mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This currently-untestable code allows updates to the constraint graph when a same-type constraint causes two type variables to be unified. Additionally, it handles the removal of a constraint from the constraint system, e.g., if it is solved. Swift SVN r10716
642 lines
22 KiB
C++
642 lines
22 KiB
C++
//===--- ConstraintGraph.cpp - Constraint Graph ---------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the \c ConstraintGraph class, which describes the
|
|
// relationships among the type variables within a constraint system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "ConstraintGraph.h"
|
|
#include "ConstraintSystem.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <numeric>
|
|
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
#pragma mark Graph construction/destruction
|
|
|
|
ConstraintGraph::ConstraintGraph(ConstraintSystem &cs) : CS(cs) { }
|
|
|
|
ConstraintGraph::~ConstraintGraph() {
|
|
for (auto node : Nodes) {
|
|
delete node.second.NodePtr;
|
|
}
|
|
}
|
|
|
|
#pragma mark Helper functions
|
|
|
|
/// Recursively gather the set of type variable representatives referenced by
|
|
/// this constraint.
|
|
static void
|
|
gatherReferencedTypeVarsRec(ConstraintSystem &cs,
|
|
Constraint *constraint,
|
|
SmallVectorImpl<TypeVariableType *> &typeVars) {
|
|
switch (constraint->getKind()) {
|
|
case ConstraintKind::Conjunction:
|
|
case ConstraintKind::Disjunction:
|
|
for (auto nested : constraint->getNestedConstraints())
|
|
gatherReferencedTypeVarsRec(cs, nested, typeVars);
|
|
return;
|
|
|
|
case ConstraintKind::ApplicableFunction:
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::Construction:
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::Equal:
|
|
case ConstraintKind::Subtype:
|
|
case ConstraintKind::TrivialSubtype:
|
|
case ConstraintKind::TypeMember:
|
|
case ConstraintKind::ValueMember: {
|
|
Type second = cs.simplifyType(constraint->getSecondType());
|
|
second->getTypeVariables(typeVars);
|
|
}
|
|
SWIFT_FALLTHROUGH;
|
|
|
|
case ConstraintKind::Archetype:
|
|
case ConstraintKind::BindOverload:
|
|
case ConstraintKind::Class:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::DynamicLookupValue:
|
|
case ConstraintKind::SelfObjectOfProtocol: {
|
|
Type first = cs.simplifyType(constraint->getFirstType());
|
|
first->getTypeVariables(typeVars);
|
|
|
|
// Special case: the base type of an overloading binding.
|
|
if (constraint->getKind() == ConstraintKind::BindOverload) {
|
|
if (auto baseType = constraint->getOverloadChoice().getBaseType()) {
|
|
baseType = cs.simplifyType(baseType);
|
|
baseType->getTypeVariables(typeVars);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Gather the set of type variable representatives referenced by this
|
|
/// constraint, mapped to the type representative and uniqued.
|
|
static void
|
|
gatherReferencedTypeVars(ConstraintSystem &cs,
|
|
Constraint *constraint,
|
|
SmallVectorImpl<TypeVariableType *> &typeVars) {
|
|
// Gather all of the referenced type variables.
|
|
gatherReferencedTypeVarsRec(cs, constraint, typeVars);
|
|
|
|
// Map the referenced type variables to their representatives and remove
|
|
// any duplicates.
|
|
// Note: This is a standard erase/remove idiom, but we don't use the
|
|
// standard library's algorithms because we also want to map type
|
|
// variables to their representatives.
|
|
llvm::SmallPtrSet<TypeVariableType *, 4> representatives;
|
|
unsigned currentIndex = 0;
|
|
for (unsigned i = 0, n = typeVars.size(); i != n; ++i) {
|
|
auto typeVar = cs.getRepresentative(typeVars[i]);
|
|
if (!representatives.insert(typeVar))
|
|
continue;
|
|
|
|
typeVars[currentIndex++] = typeVar;
|
|
}
|
|
typeVars.erase(typeVars.begin() + currentIndex, typeVars.end());
|
|
}
|
|
|
|
#pragma mark Graph accessors
|
|
|
|
ConstraintGraph::Node &ConstraintGraph::operator[](TypeVariableType *typeVar) {
|
|
return lookupNode(typeVar).first;
|
|
}
|
|
|
|
std::pair<ConstraintGraph::Node &, unsigned>
|
|
ConstraintGraph::lookupNode(TypeVariableType *typeVar) {
|
|
typeVar = CS.getRepresentative(typeVar);
|
|
|
|
// Check whether we've already created a node for this type variable.
|
|
auto known = Nodes.find(typeVar);
|
|
if (known != Nodes.end()) {
|
|
assert(known->second.NodePtr && "Missing node pointer?");
|
|
return { *known->second.NodePtr, known->second.Index };
|
|
}
|
|
|
|
// Allocate the new node.
|
|
StoredNode &stored = Nodes[typeVar];
|
|
stored.NodePtr = new Node(typeVar);
|
|
stored.Index = TypeVariables.size();
|
|
|
|
// Record this type variable.
|
|
TypeVariables.push_back(typeVar);
|
|
|
|
return { *stored.NodePtr, stored.Index };
|
|
}
|
|
|
|
#pragma mark Node mutation
|
|
void ConstraintGraph::Node::addConstraint(Constraint *constraint) {
|
|
assert(ConstraintIndex.count(constraint) == 0 && "Constraint re-insertion");
|
|
ConstraintIndex[constraint] = Constraints.size();
|
|
Constraints.push_back(constraint);
|
|
}
|
|
|
|
void ConstraintGraph::Node::removeConstraint(Constraint *constraint) {
|
|
auto pos = ConstraintIndex.find(constraint);
|
|
assert(pos != ConstraintIndex.end());
|
|
|
|
// Remove this constraint from the constraint mapping.
|
|
auto index = pos->second;
|
|
ConstraintIndex.erase(pos);
|
|
assert(Constraints[index] == constraint && "Mismatched constraint");
|
|
|
|
// If this is the last constraint, just pop it off the list and we're done.
|
|
unsigned lastIndex = Constraints.size()-1;
|
|
if (index == lastIndex) {
|
|
Constraints.pop_back();
|
|
return;
|
|
}
|
|
|
|
// This constraint is somewhere in the middle; swap it with the last
|
|
// constraint, so we can remove the constraint from the vector in O(1)
|
|
// time rather than O(n) time.
|
|
auto lastConstraint = Constraints[lastIndex];
|
|
Constraints[index] = lastConstraint;
|
|
ConstraintIndex[lastConstraint] = index;
|
|
Constraints.pop_back();
|
|
}
|
|
|
|
void ConstraintGraph::Node::addAdjacency(TypeVariableType *typeVar,
|
|
unsigned degree) {
|
|
assert(typeVar != TypeVar && "Cannot be adjacent to oneself");
|
|
|
|
// Look for existing adjacency information.
|
|
auto pos = AdjacencyInfo.find(typeVar);
|
|
|
|
// If we weren't already adjacent to this type variable, add it to the
|
|
// list of adjacencies.
|
|
if (pos == AdjacencyInfo.end()) {
|
|
pos = AdjacencyInfo.insert(
|
|
{ typeVar, { static_cast<unsigned>(Adjacencies.size()), 0 } })
|
|
.first;
|
|
Adjacencies.push_back(typeVar);
|
|
}
|
|
|
|
// Bump the degree of the adjacency.
|
|
pos->second.NumConstraints += degree;
|
|
}
|
|
|
|
void ConstraintGraph::Node::removeAdjacency(TypeVariableType *typeVar,
|
|
bool allAdjacencies) {
|
|
// Find the adjacency information.
|
|
auto pos = AdjacencyInfo.find(typeVar);
|
|
assert(pos != AdjacencyInfo.end() && "Type variables not adjacent");
|
|
assert(Adjacencies[pos->second.Index] == typeVar && "Mismatched adjacency");
|
|
|
|
if (!allAdjacencies) {
|
|
// Decrement the number of constraints that make these two type variables
|
|
// adjacent.
|
|
--pos->second.NumConstraints;
|
|
|
|
// If there are other constraints that make these type variables
|
|
// adjacent,
|
|
if (pos->second.NumConstraints > 0)
|
|
return;
|
|
}
|
|
|
|
// Remove this adjacency from the mapping.
|
|
unsigned index = pos->second.Index;
|
|
AdjacencyInfo.erase(pos);
|
|
|
|
// If this adjacency is last in the vector, just pop it off.
|
|
unsigned lastIndex = Adjacencies.size()-1;
|
|
if (index == lastIndex) {
|
|
Adjacencies.pop_back();
|
|
return;
|
|
}
|
|
|
|
// This adjacency is somewhere in the middle; swap it with the last
|
|
// adjacency so we can remove the adjacency from the vector in O(1) time
|
|
// rather than O(n) time.
|
|
auto lastTypeVar = Adjacencies[lastIndex];
|
|
Adjacencies[index] = lastTypeVar;
|
|
AdjacencyInfo[lastTypeVar].Index = index;
|
|
Adjacencies.pop_back();
|
|
}
|
|
|
|
void ConstraintGraph::Node::collapseInto(ConstraintGraph &cg, Node &combined) {
|
|
// Add each of the constraints into the combined node.
|
|
for (auto constraint : Constraints) {
|
|
if (combined.ConstraintIndex.count(constraint) == 0)
|
|
combined.addConstraint(constraint);
|
|
}
|
|
|
|
// Update adjacency counts in the combined node and remap the
|
|
// adjacent nodes.
|
|
for (const auto &adj : AdjacencyInfo) {
|
|
// If this is a newly-created self-adjacency, remove it from the
|
|
// combined node and we're done.
|
|
if (adj.first == combined.TypeVar) {
|
|
combined.removeAdjacency(TypeVar, /*allAdjacencies=*/true);
|
|
continue;
|
|
}
|
|
|
|
// Add this adjacency to the combined node.
|
|
combined.addAdjacency(adj.first, adj.second.NumConstraints);
|
|
|
|
// Replace the adjacency in the adjacent node with the combined
|
|
// node.
|
|
auto &adjNode = cg[adj.first];
|
|
adjNode.removeAdjacency(TypeVar, /*allAdjacencies=*/true);
|
|
adjNode.addAdjacency(combined.TypeVar, adj.second.NumConstraints);
|
|
}
|
|
}
|
|
|
|
#pragma mark Graph mutation
|
|
|
|
void ConstraintGraph::addConstraint(Constraint *constraint) {
|
|
// Gather the set of type variables referenced by this constraint.
|
|
SmallVector<TypeVariableType *, 8> referencedTypeVars;
|
|
gatherReferencedTypeVars(CS, constraint, referencedTypeVars);
|
|
|
|
// For the nodes corresponding to each type variable...
|
|
for (auto typeVar : referencedTypeVars) {
|
|
// Find the node for this type variable.
|
|
Node &node = (*this)[typeVar];
|
|
|
|
// Note the constraint within the node for that type variable.
|
|
node.addConstraint(constraint);
|
|
|
|
// Record the adjacent type variables.
|
|
// This is O(N^2) in the number of referenced type variables, because
|
|
// we're updating all of the adjacent type variables eagerly.
|
|
for (auto otherTypeVar : referencedTypeVars) {
|
|
if (typeVar == otherTypeVar)
|
|
continue;
|
|
|
|
node.addAdjacency(otherTypeVar);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConstraintGraph::removeConstraint(Constraint *constraint) {
|
|
// Gather the set of type variables referenced by this constraint.
|
|
SmallVector<TypeVariableType *, 8> referencedTypeVars;
|
|
gatherReferencedTypeVars(CS, constraint, referencedTypeVars);
|
|
|
|
// For the nodes corresponding to each type variable...
|
|
for (auto typeVar : referencedTypeVars) {
|
|
// Find the node for this type variable.
|
|
Node &node = (*this)[typeVar];
|
|
|
|
// Remove the constraint.
|
|
node.removeConstraint(constraint);
|
|
|
|
// Remove the adjacencies for all adjacent type variables.
|
|
// This is O(N^2) in the number of referenced type variables, because
|
|
// we're updating all of the adjacent type variables eagerly.
|
|
for (auto otherTypeVar : referencedTypeVars) {
|
|
if (typeVar == otherTypeVar)
|
|
continue;
|
|
|
|
node.removeAdjacency(otherTypeVar);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConstraintGraph::mergeNodes(TypeVariableType *typeVar1,
|
|
TypeVariableType *typeVar2) {
|
|
assert(typeVar1 == CS.getRepresentative(typeVar1) && "non-representative 1");
|
|
assert(typeVar2 == CS.getRepresentative(typeVar2) && "non-representative 2");
|
|
assert(typeVar1 != typeVar2 && "Type variables aren't different");
|
|
|
|
// Pull the first node out of storage.
|
|
std::unique_ptr<Node> node1;
|
|
{
|
|
auto known1 = Nodes.find(typeVar1);
|
|
assert(known1 != Nodes.end() && "Missing first node");
|
|
auto storedNode1 = known1->second;
|
|
Nodes.erase(known1);
|
|
|
|
unsigned lastIndex = TypeVariables.size()-1;
|
|
if (storedNode1.Index < lastIndex) {
|
|
// Shuffle the last type variable to the index of the first
|
|
// node's type variable.
|
|
auto lastTypeVar = TypeVariables[lastIndex];
|
|
TypeVariables[storedNode1.Index] = lastTypeVar;
|
|
Nodes[lastTypeVar].Index = storedNode1.Index;
|
|
}
|
|
|
|
// Pop the removed variable off the end.
|
|
TypeVariables.pop_back();
|
|
|
|
// Save the node pointer.
|
|
node1.reset(storedNode1.NodePtr);
|
|
}
|
|
|
|
// Collapse the first type variable's node into the second.
|
|
auto &node2 = (*this)[typeVar2];
|
|
node1->collapseInto(*this, node2);
|
|
}
|
|
|
|
#pragma mark Algorithms
|
|
|
|
/// Depth-first search for connected components
|
|
static void connectedComponentsDFS(ConstraintGraph &cg,
|
|
ConstraintGraph::Node &node,
|
|
unsigned component,
|
|
SmallVectorImpl<unsigned> &components) {
|
|
// Recurse to mark adjacent nodes as part of this connected component.
|
|
for (auto adj : node.getAdjacencies()) {
|
|
auto nodeAndIndex = cg.lookupNode(adj);
|
|
// If we've already seen this node in this component, we're done.
|
|
unsigned &curComponent = components[nodeAndIndex.second];
|
|
if (curComponent == component)
|
|
continue;
|
|
|
|
// Mark this node as part of this connected component, then recurse.
|
|
assert(curComponent == components.size() && "Already in a component?");
|
|
curComponent = component;
|
|
connectedComponentsDFS(cg, nodeAndIndex.first, component, components);
|
|
}
|
|
}
|
|
|
|
unsigned ConstraintGraph::computeConnectedComponents(
|
|
SmallVectorImpl<unsigned> &components,
|
|
SmallVectorImpl<unsigned> *componentSizes) {
|
|
// Initialize the components with component == # of type variables,
|
|
// a sentinel value indicating
|
|
unsigned numTypeVariables = TypeVariables.size();
|
|
components.assign(numTypeVariables, numTypeVariables);
|
|
if (componentSizes)
|
|
componentSizes->clear();
|
|
|
|
// Perform a depth-first search from each type variable to identify
|
|
// what component it is in.
|
|
unsigned numComponents = 0;
|
|
for (unsigned i = 0; i != numTypeVariables; ++i) {
|
|
// Look up the node for this type variable.
|
|
auto typeVar = TypeVariables[i];
|
|
auto nodeAndIndex = lookupNode(typeVar);
|
|
|
|
// If we're already assigned a component for this node, skip it.
|
|
unsigned &curComponent = components[nodeAndIndex.second];
|
|
if (curComponent != numTypeVariables) {
|
|
if (componentSizes)
|
|
++(*componentSizes)[curComponent];
|
|
continue;
|
|
}
|
|
|
|
// Record this component.
|
|
unsigned component = numComponents++;
|
|
if (componentSizes)
|
|
componentSizes->push_back(1);
|
|
|
|
// Note that this node is part of this component, then visit it.
|
|
curComponent = component;
|
|
connectedComponentsDFS(*this, nodeAndIndex.first, component, components);
|
|
}
|
|
|
|
// If we computed component sizes, make sure we did something sane.
|
|
assert(!componentSizes ||
|
|
(std::accumulate(componentSizes->begin(), componentSizes->end(),
|
|
0u) == numTypeVariables));
|
|
return numComponents;
|
|
}
|
|
|
|
#pragma mark Debugging output
|
|
|
|
void ConstraintGraph::Node::print(llvm::raw_ostream &out, unsigned indent) {
|
|
out.indent(indent);
|
|
TypeVar->print(out);
|
|
out << ":\n";
|
|
|
|
// Print constraints.
|
|
if (!Constraints.empty()) {
|
|
out.indent(indent + 2);
|
|
out << "Constraints:\n";
|
|
for (auto constraint : Constraints) {
|
|
out.indent(indent + 4);
|
|
constraint->print(out, /*FIXME:*/nullptr);
|
|
out << "\n";
|
|
}
|
|
}
|
|
|
|
// Print adjacencies.
|
|
if (!Adjacencies.empty()) {
|
|
out.indent(indent + 2);
|
|
out << "Adjacencies:";
|
|
for (auto adj : Adjacencies) {
|
|
out << ' ';
|
|
adj->print(out);
|
|
|
|
auto degree = AdjacencyInfo[adj].NumConstraints;
|
|
if (degree > 1)
|
|
out << " (" << degree << ")";
|
|
}
|
|
out << "\n";
|
|
}
|
|
}
|
|
|
|
void ConstraintGraph::Node::dump() {
|
|
print(llvm::dbgs(), 0);
|
|
}
|
|
|
|
void ConstraintGraph::print(llvm::raw_ostream &out) {
|
|
for (auto typeVar : TypeVariables) {
|
|
(*this)[typeVar].print(out, 2);
|
|
out << "\n";
|
|
}
|
|
}
|
|
|
|
void ConstraintGraph::dump() {
|
|
print(llvm::dbgs());
|
|
}
|
|
|
|
#pragma mark Verification of graph invariants
|
|
|
|
/// Require that the given condition evaluate true.
|
|
///
|
|
/// If the condition is not true, complain about the problem and abort.
|
|
///
|
|
/// \param condition The actual Boolean condition.
|
|
///
|
|
/// \param complaint A string that describes the problem.
|
|
///
|
|
/// \param cg The constraint graph that failed verification.
|
|
///
|
|
/// \param node If non-null, the graph node that failed verification.
|
|
///
|
|
/// \param extraContext If provided, a function that will be called to
|
|
/// provide extra, contextual information about the failure.
|
|
static void _require(bool condition, const Twine &complaint,
|
|
ConstraintGraph &cg,
|
|
ConstraintGraph::Node *node,
|
|
const std::function<void()> &extraContext = nullptr) {
|
|
if (condition)
|
|
return;
|
|
|
|
// Complain
|
|
llvm::dbgs() << "Constraint graph verification failed: " << complaint << '\n';
|
|
if (extraContext)
|
|
extraContext();
|
|
|
|
// Print the graph.
|
|
// FIXME: Highlight the offending node/constraint/adjacency/etc.
|
|
cg.print(llvm::dbgs());
|
|
|
|
abort();
|
|
}
|
|
|
|
/// Print a type variable value.
|
|
static void printValue(llvm::raw_ostream &os, TypeVariableType *typeVar) {
|
|
typeVar->print(os);
|
|
}
|
|
|
|
/// Print a constraint value.
|
|
static void printValue(llvm::raw_ostream &os, Constraint *constraint) {
|
|
constraint->print(os, nullptr);
|
|
}
|
|
|
|
/// Print an unsigned value.
|
|
static void printValue(llvm::raw_ostream &os, unsigned value) {
|
|
os << value;
|
|
}
|
|
|
|
void ConstraintGraph::Node::verify(ConstraintGraph &cg) {
|
|
#define require(condition, complaint) _require(condition, complaint, cg, this)
|
|
#define requireWithContext(condition, complaint, context) \
|
|
_require(condition, complaint, cg, this, context)
|
|
#define requireSameValue(value1, value2, complaint) \
|
|
_require(value1 == value2, complaint, cg, this, [&] { \
|
|
llvm::dbgs() << " "; \
|
|
printValue(llvm::dbgs(), value1); \
|
|
llvm::dbgs() << " != "; \
|
|
printValue(llvm::dbgs(), value2); \
|
|
llvm::dbgs() << '\n'; \
|
|
})
|
|
|
|
// Verify that the constraint map/vector haven't gotten out of sync.
|
|
requireSameValue(Constraints.size(), ConstraintIndex.size(),
|
|
"constraint vector and map have different sizes");
|
|
for (auto info : ConstraintIndex) {
|
|
require(info.second < Constraints.size(), "constraint index out-of-range");
|
|
requireSameValue(info.first, Constraints[info.second],
|
|
"constraint map provides wrong index into vector");
|
|
}
|
|
|
|
// Verify that the adjacency map/vector haven't gotten out of sync.
|
|
requireSameValue(Adjacencies.size(), AdjacencyInfo.size(),
|
|
"adjacency vector and map have different sizes");
|
|
for (auto info : AdjacencyInfo) {
|
|
require(info.second.Index < Adjacencies.size(),
|
|
"adjacency index out-of-range");
|
|
requireSameValue(info.first, Adjacencies[info.second.Index],
|
|
"adjacency map provides wrong index into vector");
|
|
require(info.second.NumConstraints > 0,
|
|
"adjacency information should have been removed");
|
|
require(info.second.NumConstraints <= Constraints.size(),
|
|
"adjacency information has higher degree than # of constraints");
|
|
requireSameValue(info.first, cg.CS.getRepresentative(info.first),
|
|
"adjacency with non-representative type");
|
|
}
|
|
|
|
// Based on the constraints we have, build up a representation of what
|
|
// we expect the adjacencies to look like.
|
|
llvm::DenseMap<TypeVariableType *, unsigned> expectedAdjacencies;
|
|
for (auto constraint : Constraints) {
|
|
SmallVector<TypeVariableType *, 4> referencedTypeVars;
|
|
gatherReferencedTypeVars(cg.CS, constraint, referencedTypeVars);
|
|
|
|
for (auto adjTypeVar : referencedTypeVars) {
|
|
if (adjTypeVar == TypeVar)
|
|
continue;
|
|
|
|
++expectedAdjacencies[adjTypeVar];
|
|
}
|
|
}
|
|
|
|
// Make sure that the adjacencies we expect are the adjacencies we have.
|
|
for (auto adj : expectedAdjacencies) {
|
|
auto knownAdj = AdjacencyInfo.find(adj.first);
|
|
requireWithContext(knownAdj != AdjacencyInfo.end(),
|
|
"missing adjacency information for type variable",
|
|
[&] {
|
|
llvm::dbgs() << " type variable=" << adj.first->getString() << 'n';
|
|
});
|
|
|
|
requireWithContext(adj.second == knownAdj->second.NumConstraints,
|
|
"wrong number of adjacencies for type variable",
|
|
[&] {
|
|
llvm::dbgs() << " type variable=" << adj.first->getString()
|
|
<< " (" << adj.second << " vs. "
|
|
<< knownAdj->second.NumConstraints
|
|
<< ")\n";
|
|
});
|
|
}
|
|
|
|
if (AdjacencyInfo.size() != expectedAdjacencies.size()) {
|
|
// The adjacency information has something extra in it. Find the
|
|
// extraneous type variable.
|
|
for (auto adj : AdjacencyInfo) {
|
|
requireWithContext(AdjacencyInfo.count(adj.first) > 0,
|
|
"extraneous adjacency info for type variable",
|
|
[&] {
|
|
llvm::dbgs() << " type variable=" << adj.first->getString() << '\n';
|
|
});
|
|
}
|
|
}
|
|
|
|
#undef requireSameValue
|
|
#undef requireWithContext
|
|
#undef require
|
|
}
|
|
|
|
void ConstraintGraph::verify() {
|
|
#define require(condition, complaint) \
|
|
_require(condition, complaint, *this, nullptr)
|
|
#define requireWithContext(condition, complaint, context) \
|
|
_require(condition, complaint, *this, nullptr, context)
|
|
#define requireSameValue(value1, value2, complaint) \
|
|
_require(value1 == value2, complaint, *this, nullptr, [&] { \
|
|
llvm::dbgs() << " " << value1 << " != " << value2 << '\n'; \
|
|
})
|
|
|
|
// Verify that the type variables are all representatives.
|
|
for (auto typeVar : TypeVariables) {
|
|
requireSameValue(typeVar, CS.getRepresentative(typeVar),
|
|
"non-representative type variable in constraint graph");
|
|
}
|
|
|
|
// Verify that our type variable map/vector are in sync.
|
|
requireSameValue(TypeVariables.size(), Nodes.size(),
|
|
"type variables vector and node map have different sizes");
|
|
for (auto node : Nodes) {
|
|
require(node.second.Index < TypeVariables.size(),
|
|
"out of bounds node index");
|
|
requireSameValue(node.first, TypeVariables[node.second.Index],
|
|
"node map provides wrong index into type variable vector");
|
|
}
|
|
|
|
// Verify consistency of all of the nodes in the graph.
|
|
for (auto node : Nodes) {
|
|
node.second.NodePtr->verify(*this);
|
|
}
|
|
|
|
// FIXME: Verify that all of the constraints in the constraint system
|
|
// are accounted for. This requires a better abstraction for tracking
|
|
// the set of constraints that are live.
|
|
|
|
#undef requireSameValue
|
|
#undef requireWithContext
|
|
#undef require
|
|
}
|
|
|
|
|