Files
swift-mirror/lib/Sema/ConstraintGraph.cpp
Doug Gregor d52887c9bb Constraint graph WIP: collapse two nodes into a single node.
This currently-untestable code allows updates to the constraint graph
when a same-type constraint causes two type variables to be
unified. Additionally, it handles the removal of a constraint from the
constraint system, e.g., if it is solved.


Swift SVN r10716
2013-12-01 16:42:33 +00:00

642 lines
22 KiB
C++

//===--- ConstraintGraph.cpp - Constraint Graph ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c ConstraintGraph class, which describes the
// relationships among the type variables within a constraint system.
//
//===----------------------------------------------------------------------===//
#include "ConstraintGraph.h"
#include "ConstraintSystem.h"
#include "swift/Basic/Fallthrough.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <memory>
#include <numeric>
using namespace swift;
using namespace constraints;
#pragma mark Graph construction/destruction
ConstraintGraph::ConstraintGraph(ConstraintSystem &cs) : CS(cs) { }
ConstraintGraph::~ConstraintGraph() {
for (auto node : Nodes) {
delete node.second.NodePtr;
}
}
#pragma mark Helper functions
/// Recursively gather the set of type variable representatives referenced by
/// this constraint.
static void
gatherReferencedTypeVarsRec(ConstraintSystem &cs,
Constraint *constraint,
SmallVectorImpl<TypeVariableType *> &typeVars) {
switch (constraint->getKind()) {
case ConstraintKind::Conjunction:
case ConstraintKind::Disjunction:
for (auto nested : constraint->getNestedConstraints())
gatherReferencedTypeVarsRec(cs, nested, typeVars);
return;
case ConstraintKind::ApplicableFunction:
case ConstraintKind::Bind:
case ConstraintKind::Construction:
case ConstraintKind::Conversion:
case ConstraintKind::Equal:
case ConstraintKind::Subtype:
case ConstraintKind::TrivialSubtype:
case ConstraintKind::TypeMember:
case ConstraintKind::ValueMember: {
Type second = cs.simplifyType(constraint->getSecondType());
second->getTypeVariables(typeVars);
}
SWIFT_FALLTHROUGH;
case ConstraintKind::Archetype:
case ConstraintKind::BindOverload:
case ConstraintKind::Class:
case ConstraintKind::ConformsTo:
case ConstraintKind::DynamicLookupValue:
case ConstraintKind::SelfObjectOfProtocol: {
Type first = cs.simplifyType(constraint->getFirstType());
first->getTypeVariables(typeVars);
// Special case: the base type of an overloading binding.
if (constraint->getKind() == ConstraintKind::BindOverload) {
if (auto baseType = constraint->getOverloadChoice().getBaseType()) {
baseType = cs.simplifyType(baseType);
baseType->getTypeVariables(typeVars);
}
}
break;
}
}
}
/// Gather the set of type variable representatives referenced by this
/// constraint, mapped to the type representative and uniqued.
static void
gatherReferencedTypeVars(ConstraintSystem &cs,
Constraint *constraint,
SmallVectorImpl<TypeVariableType *> &typeVars) {
// Gather all of the referenced type variables.
gatherReferencedTypeVarsRec(cs, constraint, typeVars);
// Map the referenced type variables to their representatives and remove
// any duplicates.
// Note: This is a standard erase/remove idiom, but we don't use the
// standard library's algorithms because we also want to map type
// variables to their representatives.
llvm::SmallPtrSet<TypeVariableType *, 4> representatives;
unsigned currentIndex = 0;
for (unsigned i = 0, n = typeVars.size(); i != n; ++i) {
auto typeVar = cs.getRepresentative(typeVars[i]);
if (!representatives.insert(typeVar))
continue;
typeVars[currentIndex++] = typeVar;
}
typeVars.erase(typeVars.begin() + currentIndex, typeVars.end());
}
#pragma mark Graph accessors
ConstraintGraph::Node &ConstraintGraph::operator[](TypeVariableType *typeVar) {
return lookupNode(typeVar).first;
}
std::pair<ConstraintGraph::Node &, unsigned>
ConstraintGraph::lookupNode(TypeVariableType *typeVar) {
typeVar = CS.getRepresentative(typeVar);
// Check whether we've already created a node for this type variable.
auto known = Nodes.find(typeVar);
if (known != Nodes.end()) {
assert(known->second.NodePtr && "Missing node pointer?");
return { *known->second.NodePtr, known->second.Index };
}
// Allocate the new node.
StoredNode &stored = Nodes[typeVar];
stored.NodePtr = new Node(typeVar);
stored.Index = TypeVariables.size();
// Record this type variable.
TypeVariables.push_back(typeVar);
return { *stored.NodePtr, stored.Index };
}
#pragma mark Node mutation
void ConstraintGraph::Node::addConstraint(Constraint *constraint) {
assert(ConstraintIndex.count(constraint) == 0 && "Constraint re-insertion");
ConstraintIndex[constraint] = Constraints.size();
Constraints.push_back(constraint);
}
void ConstraintGraph::Node::removeConstraint(Constraint *constraint) {
auto pos = ConstraintIndex.find(constraint);
assert(pos != ConstraintIndex.end());
// Remove this constraint from the constraint mapping.
auto index = pos->second;
ConstraintIndex.erase(pos);
assert(Constraints[index] == constraint && "Mismatched constraint");
// If this is the last constraint, just pop it off the list and we're done.
unsigned lastIndex = Constraints.size()-1;
if (index == lastIndex) {
Constraints.pop_back();
return;
}
// This constraint is somewhere in the middle; swap it with the last
// constraint, so we can remove the constraint from the vector in O(1)
// time rather than O(n) time.
auto lastConstraint = Constraints[lastIndex];
Constraints[index] = lastConstraint;
ConstraintIndex[lastConstraint] = index;
Constraints.pop_back();
}
void ConstraintGraph::Node::addAdjacency(TypeVariableType *typeVar,
unsigned degree) {
assert(typeVar != TypeVar && "Cannot be adjacent to oneself");
// Look for existing adjacency information.
auto pos = AdjacencyInfo.find(typeVar);
// If we weren't already adjacent to this type variable, add it to the
// list of adjacencies.
if (pos == AdjacencyInfo.end()) {
pos = AdjacencyInfo.insert(
{ typeVar, { static_cast<unsigned>(Adjacencies.size()), 0 } })
.first;
Adjacencies.push_back(typeVar);
}
// Bump the degree of the adjacency.
pos->second.NumConstraints += degree;
}
void ConstraintGraph::Node::removeAdjacency(TypeVariableType *typeVar,
bool allAdjacencies) {
// Find the adjacency information.
auto pos = AdjacencyInfo.find(typeVar);
assert(pos != AdjacencyInfo.end() && "Type variables not adjacent");
assert(Adjacencies[pos->second.Index] == typeVar && "Mismatched adjacency");
if (!allAdjacencies) {
// Decrement the number of constraints that make these two type variables
// adjacent.
--pos->second.NumConstraints;
// If there are other constraints that make these type variables
// adjacent,
if (pos->second.NumConstraints > 0)
return;
}
// Remove this adjacency from the mapping.
unsigned index = pos->second.Index;
AdjacencyInfo.erase(pos);
// If this adjacency is last in the vector, just pop it off.
unsigned lastIndex = Adjacencies.size()-1;
if (index == lastIndex) {
Adjacencies.pop_back();
return;
}
// This adjacency is somewhere in the middle; swap it with the last
// adjacency so we can remove the adjacency from the vector in O(1) time
// rather than O(n) time.
auto lastTypeVar = Adjacencies[lastIndex];
Adjacencies[index] = lastTypeVar;
AdjacencyInfo[lastTypeVar].Index = index;
Adjacencies.pop_back();
}
void ConstraintGraph::Node::collapseInto(ConstraintGraph &cg, Node &combined) {
// Add each of the constraints into the combined node.
for (auto constraint : Constraints) {
if (combined.ConstraintIndex.count(constraint) == 0)
combined.addConstraint(constraint);
}
// Update adjacency counts in the combined node and remap the
// adjacent nodes.
for (const auto &adj : AdjacencyInfo) {
// If this is a newly-created self-adjacency, remove it from the
// combined node and we're done.
if (adj.first == combined.TypeVar) {
combined.removeAdjacency(TypeVar, /*allAdjacencies=*/true);
continue;
}
// Add this adjacency to the combined node.
combined.addAdjacency(adj.first, adj.second.NumConstraints);
// Replace the adjacency in the adjacent node with the combined
// node.
auto &adjNode = cg[adj.first];
adjNode.removeAdjacency(TypeVar, /*allAdjacencies=*/true);
adjNode.addAdjacency(combined.TypeVar, adj.second.NumConstraints);
}
}
#pragma mark Graph mutation
void ConstraintGraph::addConstraint(Constraint *constraint) {
// Gather the set of type variables referenced by this constraint.
SmallVector<TypeVariableType *, 8> referencedTypeVars;
gatherReferencedTypeVars(CS, constraint, referencedTypeVars);
// For the nodes corresponding to each type variable...
for (auto typeVar : referencedTypeVars) {
// Find the node for this type variable.
Node &node = (*this)[typeVar];
// Note the constraint within the node for that type variable.
node.addConstraint(constraint);
// Record the adjacent type variables.
// This is O(N^2) in the number of referenced type variables, because
// we're updating all of the adjacent type variables eagerly.
for (auto otherTypeVar : referencedTypeVars) {
if (typeVar == otherTypeVar)
continue;
node.addAdjacency(otherTypeVar);
}
}
}
void ConstraintGraph::removeConstraint(Constraint *constraint) {
// Gather the set of type variables referenced by this constraint.
SmallVector<TypeVariableType *, 8> referencedTypeVars;
gatherReferencedTypeVars(CS, constraint, referencedTypeVars);
// For the nodes corresponding to each type variable...
for (auto typeVar : referencedTypeVars) {
// Find the node for this type variable.
Node &node = (*this)[typeVar];
// Remove the constraint.
node.removeConstraint(constraint);
// Remove the adjacencies for all adjacent type variables.
// This is O(N^2) in the number of referenced type variables, because
// we're updating all of the adjacent type variables eagerly.
for (auto otherTypeVar : referencedTypeVars) {
if (typeVar == otherTypeVar)
continue;
node.removeAdjacency(otherTypeVar);
}
}
}
void ConstraintGraph::mergeNodes(TypeVariableType *typeVar1,
TypeVariableType *typeVar2) {
assert(typeVar1 == CS.getRepresentative(typeVar1) && "non-representative 1");
assert(typeVar2 == CS.getRepresentative(typeVar2) && "non-representative 2");
assert(typeVar1 != typeVar2 && "Type variables aren't different");
// Pull the first node out of storage.
std::unique_ptr<Node> node1;
{
auto known1 = Nodes.find(typeVar1);
assert(known1 != Nodes.end() && "Missing first node");
auto storedNode1 = known1->second;
Nodes.erase(known1);
unsigned lastIndex = TypeVariables.size()-1;
if (storedNode1.Index < lastIndex) {
// Shuffle the last type variable to the index of the first
// node's type variable.
auto lastTypeVar = TypeVariables[lastIndex];
TypeVariables[storedNode1.Index] = lastTypeVar;
Nodes[lastTypeVar].Index = storedNode1.Index;
}
// Pop the removed variable off the end.
TypeVariables.pop_back();
// Save the node pointer.
node1.reset(storedNode1.NodePtr);
}
// Collapse the first type variable's node into the second.
auto &node2 = (*this)[typeVar2];
node1->collapseInto(*this, node2);
}
#pragma mark Algorithms
/// Depth-first search for connected components
static void connectedComponentsDFS(ConstraintGraph &cg,
ConstraintGraph::Node &node,
unsigned component,
SmallVectorImpl<unsigned> &components) {
// Recurse to mark adjacent nodes as part of this connected component.
for (auto adj : node.getAdjacencies()) {
auto nodeAndIndex = cg.lookupNode(adj);
// If we've already seen this node in this component, we're done.
unsigned &curComponent = components[nodeAndIndex.second];
if (curComponent == component)
continue;
// Mark this node as part of this connected component, then recurse.
assert(curComponent == components.size() && "Already in a component?");
curComponent = component;
connectedComponentsDFS(cg, nodeAndIndex.first, component, components);
}
}
unsigned ConstraintGraph::computeConnectedComponents(
SmallVectorImpl<unsigned> &components,
SmallVectorImpl<unsigned> *componentSizes) {
// Initialize the components with component == # of type variables,
// a sentinel value indicating
unsigned numTypeVariables = TypeVariables.size();
components.assign(numTypeVariables, numTypeVariables);
if (componentSizes)
componentSizes->clear();
// Perform a depth-first search from each type variable to identify
// what component it is in.
unsigned numComponents = 0;
for (unsigned i = 0; i != numTypeVariables; ++i) {
// Look up the node for this type variable.
auto typeVar = TypeVariables[i];
auto nodeAndIndex = lookupNode(typeVar);
// If we're already assigned a component for this node, skip it.
unsigned &curComponent = components[nodeAndIndex.second];
if (curComponent != numTypeVariables) {
if (componentSizes)
++(*componentSizes)[curComponent];
continue;
}
// Record this component.
unsigned component = numComponents++;
if (componentSizes)
componentSizes->push_back(1);
// Note that this node is part of this component, then visit it.
curComponent = component;
connectedComponentsDFS(*this, nodeAndIndex.first, component, components);
}
// If we computed component sizes, make sure we did something sane.
assert(!componentSizes ||
(std::accumulate(componentSizes->begin(), componentSizes->end(),
0u) == numTypeVariables));
return numComponents;
}
#pragma mark Debugging output
void ConstraintGraph::Node::print(llvm::raw_ostream &out, unsigned indent) {
out.indent(indent);
TypeVar->print(out);
out << ":\n";
// Print constraints.
if (!Constraints.empty()) {
out.indent(indent + 2);
out << "Constraints:\n";
for (auto constraint : Constraints) {
out.indent(indent + 4);
constraint->print(out, /*FIXME:*/nullptr);
out << "\n";
}
}
// Print adjacencies.
if (!Adjacencies.empty()) {
out.indent(indent + 2);
out << "Adjacencies:";
for (auto adj : Adjacencies) {
out << ' ';
adj->print(out);
auto degree = AdjacencyInfo[adj].NumConstraints;
if (degree > 1)
out << " (" << degree << ")";
}
out << "\n";
}
}
void ConstraintGraph::Node::dump() {
print(llvm::dbgs(), 0);
}
void ConstraintGraph::print(llvm::raw_ostream &out) {
for (auto typeVar : TypeVariables) {
(*this)[typeVar].print(out, 2);
out << "\n";
}
}
void ConstraintGraph::dump() {
print(llvm::dbgs());
}
#pragma mark Verification of graph invariants
/// Require that the given condition evaluate true.
///
/// If the condition is not true, complain about the problem and abort.
///
/// \param condition The actual Boolean condition.
///
/// \param complaint A string that describes the problem.
///
/// \param cg The constraint graph that failed verification.
///
/// \param node If non-null, the graph node that failed verification.
///
/// \param extraContext If provided, a function that will be called to
/// provide extra, contextual information about the failure.
static void _require(bool condition, const Twine &complaint,
ConstraintGraph &cg,
ConstraintGraph::Node *node,
const std::function<void()> &extraContext = nullptr) {
if (condition)
return;
// Complain
llvm::dbgs() << "Constraint graph verification failed: " << complaint << '\n';
if (extraContext)
extraContext();
// Print the graph.
// FIXME: Highlight the offending node/constraint/adjacency/etc.
cg.print(llvm::dbgs());
abort();
}
/// Print a type variable value.
static void printValue(llvm::raw_ostream &os, TypeVariableType *typeVar) {
typeVar->print(os);
}
/// Print a constraint value.
static void printValue(llvm::raw_ostream &os, Constraint *constraint) {
constraint->print(os, nullptr);
}
/// Print an unsigned value.
static void printValue(llvm::raw_ostream &os, unsigned value) {
os << value;
}
void ConstraintGraph::Node::verify(ConstraintGraph &cg) {
#define require(condition, complaint) _require(condition, complaint, cg, this)
#define requireWithContext(condition, complaint, context) \
_require(condition, complaint, cg, this, context)
#define requireSameValue(value1, value2, complaint) \
_require(value1 == value2, complaint, cg, this, [&] { \
llvm::dbgs() << " "; \
printValue(llvm::dbgs(), value1); \
llvm::dbgs() << " != "; \
printValue(llvm::dbgs(), value2); \
llvm::dbgs() << '\n'; \
})
// Verify that the constraint map/vector haven't gotten out of sync.
requireSameValue(Constraints.size(), ConstraintIndex.size(),
"constraint vector and map have different sizes");
for (auto info : ConstraintIndex) {
require(info.second < Constraints.size(), "constraint index out-of-range");
requireSameValue(info.first, Constraints[info.second],
"constraint map provides wrong index into vector");
}
// Verify that the adjacency map/vector haven't gotten out of sync.
requireSameValue(Adjacencies.size(), AdjacencyInfo.size(),
"adjacency vector and map have different sizes");
for (auto info : AdjacencyInfo) {
require(info.second.Index < Adjacencies.size(),
"adjacency index out-of-range");
requireSameValue(info.first, Adjacencies[info.second.Index],
"adjacency map provides wrong index into vector");
require(info.second.NumConstraints > 0,
"adjacency information should have been removed");
require(info.second.NumConstraints <= Constraints.size(),
"adjacency information has higher degree than # of constraints");
requireSameValue(info.first, cg.CS.getRepresentative(info.first),
"adjacency with non-representative type");
}
// Based on the constraints we have, build up a representation of what
// we expect the adjacencies to look like.
llvm::DenseMap<TypeVariableType *, unsigned> expectedAdjacencies;
for (auto constraint : Constraints) {
SmallVector<TypeVariableType *, 4> referencedTypeVars;
gatherReferencedTypeVars(cg.CS, constraint, referencedTypeVars);
for (auto adjTypeVar : referencedTypeVars) {
if (adjTypeVar == TypeVar)
continue;
++expectedAdjacencies[adjTypeVar];
}
}
// Make sure that the adjacencies we expect are the adjacencies we have.
for (auto adj : expectedAdjacencies) {
auto knownAdj = AdjacencyInfo.find(adj.first);
requireWithContext(knownAdj != AdjacencyInfo.end(),
"missing adjacency information for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString() << 'n';
});
requireWithContext(adj.second == knownAdj->second.NumConstraints,
"wrong number of adjacencies for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString()
<< " (" << adj.second << " vs. "
<< knownAdj->second.NumConstraints
<< ")\n";
});
}
if (AdjacencyInfo.size() != expectedAdjacencies.size()) {
// The adjacency information has something extra in it. Find the
// extraneous type variable.
for (auto adj : AdjacencyInfo) {
requireWithContext(AdjacencyInfo.count(adj.first) > 0,
"extraneous adjacency info for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString() << '\n';
});
}
}
#undef requireSameValue
#undef requireWithContext
#undef require
}
void ConstraintGraph::verify() {
#define require(condition, complaint) \
_require(condition, complaint, *this, nullptr)
#define requireWithContext(condition, complaint, context) \
_require(condition, complaint, *this, nullptr, context)
#define requireSameValue(value1, value2, complaint) \
_require(value1 == value2, complaint, *this, nullptr, [&] { \
llvm::dbgs() << " " << value1 << " != " << value2 << '\n'; \
})
// Verify that the type variables are all representatives.
for (auto typeVar : TypeVariables) {
requireSameValue(typeVar, CS.getRepresentative(typeVar),
"non-representative type variable in constraint graph");
}
// Verify that our type variable map/vector are in sync.
requireSameValue(TypeVariables.size(), Nodes.size(),
"type variables vector and node map have different sizes");
for (auto node : Nodes) {
require(node.second.Index < TypeVariables.size(),
"out of bounds node index");
requireSameValue(node.first, TypeVariables[node.second.Index],
"node map provides wrong index into type variable vector");
}
// Verify consistency of all of the nodes in the graph.
for (auto node : Nodes) {
node.second.NodePtr->verify(*this);
}
// FIXME: Verify that all of the constraints in the constraint system
// are accounted for. This requires a better abstraction for tracking
// the set of constraints that are live.
#undef requireSameValue
#undef requireWithContext
#undef require
}