Files
swift-mirror/lib/AST/Pattern.cpp
Doug Gregor d32f668fb2 Introduce "inherited" default arguments and use them for inherited initializers.
Previously, we were cloning the default arguments completely, which
meant code duplication (when inheriting within a module) or simply a
failure (when inheriting across modules). Now, we reference the
default arguments where we inherited them, eliminating the
duplication. Part of <rdar://problem/16318855>.

Swift SVN r15062
2014-03-14 18:31:22 +00:00

403 lines
14 KiB
C++

//===--- Pattern.cpp - Swift Language Pattern-Matching ASTs ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Pattern class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Pattern.h"
#include "swift/AST/AST.h"
#include "swift/AST/TypeLoc.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
/// Diagnostic printing of PatternKinds.
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS, PatternKind kind) {
switch (kind) {
case PatternKind::Paren:
return OS << "parethesized pattern";
case PatternKind::Tuple:
return OS << "tuple pattern";
case PatternKind::Named:
return OS << "pattern variable binding";
case PatternKind::Any:
return OS << "'_' pattern";
case PatternKind::Typed:
return OS << "pattern type annotation";
case PatternKind::Isa:
return OS << "prefix 'is' pattern";
case PatternKind::NominalType:
return OS << "type destructuring pattern";
case PatternKind::Expr:
return OS << "expression pattern";
case PatternKind::Var:
return OS << "'var' binding pattern";
case PatternKind::EnumElement:
return OS << "enum case matching pattern";
}
}
StringRef Pattern::getKindName(PatternKind K) {
switch (K) {
#define PATTERN(Id, Parent) case PatternKind::Id: return #Id;
#include "swift/AST/PatternNodes.def"
}
}
// Metaprogram to verify that every concrete class implements
// a 'static bool classof(const Pattern*)'.
template <bool fn(const Pattern*)> struct CheckClassOfPattern {
static const bool IsImplemented = true;
};
template <> struct CheckClassOfPattern<Pattern::classof> {
static const bool IsImplemented = false;
};
#define PATTERN(ID, PARENT) \
static_assert(CheckClassOfPattern<ID##Pattern::classof>::IsImplemented, \
#ID "Pattern is missing classof(const Pattern*)");
#include "swift/AST/PatternNodes.def"
// Metaprogram to verify that every concrete class implements
// 'SourceRange getSourceRange()'.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Pattern::*)() const);
/// getSourceRange - Return the full source range of the pattern.
SourceRange Pattern::getSourceRange() const {
switch (getKind()) {
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
static_assert(sizeof(checkSourceRangeType(&ID##Pattern::getSourceRange)) == 1, \
#ID "Pattern is missing getSourceRange()"); \
return cast<ID##Pattern>(this)->getSourceRange();
#include "swift/AST/PatternNodes.def"
}
llvm_unreachable("pattern type not handled!");
}
/// getLoc - Return the caret location of the pattern.
SourceLoc Pattern::getLoc() const {
switch (getKind()) {
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
if (&Pattern::getLoc != &ID##Pattern::getLoc) \
return cast<ID##Pattern>(this)->getLoc(); \
break;
#include "swift/AST/PatternNodes.def"
}
return getStartLoc();
}
void Pattern::collectVariables(SmallVectorImpl<VarDecl *> &variables) const {
forEachVariable([&](VarDecl *VD) { variables.push_back(VD); });
}
/// \brief apply the specified function to all variables referenced in this
/// pattern.
void Pattern::forEachVariable(const std::function<void(VarDecl*)> &fn) const {
switch (getKind()) {
case PatternKind::Any:
case PatternKind::Isa:
case PatternKind::Expr:
return;
case PatternKind::Named:
fn(cast<NamedPattern>(this)->getDecl());
return;
case PatternKind::Paren:
case PatternKind::Typed:
case PatternKind::Var:
return getSemanticsProvidingPattern()->forEachVariable(fn);
case PatternKind::Tuple:
for (auto elt : cast<TuplePattern>(this)->getFields())
elt.getPattern()->forEachVariable(fn);
return;
case PatternKind::NominalType:
for (auto elt : cast<NominalTypePattern>(this)->getElements())
elt.getSubPattern()->forEachVariable(fn);
return;
case PatternKind::EnumElement: {
auto *OP = cast<EnumElementPattern>(this);
if (OP->hasSubPattern())
OP->getSubPattern()->forEachVariable(fn);
return;
}
}
}
/// \brief apply the specified function to all pattern nodes recursively in
/// this pattern. This is a pre-order traversal.
void Pattern::forEachNode(const std::function<void(Pattern*)> &f) {
f(this);
switch (getKind()) {
// Leaf patterns have no recursion.
case PatternKind::Any:
case PatternKind::Named:
case PatternKind::Isa:
case PatternKind::Expr:// FIXME: expr nodes are not modeled right in general.
return;
case PatternKind::Paren:
return cast<ParenPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Typed:
return cast<TypedPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Var:
return cast<VarPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Tuple:
for (auto elt : cast<TuplePattern>(this)->getFields())
elt.getPattern()->forEachNode(f);
return;
case PatternKind::NominalType:
for (auto elt : cast<NominalTypePattern>(this)->getElements())
elt.getSubPattern()->forEachNode(f);
return;
case PatternKind::EnumElement: {
auto *OP = cast<EnumElementPattern>(this);
if (OP->hasSubPattern())
OP->getSubPattern()->forEachNode(f);
return;
}
}
}
Pattern *Pattern::clone(ASTContext &context,
OptionSet<CloneFlags> options) const {
Pattern *result;
switch (getKind()) {
case PatternKind::Any:
result = new (context) AnyPattern(cast<AnyPattern>(this)->getLoc());
break;
case PatternKind::Named: {
auto named = cast<NamedPattern>(this);
VarDecl *var = new (context) VarDecl(!named->getDecl()->isInstanceMember(),
named->getDecl()->isLet(),
named->getLoc(),
named->getBoundName(),
named->getDecl()->hasType()
? named->getDecl()->getType()
: Type(),
named->getDecl()->getDeclContext());
if ((options & Implicit) || var->isImplicit())
var->setImplicit();
result = new (context) NamedPattern(var);
break;
}
case PatternKind::Paren: {
auto paren = cast<ParenPattern>(this);
result = new (context) ParenPattern(paren->getLParenLoc(),
paren->getSubPattern()->clone(context,
options),
paren->getRParenLoc());
break;
}
case PatternKind::Tuple: {
auto tuple = cast<TuplePattern>(this);
SmallVector<TuplePatternElt, 2> elts;
elts.reserve(tuple->getNumFields());
for (const auto &elt : tuple->getFields()) {
auto eltPattern = elt.getPattern()->clone(context, options);
// If we're inheriting a default argument, mark it as such.
if (elt.getDefaultArgKind() != DefaultArgumentKind::None &&
(options & Inherited)) {
elts.push_back(TuplePatternElt(eltPattern, nullptr,
DefaultArgumentKind::Inherited));
} else {
elts.push_back(TuplePatternElt(eltPattern,
elt.getInit(),
elt.getDefaultArgKind()));
}
}
result = TuplePattern::create(context, tuple->getLParenLoc(), elts,
tuple->getRParenLoc(),
tuple->hasVararg(),
tuple->getEllipsisLoc());
break;
}
case PatternKind::Typed: {
auto typed = cast<TypedPattern>(this);
result = new(context) TypedPattern(typed->getSubPattern()->clone(context,
options),
typed->getTypeLoc().clone(context));
break;
}
case PatternKind::Isa: {
auto isa = cast<IsaPattern>(this);
result = new(context) IsaPattern(isa->getLoc(),
isa->getCastTypeLoc().clone(context),
isa->getCastKind());
break;
}
case PatternKind::NominalType: {
auto nom = cast<NominalTypePattern>(this);
SmallVector<NominalTypePattern::Element, 4> elts;
for (const auto &elt : nom->getElements()) {
elts.push_back(NominalTypePattern::Element(elt.getPropertyLoc(),
elt.getPropertyName(),
elt.getProperty(),
elt.getColonLoc(),
elt.getSubPattern()->clone(context,
options)));
}
result = NominalTypePattern::create(nom->getCastTypeLoc().clone(context),
nom->getLParenLoc(),
elts,
nom->getRParenLoc(), context);
break;
}
case PatternKind::EnumElement: {
auto oof = cast<EnumElementPattern>(this);
Pattern *sub = nullptr;
if (oof->hasSubPattern())
sub = oof->getSubPattern()->clone(context, options);
result = new (context) EnumElementPattern(oof->getParentType()
.clone(context),
oof->getLoc(),
oof->getNameLoc(),
oof->getName(),
oof->getElementDecl(),
sub);
break;
}
case PatternKind::Expr: {
auto expr = cast<ExprPattern>(this);
result = new(context) ExprPattern(expr->getSubExpr(),
expr->isResolved(),
expr->getMatchExpr(),
expr->getMatchVar());
break;
}
case PatternKind::Var: {
auto var = cast<VarPattern>(this);
result = new(context) VarPattern(var->getLoc(),
var->getSubPattern()->clone(context,
options));
}
}
if (hasType())
result->setType(getType());
if ((options & Implicit) || isImplicit())
result->setImplicit();
return result;
}
/// Standard allocator for Patterns.
void *Pattern::operator new(size_t numBytes, ASTContext &C) {
return C.Allocate(numBytes, alignof(Pattern));
}
/// Find the name directly bound by this pattern. When used as a
/// tuple element in a function signature, such names become part of
/// the type.
Identifier Pattern::getBoundName() const {
if (auto *NP = dyn_cast<NamedPattern>(getSemanticsProvidingPattern()))
return NP->getBoundName();
return Identifier();
}
/// Allocate a new pattern that matches a tuple.
TuplePattern *TuplePattern::create(ASTContext &C, SourceLoc lp,
ArrayRef<TuplePatternElt> elts, SourceLoc rp,
bool hasVararg, SourceLoc ellipsis,
Optional<bool> implicit) {
if (!implicit.hasValue())
implicit = !lp.isValid();
unsigned n = elts.size();
void *buffer = C.Allocate(sizeof(TuplePattern) + n * sizeof(TuplePatternElt) +
(hasVararg ? sizeof(SourceLoc) : 0),
alignof(TuplePattern));
TuplePattern *pattern = ::new(buffer) TuplePattern(lp, n, rp, hasVararg,
ellipsis, *implicit);
memcpy(pattern->getFieldsBuffer(), elts.data(), n * sizeof(TuplePatternElt));
return pattern;
}
Pattern *TuplePattern::createSimple(ASTContext &C, SourceLoc lp,
ArrayRef<TuplePatternElt> elements,
SourceLoc rp,
bool hasVararg, SourceLoc ellipsis) {
assert(lp.isValid() == rp.isValid());
if (elements.size() == 1 &&
elements[0].getInit() == nullptr &&
elements[0].getPattern()->getBoundName().empty() &&
!hasVararg) {
auto &first = const_cast<TuplePatternElt&>(elements.front());
return new (C) ParenPattern(lp, first.getPattern(), rp);
}
return create(C, lp, elements, rp, hasVararg, ellipsis);
}
SourceRange TuplePattern::getSourceRange() const {
if (LPLoc.isValid())
return { LPLoc, RPLoc };
auto Fields = getFields();
if (Fields.empty())
return {};
return { Fields.front().getPattern()->getStartLoc(),
Fields.back().getPattern()->getEndLoc() };
}
SourceRange TypedPattern::getSourceRange() const {
if (isImplicit()) {
// If a TypedPattern is implicit, then its type is definitely implicit, se
// we should ignore its location. On the other hand, the sub-pattern can
// be explicit or implicit.
return SubPattern->getSourceRange();
}
return { SubPattern->getSourceRange().Start, PatType.getSourceRange().End };
}
NominalTypePattern *NominalTypePattern::create(TypeLoc CastTy,
SourceLoc LParenLoc,
ArrayRef<Element> Elements,
SourceLoc RParenLoc,
ASTContext &C,
Optional<bool> implicit) {
void *buf = C.Allocate(sizeof(NominalTypePattern)
+ sizeof(Element) * Elements.size(),
alignof(Element));
return ::new (buf) NominalTypePattern(CastTy, LParenLoc, Elements, RParenLoc,
implicit);
}