Files
swift-mirror/lib/IRGen/GenKeyPath.cpp
Joe Groff d42f2049f7 KeyPaths: Implement in-place instantiation of invariant key paths.
For key paths without generic or subscript parameterization, we can turn the compiler-generated key path pattern into a global object in-place.
2017-04-05 08:46:45 -07:00

212 lines
8.6 KiB
C++

//===--- GenKeyPath.cpp - IRGen support for key path objects --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file contains code for emitting key path patterns, which can be used
// by the standard library to instantiate key path objects.
//
//===----------------------------------------------------------------------===//
#include "ConstantBuilder.h"
#include "GenClass.h"
#include "GenStruct.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "llvm/ADT/SetVector.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILLocation.h"
#include "swift/ABI/KeyPath.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsIRGen.h"
#include "swift/AST/Types.h"
using namespace swift;
using namespace irgen;
llvm::Value *IRGenFunction::emitKeyPath(KeyPathInst *inst) {
// TODO: Parameterized key paths, such as for key paths in generic contexts
// or with subscript components, require instantiation. Key paths with
// resilient index components may need instantiation to adjust component
// sizes as well.
llvm::SetVector<ArchetypeType *> TypeArgs;
/// Find archetypes inside a type that need to be passed to the key path
/// pattern for instantiation.
auto findTypeArgs = [&](CanType type) {
type.findIf([&](Type t) -> bool {
if (auto archetype = t->getAs<ArchetypeType>()) {
IGM.Context.Diags.diagnose(inst->getLoc().getSourceLoc(),
diag::not_implemented,
"dependent generic key path");
TypeArgs.insert(archetype);
}
return false;
});
};
// Gather type arguments from the root and leaf types of the key path.
auto keyPathTy = inst->getType().castTo<BoundGenericType>();
auto keyPathLoweredTy = IGM.getStorageType(inst->getType());
auto rootTy = keyPathTy->getGenericArgs()[0]->getCanonicalType();
auto valueTy = keyPathTy->getGenericArgs()[1]->getCanonicalType();
findTypeArgs(rootTy);
findTypeArgs(valueTy);
// Check for type parameterization of any of the components.
for (auto component : inst->getComponents()) {
findTypeArgs(component.getComponentType());
}
if (!TypeArgs.empty())
// TODO: implement
return llvm::UndefValue::get(keyPathLoweredTy);
/// Generate a metadata accessor that produces metadata for the given type
/// using arguments from the generic context of the key path.
auto emitMetadataGenerator = [&](CanType type) -> llvm::Function * {
if (TypeArgs.empty())
// We can just use the regular metadata accessor.
// TODO: Make a local copy of public symbols we can relative-reference?
return IGM.getAddrOfTypeMetadataAccessFunction(type, NotForDefinition);
llvm_unreachable("not implemented");
};
// Start building the key path pattern.
// TODO: Coalesce equivalent key path patterns
ConstantInitBuilder builder(IGM);
ConstantStructBuilder fields = builder.beginStruct();
fields.setPacked(true);
// Add a zero-initialized header we can use for lazy initialization.
fields.add(llvm::ConstantInt::get(IGM.SizeTy, 0));
// Store references to metadata generator functions to generate the metadata
// for the root and leaf. These sit in the "isa" and object header parts of
// the final object.
fields.add(emitMetadataGenerator(rootTy));
fields.add(emitMetadataGenerator(valueTy));
// Leave a placeholder for the buffer header, since we need to know the full
// buffer size to fill it in.
auto headerPlaceholder = fields.addPlaceholderWithSize(IGM.Int32Ty);
// Build out the components.
bool isInstantiableInPlace = true;
auto baseTy = rootTy;
for (unsigned i : indices(inst->getComponents())) {
auto loweredBaseTy = IGM.getLoweredType(AbstractionPattern::getOpaque(),
baseTy->getLValueOrInOutObjectType());
auto &component = inst->getComponents()[i];
switch (component.getKind()) {
case KeyPathInstComponent::Kind::StoredProperty: {
// Try to get a constant offset if we can.
auto property = cast<VarDecl>(component.getValueDecl());
llvm::Constant *offset;
bool isStruct;
if (auto structTy = loweredBaseTy.getStructOrBoundGenericStruct()) {
offset = emitPhysicalStructMemberFixedOffset(IGM,
loweredBaseTy,
property);
isStruct = true;
} else if (auto classTy = loweredBaseTy.getClassOrBoundGenericClass()) {
offset = tryEmitConstantClassFragilePhysicalMemberOffset(IGM,
loweredBaseTy,
property);
isStruct = false;
} else {
llvm_unreachable("property of non-struct, non-class?!");
}
// If the projection is a statically known integer, try to pack it into
// the key path payload.
if (auto offsetInt = dyn_cast<llvm::ConstantInt>(offset)) {
auto offsetValue = offsetInt->getValue().getZExtValue();
if (KeyPathComponentHeader::offsetCanBeInline(offsetValue)) {
auto header = isStruct
? KeyPathComponentHeader::forStructComponentWithInlineOffset(offsetValue)
: KeyPathComponentHeader::forClassComponentWithInlineOffset(offsetValue);
fields.addInt32(header.getData());
break;
}
}
// Add the resolved offset if we have one.
if (offset) {
auto header = isStruct
? KeyPathComponentHeader::forStructComponentWithOutOfLineOffset()
: KeyPathComponentHeader::forClassComponentWithOutOfLineOffset();
fields.addInt32(header.getData());
offset = llvm::ConstantExpr::getTruncOrBitCast(offset, IGM.Int32Ty);
fields.add(offset);
} else {
// Otherwise, stash a relative reference to the property name as a
// string, which we'll resolve the offset for at runtime.
auto header = isStruct
? KeyPathComponentHeader::forStructComponentWithUnresolvedOffset()
: KeyPathComponentHeader::forClassComponentWithUnresolvedOffset();
fields.addInt32(header.getData());
auto name = IGM.getAddrOfGlobalString(property->getName().str(),
/*relativelyAddressed*/ true);
fields.addRelativeAddress(name);
}
break;
}
}
// For all but the last component, we pack in the type of the component.
if (i + 1 != inst->getComponents().size()) {
fields.add(emitMetadataGenerator(component.getComponentType()));
}
baseTy = component.getComponentType();
}
// Save the total size of the buffer, minus three words for the once token
// and object header, and 32 bits for the buffer header.
Size componentSize = fields.getNextOffsetFromGlobal()
- 3*IGM.getPointerSize()
- Size(4);
// We now have enough info to build the header.
KeyPathBufferHeader header(componentSize.getValue(), isInstantiableInPlace,
/*reference prefix*/ false);
// Add the header, followed by the components.
fields.fillPlaceholder(headerPlaceholder,
llvm::ConstantInt::get(IGM.Int32Ty, header.getData()));
// Create the global variable.
// TODO: Coalesce equivalent patterns. The pattern could be immutable if
// it isn't instantiable in place, and if we made the type metadata accessor
// references private, it could go in true-const memory.
auto pattern = fields.finishAndCreateGlobal("keypath",
IGM.getPointerAlignment(),
/*constant*/ false,
llvm::GlobalVariable::PrivateLinkage);
// Build up the argument vector to instantiate the pattern here.
llvm::Value *args;
if (!TypeArgs.empty()) {
llvm_unreachable("todo!");
} else {
args = llvm::UndefValue::get(IGM.Int8PtrTy);
}
auto patternPtr = llvm::ConstantExpr::getBitCast(pattern, IGM.Int8PtrTy);
auto call = Builder.CreateCall(IGM.getGetKeyPathFn(), {patternPtr, args});
call->setDoesNotThrow();
return call;
}