inline bool shouldRunTypedAccessTBAA() {
|
|
return unsigned(AAKind(DebugAAKinds)) & unsigned(AAKind::TypedAccessTBAA);
|
|
}
|
|
|
|
static inline bool shouldRunBasicAA() {
|
|
return unsigned(AAKind(DebugAAKinds)) & unsigned(AAKind::BasicAA);
|
|
}
|
|
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
using AliasResult = AliasAnalysis::AliasResult;
|
|
|
|
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS, AliasResult R) {
|
|
switch (R) {
|
|
case AliasResult::NoAlias: return OS << "NoAlias";
|
|
case AliasResult::MayAlias: return OS << "MayAlias";
|
|
case AliasResult::PartialAlias: return OS << "PartialAlias";
|
|
case AliasResult::MustAlias: return OS << "MustAlias";
|
|
}
|
|
|
|
llvm_unreachable("Unhandled AliasResult in switch.");
|
|
}
|
|
|
|
// Return the address of the directly accessed memory. If either the address is
|
|
// unknown, or any other memory is accessed via indirection, return an invalid
|
|
// SILValue.
|
|
SILValue getDirectlyAccessedMemory(SILInstruction *User) {
|
|
if (auto *LI = dyn_cast<LoadInst>(User)) {
|
|
return LI->getOperand();
|
|
}
|
|
|
|
if (auto *SI = dyn_cast<StoreInst>(User)) {
|
|
return SI->getDest();
|
|
}
|
|
|
|
return SILValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unequal Base Object AA
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return true if the given SILArgument is an argument to the first BB of a
|
|
/// function.
|
|
static bool isFunctionArgument(SILValue V) {
|
|
return isa<SILFunctionArgument>(V);
|
|
}
|
|
|
|
/// Return true if V is an object that at compile time can be uniquely
|
|
/// identified.
|
|
static bool isIdentifiableObject(SILValue V) {
|
|
if (isa<AllocationInst>(V) || isa<LiteralInst>(V))
|
|
return true;
|
|
if (isExclusiveArgument(V))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Return true if V1 and V2 are distinct objects that can be uniquely
|
|
/// identified at compile time.
|
|
static bool areDistinctIdentifiableObjects(SILValue V1, SILValue V2) {
|
|
// Do both values refer to the same global variable?
|
|
if (auto *GA1 = dyn_cast<GlobalAddrInst>(V1)) {
|
|
if (auto *GA2 = dyn_cast<GlobalAddrInst>(V2)) {
|
|
return GA1->getReferencedGlobal() != GA2->getReferencedGlobal();
|
|
}
|
|
}
|
|
if (isIdentifiableObject(V1) && isIdentifiableObject(V2))
|
|
return V1 != V2;
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if both values are equal or yield the address of the same
|
|
/// global variable.
|
|
static bool isSameValueOrGlobal(SILValue V1, SILValue V2) {
|
|
if (V1 == V2)
|
|
return true;
|
|
// Do both values refer to the same global variable?
|
|
if (auto *GA1 = dyn_cast<GlobalAddrInst>(V1)) {
|
|
if (auto *GA2 = dyn_cast<GlobalAddrInst>(V2)) {
|
|
return GA1->getReferencedGlobal() == GA2->getReferencedGlobal();
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Is this a literal which we know cannot refer to a global object?
|
|
///
|
|
/// FIXME: function_ref?
|
|
static bool isLocalLiteral(SILValue V) {
|
|
switch (V->getKind()) {
|
|
case ValueKind::IntegerLiteralInst:
|
|
case ValueKind::FloatLiteralInst:
|
|
case ValueKind::StringLiteralInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Is this a value that can be unambiguously identified as being defined at the
|
|
/// function level.
|
|
static bool isIdentifiedFunctionLocal(SILValue V) {
|
|
return isa<AllocationInst>(*V) || isExclusiveArgument(V) || isLocalLiteral(V);
|
|
}
|
|
|
|
/// Returns true if we can prove that the two input SILValues which do not equal
|
|
/// cannot alias.
|
|
static bool aliasUnequalObjects(SILValue O1, SILValue O2) {
|
|
assert(O1 != O2 && "This function should only be called on unequal values.");
|
|
|
|
// If O1 and O2 do not equal and they are both values that can be statically
|
|
// and uniquely identified, they cannot alias.
|
|
if (areDistinctIdentifiableObjects(O1, O2)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found two unequal identified "
|
|
"objects.\n");
|
|
return true;
|
|
}
|
|
|
|
// Function arguments can't alias with things that are known to be
|
|
// unambiguously identified at the function level.
|
|
//
|
|
// Note that both function arguments must be identified. For example, an @in
|
|
// argument may be an interior pointer into a box that is passed separately as
|
|
// @owned. We must consider uses on the @in argument as potential uses of the
|
|
// @owned object.
|
|
if ((isFunctionArgument(O1) && isIdentifiedFunctionLocal(O2)) ||
|
|
(isFunctionArgument(O2) && isIdentifiedFunctionLocal(O1))) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found unequal function arg and "
|
|
"identified function local!\n");
|
|
return true;
|
|
}
|
|
|
|
// We failed to prove that the two objects are different.
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Projection Address AA
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Uses a bunch of ad-hoc rules to disambiguate a GEP instruction against
|
|
/// another pointer. We know that V1 is a GEP, but we don't know anything about
|
|
/// V2. O1, O2 are getUnderlyingObject of V1, V2 respectively.
|
|
AliasResult AliasAnalysis::aliasAddressProjection(SILValue V1, SILValue V2,
|
|
SILValue O1, SILValue O2) {
|
|
|
|
// If V2 is also a gep instruction with a must-alias or not-aliasing base
|
|
// pointer, figure out if the indices of the GEPs tell us anything about the
|
|
// derived pointers.
|
|
if (!Projection::isAddressProjection(V2)) {
|
|
// Ok, V2 is not an address projection. See if V2 after stripping casts
|
|
// aliases O1. If so, then we know that V2 must partially alias V1 via a
|
|
// must alias relation on O1. This ensures that given an alloc_stack and a
|
|
// gep from that alloc_stack, we say that they partially alias.
|
|
if (isSameValueOrGlobal(O1, stripCasts(V2)))
|
|
return AliasResult::PartialAlias;
|
|
|
|
return AliasResult::MayAlias;
|
|
}
|
|
|
|
assert(!Projection::isAddressProjection(O1) &&
|
|
"underlying object may not be a projection");
|
|
assert(!Projection::isAddressProjection(O2) &&
|
|
"underlying object may not be a projection");
|
|
|
|
// Do the base pointers alias?
|
|
AliasResult BaseAlias = aliasInner(O1, O2);
|
|
|
|
// If the underlying objects are not aliased, the projected values are also
|
|
// not aliased.
|
|
if (BaseAlias == AliasResult::NoAlias)
|
|
return AliasResult::NoAlias;
|
|
|
|
// Let's do alias checking based on projections.
|
|
auto V1Path = ProjectionPath::getProjectionPath(O1, V1);
|
|
auto V2Path = ProjectionPath::getProjectionPath(O2, V2);
|
|
|
|
// getUnderlyingPath and findAddressProjectionPathBetweenValues disagree on
|
|
// what the base pointer of the two values are. Be conservative and return
|
|
// MayAlias.
|
|
//
|
|
// FIXME: The only way this should happen realistically is if there are
|
|
// casts in between two projection instructions. getUnderlyingObject will
|
|
// ignore that, while findAddressProjectionPathBetweenValues wont. The two
|
|
// solutions are to make address projections variadic (something on the wee
|
|
// horizon) or enable Projection to represent a cast as a special sort of
|
|
// projection.
|
|
if (!V1Path || !V2Path)
|
|
return AliasResult::MayAlias;
|
|
|
|
auto R = V1Path->computeSubSeqRelation(*V2Path);
|
|
|
|
// If all of the projections are equal (and they have the same base pointer),
|
|
// the two GEPs must be the same.
|
|
if (BaseAlias == AliasResult::MustAlias &&
|
|
R == SubSeqRelation_t::Equal)
|
|
return AliasResult::MustAlias;
|
|
|
|
// The two GEPs do not alias if they are accessing different fields, even if
|
|
// we don't know the base pointers. Different fields should not overlap.
|
|
//
|
|
// TODO: Replace this with a check on the computed subseq relation. See the
|
|
// TODO in computeSubSeqRelation.
|
|
if (V1Path->hasNonEmptySymmetricDifference(V2Path.getValue()))
|
|
return AliasResult::NoAlias;
|
|
|
|
// If one of the GEPs is a super path of the other then they partially
|
|
// alias.
|
|
if (BaseAlias == AliasResult::MustAlias &&
|
|
isStrictSubSeqRelation(R))
|
|
return AliasResult::PartialAlias;
|
|
|
|
// We failed to prove anything. Be conservative and return MayAlias.
|
|
return AliasResult::MayAlias;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TBAA
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Is this an instruction that can act as a type "oracle" allowing typed access
|
|
/// TBAA to know what the real types associated with the SILInstruction are.
|
|
static bool isTypedAccessOracle(SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
case SILInstructionKind::RefElementAddrInst:
|
|
case SILInstructionKind::RefTailAddrInst:
|
|
case SILInstructionKind::StructElementAddrInst:
|
|
case SILInstructionKind::TupleElementAddrInst:
|
|
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
|
|
case SILInstructionKind::LoadInst:
|
|
case SILInstructionKind::StoreInst:
|
|
case SILInstructionKind::AllocStackInst:
|
|
case SILInstructionKind::AllocBoxInst:
|
|
case SILInstructionKind::ProjectBoxInst:
|
|
case SILInstructionKind::DeallocStackInst:
|
|
case SILInstructionKind::DeallocBoxInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Return true if the given value is an instruction or block argument that is
|
|
/// known to produce a nonaliasing address with respect to TBAA rules (i.e. the
|
|
/// pointer is not type punned). The only way to produce an aliasing typed
|
|
/// address is with pointer_to_address (via UnsafePointer) or
|
|
/// unchecked_addr_cast (via Builtin.reinterpretCast). Consequently, if the
|
|
/// given value is directly derived from a memory location, it cannot
|
|
/// alias. Call arguments also cannot alias because they must follow \@in, @out,
|
|
/// @inout, or \@in_guaranteed conventions.
|
|
static bool isAccessedAddressTBAASafe(SILValue V) {
|
|
if (!V->getType().isAddress())
|
|
return false;
|
|
|
|
SILValue accessedAddress = getTypedAccessAddress(V);
|
|
if (isa<SILFunctionArgument>(accessedAddress))
|
|
return true;
|
|
|
|
if (auto *PtrToAddr = dyn_cast<PointerToAddressInst>(accessedAddress))
|
|
return PtrToAddr->isStrict();
|
|
|
|
switch (accessedAddress->getKind()) {
|
|
default:
|
|
return false;
|
|
case ValueKind::AllocStackInst:
|
|
case ValueKind::ProjectBoxInst:
|
|
case ValueKind::RefElementAddrInst:
|
|
case ValueKind::RefTailAddrInst:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Look at the origin/user ValueBase of V to see if any of them are
|
|
/// TypedAccessOracle which enable one to ascertain via undefined behavior the
|
|
/// "true" type of the instruction.
|
|
static SILType findTypedAccessType(SILValue V) {
|
|
assert(V->getType().isAddress());
|
|
|
|
// First look at the origin of V and see if we have any instruction that is a
|
|
// typed oracle.
|
|
// TODO: MultiValueInstruction
|
|
if (auto *I = dyn_cast<SingleValueInstruction>(V))
|
|
if (isTypedAccessOracle(I))
|
|
return V->getType();
|
|
|
|
// Then look at any uses of V that potentially could act as a typed access
|
|
// oracle.
|
|
for (auto Use : V->getUses())
|
|
if (isTypedAccessOracle(Use->getUser()))
|
|
return V->getType();
|
|
|
|
// Otherwise return an empty SILType
|
|
return SILType();
|
|
}
|
|
|
|
SILType swift::computeTBAAType(SILValue V) {
|
|
if (isAccessedAddressTBAASafe(V))
|
|
return findTypedAccessType(V);
|
|
|
|
// FIXME: add ref_element_addr check here. TBAA says that objects cannot be
|
|
// type punned.
|
|
|
|
return SILType();
|
|
}
|
|
|
|
static bool typedAccessTBAABuiltinTypesMayAlias(SILType LTy, SILType RTy) {
|
|
assert(LTy != RTy && "LTy should have already been shown to not equal RTy to "
|
|
"call this function.");
|
|
|
|
// If either of our types are raw pointers, they may alias any builtin.
|
|
if (LTy.is<BuiltinRawPointerType>() || RTy.is<BuiltinRawPointerType>())
|
|
return true;
|
|
|
|
// At this point, we have 3 possibilities:
|
|
//
|
|
// 1. (Pointer, Scalar): A pointer to a pointer can never alias a scalar.
|
|
//
|
|
// 2. (Pointer, Pointer): If we have two pointers to pointers, since we know
|
|
// that the two values do not equal due to previous AA calculations, one must
|
|
// be a native object and the other is an unknown object type (i.e. an objc
|
|
// object) which cannot alias.
|
|
//
|
|
// 3. (Scalar, Scalar): If we have two scalar pointers, since we know that the
|
|
// types are already not equal, we know that they cannot alias. For those
|
|
// unfamiliar even though BuiltinIntegerType/BuiltinFloatType are single
|
|
// classes, the AST represents each integer/float of different bit widths as
|
|
// different types, so equality of SILTypes allows us to know that they have
|
|
// different bit widths.
|
|
//
|
|
// Thus we can just return false since in none of the aforementioned cases we
|
|
// cannot alias, so return false.
|
|
return false;
|
|
}
|
|
|
|
/// return True if the types \p LTy and \p RTy may alias.
|
|
///
|
|
/// Currently this only implements typed access based TBAA. See the TBAA section
|
|
/// in the SIL reference manual.
|
|
static bool typedAccessTBAAMayAlias(SILType LTy, SILType RTy,
|
|
const SILFunction &F) {
|
|
#ifndef NDEBUG
|
|
if (!shouldRunTypedAccessTBAA())
|
|
return true;
|
|
#endif
|
|
|
|
// If the two types are the same they may alias.
|
|
if (LTy == RTy)
|
|
return true;
|
|
|
|
// Typed access based TBAA only occurs on pointers. If we reach this point and
|
|
// do not have a pointer, be conservative and return that the two types may
|
|
// alias.
|
|
if (!LTy.isAddress() || !RTy.isAddress())
|
|
return true;
|
|
|
|
// If the types have unbound generic arguments then we don't know
|
|
// the possible range of the type. A type such as $Array<Int> may
|
|
// alias $Array<T>. Right now we are conservative and we assume
|
|
// that $UnsafeMutablePointer<T> and $Int may alias.
|
|
if (LTy.hasArchetype() || RTy.hasArchetype())
|
|
return true;
|
|
|
|
// If either type is a protocol type, we don't know the underlying type so
|
|
// return may alias.
|
|
//
|
|
// FIXME: We could be significantly smarter here by using the protocol
|
|
// hierarchy.
|
|
if (LTy.isAnyExistentialType() || RTy.isAnyExistentialType())
|
|
return true;
|
|
|
|
// If either type is an address only type, bail so we are conservative.
|
|
if (LTy.isAddressOnly(F) || RTy.isAddressOnly(F))
|
|
return true;
|
|
|
|
// If both types are builtin types, handle them separately.
|
|
if (LTy.is<BuiltinType>() && RTy.is<BuiltinType>())
|
|
return typedAccessTBAABuiltinTypesMayAlias(LTy, RTy);
|
|
|
|
// Otherwise, we know that at least one of our types is not a builtin
|
|
// type. If we have a builtin type, canonicalize it on the right.
|
|
if (LTy.is<BuiltinType>())
|
|
std::swap(LTy, RTy);
|
|
|
|
// If RTy is a builtin raw pointer type, it can alias anything.
|
|
if (RTy.is<BuiltinRawPointerType>())
|
|
return true;
|
|
|
|
ClassDecl *LTyClass = LTy.getClassOrBoundGenericClass();
|
|
|
|
// The Builtin reference types can alias any class instance.
|
|
if (LTyClass) {
|
|
if (RTy.is<BuiltinNativeObjectType>() ||
|
|
RTy.is<BuiltinBridgeObjectType>()) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
auto &Mod = F.getModule();
|
|
|
|
// If one type is an aggregate and it contains the other type then the record
|
|
// reference may alias the aggregate reference.
|
|
if (LTy.aggregateContainsRecord(RTy, Mod, F.getTypeExpansionContext()) ||
|
|
RTy.aggregateContainsRecord(LTy, Mod, F.getTypeExpansionContext()))
|
|
return true;
|
|
|
|
// FIXME: All the code following could be made significantly more aggressive
|
|
// by saying that aggregates of the same type that do not contain each other
|
|
// cannot alias.
|
|
|
|
// Tuples do not alias non-tuples.
|
|
bool LTyTT = LTy.is<TupleType>();
|
|
bool RTyTT = RTy.is<TupleType>();
|
|
if ((LTyTT && !RTyTT) || (!LTyTT && RTyTT))
|
|
return false;
|
|
|
|
// Structs do not alias non-structs.
|
|
StructDecl *LTyStruct = LTy.getStructOrBoundGenericStruct();
|
|
StructDecl *RTyStruct = RTy.getStructOrBoundGenericStruct();
|
|
if ((LTyStruct && !RTyStruct) || (!LTyStruct && RTyStruct))
|
|
return false;
|
|
|
|
// Enums do not alias non-enums.
|
|
EnumDecl *LTyEnum = LTy.getEnumOrBoundGenericEnum();
|
|
EnumDecl *RTyEnum = RTy.getEnumOrBoundGenericEnum();
|
|
if ((LTyEnum && !RTyEnum) || (!LTyEnum && RTyEnum))
|
|
return false;
|
|
|
|
// Classes do not alias non-classes.
|
|
ClassDecl *RTyClass = RTy.getClassOrBoundGenericClass();
|
|
if ((LTyClass && !RTyClass) || (!LTyClass && RTyClass))
|
|
return false;
|
|
|
|
// Classes with separate class hierarchies do not alias.
|
|
if (!LTy.isBindableToSuperclassOf(RTy) && !RTy.isBindableToSuperclassOf(LTy))
|
|
return false;
|
|
|
|
// Otherwise be conservative and return that the two types may alias.
|
|
return true;
|
|
}
|
|
|
|
bool AliasAnalysis::typesMayAlias(SILType T1, SILType T2,
|
|
const SILFunction &F) {
|
|
// Both types need to be valid.
|
|
if (!T2 || !T1)
|
|
return true;
|
|
|
|
// Check if we've already computed the TBAA relation.
|
|
auto Key = std::make_pair(T1, T2);
|
|
auto Res = TypesMayAliasCache.find(Key);
|
|
if (Res != TypesMayAliasCache.end()) {
|
|
return Res->second;
|
|
}
|
|
|
|
bool MA = typedAccessTBAAMayAlias(T1, T2, F);
|
|
TypesMayAliasCache[Key] = MA;
|
|
return MA;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// The main AA entry point. Performs various analyses on V1, V2 in an attempt
|
|
/// to disambiguate the two values.
|
|
AliasResult AliasAnalysis::alias(SILValue V1, SILValue V2,
|
|
SILType TBAAType1, SILType TBAAType2) {
|
|
AliasCacheKey Key = {V1, V2, TBAAType1.getOpaqueValue(),
|
|
TBAAType2.getOpaqueValue()};
|
|
|
|
// Check if we've already computed this result.
|
|
auto It = AliasCache.find(Key);
|
|
if (It != AliasCache.end()) {
|
|
return It->second;
|
|
}
|
|
|
|
// Calculate the aliasing result and store it in the cache.
|
|
auto Result = aliasInner(V1, V2, TBAAType1, TBAAType2);
|
|
AliasCache[Key] = Result;
|
|
return Result;
|
|
}
|
|
|
|
/// Get the underlying object, looking through init_enum_data_addr and
|
|
/// init_existential_addr.
|
|
static SILValue stripInitEnumAndExistentialAddr(SILValue v) {
|
|
while (isa<InitEnumDataAddrInst>(v) || isa<InitExistentialAddrInst>(v)) {
|
|
v = getUnderlyingObject(cast<SingleValueInstruction>(v)->getOperand(0));
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/// The main AA entry point. Performs various analyses on V1, V2 in an attempt
|
|
/// to disambiguate the two values.
|
|
AliasResult AliasAnalysis::aliasInner(SILValue V1, SILValue V2,
|
|
SILType TBAAType1,
|
|
SILType TBAAType2) {
|
|
#ifndef NDEBUG
|
|
// If alias analysis is disabled, always return may alias.
|
|
if (!shouldRunAA())
|
|
return AliasResult::MayAlias;
|
|
#endif
|
|
|
|
// If the two values equal, quickly return must alias.
|
|
if (isSameValueOrGlobal(V1, V2))
|
|
return AliasResult::MustAlias;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "ALIAS ANALYSIS:\n V1: " << *V1
|
|
<< " V2: " << *V2);
|
|
|
|
// If this is SILUndef, return may alias.
|
|
if (!V1->getFunction())
|
|
return AliasResult::MayAlias;
|
|
|
|
// Pass in both the TBAA types so we can perform typed access TBAA and the
|
|
// actual types of V1, V2 so we can perform class based TBAA.
|
|
if (!typesMayAlias(TBAAType1, TBAAType2, *V1->getFunction()))
|
|
return AliasResult::NoAlias;
|
|
|
|
#ifndef NDEBUG
|
|
if (!shouldRunBasicAA())
|
|
return AliasResult::MayAlias;
|
|
#endif
|
|
|
|
// Strip off any casts on V1, V2.
|
|
V1 = stripCasts(V1);
|
|
V2 = stripCasts(V2);
|
|
LLVM_DEBUG(llvm::dbgs() << " After Cast Stripping V1:" << *V1);
|
|
LLVM_DEBUG(llvm::dbgs() << " After Cast Stripping V2:" << *V2);
|
|
|
|
// Ok, we need to actually compute an Alias Analysis result for V1, V2. Begin
|
|
// by finding the "base" of V1, V2 by stripping off all casts and GEPs.
|
|
SILValue O1 = getUnderlyingObject(V1);
|
|
SILValue O2 = getUnderlyingObject(V2);
|
|
LLVM_DEBUG(llvm::dbgs() << " Underlying V1:" << *O1);
|
|
LLVM_DEBUG(llvm::dbgs() << " Underlying V2:" << *O2);
|
|
|
|
// If the underlying objects are not equal, see if we can prove that they
|
|
// cannot be the same object. If we can, return No Alias.
|
|
// For this we even look through init_enum_data_addr and init_existential_addr.
|
|
SILValue StrippedO1 = stripInitEnumAndExistentialAddr(O1);
|
|
SILValue StrippedO2 = stripInitEnumAndExistentialAddr(O2);
|
|
if (StrippedO1 != StrippedO2 && aliasUnequalObjects(StrippedO1, StrippedO2))
|
|
return AliasResult::NoAlias;
|
|
|
|
// Ok, either O1, O2 are the same or we could not prove anything based off of
|
|
// their inequality.
|
|
// Next: ask escape analysis. This catches cases where we compare e.g. a
|
|
// non-escaping pointer with another (maybe escaping) pointer. Escape analysis
|
|
// uses the connection graph to check if the pointers may point to the same
|
|
// content.
|
|
//
|
|
// canPointToSameMemory must take the original pointers used for memory
|
|
// access, not the underlying object, because objects projections can be
|
|
// modeled by escape analysis as different content, and canPointToSameMemory
|
|
// assumes that only the pointer itself may be accessed here, not any other
|
|
// address that can be derived from this pointer.
|
|
if (!EA->canPointToSameMemory(V1, V2)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found not-aliased objects based on "
|
|
"escape analysis\n");
|
|
return AliasResult::NoAlias;
|
|
}
|
|
|
|
// Now we climb up use-def chains and attempt to do tricks based off of GEPs.
|
|
|
|
// First if one instruction is a gep and the other is not, canonicalize our
|
|
// inputs so that V1 always is the instruction containing the GEP.
|
|
if (!Projection::isAddressProjection(V1) &&
|
|
Projection::isAddressProjection(V2)) {
|
|
std::swap(V1, V2);
|
|
std::swap(O1, O2);
|
|
}
|
|
|
|
// If V1 is an address projection, attempt to use information from the
|
|
// aggregate type tree to disambiguate it from V2.
|
|
if (Projection::isAddressProjection(V1)) {
|
|
AliasResult Result = aliasAddressProjection(V1, V2, O1, O2);
|
|
if (Result != AliasResult::MayAlias)
|
|
return Result;
|
|
}
|
|
|
|
// We could not prove anything. Be conservative and return that V1, V2 may
|
|
// alias.
|
|
return AliasResult::MayAlias;
|
|
}
|
|
|
|
bool AliasAnalysis::canApplyDecrementRefCount(FullApplySite FAS, SILValue Ptr) {
|
|
// If the connection graph is invalid due to a very large function, we also
|
|
// skip all other tests, which might take significant time for a very large
|
|
// function.
|
|
// This is a workaround for some quadratic complexity in ARCSequenceOpt.
|
|
// TODO: remove this check once ARCSequenceOpt is retired or the quadratic
|
|
// behavior is fixed.
|
|
auto *conGraph = EA->getConnectionGraph(FAS.getFunction());
|
|
if (!conGraph->isValid())
|
|
return true;
|
|
|
|
// Treat applications of no-return functions as decrementing ref counts. This
|
|
// causes the apply to become a sink barrier for ref count increments.
|
|
if (FAS.isCalleeNoReturn())
|
|
return true;
|
|
|
|
/// If the pointer cannot escape to the function we are done.
|
|
if (!EA->canEscapeTo(Ptr, FAS))
|
|
return false;
|
|
|
|
FunctionSideEffects ApplyEffects;
|
|
SEA->getCalleeEffects(ApplyEffects, FAS);
|
|
|
|
auto &GlobalEffects = ApplyEffects.getGlobalEffects();
|
|
if (ApplyEffects.mayReadRC() || GlobalEffects.mayRelease())
|
|
return true;
|
|
|
|
/// The function has no unidentified releases, so let's look at the arguments
|
|
// in detail.
|
|
for (unsigned Idx = 0, End = FAS.getNumArguments(); Idx < End; ++Idx) {
|
|
auto &ArgEffect = ApplyEffects.getParameterEffects()[Idx];
|
|
if (ArgEffect.mayRelease()) {
|
|
// The function may release this argument, so check if the pointer can
|
|
// escape to it.
|
|
auto arg = FAS.getArgument(Idx);
|
|
if (arg->getType().isAddress()) {
|
|
// Handle indirect argument as if they are a release to any references
|
|
// pointed to by the argument's address.
|
|
if (EA->mayReleaseAddressContent(arg, Ptr))
|
|
return true;
|
|
} else {
|
|
// Handle direct arguments as if they are a direct release of the
|
|
// reference (just like a destroy_value).
|
|
if (EA->mayReleaseReferenceContent(arg, Ptr))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AliasAnalysis::canBuiltinDecrementRefCount(BuiltinInst *BI, SILValue Ptr) {
|
|
for (SILValue Arg : BI->getArguments()) {
|
|
|
|
// Exclude some types of arguments where Ptr can never escape to.
|
|
if (isa<MetatypeInst>(Arg))
|
|
continue;
|
|
if (Arg->getType().is<BuiltinIntegerType>())
|
|
continue;
|
|
|
|
// A builtin can only release an object if it can escape to one of the
|
|
// builtin's arguments.
|
|
if (Arg->getType().isAddress()) {
|
|
// Handle indirect argument as if they are a release to any references
|
|
// pointed to by the argument's address.
|
|
if (EA->mayReleaseAddressContent(Arg, Ptr))
|
|
return true;
|
|
} else {
|
|
// Handle direct arguments as if they are a direct release of the
|
|
// reference (just like a destroy_value).
|
|
if (EA->mayReleaseReferenceContent(Arg, Ptr))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If the deinit for releasedReference can release any values used by User, then
|
|
// this is an interference. (The retains that originally forced liveness of
|
|
// those values may have already been eliminated). Note that we only care about
|
|
// avoiding a dangling pointer. The memory side affects of Release are
|
|
// unordered.
|
|
//
|
|
// \p releasedReference must be a value that directly contains the references
|
|
// being released. It cannot be an address or other kind of pointer that
|
|
// indirectly releases a reference. Otherwise, the escape analysis query is
|
|
// invalid.
|
|
bool AliasAnalysis::mayValueReleaseInterfereWithInstruction(
|
|
SILInstruction *User, SILValue releasedReference) {
|
|
assert(!releasedReference->getType().isAddress()
|
|
&& "an address is never a reference");
|
|
|
|
// If this instruction can not read or write any memory. Its OK.
|
|
if (!User->mayReadOrWriteMemory())
|
|
return false;
|
|
|
|
// Get a pointer to the memory directly accessed by 'Users' (either via an
|
|
// address or heap reference operand). If additional memory may be indirectly
|
|
// accessed by 'User', such as via an inout argument, then stop here because
|
|
// mayReleaseContent can only reason about one level of memory access.
|
|
//
|
|
// TODO: Handle @inout arguments by iterating over the apply arguments. For
|
|
// each argument find out if any reachable content can be released. This is
|
|
// slightly more involved than mayReleaseContent because it needs to check all
|
|
// connection graph nodes reachable from accessedPointer that don't pass
|
|
// through another stored reference.
|
|
SILValue accessedPointer = getDirectlyAccessedMemory(User);
|
|
if (!accessedPointer)
|
|
return true;
|
|
|
|
// If releasedReference can reach the first refcounted object reachable from
|
|
// accessedPointer, then releasing it early may destroy the object accessed by
|
|
// accessedPointer. Access to any objects beyond the first released refcounted
|
|
// object are irrelevant--they must already have sufficient refcount that they
|
|
// won't be released when releasing Ptr.
|
|
return EA->mayReleaseReferenceContent(releasedReference, accessedPointer);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AliasAnalysisContainer : public FunctionAnalysisBase<AliasAnalysis> {
|
|
SideEffectAnalysis *SEA = nullptr;
|
|
EscapeAnalysis *EA = nullptr;
|
|
|
|
public:
|
|
AliasAnalysisContainer() : FunctionAnalysisBase(SILAnalysisKind::Alias) {}
|
|
|
|
virtual bool shouldInvalidate(SILAnalysis::InvalidationKind K) override {
|
|
return K & InvalidationKind::Instructions;
|
|
}
|
|
|
|
// Computes loop information for the given function using dominance
|
|
// information.
|
|
virtual std::unique_ptr<AliasAnalysis>
|
|
newFunctionAnalysis(SILFunction *F) override {
|
|
assert(EA && SEA && "dependent analysis not initialized");
|
|
return std::make_unique<AliasAnalysis>(SEA, EA);
|
|
}
|
|
|
|
virtual void initialize(SILPassManager *PM) override {
|
|
SEA = PM->getAnalysis<SideEffectAnalysis>();
|
|
EA = PM->getAnalysis<EscapeAnalysis>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILAnalysis *swift::createAliasAnalysis(SILModule *M) {
|
|
return new AliasAnalysisContainer();
|
|
}
|