mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Instead of caching alias results globally for the module, make AliasAnalysis a FunctionAnalysisBase which caches the alias results per function.
Why?
* So far the result caches could only grow. They were reset when they reached a certain size. This was not ideal. Now, they are invalidated whenever the function changes.
* It was not possible to actually invalidate an alias analysis result. This is required, for example in TempRValueOpt and TempLValueOpt (so far it was done manually with invalidateInstruction).
* Type based alias analysis results were also cached for the whole module, while it is actually dependent on the function, because it depends on the function's resilience expansion. This was a potential bug.
I also added a new PassManager API to directly get a function-base analysis:
getAnalysis(SILFunction *f)
The second change of this commit is the removal of the instruction-index indirection for the cache keys. Now the cache keys directly work on instruction pointers instead of instruction indices. This reduces the number of hash table lookups for a cache lookup from 3 to 1.
This indirection was needed to avoid dangling instruction pointers in the cache keys. But this is not needed anymore, because of the new delayed instruction deletion mechanism.
1297 lines
46 KiB
C++
1297 lines
46 KiB
C++
//===--- DeadStoreElimination.cpp - SIL Dead Store Elimination ------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
///
|
|
/// This pass eliminates dead stores across basic blocks.
|
|
///
|
|
/// A store is dead if after the store has occurred:
|
|
///
|
|
/// 1. The store to pointer is not used along any path to program exit.
|
|
/// 2. The store to pointer is overwritten by another store before any
|
|
/// potential use of the pointer.
|
|
///
|
|
/// Dead store elimination (DSE) eliminates such stores by:
|
|
///
|
|
/// 1. Introducing a notion of a LSLocation that is used to model objects
|
|
/// fields. (See below for more details).
|
|
///
|
|
/// 2. Performing a post-order walk over the control flow graph, tracking any
|
|
/// LSLocations that are read from or stored into in each basic block. After
|
|
/// eliminating any dead stores in single blocks, it computes a genset and
|
|
/// killset for each block. The genset keeps a list of upward visible stores
|
|
/// and the killset keeps a list of LSLocation this basic block reads (kills).
|
|
///
|
|
/// 3. An optimistic iterative dataflow is performed on the genset and killset
|
|
/// until convergence.
|
|
///
|
|
/// At the core of DSE, there is the LSLocation class. a LSLocation is an
|
|
/// abstraction of an object field in program. It consists of a base and a
|
|
/// projection path to the field accessed.
|
|
///
|
|
/// When a load or store instruction is encountered, the memory is broken down
|
|
/// to the indivisible components, i.e aggregates are broken down to their
|
|
/// individual fields using the expand function. This gives the flexibility to
|
|
/// find exactly which part of the store is alive and which part is dead.
|
|
///
|
|
/// After the live parts of the store are determined, they are merged into the
|
|
/// minimum number of stores possible using the reduce function. This is done
|
|
/// so that we do not bloat SIL IR.
|
|
///
|
|
/// Another way to implement the DSE optimization is to keep the instructions
|
|
/// that read and/or write memory without breaking the memory read/written
|
|
/// using the ProjectionPath. However, this can easily lead to loss of
|
|
/// opportunities, e.g. a read that only kills part of a store may need to be
|
|
/// treated as killing the entire store. However, using ProjectionPath does
|
|
/// lead to more memory uses.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-dead-store-elim"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/MemoryLocations.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/LoadStoreOptUtils.h"
|
|
#include "swift/SIL/BasicBlockData.h"
|
|
#include "swift/SIL/BasicBlockDatastructures.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumDeadStores, "Number of dead stores removed");
|
|
STATISTIC(NumPartialDeadStores, "Number of partial dead stores removed");
|
|
|
|
/// If a large store is broken down to too many smaller stores, bail out.
|
|
/// Currently, we only do partial dead store if we can form a single contiguous
|
|
/// live store.
|
|
static llvm::cl::opt<unsigned>
|
|
MaxPartialStoreCount("max-partial-store-count", llvm::cl::init(1), llvm::cl::Hidden);
|
|
|
|
/// ComputeMaxStoreSet - If we ignore all reads, what is the max store set that
|
|
/// can reach a particular point in a basic block. This helps in generating
|
|
/// the genset and killset. i.e. if there is no upward visible store that can
|
|
/// reach the beginning of a basic block, then we know that the genset and
|
|
/// killset for the stored location need not be set for the basic block.
|
|
///
|
|
/// BuildGenKillSet - Build the genset and killset of the basic block.
|
|
///
|
|
/// PerformDSE - Perform the actual dead store elimination.
|
|
enum class DSEKind : unsigned {
|
|
ComputeMaxStoreSet = 0,
|
|
BuildGenKillSet = 1,
|
|
PerformDSE = 2,
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return the deallocate stack instructions corresponding to the given
|
|
/// AllocStackInst.
|
|
static llvm::SmallVector<SILInstruction *, 1>
|
|
findDeallocStackInst(AllocStackInst *ASI) {
|
|
llvm::SmallVector<SILInstruction *, 1> DSIs;
|
|
for (auto UI = ASI->use_begin(), E = ASI->use_end(); UI != E; ++UI) {
|
|
if (auto *D = dyn_cast<DeallocStackInst>(UI->getUser())) {
|
|
DSIs.push_back(D);
|
|
}
|
|
}
|
|
return DSIs;
|
|
}
|
|
|
|
/// Return the deallocate ref instructions corresponding to the given
|
|
/// AllocRefInst.
|
|
static llvm::SmallVector<SILInstruction *, 1>
|
|
findDeallocRefInst(AllocRefInst *ARI) {
|
|
llvm::SmallVector<SILInstruction *, 1> DSIs;
|
|
for (auto UI = ARI->use_begin(), E = ARI->use_end(); UI != E; ++UI) {
|
|
if (auto *D = dyn_cast<DeallocRefInst>(UI->getUser())) {
|
|
if (D->isDeallocatingStack())
|
|
DSIs.push_back(D);
|
|
}
|
|
}
|
|
return DSIs;
|
|
}
|
|
|
|
static inline bool isComputeMaxStoreSet(DSEKind Kind) {
|
|
return Kind == DSEKind::ComputeMaxStoreSet;
|
|
}
|
|
|
|
static inline bool isBuildingGenKillSet(DSEKind Kind) {
|
|
return Kind == DSEKind::BuildGenKillSet;
|
|
}
|
|
|
|
static inline bool isPerformingDSE(DSEKind Kind) {
|
|
return Kind == DSEKind::PerformDSE;
|
|
}
|
|
|
|
/// Returns true if this is an instruction that may have side effects in a
|
|
/// general sense but are inert from a load store perspective.
|
|
static bool isDeadStoreInertInstruction(SILInstruction *Inst) {
|
|
switch (Inst->getKind()) {
|
|
#define UNCHECKED_REF_STORAGE(Name, ...) \
|
|
case SILInstructionKind::StrongCopy##Name##ValueInst:
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
case SILInstructionKind::Name##RetainInst: \
|
|
case SILInstructionKind::StrongRetain##Name##Inst: \
|
|
case SILInstructionKind::StrongCopy##Name##ValueInst:
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
case SILInstructionKind::StrongRetainInst:
|
|
case SILInstructionKind::RetainValueInst:
|
|
case SILInstructionKind::DeallocStackInst:
|
|
case SILInstructionKind::DeallocRefInst:
|
|
case SILInstructionKind::CondFailInst:
|
|
case SILInstructionKind::FixLifetimeInst:
|
|
case SILInstructionKind::EndAccessInst:
|
|
case SILInstructionKind::SetDeallocatingInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Basic Block Location State
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// If this function has too many basic blocks or too many locations, it may
|
|
/// take a long time to compute the genset and killset. The number of memory
|
|
/// behavior or alias query we need to do in worst case is roughly linear to
|
|
/// # of BBs x(times) # of locations.
|
|
///
|
|
/// we could run DSE on functions with 256 basic blocks and 256 locations,
|
|
/// which is a large function.
|
|
constexpr unsigned MaxLSLocationBBMultiplicationNone = 256*256;
|
|
|
|
/// we could run optimistic DSE on functions with less than 64 basic blocks
|
|
/// and 64 locations which is a sizable function.
|
|
constexpr unsigned MaxLSLocationBBMultiplicationPessimistic = 64*64;
|
|
|
|
/// forward declaration.
|
|
class DSEContext;
|
|
/// BlockState summarizes how LSLocations are used in a basic block.
|
|
///
|
|
/// Initially the BBWriteSetOut is empty. Before a basic block is processed, it
|
|
/// is initialized to the intersection of BBWriteSetIns of all successors of the
|
|
/// basic block.
|
|
///
|
|
/// BBWriteSetMid is initialized to BBWriteSetOut of the current basic block
|
|
/// before instructions in the basic block is processed.
|
|
///
|
|
/// Initially BBWriteSetIn is set to true. After the basic block is processed,
|
|
/// if its BBWriteSetMid is different from BBWriteSetIn, BBWriteSetIn is
|
|
/// assigned the value of BBWriteSetMid and the data flow is rerun on the
|
|
/// current basic block's predecessors.
|
|
///
|
|
/// Instructions in each basic block are processed in post-order as follows:
|
|
///
|
|
/// 1. When a store instruction is encountered, the stored location is tracked.
|
|
///
|
|
/// 2. When a load instruction is encountered, remove the loaded location and
|
|
/// any location it may alias with from the BBWriteSetMid.
|
|
///
|
|
/// 3. When an instruction reads from memory in an unknown way, the BBWriteSet
|
|
/// bit is cleared if the instruction can read the corresponding LSLocation.
|
|
class BlockState {
|
|
public:
|
|
/// The basic block this BlockState represents.
|
|
SILBasicBlock *BB = nullptr;
|
|
|
|
/// Keep the number of LSLocations in the LocationVault.
|
|
unsigned LocationNum = 0;
|
|
|
|
/// A bit vector for which the ith bit represents the ith LSLocation in
|
|
/// LocationVault. If the bit is set, then the location currently has an
|
|
/// upward visible store at the end of the basic block.
|
|
SmallBitVector BBWriteSetOut;
|
|
|
|
/// A bit vector for which the ith bit represents the ith LSLocation in
|
|
/// LocationVault. If the bit is set, then the location currently has an
|
|
/// upward visible store in middle of the basic block.
|
|
SmallBitVector BBWriteSetMid;
|
|
|
|
/// A bit vector for which the ith bit represents the ith LSLocation in
|
|
/// LocationVault. If a bit in the vector is set, then the location has an
|
|
/// upward visible store at the beginning of the basic block.
|
|
SmallBitVector BBWriteSetIn;
|
|
|
|
/// A bit vector for which the ith bit represents the ith LSLocation in
|
|
/// LocationVault. If the bit is set, then the current basic block
|
|
/// generates an upward visible store.
|
|
SmallBitVector BBGenSet;
|
|
|
|
/// A bit vector for which the ith bit represents the ith LSLocation in
|
|
/// LocationVault. If the bit is set, then the current basic block
|
|
/// kills an upward visible store.
|
|
SmallBitVector BBKillSet;
|
|
|
|
/// A bit vector to keep the maximum number of stores that can reach a
|
|
/// certain point of the basic block. If a bit is set, that means there is
|
|
/// potentially an upward visible store to the location at the particular
|
|
/// point of the basic block.
|
|
SmallBitVector BBMaxStoreSet;
|
|
|
|
/// If a bit in the vector is set, then the location is dead at the end of
|
|
/// this basic block.
|
|
SmallBitVector BBDeallocateLocation;
|
|
|
|
/// The dead stores in the current basic block.
|
|
llvm::SmallVector<SILInstruction *, 2> DeadStores;
|
|
|
|
/// Keeps track of what stores to generate after the data flow stabilizes.
|
|
/// these stores come from partial dead stores.
|
|
///
|
|
/// The first SILValue keeps the address of the live store and the second
|
|
/// SILValue keeps the value of the store.
|
|
llvm::SetVector<SILValue> LiveAddr;
|
|
llvm::DenseMap<SILValue, SILValue> LiveStores;
|
|
|
|
/// Constructors.
|
|
BlockState() = default;
|
|
|
|
void dump();
|
|
|
|
/// Initialize the bitvectors for the current basic block.
|
|
void init(SILBasicBlock *BB, unsigned LocationNum, bool Optimistic);
|
|
|
|
/// Check whether the BBWriteSetIn has changed. If it does, we need to rerun
|
|
/// the data flow on this block's predecessors to reach fixed point.
|
|
bool updateBBWriteSetIn(SmallBitVector &X);
|
|
|
|
/// Functions to manipulate the write set.
|
|
void startTrackingLocation(SmallBitVector &BV, unsigned bit);
|
|
void stopTrackingLocation(SmallBitVector &BV, unsigned bit);
|
|
bool isTrackingLocation(SmallBitVector &BV, unsigned bit);
|
|
|
|
/// Set the store bit for stack slot deallocated in this basic block.
|
|
void initStoreSetAtEndOfBlock(DSEContext &Ctx);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool BlockState::updateBBWriteSetIn(SmallBitVector &X) {
|
|
if (BBWriteSetIn == X)
|
|
return false;
|
|
BBWriteSetIn = X;
|
|
return true;
|
|
}
|
|
|
|
void BlockState::startTrackingLocation(SmallBitVector &BV, unsigned i) {
|
|
BV.set(i);
|
|
}
|
|
|
|
void BlockState::stopTrackingLocation(SmallBitVector &BV, unsigned i) {
|
|
BV.reset(i);
|
|
}
|
|
|
|
bool BlockState::isTrackingLocation(SmallBitVector &BV, unsigned i) {
|
|
return BV.test(i);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// The dead store elimination context, keep information about stores in a basic
|
|
/// block granularity.
|
|
class DSEContext {
|
|
/// How to process the current function.
|
|
enum class ProcessKind {
|
|
ProcessOptimistic = 0,
|
|
ProcessPessimistic = 1,
|
|
ProcessNone = 2,
|
|
};
|
|
|
|
private:
|
|
/// The module we are currently processing.
|
|
SILModule *Mod;
|
|
|
|
/// The function we are currently processing.
|
|
SILFunction *F;
|
|
|
|
/// Pass manager, used to get various analysis.
|
|
SILPassManager *PM;
|
|
|
|
/// Alias Analysis.
|
|
AliasAnalysis *AA;
|
|
|
|
/// Type Expansion Analysis.
|
|
TypeExpansionAnalysis *TE;
|
|
|
|
/// Epilogue release analysis.
|
|
EpilogueARCFunctionInfo *EAFI;
|
|
|
|
/// Map every basic block to its location state.
|
|
BasicBlockData<BlockState> BBToLocState;
|
|
|
|
/// Keeps all the locations for the current function. The BitVector in each
|
|
/// BlockState is then laid on top of it to keep track of which LSLocation
|
|
/// has an upward visible store.
|
|
std::vector<LSLocation> LocationVault;
|
|
|
|
/// Keeps a list of basic blocks that have StoreInsts. If a basic block does
|
|
/// not have StoreInst, we do not actually perform the last iteration where
|
|
/// DSE is actually performed on the basic block.
|
|
///
|
|
/// NOTE: This is never populated for functions which will only require 1
|
|
/// data flow iteration. For function that requires more than 1 iteration of
|
|
/// the data flow this is populated when the first time the functions is
|
|
/// walked, i.e. when the we generate the genset and killset.
|
|
BasicBlockSet BBWithStores;
|
|
|
|
/// Contains a map between location to their index in the LocationVault.
|
|
/// used to facilitate fast location to index lookup.
|
|
LSLocationIndexMap LocToBitIndex;
|
|
|
|
/// Keeps a map between the accessed SILValue and the location.
|
|
LSLocationBaseMap BaseToLocIndex;
|
|
|
|
/// Return the BlockState for the basic block this basic block belongs to.
|
|
BlockState *getBlockState(SILBasicBlock *B) { return &BBToLocState[B]; }
|
|
|
|
/// Return the BlockState for the basic block this instruction belongs to.
|
|
BlockState *getBlockState(SILInstruction *I) {
|
|
return getBlockState(I->getParent());
|
|
}
|
|
|
|
/// LSLocation written has been extracted, expanded and mapped to the bit
|
|
/// position in the bitvector. update the max store set using the bit
|
|
/// position.
|
|
void processWriteForMaxStoreSet(BlockState *S, unsigned bit);
|
|
|
|
/// There is a read to a location, expand the location into individual fields
|
|
/// before processing them.
|
|
void processRead(SILInstruction *Inst, SILValue M, DSEKind K);
|
|
void processReadForGenKillSet(BlockState *S, unsigned bit);
|
|
void processReadForDSE(BlockState *S, unsigned Bit);
|
|
|
|
/// There is a write to a location, expand the location into individual fields
|
|
/// before processing them.
|
|
void processWrite(SILInstruction *Inst, SILValue V, SILValue M, DSEKind K);
|
|
void processWriteForGenKillSet(BlockState *S, unsigned bit);
|
|
bool processWriteForDSE(BlockState *S, unsigned bit);
|
|
|
|
/// Process instructions. Extract locations from SIL LoadInst.
|
|
void processLoadInst(SILInstruction *Inst, DSEKind Kind);
|
|
|
|
/// Process instructions. Extract locations from SIL StoreInst.
|
|
void processStoreInst(SILInstruction *Inst, DSEKind Kind);
|
|
|
|
/// Process instructions. Extract locations from SIL DebugValueAddrInst.
|
|
/// DebugValueAddrInst maybe promoted to DebugValue, when this is done,
|
|
/// DebugValueAddrInst is effectively a read on the location.
|
|
void processDebugValueAddrInst(SILInstruction *I, DSEKind Kind);
|
|
void processDebugValueAddrInstForGenKillSet(SILInstruction *I);
|
|
void processDebugValueAddrInstForDSE(SILInstruction *I);
|
|
|
|
/// Process unknown read instructions. Extract locations from unknown memory
|
|
/// inst.
|
|
void processUnknownReadInst(SILInstruction *Inst, DSEKind Kind);
|
|
void processUnknownReadInstForGenKillSet(SILInstruction *Inst);
|
|
void processUnknownReadInstForDSE(SILInstruction *Inst);
|
|
|
|
/// Check whether the instruction invalidate any locations due to change in
|
|
/// its location Base.
|
|
///
|
|
/// This is to handle a case like this.
|
|
///
|
|
/// class Foo { var a : Int = 12 }
|
|
/// for _ in 0 ...x {
|
|
/// x = Foo();
|
|
/// x.a = 13
|
|
/// }
|
|
/// x.a = 12
|
|
///
|
|
/// In this case, DSE cannot remove the x.a = 13 inside the loop.
|
|
///
|
|
/// To do this, when the algorithm reaches the beginning of the basic block in
|
|
/// the loop it will need to invalidate the location in the BBWriteSetMid.
|
|
/// i.e. the base of the location is changed.
|
|
///
|
|
/// If not, on the second iteration, the intersection of the successors of
|
|
/// the loop basic block will have store to x.a and therefore x.a = 13 can now
|
|
/// be considered dead.
|
|
void invalidateBase(SILValue B, BlockState *S, DSEKind Kind);
|
|
void invalidateBaseForGenKillSet(SILValue B, BlockState *S);
|
|
void invalidateBaseForDSE(SILValue B, BlockState *S);
|
|
|
|
/// Get the bit representing the location in the LocationVault.
|
|
unsigned getLocationBit(const LSLocation &L);
|
|
|
|
public:
|
|
/// Constructor.
|
|
DSEContext(SILFunction *F, SILModule *M, SILPassManager *PM,
|
|
AliasAnalysis *AA, TypeExpansionAnalysis *TE,
|
|
EpilogueARCFunctionInfo *EAFI,
|
|
llvm::SpecificBumpPtrAllocator<BlockState> &BPA)
|
|
: Mod(M), F(F), PM(PM), AA(AA), TE(TE), EAFI(EAFI), BBToLocState(F),
|
|
BBWithStores(F) {}
|
|
|
|
void dump();
|
|
|
|
/// Entry point for dead store elimination.
|
|
bool run();
|
|
|
|
/// Run the iterative DF to converge the BBWriteSetIn.
|
|
void runIterativeDSE();
|
|
|
|
/// Returns the location vault of the current function.
|
|
std::vector<LSLocation> &getLocationVault() { return LocationVault; }
|
|
|
|
/// Use a set of ad hoc rules to tell whether we should run a pessimistic
|
|
/// one iteration data flow on the function.
|
|
ProcessKind getProcessFunctionKind(unsigned StoreCount);
|
|
|
|
/// Compute the kill set for the basic block. return true if the store set
|
|
/// changes.
|
|
void processBasicBlockForDSE(SILBasicBlock *BB, bool Optimistic);
|
|
|
|
/// Compute the genset and killset for the current basic block.
|
|
void processBasicBlockForGenKillSet(SILBasicBlock *BB);
|
|
|
|
/// Compute the BBWriteSetOut and BBWriteSetIn for the current basic
|
|
/// block with the generated gen and kill set.
|
|
bool processBasicBlockWithGenKillSet(SILBasicBlock *BB);
|
|
|
|
/// Intersect the successors' BBWriteSetIns.
|
|
void mergeSuccessorLiveIns(SILBasicBlock *BB);
|
|
|
|
/// Update the BlockState based on the given instruction.
|
|
void processInstruction(SILInstruction *I, DSEKind Kind);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void BlockState::dump() {
|
|
llvm::dbgs() << " block " << BB->getDebugID() << ": in=" << BBWriteSetIn
|
|
<< ", out=" << BBWriteSetOut << ", mid=" << BBWriteSetMid
|
|
<< ", gen=" << BBGenSet << ", kill=" << BBKillSet << '\n';
|
|
}
|
|
|
|
void BlockState::init(SILBasicBlock *BB, unsigned LocationNum, bool Optimistic) {
|
|
this->BB = BB;
|
|
this->LocationNum = LocationNum;
|
|
|
|
// For function that requires just 1 iteration of the data flow to converge
|
|
// we set the initial state of BBWriteSetIn to 0.
|
|
//
|
|
// For other functions, the initial state of BBWriteSetIn should be all 1's.
|
|
// Otherwise the dataflow solution could be too conservative.
|
|
//
|
|
// Consider this case, the dead store by var a = 10 before the loop will not
|
|
// be eliminated if the BBWriteSetIn is set to 0 initially.
|
|
//
|
|
// var a = 10
|
|
// for _ in 0...1024 {}
|
|
// a = 10
|
|
//
|
|
// However, by doing so, we can only eliminate the dead stores after the
|
|
// data flow stabilizes.
|
|
//
|
|
BBWriteSetIn.resize(LocationNum, Optimistic);
|
|
BBWriteSetOut.resize(LocationNum, false);
|
|
BBWriteSetMid.resize(LocationNum, false);
|
|
|
|
// GenSet and KillSet initially empty.
|
|
BBGenSet.resize(LocationNum, false);
|
|
BBKillSet.resize(LocationNum, false);
|
|
|
|
// MaxStoreSet is optimistically set to true initially.
|
|
BBMaxStoreSet.resize(LocationNum, true);
|
|
|
|
// DeallocateLocation initially empty.
|
|
BBDeallocateLocation.resize(LocationNum, false);
|
|
}
|
|
|
|
#if __has_attribute(used)
|
|
__attribute((used))
|
|
#endif
|
|
void DSEContext::dump() {
|
|
llvm::dbgs() << "Locations:\n";
|
|
unsigned idx = 0;
|
|
for (const LSLocation &loc : LocationVault) {
|
|
llvm::dbgs() << " #" << idx << ": " << loc.getBase();
|
|
++idx;
|
|
}
|
|
for (SILBasicBlock &BB : *F) {
|
|
getBlockState(&BB)->dump();
|
|
}
|
|
}
|
|
|
|
unsigned DSEContext::getLocationBit(const LSLocation &Loc) {
|
|
// Return the bit position of the given Loc in the LocationVault. The bit
|
|
// position is then used to set/reset the bitvector kept by each BlockState.
|
|
//
|
|
// We should have the location populated by the enumerateLSLocation at this
|
|
// point.
|
|
auto Iter = LocToBitIndex.find(Loc);
|
|
assert(Iter != LocToBitIndex.end() && "LSLocation should have been enum'ed");
|
|
return Iter->second;
|
|
}
|
|
|
|
DSEContext::ProcessKind DSEContext::getProcessFunctionKind(unsigned StoreCount) {
|
|
// Don't optimize function that are marked as 'no.optimize'.
|
|
if (!F->shouldOptimize())
|
|
return ProcessKind::ProcessNone;
|
|
|
|
// Really no point optimizing here as there is no dead stores.
|
|
if (StoreCount < 1)
|
|
return ProcessKind::ProcessNone;
|
|
|
|
bool RunOneIteration = true;
|
|
unsigned BBCount = 0;
|
|
unsigned LocationCount = LocationVault.size();
|
|
|
|
// If all basic blocks will have their successors processed if
|
|
// the basic blocks in the functions are iterated in post order.
|
|
// Then this function can be processed in one iteration, i.e. no
|
|
// need to generate the genset and killset.
|
|
auto *PO = PM->getAnalysis<PostOrderAnalysis>()->get(F);
|
|
BasicBlockSet HandledBBs(F);
|
|
for (SILBasicBlock *B : PO->getPostOrder()) {
|
|
++BBCount;
|
|
for (SILBasicBlock *succ : B->getSuccessors()) {
|
|
if (!HandledBBs.contains(succ)) {
|
|
RunOneIteration = false;
|
|
break;
|
|
}
|
|
}
|
|
HandledBBs.insert(B);
|
|
}
|
|
|
|
// Data flow may take too long to run.
|
|
if (BBCount * LocationCount > MaxLSLocationBBMultiplicationNone)
|
|
return ProcessKind::ProcessNone;
|
|
|
|
// This function's data flow would converge in 1 iteration.
|
|
if (RunOneIteration)
|
|
return ProcessKind::ProcessPessimistic;
|
|
|
|
// We run one pessimistic data flow to do dead store elimination on
|
|
// the function.
|
|
if (BBCount * LocationCount > MaxLSLocationBBMultiplicationPessimistic)
|
|
return ProcessKind::ProcessPessimistic;
|
|
|
|
return ProcessKind::ProcessOptimistic;
|
|
}
|
|
|
|
void DSEContext::processBasicBlockForGenKillSet(SILBasicBlock *BB) {
|
|
// Compute the MaxStoreSet at the end of the basic block.
|
|
auto *BBState = getBlockState(BB);
|
|
if (BB->succ_empty()) {
|
|
BBState->BBMaxStoreSet |= BBState->BBDeallocateLocation;
|
|
} else {
|
|
auto Iter = BB->succ_begin();
|
|
BBState->BBMaxStoreSet = getBlockState(*Iter)->BBMaxStoreSet;
|
|
Iter = std::next(Iter);
|
|
for (auto EndIter = BB->succ_end(); Iter != EndIter; ++Iter) {
|
|
BBState->BBMaxStoreSet &= getBlockState(*Iter)->BBMaxStoreSet;
|
|
}
|
|
}
|
|
|
|
// Compute the genset and killset.
|
|
//
|
|
// Also compute the MaxStoreSet at the current position of the basic block.
|
|
//
|
|
// This helps generating the genset and killset. If there is no way a
|
|
// location can have an upward visible store at a particular point in the
|
|
// basic block, we do not need to turn on the genset and killset for the
|
|
// location.
|
|
//
|
|
// Turning on the genset and killset can be costly as it involves querying
|
|
// the AA interface.
|
|
for (auto I = BB->rbegin(), E = BB->rend(); I != E; ++I) {
|
|
// Only process store insts.
|
|
if (isa<StoreInst>(*I)) {
|
|
if (!BBWithStores.contains(BB))
|
|
BBWithStores.insert(BB);
|
|
processStoreInst(&(*I), DSEKind::ComputeMaxStoreSet);
|
|
}
|
|
|
|
// Compute the genset and killset for this instruction.
|
|
processInstruction(&(*I), DSEKind::BuildGenKillSet);
|
|
}
|
|
|
|
// Handle SILArgument for base invalidation.
|
|
ArrayRef<SILArgument *> Args = BB->getArguments();
|
|
for (auto &X : Args) {
|
|
invalidateBase(X, BBState, DSEKind::BuildGenKillSet);
|
|
}
|
|
}
|
|
|
|
bool DSEContext::processBasicBlockWithGenKillSet(SILBasicBlock *BB) {
|
|
// Compute the BBWriteSetOut at the end of the basic block.
|
|
mergeSuccessorLiveIns(BB);
|
|
|
|
// Compute the BBWriteSet at the beginning of the basic block.
|
|
BlockState *S = getBlockState(BB);
|
|
S->BBWriteSetMid = S->BBWriteSetOut;
|
|
S->BBWriteSetMid.reset(S->BBKillSet);
|
|
S->BBWriteSetMid |= S->BBGenSet;
|
|
|
|
// If BBWriteSetIn changes, then keep iterating until reached a fixed point.
|
|
return S->updateBBWriteSetIn(S->BBWriteSetMid);
|
|
}
|
|
|
|
void DSEContext::processBasicBlockForDSE(SILBasicBlock *BB, bool Optimistic) {
|
|
// If we know this is not a one iteration function which means its
|
|
// its BBWriteSetIn and BBWriteSetOut have been computed and converged,
|
|
// and this basic block does not even have StoreInsts, there is no point
|
|
// in processing every instruction in the basic block again as no store
|
|
// will be eliminated.
|
|
if (Optimistic && !BBWithStores.contains(BB))
|
|
return;
|
|
|
|
// Intersect in the successor WriteSetIns. A store is dead if it is not read
|
|
// from any path to the end of the program. Thus an intersection.
|
|
mergeSuccessorLiveIns(BB);
|
|
|
|
// Initialize the BBWriteSetMid to BBWriteSetOut to get started.
|
|
BlockState *S = getBlockState(BB);
|
|
S->BBWriteSetMid = S->BBWriteSetOut;
|
|
|
|
// Process instructions in post-order fashion.
|
|
for (auto I = BB->rbegin(), E = BB->rend(); I != E; ++I) {
|
|
processInstruction(&(*I), DSEKind::PerformDSE);
|
|
}
|
|
|
|
// Handle SILArgument for base invalidation.
|
|
ArrayRef<SILArgument *> Args = BB->getArguments();
|
|
for (auto &X : Args) {
|
|
invalidateBase(X, S, DSEKind::BuildGenKillSet);
|
|
}
|
|
|
|
S->BBWriteSetIn = S->BBWriteSetMid;
|
|
}
|
|
|
|
void BlockState::initStoreSetAtEndOfBlock(DSEContext &Ctx) {
|
|
std::vector<LSLocation> &LocationVault = Ctx.getLocationVault();
|
|
// We set the store bit at the end of the basic block in which a stack
|
|
// allocated location is deallocated.
|
|
for (unsigned i = 0; i < LocationVault.size(); ++i) {
|
|
// Turn on the store bit at the block which the stack slot is deallocated.
|
|
if (auto *ASI = dyn_cast<AllocStackInst>(LocationVault[i].getBase())) {
|
|
for (auto X : findDeallocStackInst(ASI)) {
|
|
SILBasicBlock *DSIBB = X->getParent();
|
|
if (DSIBB != BB)
|
|
continue;
|
|
startTrackingLocation(BBDeallocateLocation, i);
|
|
}
|
|
}
|
|
if (auto *ARI = dyn_cast<AllocRefInst>(LocationVault[i].getBase())) {
|
|
if (!ARI->isAllocatingStack())
|
|
continue;
|
|
for (auto X : findDeallocRefInst(ARI)) {
|
|
SILBasicBlock *DSIBB = X->getParent();
|
|
if (DSIBB != BB)
|
|
continue;
|
|
startTrackingLocation(BBDeallocateLocation, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DSEContext::mergeSuccessorLiveIns(SILBasicBlock *BB) {
|
|
// If basic block has no successor, then all local writes can be considered
|
|
// dead for block with no successor.
|
|
BlockState *C = getBlockState(BB);
|
|
if (BB->succ_empty()) {
|
|
if (isa<UnreachableInst>(BB->getTerminator())) {
|
|
C->BBWriteSetOut.set();
|
|
return;
|
|
}
|
|
C->BBWriteSetOut |= C->BBDeallocateLocation;
|
|
return;
|
|
}
|
|
|
|
// Use the first successor as the base condition.
|
|
auto Iter = BB->succ_begin();
|
|
C->BBWriteSetOut = getBlockState(*Iter)->BBWriteSetIn;
|
|
|
|
/// Merge/intersection is very frequently performed, so it is important to
|
|
/// make it as cheap as possible.
|
|
///
|
|
/// To do so, we canonicalize LSLocations, i.e. traced back to the underlying
|
|
/// object. Therefore, no need to do a O(N^2) comparison to figure out what is
|
|
/// dead along all successors.
|
|
///
|
|
/// NOTE: Canonicalization does not solve the problem entirely. i.e. it is
|
|
/// still possible that 2 LSLocations with different bases that happen to be
|
|
/// the same object and field. In such case, we would miss a dead store
|
|
/// opportunity. But this happens less often with canonicalization.
|
|
Iter = std::next(Iter);
|
|
for (auto EndIter = BB->succ_end(); Iter != EndIter; ++Iter) {
|
|
C->BBWriteSetOut &= getBlockState(*Iter)->BBWriteSetIn;
|
|
}
|
|
|
|
// We set the store bit at the end of the basic block in which a stack
|
|
// allocated location is deallocated.
|
|
C->BBWriteSetOut |= C->BBDeallocateLocation;
|
|
}
|
|
|
|
void DSEContext::invalidateBaseForGenKillSet(SILValue B, BlockState *S) {
|
|
for (unsigned i = 0; i < S->LocationNum; ++i) {
|
|
if (LocationVault[i].getBase() != B)
|
|
continue;
|
|
S->startTrackingLocation(S->BBKillSet, i);
|
|
S->stopTrackingLocation(S->BBGenSet, i);
|
|
}
|
|
}
|
|
|
|
void DSEContext::invalidateBaseForDSE(SILValue B, BlockState *S) {
|
|
for (unsigned i = 0; i < S->LocationNum; ++i) {
|
|
if (!S->BBWriteSetMid.test(i))
|
|
continue;
|
|
if (LocationVault[i].getBase() != B)
|
|
continue;
|
|
S->stopTrackingLocation(S->BBWriteSetMid, i);
|
|
}
|
|
}
|
|
|
|
void DSEContext::invalidateBase(SILValue B, BlockState *S, DSEKind Kind) {
|
|
// If this instruction defines the base of a location, then we need to
|
|
// invalidate any locations with the same base.
|
|
//
|
|
// Are we building genset and killset.
|
|
if (isBuildingGenKillSet(Kind)) {
|
|
invalidateBaseForGenKillSet(B, S);
|
|
return;
|
|
}
|
|
|
|
// Are we performing dead store elimination.
|
|
if (isPerformingDSE(Kind)) {
|
|
invalidateBaseForDSE(B, S);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unknown DSE compute kind");
|
|
}
|
|
|
|
void DSEContext::processReadForDSE(BlockState *S, unsigned bit) {
|
|
// Remove any may/must-aliasing stores to the LSLocation, as they can't be
|
|
// used to kill any upward visible stores due to the interfering load.
|
|
LSLocation &R = LocationVault[bit];
|
|
for (unsigned i = 0; i < S->LocationNum; ++i) {
|
|
if (!S->isTrackingLocation(S->BBWriteSetMid, i))
|
|
continue;
|
|
LSLocation &L = LocationVault[i];
|
|
if (!L.isMayAliasLSLocation(R, AA))
|
|
continue;
|
|
S->stopTrackingLocation(S->BBWriteSetMid, i);
|
|
}
|
|
}
|
|
|
|
void DSEContext::processReadForGenKillSet(BlockState *S, unsigned bit) {
|
|
// Start tracking the read to this LSLocation in the killset and update
|
|
// the genset accordingly.
|
|
//
|
|
// Even though, LSLocations are canonicalized, we still need to consult
|
|
// alias analysis to determine whether 2 LSLocations are disjointed.
|
|
LSLocation &R = LocationVault[bit];
|
|
for (unsigned i = 0; i < S->LocationNum; ++i) {
|
|
if (!S->BBMaxStoreSet.test(i))
|
|
continue;
|
|
// Do nothing if the read location NoAlias with the current location.
|
|
LSLocation &L = LocationVault[i];
|
|
if (!L.isMayAliasLSLocation(R, AA))
|
|
continue;
|
|
// Update the genset and kill set.
|
|
S->startTrackingLocation(S->BBKillSet, i);
|
|
S->stopTrackingLocation(S->BBGenSet, i);
|
|
}
|
|
}
|
|
|
|
void DSEContext::processRead(SILInstruction *I, SILValue Mem, DSEKind Kind) {
|
|
auto *S = getBlockState(I);
|
|
// Construct a LSLocation to represent the memory read by this instruction.
|
|
// NOTE: The base will point to the actual object this inst is accessing,
|
|
// not this particular field.
|
|
//
|
|
// e.g. %1 = alloc_stack $S
|
|
// %2 = struct_element_addr %1, #a
|
|
// %3 = load %2 : $*Int
|
|
//
|
|
// Base will point to %1, but not %2. Projection path will indicate which
|
|
// field is accessed.
|
|
//
|
|
// This will make comparison between locations easier. This eases the
|
|
// implementation of intersection operator in the data flow.
|
|
LSLocation L;
|
|
if (BaseToLocIndex.find(Mem) != BaseToLocIndex.end()) {
|
|
L = BaseToLocIndex[Mem];
|
|
} else {
|
|
SILValue UO = getUnderlyingObject(Mem);
|
|
L = LSLocation(UO, ProjectionPath::getProjectionPath(UO, Mem));
|
|
}
|
|
|
|
// If we can't figure out the Base or Projection Path for the read instruction,
|
|
// process it as an unknown memory instruction for now.
|
|
if (!L.isValid()) {
|
|
processUnknownReadInst(I, Kind);
|
|
return;
|
|
}
|
|
|
|
// Expand the given Mem into individual fields and process them as separate
|
|
// reads.
|
|
LSLocationList Locs;
|
|
LSLocation::expand(L, &I->getModule(),
|
|
TypeExpansionContext(*I->getFunction()), Locs, TE);
|
|
|
|
// Are we building the genset and killset.
|
|
if (isBuildingGenKillSet(Kind)) {
|
|
for (auto &E : Locs) {
|
|
// Only building the gen and kill sets for now.
|
|
processReadForGenKillSet(S, getLocationBit(E));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Are we performing the actual DSE.
|
|
if (isPerformingDSE(Kind)) {
|
|
for (auto &E : Locs) {
|
|
// This is the last iteration, compute BBWriteSetOut and perform DSE.
|
|
processReadForDSE(S, getLocationBit(E));
|
|
}
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unknown DSE compute kind");
|
|
}
|
|
|
|
bool DSEContext::processWriteForDSE(BlockState *S, unsigned bit) {
|
|
// If a tracked store must aliases with this store, then this store is dead.
|
|
bool StoreDead = false;
|
|
LSLocation &R = LocationVault[bit];
|
|
for (unsigned i = 0; i < S->LocationNum; ++i) {
|
|
if (!S->isTrackingLocation(S->BBWriteSetMid, i))
|
|
continue;
|
|
// If 2 locations may alias, we can still keep both stores.
|
|
LSLocation &L = LocationVault[i];
|
|
if (!L.isMustAliasLSLocation(R, AA))
|
|
continue;
|
|
// There is a must alias store. No need to check further.
|
|
StoreDead = true;
|
|
break;
|
|
}
|
|
|
|
// Track this new store.
|
|
S->startTrackingLocation(S->BBWriteSetMid, bit);
|
|
return StoreDead;
|
|
}
|
|
|
|
void DSEContext::processWriteForGenKillSet(BlockState *S, unsigned bit) {
|
|
S->startTrackingLocation(S->BBGenSet, bit);
|
|
}
|
|
|
|
void DSEContext::processWriteForMaxStoreSet(BlockState *S, unsigned bit) {
|
|
S->startTrackingLocation(S->BBMaxStoreSet, bit);
|
|
}
|
|
|
|
void DSEContext::processWrite(SILInstruction *I, SILValue Val, SILValue Mem,
|
|
DSEKind Kind) {
|
|
auto *S = getBlockState(I);
|
|
// Construct a LSLocation to represent the memory read by this instruction.
|
|
// NOTE: The base will point to the actual object this inst is accessing,
|
|
// not this particular field.
|
|
//
|
|
// e.g. %1 = alloc_stack $S
|
|
// %2 = struct_element_addr %1, #a
|
|
// store %3 to %2 : $*Int
|
|
//
|
|
// Base will point to %1, but not %2. Projection path will indicate which
|
|
// field is accessed.
|
|
//
|
|
// This will make comparison between locations easier. This eases the
|
|
// implementation of intersection operator in the data flow.
|
|
LSLocation L;
|
|
if (BaseToLocIndex.find(Mem) != BaseToLocIndex.end()) {
|
|
L = BaseToLocIndex[Mem];
|
|
} else {
|
|
SILValue UO = getUnderlyingObject(Mem);
|
|
L = LSLocation(UO, ProjectionPath::getProjectionPath(UO, Mem));
|
|
}
|
|
|
|
// If we can't figure out the Base or Projection Path for the store
|
|
// instruction, simply ignore it.
|
|
if (!L.isValid())
|
|
return;
|
|
|
|
// Expand the given Mem into individual fields and process them as separate
|
|
// writes.
|
|
bool Dead = true;
|
|
LSLocationList Locs;
|
|
LSLocation::expand(L, Mod, TypeExpansionContext(*I->getFunction()), Locs, TE);
|
|
SmallBitVector V(Locs.size());
|
|
|
|
// Are we computing max store set.
|
|
if (isComputeMaxStoreSet(Kind)) {
|
|
for (auto &E : Locs) {
|
|
// Update the max store set for the basic block.
|
|
processWriteForMaxStoreSet(S, getLocationBit(E));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Are we computing genset and killset.
|
|
if (isBuildingGenKillSet(Kind)) {
|
|
for (auto &E : Locs) {
|
|
// Only building the gen and kill sets here.
|
|
processWriteForGenKillSet(S, getLocationBit(E));
|
|
}
|
|
// Data flow has not stabilized, do not perform the DSE just yet.
|
|
return;
|
|
}
|
|
|
|
// We are doing the actual DSE.
|
|
assert(isPerformingDSE(Kind) && "Invalid computation kind");
|
|
unsigned idx = 0;
|
|
for (auto &E : Locs) {
|
|
// This is the last iteration, compute BBWriteSetOut and perform the dead
|
|
// store elimination.
|
|
if (processWriteForDSE(S, getLocationBit(E)))
|
|
V.set(idx);
|
|
Dead &= V.test(idx);
|
|
++idx;
|
|
}
|
|
|
|
// Fully dead store - stores to all the components are dead, therefore this
|
|
// instruction is dead.
|
|
if (Dead) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Instruction Dead: " << *I << "\n");
|
|
S->DeadStores.push_back(I);
|
|
++NumDeadStores;
|
|
return;
|
|
}
|
|
|
|
// Partial dead store - stores to some locations are dead, but not all. This
|
|
// is a partially dead store. Also at this point we know what locations are
|
|
// dead.
|
|
LSLocationList Alives;
|
|
if (V.any()) {
|
|
// Take out locations that are dead.
|
|
for (unsigned i = 0; i < V.size(); ++i) {
|
|
if (V.test(i))
|
|
continue;
|
|
// This location is alive.
|
|
Alives.push_back(Locs[i]);
|
|
}
|
|
|
|
// Try to create as few aggregated stores as possible out of the locations.
|
|
LSLocation::reduce(L, Mod, TypeExpansionContext(*I->getFunction()), Alives);
|
|
|
|
// Oops, we have too many smaller stores generated, bail out.
|
|
if (Alives.size() > MaxPartialStoreCount)
|
|
return;
|
|
|
|
// At this point, we are performing a partial dead store elimination.
|
|
//
|
|
// Locations here have a projection path from their Base, but this
|
|
// particular instruction may not be accessing the base, so we need to
|
|
// *rebase* the locations w.r.t. to the current instruction.
|
|
SILValue B = Locs[0].getBase();
|
|
Optional<ProjectionPath> BP = ProjectionPath::getProjectionPath(B, Mem);
|
|
// Strip off the projection path from base to the accessed field.
|
|
for (auto &X : Alives) {
|
|
X.removePathPrefix(BP);
|
|
}
|
|
|
|
// We merely setup the remaining live stores, but do not materialize in IR
|
|
// yet, These stores will be materialized before the algorithm exits.
|
|
for (auto &X : Alives) {
|
|
SILValue Value = X.getPath()->createExtract(Val, I, true);
|
|
SILValue Addr = X.getPath()->createExtract(Mem, I, false);
|
|
S->LiveAddr.insert(Addr);
|
|
S->LiveStores[Addr] = Value;
|
|
}
|
|
|
|
// Lastly, mark the old store as dead.
|
|
LLVM_DEBUG(llvm::dbgs() << "Instruction Partially Dead: " << *I << "\n");
|
|
S->DeadStores.push_back(I);
|
|
++NumPartialDeadStores;
|
|
}
|
|
}
|
|
|
|
void DSEContext::processLoadInst(SILInstruction *I, DSEKind Kind) {
|
|
processRead(I, cast<LoadInst>(I)->getOperand(), Kind);
|
|
}
|
|
|
|
void DSEContext::processStoreInst(SILInstruction *I, DSEKind Kind) {
|
|
auto *SI = cast<StoreInst>(I);
|
|
processWrite(I, SI->getSrc(), SI->getDest(), Kind);
|
|
}
|
|
|
|
void DSEContext::processDebugValueAddrInstForGenKillSet(SILInstruction *I) {
|
|
BlockState *S = getBlockState(I);
|
|
SILValue Mem = cast<DebugValueAddrInst>(I)->getOperand();
|
|
for (unsigned i = 0; i < S->LocationNum; ++i) {
|
|
if (!S->BBMaxStoreSet.test(i))
|
|
continue;
|
|
if (AA->isNoAlias(Mem, LocationVault[i].getBase()))
|
|
continue;
|
|
S->stopTrackingLocation(S->BBGenSet, i);
|
|
S->startTrackingLocation(S->BBKillSet, i);
|
|
}
|
|
}
|
|
|
|
void DSEContext::processDebugValueAddrInstForDSE(SILInstruction *I) {
|
|
BlockState *S = getBlockState(I);
|
|
SILValue Mem = cast<DebugValueAddrInst>(I)->getOperand();
|
|
for (unsigned i = 0; i < S->LocationNum; ++i) {
|
|
if (!S->isTrackingLocation(S->BBWriteSetMid, i))
|
|
continue;
|
|
if (AA->isNoAlias(Mem, LocationVault[i].getBase()))
|
|
continue;
|
|
S->stopTrackingLocation(S->BBWriteSetMid, i);
|
|
}
|
|
}
|
|
|
|
void DSEContext::processDebugValueAddrInst(SILInstruction *I, DSEKind Kind) {
|
|
// Are we building genset and killset.
|
|
if (isBuildingGenKillSet(Kind)) {
|
|
processDebugValueAddrInstForGenKillSet(I);
|
|
return;
|
|
}
|
|
|
|
// Are we performing dead store elimination.
|
|
if (isPerformingDSE(Kind)) {
|
|
processDebugValueAddrInstForDSE(I);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unknown DSE compute kind");
|
|
}
|
|
|
|
void DSEContext::processUnknownReadInstForGenKillSet(SILInstruction *I) {
|
|
BlockState *S = getBlockState(I);
|
|
for (unsigned i = 0; i < S->LocationNum; ++i) {
|
|
if (!S->BBMaxStoreSet.test(i))
|
|
continue;
|
|
if (!AA->mayReadFromMemory(I, LocationVault[i].getBase()))
|
|
continue;
|
|
// Update the genset and kill set.
|
|
S->startTrackingLocation(S->BBKillSet, i);
|
|
S->stopTrackingLocation(S->BBGenSet, i);
|
|
}
|
|
}
|
|
|
|
void DSEContext::processUnknownReadInstForDSE(SILInstruction *I) {
|
|
BlockState *S = getBlockState(I);
|
|
for (unsigned i = 0; i < S->LocationNum; ++i) {
|
|
if (!S->isTrackingLocation(S->BBWriteSetMid, i))
|
|
continue;
|
|
if (!AA->mayReadFromMemory(I, LocationVault[i].getBase()))
|
|
continue;
|
|
S->stopTrackingLocation(S->BBWriteSetMid, i);
|
|
}
|
|
}
|
|
|
|
void DSEContext::processUnknownReadInst(SILInstruction *I, DSEKind Kind) {
|
|
// If this is a release on a guaranteed parameter, it can not call deinit,
|
|
// which might read or write memory.
|
|
if (isIntermediateRelease(I, EAFI))
|
|
return;
|
|
|
|
// Are we building genset and killset.
|
|
if (isBuildingGenKillSet(Kind)) {
|
|
processUnknownReadInstForGenKillSet(I);
|
|
return;
|
|
}
|
|
|
|
// Are we performing dead store elimination.
|
|
if (isPerformingDSE(Kind)) {
|
|
processUnknownReadInstForDSE(I);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unknown DSE compute kind");
|
|
}
|
|
|
|
void DSEContext::processInstruction(SILInstruction *I, DSEKind Kind) {
|
|
// If this instruction has side effects, but is inert from a store
|
|
// perspective, skip it.
|
|
if (isDeadStoreInertInstruction(I))
|
|
return;
|
|
|
|
// A set of ad-hoc rules to process instructions.
|
|
if (isa<LoadInst>(I)) {
|
|
processLoadInst(I, Kind);
|
|
} else if (isa<StoreInst>(I)) {
|
|
processStoreInst(I, Kind);
|
|
} else if (isa<DebugValueAddrInst>(I)) {
|
|
processDebugValueAddrInst(I, Kind);
|
|
} else if (I->mayReadFromMemory()) {
|
|
processUnknownReadInst(I, Kind);
|
|
}
|
|
|
|
// Check whether this instruction will invalidate any other locations.
|
|
for (auto result : I->getResults())
|
|
invalidateBase(result, getBlockState(I), Kind);
|
|
}
|
|
|
|
void DSEContext::runIterativeDSE() {
|
|
// Generate the genset and killset for each basic block. We can process the
|
|
// basic blocks in any order.
|
|
//
|
|
// We also compute the max store set at the beginning of the basic block.
|
|
//
|
|
auto *PO = PM->getAnalysis<PostOrderAnalysis>()->get(F);
|
|
for (SILBasicBlock *B : PO->getPostOrder()) {
|
|
processBasicBlockForGenKillSet(B);
|
|
}
|
|
|
|
// Process each basic block with the gen and kill set. Every time the
|
|
// BBWriteSetIn of a basic block changes, the optimization is rerun on its
|
|
// predecessors.
|
|
BasicBlockWorklist WorkList(F);
|
|
// Push into reverse post order so that we can pop from the back and get
|
|
// post order.
|
|
for (SILBasicBlock *B : PO->getReversePostOrder()) {
|
|
WorkList.push(B);
|
|
}
|
|
while (SILBasicBlock *BB = WorkList.popAndForget()) {
|
|
if (processBasicBlockWithGenKillSet(BB)) {
|
|
for (SILBasicBlock *pred : BB->getPredecessorBlocks()) {
|
|
WorkList.pushIfNotVisited(pred);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool DSEContext::run() {
|
|
std::pair<int, int> LSCount = std::make_pair(0, 0);
|
|
// Walk over the function and find all the locations accessed by
|
|
// this function.
|
|
LSLocation::enumerateLSLocations(*F, LocationVault, LocToBitIndex,
|
|
BaseToLocIndex, TE, LSCount);
|
|
|
|
// Check how to optimize this function.
|
|
ProcessKind Kind = getProcessFunctionKind(LSCount.second);
|
|
|
|
// We do not optimize this function at all.
|
|
if (Kind == ProcessKind::ProcessNone)
|
|
return false;
|
|
|
|
// Do we run a pessimistic data flow ?
|
|
const bool Optimistic = (Kind == ProcessKind::ProcessOptimistic);
|
|
|
|
// For all basic blocks in the function, initialize a BB state.
|
|
//
|
|
// Initialize the BBToLocState mapping.
|
|
unsigned LocationNum = this->getLocationVault().size();
|
|
for (auto bs : BBToLocState) {
|
|
bs.data.init(&bs.block, LocationNum, Optimistic);
|
|
bs.data.initStoreSetAtEndOfBlock(*this);
|
|
}
|
|
|
|
// We perform dead store elimination in the following phases.
|
|
//
|
|
// Phase 1. we compute the max store set at the beginning of the basic block.
|
|
//
|
|
// Phase 2. we compute the genset and killset for every basic block.
|
|
//
|
|
// Phase 3. we run the data flow with the genset and killset until
|
|
// BBWriteSetIns stop changing.
|
|
//
|
|
// Phase 4. we run the data flow for the last iteration and perform the DSE.
|
|
//
|
|
// Phase 5. we remove the dead stores.
|
|
//
|
|
// Phase 1 - 3 are only performed when we know the data flow will not
|
|
// converge in a single iteration. Otherwise, we only run phase 4 and 5
|
|
// on the function.
|
|
|
|
// We need to run the iterative data flow on the function.
|
|
if (Optimistic) {
|
|
runIterativeDSE();
|
|
}
|
|
|
|
// The data flow has stabilized, run one last iteration over all the basic
|
|
// blocks and try to remove dead stores.
|
|
// Is this a one iteration function.
|
|
auto *PO = PM->getAnalysis<PostOrderAnalysis>()->get(F);
|
|
for (SILBasicBlock *B : PO->getPostOrder()) {
|
|
processBasicBlockForDSE(B, Optimistic);
|
|
}
|
|
|
|
// Finally, delete the dead stores and create the live stores.
|
|
bool Changed = false;
|
|
for (auto bs : BBToLocState) {
|
|
// Create the stores that are alive due to partial dead stores.
|
|
for (auto &X : bs.data.LiveAddr) {
|
|
Changed = true;
|
|
auto I = bs.data.LiveStores.find(X);
|
|
SILInstruction *Inst = I->first->getDefiningInstruction();
|
|
auto *IT = &*std::next(Inst->getIterator());
|
|
SILBuilderWithScope Builder(IT);
|
|
Builder.createStore(Inst->getLoc(), I->second, I->first,
|
|
StoreOwnershipQualifier::Unqualified);
|
|
}
|
|
// Delete the dead stores.
|
|
for (auto &I : getBlockState(&bs.block)->DeadStores) {
|
|
Changed = true;
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Removing: " << *I << " ***\n");
|
|
// This way, we get rid of pass dependence on DCE.
|
|
recursivelyDeleteTriviallyDeadInstructions(I, true);
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Entry Point
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class DeadStoreElimination : public SILFunctionTransform {
|
|
public:
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
SILFunction *F = getFunction();
|
|
LLVM_DEBUG(llvm::dbgs() << "*** DSE on function: " << F->getName()
|
|
<< " ***\n");
|
|
|
|
auto *AA = PM->getAnalysis<AliasAnalysis>(F);
|
|
auto *TE = PM->getAnalysis<TypeExpansionAnalysis>();
|
|
auto *EAFI = PM->getAnalysis<EpilogueARCAnalysis>()->get(F);
|
|
|
|
// The allocator we are using.
|
|
llvm::SpecificBumpPtrAllocator<BlockState> BPA;
|
|
|
|
DSEContext DSE(F, &F->getModule(), PM, AA, TE, EAFI, BPA);
|
|
if (DSE.run()) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createDeadStoreElimination() {
|
|
return new DeadStoreElimination();
|
|
}
|