mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Instead of caching alias results globally for the module, make AliasAnalysis a FunctionAnalysisBase which caches the alias results per function.
Why?
* So far the result caches could only grow. They were reset when they reached a certain size. This was not ideal. Now, they are invalidated whenever the function changes.
* It was not possible to actually invalidate an alias analysis result. This is required, for example in TempRValueOpt and TempLValueOpt (so far it was done manually with invalidateInstruction).
* Type based alias analysis results were also cached for the whole module, while it is actually dependent on the function, because it depends on the function's resilience expansion. This was a potential bug.
I also added a new PassManager API to directly get a function-base analysis:
getAnalysis(SILFunction *f)
The second change of this commit is the removal of the instruction-index indirection for the cache keys. Now the cache keys directly work on instruction pointers instead of instruction indices. This reduces the number of hash table lookups for a cache lookup from 3 to 1.
This indirection was needed to avoid dangling instruction pointers in the cache keys. But this is not needed anymore, because of the new delayed instruction deletion mechanism.
677 lines
26 KiB
C++
677 lines
26 KiB
C++
//===--- MemoryBehavior.cpp -----------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-membehavior"
|
|
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/MemAccessUtils.h"
|
|
#include "swift/SIL/SILVisitor.h"
|
|
#include "swift/SIL/OwnershipUtils.h"
|
|
#include "swift/SIL/BasicBlockBits.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/EscapeAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Memory Behavior Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
using MemBehavior = SILInstruction::MemoryBehavior;
|
|
|
|
/// Visitor that determines the memory behavior of an instruction relative to a
|
|
/// specific SILValue (i.e. can the instruction cause the value to be read,
|
|
/// etc.).
|
|
///
|
|
/// TODO: Clarify what it means to return a MayHaveSideEffects result. Does this
|
|
/// mean that the instruction may release objects referenced by value 'V'?
|
|
/// Deallocate the an address contained in 'V'? Are any other code motion
|
|
/// barriers relevant here?
|
|
class MemoryBehaviorVisitor
|
|
: public SILInstructionVisitor<MemoryBehaviorVisitor, MemBehavior> {
|
|
|
|
AliasAnalysis *AA;
|
|
|
|
SideEffectAnalysis *SEA;
|
|
|
|
EscapeAnalysis *EA;
|
|
|
|
/// The value we are attempting to discover memory behavior relative to.
|
|
SILValue V;
|
|
|
|
/// Cache either the address of the access corresponding to memory at 'V', or
|
|
/// 'V' itself if it isn't recognized as part of an access. The cached value
|
|
/// is always a valid SILValue.
|
|
SILValue cachedValueAddress;
|
|
|
|
Optional<bool> cachedIsLetValue;
|
|
|
|
/// The SILType of the value.
|
|
Optional<SILType> TypedAccessTy;
|
|
|
|
public:
|
|
MemoryBehaviorVisitor(AliasAnalysis *AA, SideEffectAnalysis *SEA,
|
|
EscapeAnalysis *EA, SILValue V)
|
|
: AA(AA), SEA(SEA), EA(EA), V(V) {}
|
|
|
|
SILType getValueTBAAType() {
|
|
if (!TypedAccessTy)
|
|
TypedAccessTy = computeTBAAType(V);
|
|
return *TypedAccessTy;
|
|
}
|
|
|
|
/// If 'V' is an address projection within a formal access, return the
|
|
/// canonical address of the formal access if possible without looking past
|
|
/// any storage casts. Otherwise, a "best-effort" address
|
|
///
|
|
/// If 'V' is an address, then the returned value is also an address.
|
|
SILValue getValueAddress() {
|
|
if (!cachedValueAddress) {
|
|
cachedValueAddress =
|
|
V->getType().isAddress() ? getTypedAccessAddress(V) : V;
|
|
}
|
|
return cachedValueAddress;
|
|
}
|
|
|
|
/// Return true if 'V's accessed address is that of a let variables.
|
|
bool isLetValue() {
|
|
if (!cachedIsLetValue) {
|
|
cachedIsLetValue =
|
|
V->getType().isAddress() && isLetAddress(getValueAddress());
|
|
}
|
|
return cachedIsLetValue.getValue();
|
|
}
|
|
|
|
// Return true is the given address (or pointer) may alias with 'V'.
|
|
bool mayAlias(SILValue opAddress) {
|
|
if (AA->isNoAlias(opAddress, V, computeTBAAType(opAddress),
|
|
getValueTBAAType())) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "No alias: access " << opAddress << " value " << V);
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "May alias: access " << opAddress << " value " << V);
|
|
return true;
|
|
}
|
|
|
|
MemBehavior visitValueBase(ValueBase *V) {
|
|
llvm_unreachable("unimplemented");
|
|
}
|
|
|
|
MemBehavior visitSILInstruction(SILInstruction *Inst) {
|
|
// If we do not have any more information, just use the general memory
|
|
// behavior implementation.
|
|
auto Behavior = Inst->getMemoryBehavior();
|
|
|
|
// If this is a regular read-write access then return the computed memory
|
|
// behavior.
|
|
if (!isLetValue())
|
|
return Behavior;
|
|
|
|
// If this is a read-only access to 'let variable'. Other side effects, such
|
|
// as releases of the object containing a 'let' property are still relevant.
|
|
switch (Behavior) {
|
|
case MemBehavior::MayReadWrite: return MemBehavior::MayRead;
|
|
case MemBehavior::MayWrite: return MemBehavior::None;
|
|
default: return Behavior;
|
|
}
|
|
}
|
|
|
|
MemBehavior visitBeginAccessInst(BeginAccessInst *beginAccess) {
|
|
if (!mayAlias(beginAccess->getSource()))
|
|
return MemBehavior::None;
|
|
|
|
// begin_access does not physically read or write memory. But we model it
|
|
// as a memory read and/or write to prevent optimizations to move other
|
|
// aliased loads/stores across begin_access into the access scope.
|
|
switch (beginAccess->getAccessKind()) {
|
|
case SILAccessKind::Deinit:
|
|
// For the same reason we treat a ``load [take]`` or a ``destroy_addr``
|
|
// as a memory write, we do that for a ``begin_access [deinit]`` as well.
|
|
// See SILInstruction::MemoryBehavior.
|
|
return MemBehavior::MayReadWrite;
|
|
case SILAccessKind::Read:
|
|
return MemBehavior::MayRead;
|
|
case SILAccessKind::Modify:
|
|
if (isLetValue()) {
|
|
assert(getAccessBase(beginAccess) != getValueAddress()
|
|
&& "let modification not allowed");
|
|
return MemBehavior::None;
|
|
}
|
|
return MemBehavior::MayReadWrite;
|
|
case SILAccessKind::Init:
|
|
return MemBehavior::MayWrite;
|
|
}
|
|
llvm_unreachable("invalid access kind");
|
|
}
|
|
|
|
MemBehavior visitEndAccessInst(EndAccessInst *endAccess) {
|
|
// end_access does not physically read or write memory. But, similar to
|
|
// begin_access, we model it as a memory read and/or write to prevent
|
|
// optimizations to move other aliased loads/stores across end_access into
|
|
// the access scope.
|
|
return visitBeginAccessInst(endAccess->getBeginAccess());
|
|
}
|
|
|
|
MemBehavior visitLoadInst(LoadInst *LI);
|
|
MemBehavior visitStoreInst(StoreInst *SI);
|
|
MemBehavior visitCopyAddrInst(CopyAddrInst *CAI);
|
|
MemBehavior visitApplyInst(ApplyInst *AI);
|
|
MemBehavior visitTryApplyInst(TryApplyInst *AI);
|
|
MemBehavior visitBeginApplyInst(BeginApplyInst *AI);
|
|
MemBehavior visitEndApplyInst(EndApplyInst *EAI);
|
|
MemBehavior visitAbortApplyInst(AbortApplyInst *AAI);
|
|
MemBehavior getApplyBehavior(FullApplySite AS);
|
|
MemBehavior visitBuiltinInst(BuiltinInst *BI);
|
|
MemBehavior visitStrongReleaseInst(StrongReleaseInst *BI);
|
|
MemBehavior visitReleaseValueInst(ReleaseValueInst *BI);
|
|
MemBehavior visitDestroyValueInst(DestroyValueInst *DVI);
|
|
MemBehavior visitSetDeallocatingInst(SetDeallocatingInst *BI);
|
|
MemBehavior visitBeginCOWMutationInst(BeginCOWMutationInst *BCMI);
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
MemBehavior visit##Name##ReleaseInst(Name##ReleaseInst *BI);
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
|
|
// Instructions which are none if our SILValue does not alias one of its
|
|
// arguments. If we cannot prove such a thing, return the relevant memory
|
|
// behavior.
|
|
#define OPERANDALIAS_MEMBEHAVIOR_INST(Name) \
|
|
MemBehavior visit##Name(Name *I) { \
|
|
for (Operand & Op : I->getAllOperands()) { \
|
|
if (mayAlias(Op.get())) \
|
|
return I->getMemoryBehavior(); \
|
|
} \
|
|
return MemBehavior::None; \
|
|
}
|
|
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(InjectEnumAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(UncheckedTakeEnumDataAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(InitExistentialAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(DeinitExistentialAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(DeallocStackInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(FixLifetimeInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(ClassifyBridgeObjectInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(ValueToBridgeObjectInst)
|
|
#undef OPERANDALIAS_MEMBEHAVIOR_INST
|
|
|
|
// Override simple behaviors where MayHaveSideEffects is too general and
|
|
// encompasses other behavior that is not read/write/ref count decrement
|
|
// behavior we care about.
|
|
#define SIMPLE_MEMBEHAVIOR_INST(Name, Behavior) \
|
|
MemBehavior visit##Name(Name *I) { return MemBehavior::Behavior; }
|
|
SIMPLE_MEMBEHAVIOR_INST(CondFailInst, None)
|
|
#undef SIMPLE_MEMBEHAVIOR_INST
|
|
|
|
// Incrementing reference counts doesn't have an observable memory effect.
|
|
#define REFCOUNTINC_MEMBEHAVIOR_INST(Name) \
|
|
MemBehavior visit##Name(Name *I) { \
|
|
return MemBehavior::None; \
|
|
}
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainInst)
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(RetainValueInst)
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(CopyValueInst)
|
|
#define UNCHECKED_REF_STORAGE(Name, ...) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(Name##RetainValueInst) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongCopy##Name##ValueInst)
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(Name##RetainInst) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetain##Name##Inst) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongCopy##Name##ValueInst)
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
#undef REFCOUNTINC_MEMBEHAVIOR_INST
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitLoadInst(LoadInst *LI) {
|
|
if (!mayAlias(LI->getOperand()))
|
|
return MemBehavior::None;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Could not prove that load inst does not alias "
|
|
"pointer. ");
|
|
|
|
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Is a take so return MayReadWrite.\n");
|
|
return MemBehavior::MayReadWrite;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Not a take so returning MayRead.\n");
|
|
return MemBehavior::MayRead;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitStoreInst(StoreInst *SI) {
|
|
// No store besides the initialization of a "let"-variable
|
|
// can have any effect on the value of this "let" variable.
|
|
if (isLetValue() && (getAccessBase(SI->getDest()) != getValueAddress())) {
|
|
return MemBehavior::None;
|
|
}
|
|
// If the store dest cannot alias the pointer in question and we are not
|
|
// releasing anything due to an assign, then the specified value cannot be
|
|
// modified by the store.
|
|
if (!mayAlias(SI->getDest()) &&
|
|
SI->getOwnershipQualifier() != StoreOwnershipQualifier::Assign)
|
|
return MemBehavior::None;
|
|
|
|
// Otherwise, a store just writes.
|
|
LLVM_DEBUG(llvm::dbgs() << " Could not prove store does not alias inst. "
|
|
"Returning default mem behavior.\n");
|
|
return SI->getMemoryBehavior();
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitCopyAddrInst(CopyAddrInst *CAI) {
|
|
// If it's an assign to the destination, a destructor might be called on the
|
|
// old value. This can have any side effects.
|
|
// We could also check if it's a trivial type (which cannot have any side
|
|
// effect on destruction), but such copy_addr instructions are optimized to
|
|
// load/stores anyway, so it's probably not worth it.
|
|
if (!CAI->isInitializationOfDest())
|
|
return MemBehavior::MayHaveSideEffects;
|
|
|
|
bool mayWrite = mayAlias(CAI->getDest());
|
|
bool mayRead = mayAlias(CAI->getSrc());
|
|
|
|
if (mayRead) {
|
|
if (mayWrite)
|
|
return MemBehavior::MayReadWrite;
|
|
|
|
// A take is modelled as a write. See MemoryBehavior::MayWrite.
|
|
if (CAI->isTakeOfSrc())
|
|
return MemBehavior::MayReadWrite;
|
|
|
|
return MemBehavior::MayRead;
|
|
}
|
|
if (mayWrite)
|
|
return MemBehavior::MayWrite;
|
|
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitBuiltinInst(BuiltinInst *BI) {
|
|
// If our callee is not a builtin, be conservative and return may have side
|
|
// effects.
|
|
if (!BI) {
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
// If the builtin is read none, it does not read or write memory.
|
|
if (!BI->mayReadOrWriteMemory()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply of read none builtin. Returning"
|
|
" None.\n");
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
// If the builtin is side effect free, then it can only read memory.
|
|
if (!BI->mayHaveSideEffects()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply of side effect free builtin. "
|
|
"Returning MayRead.\n");
|
|
return MemBehavior::MayRead;
|
|
}
|
|
|
|
// FIXME: If the value (or any other values from the instruction that the
|
|
// value comes from) that we are tracking does not escape and we don't alias
|
|
// any of the arguments of the apply inst, we should be ok.
|
|
|
|
// Otherwise be conservative and return that we may have side effects.
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply of side effect builtin. "
|
|
"Returning MayHaveSideEffects.\n");
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitTryApplyInst(TryApplyInst *AI) {
|
|
return getApplyBehavior(AI);
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitApplyInst(ApplyInst *AI) {
|
|
return getApplyBehavior(AI);
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitBeginApplyInst(BeginApplyInst *AI) {
|
|
return getApplyBehavior(AI);
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitEndApplyInst(EndApplyInst *EAI) {
|
|
return getApplyBehavior(EAI->getBeginApply());
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitAbortApplyInst(AbortApplyInst *AAI) {
|
|
return getApplyBehavior(AAI->getBeginApply());
|
|
}
|
|
|
|
/// Returns true if the \p address may have any users which let the address
|
|
/// escape in an unusual way, e.g. with an address_to_pointer instruction.
|
|
static bool hasEscapingUses(SILValue address, int &numChecks) {
|
|
for (Operand *use : address->getUses()) {
|
|
SILInstruction *user = use->getUser();
|
|
|
|
// Avoid quadratic complexity in corner cases. A limit of 24 is more than
|
|
// enough in most cases.
|
|
if (++numChecks > 24)
|
|
return true;
|
|
|
|
switch (user->getKind()) {
|
|
case SILInstructionKind::DebugValueAddrInst:
|
|
case SILInstructionKind::FixLifetimeInst:
|
|
case SILInstructionKind::LoadInst:
|
|
case SILInstructionKind::StoreInst:
|
|
case SILInstructionKind::CopyAddrInst:
|
|
case SILInstructionKind::DestroyAddrInst:
|
|
case SILInstructionKind::DeallocStackInst:
|
|
case SILInstructionKind::EndAccessInst:
|
|
// Those instructions have no result and cannot escape the address.
|
|
break;
|
|
case SILInstructionKind::ApplyInst:
|
|
case SILInstructionKind::TryApplyInst:
|
|
case SILInstructionKind::BeginApplyInst:
|
|
// Apply instructions can not let an address escape either. It's not
|
|
// possible that an address, passed as an indirect parameter, escapes
|
|
// the function in any way (which is not unsafe and undefined behavior).
|
|
break;
|
|
case SILInstructionKind::BeginAccessInst:
|
|
case SILInstructionKind::OpenExistentialAddrInst:
|
|
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
|
|
case SILInstructionKind::StructElementAddrInst:
|
|
case SILInstructionKind::TupleElementAddrInst:
|
|
case SILInstructionKind::UncheckedAddrCastInst:
|
|
// Check the uses of address projections.
|
|
if (hasEscapingUses(cast<SingleValueInstruction>(user), numChecks))
|
|
return true;
|
|
break;
|
|
case SILInstructionKind::AddressToPointerInst:
|
|
// This is _the_ instruction which can let an address escape.
|
|
return true;
|
|
default:
|
|
// To be conservative, also bail for anything we don't handle here.
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::getApplyBehavior(FullApplySite AS) {
|
|
|
|
// Do a quick check first: if V is directly passed to an in_guaranteed
|
|
// argument, we know that the function cannot write to it.
|
|
for (Operand &argOp : AS.getArgumentOperands()) {
|
|
if (argOp.get() == V &&
|
|
AS.getArgumentConvention(argOp) ==
|
|
swift::SILArgumentConvention::Indirect_In_Guaranteed) {
|
|
return MemBehavior::MayRead;
|
|
}
|
|
}
|
|
|
|
SILValue object = getUnderlyingObject(V);
|
|
int numUsesChecked = 0;
|
|
|
|
// For exclusive/local addresses we can do a quick and good check with alias
|
|
// analysis. For everything else we use escape analysis (see below).
|
|
// TODO: The check for not-escaping can probably done easier with the upcoming
|
|
// API of AccessStorage.
|
|
bool nonEscapingAddress =
|
|
(isa<AllocStackInst>(object) || isExclusiveArgument(object)) &&
|
|
!hasEscapingUses(object, numUsesChecked);
|
|
|
|
FunctionSideEffects applyEffects;
|
|
SEA->getCalleeEffects(applyEffects, AS);
|
|
|
|
MemBehavior behavior = MemBehavior::None;
|
|
MemBehavior globalBehavior = applyEffects.getGlobalEffects().getMemBehavior(
|
|
RetainObserveKind::IgnoreRetains);
|
|
|
|
// If it's a non-escaping address, we don't care about the "global" effects
|
|
// of the called function.
|
|
if (!nonEscapingAddress)
|
|
behavior = globalBehavior;
|
|
|
|
// Check all parameter effects.
|
|
for (unsigned argIdx = 0, end = AS.getNumArguments();
|
|
argIdx < end && behavior < MemBehavior::MayHaveSideEffects;
|
|
++argIdx) {
|
|
SILValue arg = AS.getArgument(argIdx);
|
|
|
|
// In case the argument is not an address, alias analysis will always report
|
|
// a no-alias. Therefore we have to treat non-address arguments
|
|
// conservatively here. For example V could be a ref_element_addr of a
|
|
// reference argument. In this case V clearly "aliases" the argument, but
|
|
// this is not reported by alias analysis.
|
|
if ((!nonEscapingAddress && !arg->getType().isAddress()) ||
|
|
mayAlias(arg)) {
|
|
MemBehavior argBehavior = applyEffects.getArgumentBehavior(AS, argIdx);
|
|
behavior = combineMemoryBehavior(behavior, argBehavior);
|
|
}
|
|
}
|
|
|
|
if (behavior > MemBehavior::None) {
|
|
if (behavior > MemBehavior::MayRead && isLetValue())
|
|
behavior = MemBehavior::MayRead;
|
|
|
|
// Ask escape analysis.
|
|
if (!EA->canEscapeTo(V, AS))
|
|
behavior = MemBehavior::None;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply, returning " << behavior << '\n');
|
|
|
|
return behavior;
|
|
}
|
|
|
|
MemBehavior
|
|
MemoryBehaviorVisitor::visitStrongReleaseInst(StrongReleaseInst *SI) {
|
|
if (!EA->canEscapeTo(V, SI))
|
|
return MemBehavior::None;
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
MemBehavior \
|
|
MemoryBehaviorVisitor::visit##Name##ReleaseInst(Name##ReleaseInst *SI) { \
|
|
if (!EA->canEscapeTo(V, SI)) \
|
|
return MemBehavior::None; \
|
|
return MemBehavior::MayHaveSideEffects; \
|
|
}
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitReleaseValueInst(ReleaseValueInst *SI) {
|
|
if (!EA->canEscapeTo(V, SI))
|
|
return MemBehavior::None;
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
MemBehavior
|
|
MemoryBehaviorVisitor::visitDestroyValueInst(DestroyValueInst *DVI) {
|
|
if (!EA->canEscapeTo(V, DVI))
|
|
return MemBehavior::None;
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitSetDeallocatingInst(SetDeallocatingInst *SDI) {
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::
|
|
visitBeginCOWMutationInst(BeginCOWMutationInst *BCMI) {
|
|
// begin_cow_mutation is defined to have side effects, because it has
|
|
// dependencies with instructions which retain the buffer operand.
|
|
// But it never interferes with any memory address.
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Entrypoint
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MemBehavior
|
|
AliasAnalysis::computeMemoryBehavior(SILInstruction *Inst, SILValue V) {
|
|
MemBehaviorCacheKey Key = {V, Inst};
|
|
// Check if we've already computed this result.
|
|
auto It = MemoryBehaviorCache.find(Key);
|
|
if (It != MemoryBehaviorCache.end()) {
|
|
return It->second;
|
|
}
|
|
|
|
// Calculate the aliasing result and store it in the cache.
|
|
auto Result = computeMemoryBehaviorInner(Inst, V);
|
|
MemoryBehaviorCache[Key] = Result;
|
|
return Result;
|
|
}
|
|
|
|
/// If \p V is an address of an immutable memory, return the begin of the
|
|
/// scope where the memory can be considered to be immutable.
|
|
///
|
|
/// This is either a ``begin_access [read]`` in case V is the result of the
|
|
/// begin_access or a projection of it.
|
|
/// Or it is the begin of a borrow scope (begin_borrow, load_borrow, a
|
|
/// guaranteed function argument) of an immutable copy-on-write buffer.
|
|
/// For example:
|
|
/// %b = begin_borrow %array_buffer
|
|
/// %V = ref_element_addr [immutable] %b : $BufferType, #BufferType.someField
|
|
///
|
|
static SILValue getBeginScopeInst(SILValue V) {
|
|
SILValue accessScope = getAccessScope(V);
|
|
if (auto *access = dyn_cast<BeginAccessInst>(accessScope)) {
|
|
if (access->getAccessKind() == SILAccessKind::Read &&
|
|
access->getEnforcement() != SILAccessEnforcement::Unsafe)
|
|
return access;
|
|
return SILValue();
|
|
}
|
|
SILValue accessBase = getAccessBase(V);
|
|
SILValue object;
|
|
if (auto *elementAddr = dyn_cast<RefElementAddrInst>(accessBase)) {
|
|
if (!elementAddr->isImmutable())
|
|
return SILValue();
|
|
object = elementAddr->getOperand();
|
|
} else if (auto *tailAddr = dyn_cast<RefTailAddrInst>(accessBase)) {
|
|
if (!tailAddr->isImmutable())
|
|
return SILValue();
|
|
object = tailAddr->getOperand();
|
|
} else {
|
|
return SILValue();
|
|
}
|
|
if (BorrowedValue borrowedObj = getSingleBorrowIntroducingValue(object)) {
|
|
return borrowedObj.value;
|
|
}
|
|
return SILValue();
|
|
}
|
|
|
|
/// Collect all instructions which are inside an immutable scope.
|
|
///
|
|
/// The \p beginScopeInst is either a ``begin_access [read]`` or the begin of a
|
|
/// borrow scope (begin_borrow, load_borrow) of an immutable copy-on-write
|
|
/// buffer.
|
|
void AliasAnalysis::computeImmutableScope(SingleValueInstruction *beginScopeInst) {
|
|
BasicBlockSet visitedBlocks(beginScopeInst->getFunction());
|
|
llvm::SmallVector<std::pair<SILInstruction *, SILBasicBlock *>, 16> workList;
|
|
|
|
auto addEndScopeInst = [&](SILInstruction *endScope) {
|
|
workList.push_back({endScope, endScope->getParent()});
|
|
bool isNew = visitedBlocks.insert(endScope->getParent());
|
|
(void)isNew;
|
|
assert(isNew);
|
|
};
|
|
|
|
// First step: add all scope-ending instructions to the worklist.
|
|
if (auto *beginAccess = dyn_cast<BeginAccessInst>(beginScopeInst)) {
|
|
for (EndAccessInst *endAccess : beginAccess->getEndAccesses()) {
|
|
addEndScopeInst(endAccess);
|
|
}
|
|
} else {
|
|
visitTransitiveEndBorrows(BorrowedValue(beginScopeInst), addEndScopeInst);
|
|
}
|
|
|
|
// Second step: walk up the control flow until the beginScopeInst and add
|
|
// all (potentially) memory writing instructions to instsInImmutableScopes.
|
|
while (!workList.empty()) {
|
|
auto instAndBlock = workList.pop_back_val();
|
|
SILBasicBlock *block = instAndBlock.second;
|
|
// If the worklist entry doesn't have an instruction, start at the end of
|
|
// the block.
|
|
auto iter = instAndBlock.first ? instAndBlock.first->getIterator()
|
|
: block->end();
|
|
// Walk up the instruction list - either to the begin of the block or until
|
|
// we hit the beginScopeInst.
|
|
while (true) {
|
|
if (iter == block->begin()) {
|
|
assert(block != block->getParent()->getEntryBlock() &&
|
|
"didn't find the beginScopeInst when walking up the CFG");
|
|
// Add all predecessor blocks to the worklist.
|
|
for (SILBasicBlock *pred : block->getPredecessorBlocks()) {
|
|
if (visitedBlocks.insert(pred))
|
|
workList.push_back({nullptr, pred});
|
|
}
|
|
break;
|
|
}
|
|
--iter;
|
|
SILInstruction *inst = &*iter;
|
|
if (inst == beginScopeInst) {
|
|
// When we are at the beginScopeInst we terminate the CFG walk.
|
|
break;
|
|
}
|
|
if (inst->mayWriteToMemory()) {
|
|
instsInImmutableScopes.insert({beginScopeInst, inst});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns true if \p inst is in an immutable scope of V.
|
|
///
|
|
/// That means that even if we don't know anything about inst, we can be sure
|
|
/// that inst cannot write to V.
|
|
/// An immutable scope is for example a read-only begin_access/end_access scope.
|
|
/// Another example is a borrow scope of an immutable copy-on-write buffer.
|
|
bool AliasAnalysis::isInImmutableScope(SILInstruction *inst, SILValue V) {
|
|
if (!V->getType().isAddress())
|
|
return false;
|
|
|
|
SILValue beginScope = getBeginScopeInst(V);
|
|
if (!beginScope)
|
|
return false;
|
|
|
|
if (auto *funcArg = dyn_cast<SILFunctionArgument>(beginScope)) {
|
|
// The immutable scope (= an guaranteed argument) spans over the whole
|
|
// function. We don't need to do any scope computation in this case.
|
|
assert(funcArg->getArgumentConvention().isGuaranteedConvention());
|
|
return true;
|
|
}
|
|
|
|
auto *beginScopeInst = dyn_cast<SingleValueInstruction>(beginScope);
|
|
if (!beginScopeInst)
|
|
return false;
|
|
|
|
// Recompute the scope if not done yet.
|
|
if (immutableScopeComputed.insert(beginScopeInst).second) {
|
|
computeImmutableScope(beginScopeInst);
|
|
}
|
|
return instsInImmutableScopes.contains({beginScopeInst, inst});
|
|
}
|
|
|
|
MemBehavior
|
|
AliasAnalysis::computeMemoryBehaviorInner(SILInstruction *Inst, SILValue V) {
|
|
LLVM_DEBUG(llvm::dbgs() << "GET MEMORY BEHAVIOR FOR:\n " << *Inst << " "
|
|
<< *V);
|
|
assert(SEA && "SideEffectsAnalysis must be initialized!");
|
|
|
|
MemBehavior result = MemoryBehaviorVisitor(this, SEA, EA, V).visit(Inst);
|
|
|
|
// If the "regular" alias analysis thinks that Inst may modify V, check if
|
|
// Inst is in an immutable scope of V.
|
|
if (result > MemBehavior::MayRead && isInImmutableScope(Inst, V)) {
|
|
return (result == MemBehavior::MayWrite) ? MemBehavior::None
|
|
: MemBehavior::MayRead;
|
|
}
|
|
return result;
|
|
}
|