mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Instead of caching alias results globally for the module, make AliasAnalysis a FunctionAnalysisBase which caches the alias results per function.
Why?
* So far the result caches could only grow. They were reset when they reached a certain size. This was not ideal. Now, they are invalidated whenever the function changes.
* It was not possible to actually invalidate an alias analysis result. This is required, for example in TempRValueOpt and TempLValueOpt (so far it was done manually with invalidateInstruction).
* Type based alias analysis results were also cached for the whole module, while it is actually dependent on the function, because it depends on the function's resilience expansion. This was a potential bug.
I also added a new PassManager API to directly get a function-base analysis:
getAnalysis(SILFunction *f)
The second change of this commit is the removal of the instruction-index indirection for the cache keys. Now the cache keys directly work on instruction pointers instead of instruction indices. This reduces the number of hash table lookups for a cache lookup from 3 to 1.
This indirection was needed to avoid dangling instruction pointers in the cache keys. But this is not needed anymore, because of the new delayed instruction deletion mechanism.
1251 lines
46 KiB
C++
1251 lines
46 KiB
C++
//===--- ARCCodeMotion.cpp - SIL ARC Code Motion --------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
///
|
|
/// This pass moves retains down and releases up. This, hopefully, will help
|
|
/// ARC sequence opt to remove retain and release pairs without worrying too
|
|
/// much about control flows.
|
|
///
|
|
/// It uses an optimistic iterative data flow to compute where to insert the
|
|
/// retains and releases for every reference-counted root. It then removes all
|
|
/// the old retain and release instructions and create the new ones.
|
|
///
|
|
/// This pass is more sophisticated than SILCodeMotion, as arc optimizations
|
|
/// can be very beneficial, use an optimistic global data flow to achieve
|
|
/// optimality.
|
|
///
|
|
/// Proof of Correctness:
|
|
/// -------------------
|
|
///
|
|
/// 1. Retains are blocked by MayDecrements. Its straightforward to prove that
|
|
/// retain sinking is correct.
|
|
///
|
|
/// If a retain is sunk from Region A to Region B, that means there is no
|
|
/// blocking operation between where the retain was in Region A to where it is
|
|
/// sunk to in Region B. Since we only sink retains (we do not move any other
|
|
/// instructions) which themselves are NOT MayDecrement operations, and moving
|
|
/// retains can't turn non-decrement instruction MayDecrement.
|
|
///
|
|
/// 2. Releases are blocked by MayInterfere. If a release is hoisted from
|
|
/// Region B to Region A, that means there is no blocking operation from where
|
|
/// the release was in Region B and where the release is hoisted to in Region A.
|
|
///
|
|
/// The question is whether we can introduce such operation while we hoist
|
|
/// other releases. The answer is NO. because if such releases exist, they
|
|
/// would be blocked by the old release (we remove old release and recreate new
|
|
/// ones at the end of the pass) and will not be able to be hoisted beyond the
|
|
/// old release.
|
|
///
|
|
/// This proof also hinges on the fact that if release A interferes with
|
|
/// releases B then release B must interfere with release A. i.e. the 2
|
|
/// releases must have the symmetric property. Consider the 2 releases as 2
|
|
/// function calls, i.e. CallA (release A) and CallB (release B), if CallA
|
|
/// interferes with CallB, that means CallA must share some program states
|
|
/// (through read or write) with CallB. Then it is not possible for CallB
|
|
/// to not share any states with CallA. And if they do share states, then
|
|
/// its not possible for CallB to block CallA and CallA not to block CallB.
|
|
///
|
|
/// TODO: Sinking retains can block releases to be hoisted, and hoisting
|
|
/// releases can block retains to be sunk. Investigate when to sink retains and
|
|
/// when to hoist releases and their ordering in the pass pipeline.
|
|
///
|
|
/// TODO: Consider doing retain hoisting and release sinking. This can help
|
|
/// to discover disjoint lifetimes and we can try to stitch them together.
|
|
///
|
|
/// TODO: There are a lot of code duplications between retain and release code
|
|
/// motion in the data flow part. Consider whether we can share them.
|
|
/// Essentially, we can implement the release code motion by inverting the
|
|
/// retain code motion, but this can also make the code less readable.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-rr-code-motion"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/BasicBlockDatastructures.h"
|
|
#include "swift/SIL/BasicBlockData.h"
|
|
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/EscapeAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ProgramTerminationAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "swift/Strings.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumRetainsSunk, "Number of retains sunk");
|
|
STATISTIC(NumReleasesHoisted, "Number of releases hoisted");
|
|
|
|
llvm::cl::opt<bool> DisableARCCodeMotion("disable-arc-cm", llvm::cl::init(false));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Block State
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
struct BlockState {
|
|
/// A bit vector for which the ith bit represents the ith refcounted root in
|
|
/// RCRootVault.
|
|
///
|
|
/// NOTE: we could do the data flow with BBSetIn or BBSetOut, but that would
|
|
/// require us to create a temporary copy to check whether the BBSet has
|
|
/// changed after the genset and killset has been applied.
|
|
SmallBitVector BBSetIn;
|
|
|
|
/// A bit vector for which the ith bit represents the ith refcounted root in
|
|
/// RCRootVault.
|
|
SmallBitVector BBSetOut;
|
|
|
|
/// A bit vector for which the ith bit represents the ith refcounted root in
|
|
/// RCRootVault. If the bit is set, that means this basic block creates a
|
|
/// retain which can be sunk or a release which can be hoisted.
|
|
SmallBitVector BBGenSet;
|
|
|
|
/// A bit vector for which the ith bit represents the ith refcounted root in
|
|
/// RCRootVault. If this bit is set, that means this basic block stops retain
|
|
/// or release of the refcounted root to be moved across.
|
|
SmallBitVector BBKillSet;
|
|
|
|
/// A bit vector for which the ith bit represents the ith refcounted root in
|
|
/// RCRootVault. If this bit is set, that means this is potentially a retain
|
|
/// or release that can be sunk or hoisted to this point. This is used to
|
|
/// optimize the time for computing genset and killset.
|
|
///
|
|
/// NOTE: this vector contains an approximation of whether there will be a
|
|
/// retain or release to a certain point of a basic block.
|
|
SmallBitVector BBMaxSet;
|
|
};
|
|
|
|
/// CodeMotionContext - This is the base class which retain code motion and
|
|
/// release code motion inherits from. It defines an interface as to how the
|
|
/// code motion procedure should be.
|
|
class CodeMotionContext {
|
|
protected:
|
|
/// Dataflow needs multiple iteration to converge. If this is false, then we
|
|
/// do not need to generate the genset or killset, i.e. we can simply do 1
|
|
/// pessimistic data flow iteration.
|
|
bool MultiIteration;
|
|
|
|
/// The allocator we are currently using.
|
|
llvm::SpecificBumpPtrAllocator<BlockState> &BPA;
|
|
|
|
/// Current function we are analyzing.
|
|
SILFunction *F;
|
|
|
|
/// Current post-order we are using.
|
|
PostOrderFunctionInfo *PO;
|
|
|
|
/// Current alias analysis we are using.
|
|
AliasAnalysis *AA;
|
|
|
|
/// Current rc-identity we are using.
|
|
RCIdentityFunctionInfo *RCFI;
|
|
|
|
/// All the unique refcount roots retained or released in the function.
|
|
llvm::SetVector<SILValue> RCRootVault;
|
|
|
|
/// Contains a map between RC roots to their index in the RCRootVault.
|
|
/// used to facilitate fast RC roots to index lookup.
|
|
llvm::DenseMap<SILValue, unsigned> RCRootIndex;
|
|
|
|
/// All the retains or releases originally in the function. Eventually
|
|
/// they will all be removed after all the new ones are generated.
|
|
llvm::SmallPtrSet<SILInstruction *, 8> RCInstructions;
|
|
|
|
/// All the places to place the new retains or releases after code motion.
|
|
using InsertPointList = llvm::SmallVector<SILInstruction *, 2>;
|
|
llvm::SmallDenseMap<SILValue, InsertPointList> InsertPoints;
|
|
|
|
/// These are the blocks that have an RC instruction to process or it blocks
|
|
/// some RC instructions. If the basic block has neither, we do not need to
|
|
/// process the block again in the last iteration. We populate this set when
|
|
/// we compute the genset and killset.
|
|
BasicBlockSet InterestBlocks;
|
|
|
|
#ifndef NDEBUG
|
|
// SILPrintContext is used to print block IDs in RPO order.
|
|
// It is optional so only the final insertion point interference is printed.
|
|
Optional<SILPrintContext> printCtx;
|
|
#endif
|
|
|
|
/// Return the rc-identity root of the SILValue.
|
|
SILValue getRCRoot(SILValue R) {
|
|
return RCFI->getRCIdentityRoot(R);
|
|
}
|
|
|
|
/// Return the rc-identity root of the RC instruction, i.e.
|
|
/// retain or release.
|
|
SILValue getRCRoot(SILInstruction *I) {
|
|
assert(isRetainInstruction(I) || isReleaseInstruction(I) &&
|
|
"Extracting RC root from invalid instruction");
|
|
return getRCRoot(I->getOperand(0));
|
|
}
|
|
|
|
public:
|
|
/// Constructor.
|
|
CodeMotionContext(llvm::SpecificBumpPtrAllocator<BlockState> &BPA,
|
|
SILFunction *F,
|
|
PostOrderFunctionInfo *PO, AliasAnalysis *AA,
|
|
RCIdentityFunctionInfo *RCFI)
|
|
: MultiIteration(true), BPA(BPA), F(F), PO(PO), AA(AA), RCFI(RCFI),
|
|
InterestBlocks(F) {}
|
|
|
|
/// virtual destructor.
|
|
virtual ~CodeMotionContext() {}
|
|
|
|
/// Run the data flow to move retains and releases.
|
|
bool run();
|
|
|
|
/// Check whether we need to run an optimistic iteration data flow.
|
|
/// or a pessimistic would suffice.
|
|
virtual bool requireIteration() = 0;
|
|
|
|
/// Initialize necessary things to run the iterative data flow.
|
|
virtual void initializeCodeMotionDataFlow() = 0;
|
|
|
|
/// Initialize the basic block maximum refcounted set.
|
|
virtual void initializeCodeMotionBBMaxSet() = 0;
|
|
|
|
/// Compute the genset and killset for every root in every basic block.
|
|
virtual void computeCodeMotionGenKillSet() = 0;
|
|
|
|
/// Run the iterative data flow to converge.
|
|
virtual void convergeCodeMotionDataFlow() = 0;
|
|
|
|
/// Use the data flow results, come up with places to insert the new inst.
|
|
virtual void computeCodeMotionInsertPoints() = 0;
|
|
|
|
/// Remove the old retains and create the new *moved* refcounted instructions
|
|
virtual bool performCodeMotion() = 0;
|
|
|
|
/// Merge the data flow states.
|
|
virtual void mergeBBDataFlowStates(SILBasicBlock *BB) = 0;
|
|
|
|
/// Compute the BBSetIn and BBSetOut for the current basic
|
|
/// block with the generated gen and kill set.
|
|
virtual bool processBBWithGenKillSet(SILBasicBlock *BB) = 0;
|
|
|
|
/// Return true if the instruction blocks the Ptr to be moved further.
|
|
virtual bool mayBlockCodeMotion(SILInstruction *II, SILValue Ptr) = 0;
|
|
};
|
|
|
|
bool CodeMotionContext::run() {
|
|
MultiIteration = requireIteration();
|
|
|
|
// Initialize the data flow.
|
|
initializeCodeMotionDataFlow();
|
|
|
|
// Converge the BBSetOut with iterative data flow.
|
|
if (MultiIteration) {
|
|
initializeCodeMotionBBMaxSet();
|
|
computeCodeMotionGenKillSet();
|
|
convergeCodeMotionDataFlow();
|
|
}
|
|
|
|
// Compute the insertion point where each RC root can be moved to.
|
|
computeCodeMotionInsertPoints();
|
|
|
|
// Finally, generate new retains and remove the old retains.
|
|
return performCodeMotion();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Retain Code Motion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class RetainBlockState : public BlockState {
|
|
public:
|
|
/// Check whether the BBSetOut has changed. If it does, we need to rerun
|
|
/// the data flow on this block's successors to reach fixed point.
|
|
bool updateBBSetOut(SmallBitVector &X) {
|
|
if (BBSetOut == X)
|
|
return false;
|
|
BBSetOut = X;
|
|
return true;
|
|
}
|
|
|
|
void init(bool IsEntry, unsigned size, bool MultiIteration) {
|
|
// Iterative forward data flow.
|
|
BBSetIn.resize(size, false);
|
|
// Initialize to true if we are running optimistic data flow, i.e.
|
|
// MultiIteration is true.
|
|
BBSetOut.resize(size, MultiIteration);
|
|
BBMaxSet.resize(size, !IsEntry && MultiIteration);
|
|
|
|
// Genset and Killset are initially empty.
|
|
BBGenSet.resize(size, false);
|
|
BBKillSet.resize(size, false);
|
|
}
|
|
};
|
|
|
|
/// RetainCodeMotionContext - Context to perform retain code motion.
|
|
class RetainCodeMotionContext : public CodeMotionContext {
|
|
/// All the retain block state for all the basic blocks in the function.
|
|
BasicBlockData<RetainBlockState> BlockStates;
|
|
|
|
ProgramTerminationFunctionInfo PTFI;
|
|
|
|
/// Return true if the instruction blocks the Ptr to be moved further.
|
|
bool mayBlockCodeMotion(SILInstruction *II, SILValue Ptr) override {
|
|
// NOTE: If more checks are to be added, place the most expensive in the
|
|
// end, this function is called many times.
|
|
//
|
|
// These terminator instructions block.
|
|
if (isa<ReturnInst>(II) || isa<ThrowInst>(II) || isa<UnwindInst>(II) ||
|
|
isa<UnreachableInst>(II))
|
|
return true;
|
|
// Identical RC root blocks code motion, we will be able to move this retain
|
|
// further once we move the blocking retain.
|
|
if (isRetainInstruction(II) && getRCRoot(II) == Ptr) {
|
|
LLVM_DEBUG(if (printCtx) llvm::dbgs()
|
|
<< "Retain " << Ptr << " at matching retain " << *II);
|
|
return true;
|
|
}
|
|
// Ref count checks do not have side effects, but are barriers for retains.
|
|
if (mayCheckRefCount(II)) {
|
|
LLVM_DEBUG(if (printCtx) llvm::dbgs()
|
|
<< "Retain " << Ptr << " at refcount check " << *II);
|
|
return true;
|
|
}
|
|
// mayDecrement reference count stops code motion.
|
|
if (mayDecrementRefCount(II, Ptr, AA)) {
|
|
LLVM_DEBUG(if (printCtx) llvm::dbgs()
|
|
<< "Retain " << Ptr << " at may decrement " << *II);
|
|
return true;
|
|
}
|
|
// This instruction does not block the retain code motion.
|
|
return false;
|
|
}
|
|
|
|
/// Return the previous instruction if it happens to be a retain with the
|
|
/// given RC root, nullptr otherwise.
|
|
SILInstruction *getPrevReusableInst(SILInstruction *I, SILValue Root) {
|
|
if (&*I->getParent()->begin() == I)
|
|
return nullptr;
|
|
auto Prev = &*std::prev(SILBasicBlock::iterator(I));
|
|
if (isRetainInstruction(Prev) && getRCRoot(Prev) == Root)
|
|
return Prev;
|
|
return nullptr;
|
|
}
|
|
|
|
public:
|
|
/// Constructor.
|
|
RetainCodeMotionContext(llvm::SpecificBumpPtrAllocator<BlockState> &BPA,
|
|
SILFunction *F, PostOrderFunctionInfo *PO,
|
|
AliasAnalysis *AA, RCIdentityFunctionInfo *RCFI)
|
|
: CodeMotionContext(BPA, F, PO, AA, RCFI), BlockStates(F), PTFI(F) {}
|
|
|
|
/// virtual destructor.
|
|
~RetainCodeMotionContext() override {}
|
|
|
|
/// Return true if we do not need optimistic data flow.
|
|
bool requireIteration() override;
|
|
|
|
/// Initialize necessary things to run the iterative data flow.
|
|
void initializeCodeMotionDataFlow() override;
|
|
|
|
/// Initialize the basic block maximum refcounted set.
|
|
void initializeCodeMotionBBMaxSet() override;
|
|
|
|
/// Compute the genset and killset for every root in every basic block.
|
|
void computeCodeMotionGenKillSet() override;
|
|
|
|
/// Run the iterative data flow to converge.
|
|
void convergeCodeMotionDataFlow() override;
|
|
|
|
/// Use the data flow results, come up with places to insert the new inst.
|
|
void computeCodeMotionInsertPoints() override;
|
|
|
|
/// Remove the old retains and create the new *moved* refcounted instructions
|
|
bool performCodeMotion() override;
|
|
|
|
/// Compute the BBSetIn and BBSetOut for the current basic block with the
|
|
/// generated gen and kill set.
|
|
bool processBBWithGenKillSet(SILBasicBlock *BB) override;
|
|
|
|
/// Merge the data flow states.
|
|
void mergeBBDataFlowStates(SILBasicBlock *BB) override;
|
|
};
|
|
|
|
bool RetainCodeMotionContext::requireIteration() {
|
|
// If all basic blocks will have their predecessors processed if the basic
|
|
// blocks in the functions are iterated in reverse post order. Then this
|
|
// function can be processed in one iteration, i.e. no need to generate the
|
|
// genset and killset.
|
|
BasicBlockSet PBBs(BlockStates.getFunction());
|
|
for (SILBasicBlock *B : PO->getReversePostOrder()) {
|
|
for (auto X : B->getPredecessorBlocks()) {
|
|
if (!PBBs.contains(X))
|
|
return true;
|
|
}
|
|
PBBs.insert(B);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void RetainCodeMotionContext::initializeCodeMotionDataFlow() {
|
|
// Find all the RC roots in the function.
|
|
for (auto &BB : *F) {
|
|
for (auto &II : BB) {
|
|
if (!isRetainInstruction(&II))
|
|
continue;
|
|
RCInstructions.insert(&II);
|
|
SILValue Root = getRCRoot(&II);
|
|
if (RCRootIndex.find(Root) != RCRootIndex.end())
|
|
continue;
|
|
RCRootIndex[Root] = RCRootVault.size();
|
|
RCRootVault.insert(Root);
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Retain Root #" << RCRootVault.size() << " " << Root);
|
|
}
|
|
}
|
|
|
|
// Initialize all the data flow bit vector for all basic blocks.
|
|
for (auto bd : BlockStates) {
|
|
bd.data.init(&bd.block == F->getEntryBlock(), RCRootVault.size(),
|
|
MultiIteration);
|
|
}
|
|
}
|
|
|
|
void RetainCodeMotionContext::initializeCodeMotionBBMaxSet() {
|
|
for (SILBasicBlock *BB : PO->getReversePostOrder()) {
|
|
// If basic block has no predecessor, do nothing.
|
|
BlockState &State = BlockStates[BB];
|
|
if (BB->pred_empty()) {
|
|
State.BBMaxSet.reset();
|
|
} else {
|
|
// Intersect in all predecessors' BBSetOut.
|
|
State.BBMaxSet.set();
|
|
for (auto E = BB->pred_end(), I = BB->pred_begin(); I != E; ++I) {
|
|
State.BBMaxSet &= BlockStates[*I].BBMaxSet;
|
|
}
|
|
}
|
|
|
|
// Process the instructions in the basic block to find what refcounted
|
|
// roots are retained. If we know that an RC root can't be retained at a
|
|
// basic block, then we know we do not need to consider it for the killset.
|
|
// NOTE: this is a conservative approximation, because some retains may be
|
|
// blocked before it reaches this block.
|
|
for (auto &II : *BB) {
|
|
if (!isRetainInstruction(&II))
|
|
continue;
|
|
State.BBMaxSet.set(RCRootIndex[getRCRoot(&II)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RetainCodeMotionContext::computeCodeMotionGenKillSet() {
|
|
for (SILBasicBlock *BB : PO->getReversePostOrder()) {
|
|
BlockState &State = BlockStates[BB];
|
|
bool InterestBlock = false;
|
|
for (auto &I : *BB) {
|
|
// Check whether this instruction blocks any RC root code motion.
|
|
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
|
|
if (!State.BBMaxSet.test(i) || !mayBlockCodeMotion(&I, RCRootVault[i]))
|
|
continue;
|
|
// This is a blocking instruction for the rcroot.
|
|
InterestBlock = true;
|
|
State.BBKillSet.set(i);
|
|
State.BBGenSet.reset(i);
|
|
}
|
|
// If this is a retain instruction, it also generates.
|
|
if (isRetainInstruction(&I)) {
|
|
unsigned idx = RCRootIndex[getRCRoot(&I)];
|
|
State.BBGenSet.set(idx);
|
|
assert(State.BBKillSet.test(idx) && "Killset computed incorrectly");
|
|
State.BBKillSet.reset(idx);
|
|
InterestBlock = true;
|
|
}
|
|
}
|
|
|
|
// Is this a block that is interesting to the last iteration of the data
|
|
// flow.
|
|
if (!InterestBlock)
|
|
continue;
|
|
InterestBlocks.insert(BB);
|
|
}
|
|
}
|
|
|
|
bool RetainCodeMotionContext::performCodeMotion() {
|
|
bool Changed = false;
|
|
// Create the new retain instructions.
|
|
for (auto RC : RCRootVault) {
|
|
auto Iter = InsertPoints.find(RC);
|
|
if (Iter == InsertPoints.end())
|
|
continue;
|
|
|
|
for (auto IP : Iter->second) {
|
|
// Check if the insertion point is in a block that we had previously
|
|
// identified as a program termination point. In such a case, we know that
|
|
// there are no releases or anything beyond a fatalError call. In such a
|
|
// case, do not insert the retain. It is ok if we leak.
|
|
if (PTFI.isProgramTerminatingBlock(IP->getParent()))
|
|
continue;
|
|
|
|
// We are about to insert a new retain instruction before the insertion
|
|
// point. Check if the previous instruction is reusable, reuse it, do not
|
|
// insert new instruction and delete old one.
|
|
if (auto I = getPrevReusableInst(IP, Iter->first)) {
|
|
RCInstructions.erase(I);
|
|
continue;
|
|
}
|
|
createIncrementBefore(Iter->first, IP);
|
|
Changed = true;
|
|
}
|
|
}
|
|
// Remove the old retain instructions.
|
|
for (auto R : RCInstructions) {
|
|
++NumRetainsSunk;
|
|
recursivelyDeleteTriviallyDeadInstructions(R, true);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
void RetainCodeMotionContext::mergeBBDataFlowStates(SILBasicBlock *BB) {
|
|
BlockState &State = BlockStates[BB];
|
|
State.BBSetIn.reset();
|
|
// If basic block has no predecessor, simply reset and return.
|
|
if (BB->pred_empty())
|
|
return;
|
|
|
|
// Intersect in all predecessors' BBSetOuts.
|
|
auto Iter = BB->pred_begin();
|
|
State.BBSetIn = BlockStates[*Iter].BBSetOut;
|
|
Iter = std::next(Iter);
|
|
for (auto E = BB->pred_end(); Iter != E; ++Iter) {
|
|
State.BBSetIn &= BlockStates[*Iter].BBSetOut;
|
|
}
|
|
}
|
|
|
|
bool RetainCodeMotionContext::processBBWithGenKillSet(SILBasicBlock *BB) {
|
|
RetainBlockState &State = BlockStates[BB];
|
|
// Compute the BBSetOut at the end of the basic block.
|
|
mergeBBDataFlowStates(BB);
|
|
|
|
// Compute the BBSetIn at the beginning of the basic block.
|
|
State.BBSetIn.reset(State.BBKillSet);
|
|
State.BBSetIn |= State.BBGenSet;
|
|
|
|
// If BBSetIn changes, then keep iterating until reached a fixed point.
|
|
return State.updateBBSetOut(State.BBSetIn);
|
|
}
|
|
|
|
void RetainCodeMotionContext::convergeCodeMotionDataFlow() {
|
|
// Process each basic block with the genset and killset. Every time the
|
|
// BBSetOut of a basic block changes, the optimization is rerun on its
|
|
// successors.
|
|
BasicBlockWorklist WorkList(BlockStates.getFunction());
|
|
// Push into reverse post order so that we can pop from the back and get
|
|
// post order.
|
|
for (SILBasicBlock *B : PO->getReversePostOrder()) {
|
|
WorkList.push(B);
|
|
}
|
|
while (SILBasicBlock *BB = WorkList.popAndForget()) {
|
|
if (processBBWithGenKillSet(BB)) {
|
|
for (SILBasicBlock *succ : BB->getSuccessors()) {
|
|
WorkList.pushIfNotVisited(succ);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RetainCodeMotionContext::computeCodeMotionInsertPoints() {
|
|
#ifndef NDEBUG
|
|
printCtx.emplace(llvm::dbgs(), /*Verbose=*/false, /*Sorted=*/true);
|
|
#endif
|
|
// The BBSetOuts have converged, run last iteration and figure out
|
|
// insertion point for each refcounted root.
|
|
for (SILBasicBlock *BB : PO->getReversePostOrder()) {
|
|
mergeBBDataFlowStates(BB);
|
|
RetainBlockState &S = BlockStates[BB];
|
|
|
|
// Compute insertion point generated by the edge value transition.
|
|
// If there is a transition from 1 to 0, that means we have a partial
|
|
// merge, which means the retain can NOT be sunk to the current block,
|
|
// so place it at the end of the predecessors.
|
|
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
|
|
if (S.BBSetIn[i])
|
|
continue;
|
|
for (auto Pred : BB->getPredecessorBlocks()) {
|
|
BlockState &PBB = BlockStates[Pred];
|
|
if (!PBB.BBSetOut[i])
|
|
continue;
|
|
InsertPoints[RCRootVault[i]].push_back(Pred->getTerminator());
|
|
}
|
|
}
|
|
|
|
// Is this block interesting. If we are sure this block does not generate
|
|
// retains nor does it block any retains (i.e. no insertion point will be
|
|
// created), we can skip it, as the BBSetOut has been converged if this is
|
|
// a multi-iteration function.
|
|
if (MultiIteration && !InterestBlocks.contains(BB))
|
|
continue;
|
|
|
|
// Compute insertion point within the basic block. Process instructions in
|
|
// the basic block in reverse post-order fashion.
|
|
for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
|
|
if (!S.BBSetIn[i] || !mayBlockCodeMotion(&*I, RCRootVault[i]))
|
|
continue;
|
|
S.BBSetIn.reset(i);
|
|
InsertPoints[RCRootVault[i]].push_back(&*I);
|
|
}
|
|
|
|
// If this is a retain instruction, it also generates.
|
|
if (isRetainInstruction(&*I)) {
|
|
S.BBSetIn.set(RCRootIndex[getRCRoot(&*I)]);
|
|
}
|
|
}
|
|
|
|
// Lastly update the BBSetOut, only necessary when we are running a single
|
|
// iteration dataflow.
|
|
if (!MultiIteration) {
|
|
S.updateBBSetOut(S.BBSetIn);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Release Code Motion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class ReleaseBlockState : public BlockState {
|
|
public:
|
|
/// Check whether the BBSetIn has changed. If it does, we need to rerun
|
|
/// the data flow on this block's predecessors to reach fixed point.
|
|
bool updateBBSetIn(SmallBitVector &X) {
|
|
if (BBSetIn == X)
|
|
return false;
|
|
BBSetIn = X;
|
|
return true;
|
|
}
|
|
|
|
/// If \p InitOptimistic is true, the block in-bits are initialized to 1
|
|
/// which enables optimistic data flow evaluation.
|
|
void init(bool InitOptimistic, unsigned size) {
|
|
// backward data flow.
|
|
// Initialize to true if we are running optimistic data flow, i.e.
|
|
// MultiIteration is true.
|
|
BBSetIn.resize(size, InitOptimistic);
|
|
BBSetOut.resize(size, false);
|
|
BBMaxSet.resize(size, InitOptimistic);
|
|
|
|
// Genset and Killset are initially empty.
|
|
BBGenSet.resize(size, false);
|
|
BBKillSet.resize(size, false);
|
|
}
|
|
};
|
|
|
|
/// ReleaseCodeMotionContext - Context to perform release code motion.
|
|
class ReleaseCodeMotionContext : public CodeMotionContext {
|
|
/// All the release block state for all the basic blocks in the function.
|
|
BasicBlockData<ReleaseBlockState> BlockStates;
|
|
|
|
/// We are not moving epilogue releases.
|
|
bool FreezeEpilogueReleases;
|
|
|
|
/// The epilogue release matcher we are currently using.
|
|
ConsumedArgToEpilogueReleaseMatcher &ERM;
|
|
|
|
/// Return true if the instruction blocks the Ptr to be moved further.
|
|
bool mayBlockCodeMotion(SILInstruction *II, SILValue Ptr) override {
|
|
// NOTE: If more checks are to be added, place the most expensive in the end.
|
|
// This function is called many times.
|
|
//
|
|
// We can not move a release above the instruction that defines the
|
|
// released value.
|
|
if (II == Ptr->getDefiningInstruction())
|
|
return true;
|
|
// Identical RC root blocks code motion, we will be able to move this release
|
|
// further once we move the blocking release.
|
|
if (isReleaseInstruction(II) && getRCRoot(II) == Ptr) {
|
|
LLVM_DEBUG(if (printCtx) llvm::dbgs()
|
|
<< "Release " << Ptr << " at matching release " << *II);
|
|
return true;
|
|
}
|
|
// Stop at may interfere.
|
|
if (mayHaveSymmetricInterference(II, Ptr, AA)) {
|
|
LLVM_DEBUG(if (printCtx) llvm::dbgs()
|
|
<< "Release " << Ptr << " at interference " << *II);
|
|
return true;
|
|
}
|
|
// This instruction does not block the release.
|
|
return false;
|
|
}
|
|
|
|
/// Return the successor instruction if it happens to be a release with the
|
|
/// given RC root, nullptr otherwise.
|
|
SILInstruction *getPrevReusableInst(SILInstruction *I, SILValue Root) {
|
|
if (&*I->getParent()->begin() == I)
|
|
return nullptr;
|
|
auto Prev = &*std::prev(SILBasicBlock::iterator(I));
|
|
if (isReleaseInstruction(Prev) && getRCRoot(Prev) == Root)
|
|
return Prev;
|
|
return nullptr;
|
|
}
|
|
|
|
public:
|
|
/// Constructor.
|
|
ReleaseCodeMotionContext(llvm::SpecificBumpPtrAllocator<BlockState> &BPA,
|
|
SILFunction *F, PostOrderFunctionInfo *PO,
|
|
AliasAnalysis *AA, RCIdentityFunctionInfo *RCFI,
|
|
bool FreezeEpilogueReleases,
|
|
ConsumedArgToEpilogueReleaseMatcher &ERM)
|
|
: CodeMotionContext(BPA, F, PO, AA, RCFI), BlockStates(F),
|
|
FreezeEpilogueReleases(FreezeEpilogueReleases), ERM(ERM) {}
|
|
|
|
/// virtual destructor.
|
|
~ReleaseCodeMotionContext() override {}
|
|
|
|
/// Return true if the data flow can converge in 1 iteration.
|
|
bool requireIteration() override;
|
|
|
|
/// Initialize necessary things to run the iterative data flow.
|
|
void initializeCodeMotionDataFlow() override;
|
|
|
|
/// Initialize the basic block maximum refcounted set.
|
|
void initializeCodeMotionBBMaxSet() override;
|
|
|
|
/// Compute the genset and killset for every root in every basic block.
|
|
void computeCodeMotionGenKillSet() override;
|
|
|
|
/// Run the iterative data flow to converge.
|
|
void convergeCodeMotionDataFlow() override;
|
|
|
|
/// Use the data flow results, come up with places to insert the new inst.
|
|
void computeCodeMotionInsertPoints() override;
|
|
|
|
/// Remove the old retains and create the new *moved* refcounted instructions
|
|
bool performCodeMotion() override;
|
|
|
|
/// Compute the BBSetIn and BBSetOut for the current basic
|
|
/// block with the generated gen and kill set.
|
|
bool processBBWithGenKillSet(SILBasicBlock *BB) override;
|
|
|
|
/// Merge the data flow states.
|
|
void mergeBBDataFlowStates(SILBasicBlock *BB) override;
|
|
};
|
|
|
|
bool ReleaseCodeMotionContext::requireIteration() {
|
|
// If all basic blocks will have their successors processed if the basic
|
|
// blocks in the functions are iterated in post order. Then this function
|
|
// can be processed in one iteration, i.e. no need to generate the genset
|
|
// and killset.
|
|
BasicBlockSet PBBs(BlockStates.getFunction());
|
|
for (SILBasicBlock *B : PO->getPostOrder()) {
|
|
for (SILBasicBlock *succ : B->getSuccessors()) {
|
|
if (!PBBs.contains(succ))
|
|
return true;
|
|
}
|
|
PBBs.insert(B);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ReleaseCodeMotionContext::initializeCodeMotionDataFlow() {
|
|
// All blocks which are initialized with 1-bits. These are all blocks which
|
|
// eventually reach the function exit (return, throw), excluding the
|
|
// function exit blocks themselves.
|
|
// Optimistic initialization enables moving releases across loops. On the
|
|
// other hand, blocks, which never reach the function exit, e.g. infinite
|
|
// loop blocks, must be excluded. Otherwise we would end up inserting
|
|
// completely unrelated release instructions in such blocks.
|
|
BasicBlockSet BlocksInitOptimistically(BlockStates.getFunction());
|
|
|
|
llvm::SmallVector<SILBasicBlock *, 32> Worklist;
|
|
|
|
// Find all the RC roots in the function.
|
|
for (auto &BB : *F) {
|
|
for (auto &II : BB) {
|
|
if (!isReleaseInstruction(&II))
|
|
continue;
|
|
// Do not try to enumerate if we are not hoisting epilogue releases.
|
|
if (FreezeEpilogueReleases && ERM.isEpilogueRelease(&II))
|
|
continue;
|
|
SILValue Root = getRCRoot(&II);
|
|
RCInstructions.insert(&II);
|
|
if (RCRootIndex.find(Root) != RCRootIndex.end())
|
|
continue;
|
|
RCRootIndex[Root] = RCRootVault.size();
|
|
RCRootVault.insert(Root);
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Release Root #" << RCRootVault.size() << " " << Root);
|
|
}
|
|
if (MultiIteration && BB.getTerminator()->isFunctionExiting())
|
|
Worklist.push_back(&BB);
|
|
}
|
|
|
|
// Find all blocks from which there is a path to the function exit.
|
|
// Note: the Worklist is empty if we are not in MultiIteration mode.
|
|
while (!Worklist.empty()) {
|
|
SILBasicBlock *BB = Worklist.pop_back_val();
|
|
for (SILBasicBlock *Pred : BB->getPredecessorBlocks()) {
|
|
if (BlocksInitOptimistically.insert(Pred))
|
|
Worklist.push_back(Pred);
|
|
}
|
|
}
|
|
|
|
// Initialize all the data flow bit vector for all basic blocks.
|
|
for (auto bd : BlockStates) {
|
|
bd.data.init(BlocksInitOptimistically.contains(&bd.block) != 0,
|
|
RCRootVault.size());
|
|
}
|
|
}
|
|
|
|
void ReleaseCodeMotionContext::initializeCodeMotionBBMaxSet() {
|
|
for (SILBasicBlock *BB : PO->getPostOrder()) {
|
|
// If basic block has no successor, do nothing.
|
|
BlockState &State = BlockStates[BB];
|
|
if (BB->succ_empty()) {
|
|
State.BBMaxSet.reset();
|
|
} else {
|
|
// Intersect in all successors' BBMaxOuts.
|
|
State.BBMaxSet.set();
|
|
for (auto E = BB->succ_end(), I = BB->succ_begin(); I != E; ++I) {
|
|
State.BBMaxSet &= BlockStates[*I].BBMaxSet;
|
|
}
|
|
}
|
|
|
|
// Process the instructions in the basic block to find what refcounted
|
|
// roots are released. If we know that an RC root can't be released at a
|
|
// basic block, then we know we do not need to consider it for the killset.
|
|
// NOTE: this is a conservative approximation, because some releases may be
|
|
// blocked before it reaches this block.
|
|
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
|
|
if (!isReleaseInstruction(&*II))
|
|
continue;
|
|
State.BBMaxSet.set(RCRootIndex[getRCRoot(&*II)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReleaseCodeMotionContext::computeCodeMotionGenKillSet() {
|
|
for (SILBasicBlock *BB : PO->getPostOrder()) {
|
|
BlockState &State = BlockStates[BB];
|
|
bool InterestBlock = false;
|
|
for (auto I = BB->rbegin(), E = BB->rend(); I != E; ++I) {
|
|
// Check whether this instruction blocks any RC root code motion.
|
|
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
|
|
if (!State.BBMaxSet.test(i) || !mayBlockCodeMotion(&*I, RCRootVault[i]))
|
|
continue;
|
|
// This instruction blocks this RC root.
|
|
InterestBlock = true;
|
|
State.BBKillSet.set(i);
|
|
State.BBGenSet.reset(i);
|
|
}
|
|
|
|
// If this is an epilogue release and we are freezing epilogue release
|
|
// simply continue.
|
|
if (FreezeEpilogueReleases && ERM.isEpilogueRelease(&*I))
|
|
continue;
|
|
|
|
// If this is a release instruction, it also generates.
|
|
if (isReleaseInstruction(&*I)) {
|
|
unsigned idx = RCRootIndex[getRCRoot(&*I)];
|
|
State.BBGenSet.set(idx);
|
|
assert(State.BBKillSet.test(idx) && "Killset computed incorrectly");
|
|
State.BBKillSet.reset(idx);
|
|
InterestBlock = true;
|
|
}
|
|
}
|
|
|
|
// Handle SILArgument, SILArgument can invalidate.
|
|
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
|
|
auto *A = dyn_cast<SILArgument>(RCRootVault[i]);
|
|
if (!A || A->getParent() != BB)
|
|
continue;
|
|
InterestBlock = true;
|
|
State.BBKillSet.set(i);
|
|
State.BBGenSet.reset(i);
|
|
}
|
|
|
|
// Is this interesting to the last iteration of the data flow.
|
|
if (!InterestBlock)
|
|
continue;
|
|
InterestBlocks.insert(BB);
|
|
}
|
|
}
|
|
|
|
void ReleaseCodeMotionContext::mergeBBDataFlowStates(SILBasicBlock *BB) {
|
|
BlockState &State = BlockStates[BB];
|
|
State.BBSetOut.reset();
|
|
// If basic block has no successor, simply reset and return.
|
|
if (BB->succ_empty())
|
|
return;
|
|
|
|
// Intersect in all successors' BBSetIn.
|
|
auto Iter = BB->succ_begin();
|
|
State.BBSetOut = BlockStates[*Iter].BBSetIn;
|
|
Iter = std::next(Iter);
|
|
for (auto E = BB->succ_end(); Iter != E; ++Iter) {
|
|
State.BBSetOut &= BlockStates[*Iter].BBSetIn;
|
|
}
|
|
}
|
|
|
|
bool ReleaseCodeMotionContext::performCodeMotion() {
|
|
bool Changed = false;
|
|
SmallVector<SILInstruction *, 8> NewReleases;
|
|
// Create the new releases at each anchor point.
|
|
for (auto RC : RCRootVault) {
|
|
auto Iter = InsertPoints.find(RC);
|
|
if (Iter == InsertPoints.end())
|
|
continue;
|
|
for (auto IP : Iter->second) {
|
|
// we are about to insert a new release instruction before the insertion
|
|
// point. Check if the successor instruction is reusable, reuse it, do
|
|
// not insert new instruction and delete old one.
|
|
if (auto I = getPrevReusableInst(IP, Iter->first)) {
|
|
if (RCInstructions.erase(I))
|
|
NewReleases.push_back(I);
|
|
continue;
|
|
}
|
|
if (SILInstruction *I = createDecrementBefore(Iter->first, IP).getPtrOrNull())
|
|
NewReleases.push_back(I);
|
|
Changed = true;
|
|
}
|
|
}
|
|
// Remove the old release instructions.
|
|
for (auto R : RCInstructions) {
|
|
++NumReleasesHoisted;
|
|
recursivelyDeleteTriviallyDeadInstructions(R, true);
|
|
}
|
|
|
|
// Eliminate pairs of retain-release if they are adjacent to each other and
|
|
// retain/release the same RCRoot, e.g.
|
|
// strong_retain %2
|
|
// strong_release %2
|
|
for (SILInstruction *ReleaseInst : NewReleases) {
|
|
auto InstIter = ReleaseInst->getIterator();
|
|
if (InstIter == ReleaseInst->getParent()->begin())
|
|
continue;
|
|
|
|
SILInstruction *PrevInst = &*std::prev(InstIter);
|
|
if (isRetainInstruction(PrevInst) && getRCRoot(PrevInst) == getRCRoot(ReleaseInst)) {
|
|
recursivelyDeleteTriviallyDeadInstructions(PrevInst, true);
|
|
recursivelyDeleteTriviallyDeadInstructions(ReleaseInst, true);
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool ReleaseCodeMotionContext::processBBWithGenKillSet(SILBasicBlock *BB) {
|
|
ReleaseBlockState &State = BlockStates[BB];
|
|
// Compute the BBSetOut at the end of the basic block.
|
|
mergeBBDataFlowStates(BB);
|
|
|
|
// Compute the BBSetIn at the beginning of the basic block.
|
|
State.BBSetOut.reset(State.BBKillSet);
|
|
State.BBSetOut |= State.BBGenSet;
|
|
|
|
// If BBSetIn changes, then keep iterating until reached a fixed point.
|
|
return State.updateBBSetIn(State.BBSetOut);
|
|
}
|
|
|
|
void ReleaseCodeMotionContext::convergeCodeMotionDataFlow() {
|
|
// Process each basic block with the gen and kill set. Every time the
|
|
// BBSetIn of a basic block changes, the optimization is rerun on its
|
|
// predecessors.
|
|
BasicBlockWorklist WorkList(BlockStates.getFunction());
|
|
// Push into reverse post order so that we can pop from the back and get
|
|
// post order.
|
|
for (SILBasicBlock *B : PO->getPostOrder()) {
|
|
WorkList.push(B);
|
|
}
|
|
while (SILBasicBlock *BB = WorkList.popAndForget()) {
|
|
if (processBBWithGenKillSet(BB)) {
|
|
for (auto X : BB->getPredecessorBlocks()) {
|
|
WorkList.pushIfNotVisited(X);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReleaseCodeMotionContext::computeCodeMotionInsertPoints() {
|
|
#ifndef NDEBUG
|
|
printCtx.emplace(llvm::dbgs(), /*Verbose=*/false, /*Sorted=*/true);
|
|
#endif
|
|
|
|
// The BBSetIns have converged, run last iteration and figure out insertion
|
|
// point for each RC root.
|
|
for (SILBasicBlock *BB : PO->getPostOrder()) {
|
|
// Intersect in the successor BBSetIns.
|
|
mergeBBDataFlowStates(BB);
|
|
ReleaseBlockState &S = BlockStates[BB];
|
|
|
|
// Compute insertion point generated by the edge value transition.
|
|
// If there is a transition from 1 to 0, that means we have a partial
|
|
// merge, which means the release can NOT be hoisted to the current block.
|
|
// place it at the successors.
|
|
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
|
|
if (S.BBSetOut[i])
|
|
continue;
|
|
for (auto &Succ : BB->getSuccessors()) {
|
|
BlockState &SBB = BlockStates[Succ];
|
|
if (!SBB.BBSetIn[i])
|
|
continue;
|
|
InsertPoints[RCRootVault[i]].push_back(&*(*Succ).begin());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Release partial merge. Insert at successor: "
|
|
<< printCtx->getID(BB) << " " << RCRootVault[i]);
|
|
}
|
|
}
|
|
|
|
// Is this block interesting ?
|
|
if (MultiIteration && !InterestBlocks.contains(BB))
|
|
continue;
|
|
|
|
// Compute insertion point generated by MayUse terminator inst.
|
|
// If terminator instruction can block the RC root. We will have no
|
|
// choice but to anchor the release instructions in the successor blocks.
|
|
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
|
|
SILInstruction *Term = BB->getTerminator();
|
|
if (!S.BBSetOut[i] || !mayBlockCodeMotion(Term, RCRootVault[i]))
|
|
continue;
|
|
for (auto &Succ : BB->getSuccessors()) {
|
|
BlockState &SBB = BlockStates[Succ];
|
|
if (!SBB.BBSetIn[i])
|
|
continue;
|
|
InsertPoints[RCRootVault[i]].push_back(&*(*Succ).begin());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Release terminator use. Insert at successor: "
|
|
<< printCtx->getID(BB) << " " << RCRootVault[i]);
|
|
}
|
|
S.BBSetOut.reset(i);
|
|
}
|
|
|
|
// Compute insertion point generated within the basic block. Process
|
|
// instructions in post-order fashion.
|
|
for (auto I = std::next(BB->rbegin()), E = BB->rend(); I != E; ++I) {
|
|
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
|
|
if (!S.BBSetOut[i] || !mayBlockCodeMotion(&*I, RCRootVault[i]))
|
|
continue;
|
|
auto *InsertPt = &*std::next(SILBasicBlock::iterator(&*I));
|
|
InsertPoints[RCRootVault[i]].push_back(InsertPt);
|
|
S.BBSetOut.reset(i);
|
|
}
|
|
|
|
// If we are freezing this epilogue release. Simply continue.
|
|
if (FreezeEpilogueReleases && ERM.isEpilogueRelease(&*I))
|
|
continue;
|
|
|
|
// This release generates.
|
|
if (isReleaseInstruction(&*I)) {
|
|
S.BBSetOut.set(RCRootIndex[getRCRoot(&*I)]);
|
|
}
|
|
}
|
|
|
|
// Compute insertion point generated by SILArgument. SILArgument blocks if
|
|
// it defines the released value.
|
|
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
|
|
if (!S.BBSetOut[i])
|
|
continue;
|
|
auto *A = dyn_cast<SILArgument>(RCRootVault[i]);
|
|
if (!A || A->getParent() != BB)
|
|
continue;
|
|
InsertPoints[RCRootVault[i]].push_back(&*BB->begin());
|
|
S.BBSetOut.reset(i);
|
|
}
|
|
|
|
// Lastly update the BBSetIn, only necessary when we are running a single
|
|
// iteration dataflow.
|
|
if (!MultiIteration) {
|
|
S.updateBBSetIn(S.BBSetOut);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Eliminate Retains Before Program Termination Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void eliminateRetainsPrecedingProgramTerminationPoints(SILFunction *f) {
|
|
for (auto &block : *f) {
|
|
auto *term = block.getTerminator();
|
|
// If we don't have an unreachable or an unreachable that is the only
|
|
// element in the block, bail.
|
|
if (!isa<UnreachableInst>(term) || term == &*block.begin())
|
|
continue;
|
|
|
|
auto iter = std::prev(term->getIterator());
|
|
|
|
// If we have an apply next, see if it is a program termination point. In
|
|
// such a case, we can ignore it. All other functions though imply we must
|
|
// bail. If we don't have a function here, check for side
|
|
if (auto apply = FullApplySite::isa(&*iter)) {
|
|
if (!apply.isCalleeKnownProgramTerminationPoint()) {
|
|
continue;
|
|
}
|
|
} else {
|
|
// If we didn't have an apply, move back onto the unreachable so that we
|
|
// can begin the loop in a proper state where we the current position of
|
|
// the iterator has already been tested.
|
|
++iter;
|
|
}
|
|
|
|
while (iter != block.begin()) {
|
|
// Move iter back to the prev instruction and see if iter is a retain
|
|
// instruction. If it is not, then break out of the loop. We found a
|
|
// non-retain instruction so can not optimize further since we do not want
|
|
// to shorten the lifetime of any values that may be used before the
|
|
// program termination.
|
|
--iter;
|
|
|
|
// First check if iter has side-effects. If iter doesn't have
|
|
// side-effects, then ignore it.
|
|
//
|
|
// TODO: Use SideEffectsAnalysis here.
|
|
if (!iter->mayHaveSideEffects())
|
|
continue;
|
|
|
|
if (!isa<StrongRetainInst>(&*iter) && !isa<RetainValueInst>(&*iter)) {
|
|
break;
|
|
}
|
|
|
|
// Since we are going to delete this instruction, we grab the pointer to
|
|
// the instruction, move iter to the prev instruction and erase the
|
|
// instruction.
|
|
auto *i = &*iter;
|
|
auto tmp = prev_or_default(iter, block.begin(), block.end());
|
|
i->eraseFromParent();
|
|
|
|
// If tmp is the end of the block, then we wrapped... break out of the
|
|
// loop we did all of the work that we could.
|
|
if (tmp == block.end())
|
|
break;
|
|
|
|
// Otherwise, set iter to point at the next instruction.
|
|
iter = std::next(tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Entry Point
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Code motion kind.
|
|
enum CodeMotionKind : unsigned { Retain = 0, Release = 1};
|
|
|
|
class ARCCodeMotion : public SILFunctionTransform {
|
|
/// Whether to hoist releases or sink retains.
|
|
CodeMotionKind Kind;
|
|
|
|
/// Freeze epilogue release or not.
|
|
bool FreezeEpilogueReleases;
|
|
|
|
public:
|
|
/// Constructor.
|
|
ARCCodeMotion(CodeMotionKind H, bool F) : Kind(H), FreezeEpilogueReleases(F) {}
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
// Code motion disabled.
|
|
if (DisableARCCodeMotion)
|
|
return;
|
|
|
|
// Respect function no.optimize.
|
|
SILFunction *F = getFunction();
|
|
if (!F->shouldOptimize())
|
|
return;
|
|
|
|
// FIXME: Support ownership.
|
|
if (F->hasOwnership())
|
|
return;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** ARCCM on function: " << F->getName()
|
|
<< " ***\n");
|
|
|
|
PostOrderAnalysis *POA = PM->getAnalysis<PostOrderAnalysis>();
|
|
|
|
// Split all critical edges.
|
|
//
|
|
// TODO: maybe we can do this lazily or maybe we should disallow SIL passes
|
|
// to create critical edges.
|
|
bool EdgeChanged = splitAllCriticalEdges(*F, nullptr, nullptr);
|
|
if (EdgeChanged)
|
|
POA->invalidateFunction(F);
|
|
|
|
auto *PO = POA->get(F);
|
|
auto *AA = PM->getAnalysis<AliasAnalysis>(F);
|
|
auto *RCFI = PM->getAnalysis<RCIdentityAnalysis>()->get(F);
|
|
|
|
llvm::SpecificBumpPtrAllocator<BlockState> BPA;
|
|
bool InstChanged = false;
|
|
if (Kind == Release) {
|
|
// TODO: we should consider Throw block as well, or better we should
|
|
// abstract the Return block or Throw block away in the matcher.
|
|
SILArgumentConvention Conv[] = {SILArgumentConvention::Direct_Owned};
|
|
ConsumedArgToEpilogueReleaseMatcher ERM(RCFI, F,
|
|
Conv,
|
|
ConsumedArgToEpilogueReleaseMatcher::ExitKind::Return);
|
|
|
|
ReleaseCodeMotionContext RelCM(BPA, F, PO, AA, RCFI,
|
|
FreezeEpilogueReleases, ERM);
|
|
// Run release hoisting.
|
|
InstChanged |= RelCM.run();
|
|
} else {
|
|
RetainCodeMotionContext RetCM(BPA, F, PO, AA, RCFI);
|
|
// Run retain sinking.
|
|
InstChanged |= RetCM.run();
|
|
// Eliminate any retains that are right before program termination
|
|
// points. We assume that any retains before semantic calls marked as
|
|
// program termination points can be eliminated since by assumption we are
|
|
// going to be leaking these objects and any releases that were afterwards
|
|
// were already eliminated. Assuming that the IR is correctly balanced
|
|
// from an ARC perspective.
|
|
eliminateRetainsPrecedingProgramTerminationPoints(F);
|
|
}
|
|
|
|
if (EdgeChanged) {
|
|
// We splitted critical edges.
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
return;
|
|
}
|
|
if (InstChanged) {
|
|
// We moved instructions.
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Sink Retains.
|
|
SILTransform *swift::createRetainSinking() {
|
|
return new ARCCodeMotion(CodeMotionKind::Retain, false);
|
|
}
|
|
|
|
/// Hoist releases, but not epilogue release. ASO relies on epilogue releases
|
|
/// to prove knownsafety on enclosed releases.
|
|
SILTransform *swift::createReleaseHoisting() {
|
|
return new ARCCodeMotion(CodeMotionKind::Release, true);
|
|
}
|
|
|
|
/// Hoist all releases.
|
|
SILTransform *swift::createLateReleaseHoisting() {
|
|
return new ARCCodeMotion(CodeMotionKind::Release, false);
|
|
}
|