Files
swift-mirror/lib/SILOptimizer/LoopTransforms/ArrayBoundsCheckOpts.cpp
John McCall ab3f77baf2 Make SILInstruction no longer a subclass of ValueBase and
introduce a common superclass, SILNode.

This is in preparation for allowing instructions to have multiple
results.  It is also a somewhat more elegant representation for
instructions that have zero results.  Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction.  Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.

A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.

Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
2017-09-25 02:06:26 -04:00

1401 lines
49 KiB
C++

//===--- ArrayBoundsCheckOpts.cpp - Bounds check elim ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-abcopts"
#include "swift/Basic/STLExtras.h"
#include "swift/AST/Builtins.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/DestructorAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/IVAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFG.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/InstructionUtils.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include "llvm/Support/CommandLine.h"
using namespace swift;
using namespace PatternMatch;
static llvm::cl::opt<bool> ShouldReportBoundsChecks("sil-abcopts-report",
llvm::cl::init(false));
static llvm::cl::opt<bool> EnableABCOpts("enable-abcopts",
llvm::cl::init(true));
static llvm::cl::opt<bool> EnableABCHoisting("enable-abc-hoisting",
llvm::cl::init(true));
using ArraySet = llvm::SmallPtrSet<SILValue, 16>;
// A pair of the array pointer and the array check kind (kCheckIndex or
// kCheckSubscript).
using ArrayAccessDesc = llvm::PointerIntPair<ValueBase *, 1, bool>;
using IndexedArraySet = llvm::DenseSet<std::pair<ValueBase *, ArrayAccessDesc>>;
using InstructionSet = llvm::SmallPtrSet<SILInstruction *, 16>;
/// The effect an instruction can have on array bounds.
enum class ArrayBoundsEffect {
kNone = 0,
kMayChangeArg, // Can only change the array argument.
kMayChangeAny // Might change any array.
};
static SILValue getArrayStructPointer(ArrayCallKind K, SILValue Array) {
assert(K != ArrayCallKind::kNone);
if (K < ArrayCallKind::kMakeMutable) {
auto LI = dyn_cast<LoadInst>(Array);
if (!LI) {
return Array;
}
return LI->getOperand();
}
return Array;
}
/// Check whether the store is to the address obtained from a getElementAddress
/// semantic call.
/// %40 = function_ref @getElementAddress
/// %42 = apply %40(%28, %37)
/// %43 = struct_extract %42
/// %44 = pointer_to_address strict %43
/// store %1 to %44 : $*Int
static bool isArrayEltStore(StoreInst *SI) {
// Strip the MarkDependenceInst (new array implementation) where the above
// pattern looks like the following.
// %40 = function_ref @getElementAddress
// %41 = apply %40(%21, %35)
// %42 = struct_element_addr %0 : $*Array<Int>, #Array._buffer
// %43 = struct_element_addr %42 : $*_ArrayBuffer<Int>, #_ArrayBuffer._storage
// %44 = struct_element_addr %43 : $*_BridgeStorage
// %45 = load %44 : $*Builtin.BridgeObject
// %46 = unchecked_ref_cast %45 : $... to $_ContiguousArrayStorageBase
// %47 = unchecked_ref_cast %46 : $... to $Builtin.NativeObject
// %48 = struct_extract %41 : $..., #UnsafeMutablePointer._rawValue
// %49 = pointer_to_address %48 : $Builtin.RawPointer to strict $*Int
// %50 = mark_dependence %49 : $*Int on %47 : $Builtin.NativeObject
// store %1 to %50 : $*Int
SILValue Dest = SI->getDest();
if (auto *MD = dyn_cast<MarkDependenceInst>(Dest))
Dest = MD->getOperand(0);
if (auto *PtrToAddr =
dyn_cast<PointerToAddressInst>(stripAddressProjections(Dest)))
if (auto *SEI = dyn_cast<StructExtractInst>(PtrToAddr->getOperand())) {
ArraySemanticsCall Call(SEI->getOperand());
if (Call && Call.getKind() == ArrayCallKind::kGetElementAddress)
return true;
}
return false;
}
static bool isReleaseSafeArrayReference(SILValue Ref,
ArraySet &ReleaseSafeArrayReferences,
RCIdentityFunctionInfo *RCIA) {
auto RefRoot = RCIA->getRCIdentityRoot(Ref);
if (ReleaseSafeArrayReferences.count(RefRoot))
return true;
RefRoot = getArrayStructPointer(ArrayCallKind::kCheckIndex, RefRoot);
return ReleaseSafeArrayReferences.count(RefRoot);
}
/// Determines the kind of array bounds effect the instruction can have.
static ArrayBoundsEffect
mayChangeArraySize(SILInstruction *I, ArrayCallKind &Kind, SILValue &Array,
ArraySet &ReleaseSafeArrayReferences,
RCIdentityFunctionInfo *RCIA) {
Array = SILValue();
Kind = ArrayCallKind::kNone;
// TODO: What else.
if (isa<StrongRetainInst>(I) || isa<RetainValueInst>(I) ||
isa<CondFailInst>(I) || isa<DeallocStackInst>(I) ||
isa<AllocationInst>(I))
return ArrayBoundsEffect::kNone;
// A retain on an arbitrary class can have sideeffects because of the deinit
// function.
if (auto SR = dyn_cast<StrongReleaseInst>(I))
return isReleaseSafeArrayReference(SR->getOperand(),
ReleaseSafeArrayReferences, RCIA)
? ArrayBoundsEffect::kNone
: ArrayBoundsEffect::kMayChangeAny;
if (auto RV = dyn_cast<ReleaseValueInst>(I))
return isReleaseSafeArrayReference(RV->getOperand(),
ReleaseSafeArrayReferences, RCIA)
? ArrayBoundsEffect::kNone
: ArrayBoundsEffect::kMayChangeAny;
// Check array bounds semantic.
ArraySemanticsCall ArrayCall(I);
Kind = ArrayCall.getKind();
if (Kind != ArrayCallKind::kNone) {
if (Kind < ArrayCallKind::kMutateUnknown) {
// These methods are not mutating and pass the array owned. Therefore we
// will potentially see a load of the array struct if there are mutating
// functions in the loop on the same array.
Array = getArrayStructPointer(Kind, ArrayCall.getSelf());
return ArrayBoundsEffect::kNone;
} else if (Kind >= ArrayCallKind::kArrayInit)
return ArrayBoundsEffect::kMayChangeAny;
Array = ArrayCall.getSelf();
return ArrayBoundsEffect::kMayChangeArg;
}
if (!I->mayHaveSideEffects())
return ArrayBoundsEffect::kNone;
// A store to an alloc_stack can't possibly store to the array size which is
// stored in a runtime allocated object sub field of an alloca.
if (auto *SI = dyn_cast<StoreInst>(I)) {
auto Ptr = SI->getDest();
return isa<AllocStackInst>(Ptr) || isArrayEltStore(SI)
? ArrayBoundsEffect::kNone
: ArrayBoundsEffect::kMayChangeAny;
}
return ArrayBoundsEffect::kMayChangeAny;
}
/// Two allocations of a mutable array struct cannot reference the same
/// storage after modification. So we can treat them as not aliasing for the
/// purpose of bound checking. The change would only be tracked through one of
/// the allocations.
static bool isIdentifiedUnderlyingArrayObject(SILValue V) {
// Allocations are safe.
if (isa<AllocationInst>(V))
return true;
// Function arguments are safe.
if (isa<SILFunctionArgument>(V))
return true;
return false;
}
/// Array bounds check analysis finds array bounds checks that are safe to
/// eliminate if there exists an earlier bounds check that covers the same
/// index.
///
/// We analyze a region of code for instructions that mayModify the size of an
/// array whenever we encounter an instruction that mayModify a specific array
/// or all arrays we clear the safe arrays (either a specific array or all of
/// them).
///
/// We classify instructions wrt to their effect on arrays. We are conservative,
/// any instruction that may write the size of an array (ie. an unidentified
/// store) is classified as mayModify.
///
/// Arrays are identified by their 'underlying' pointer to the array structure
/// which must either be an alloc_stack or a function argument.
///
/// Because size modifying instructions would create a copy of the storage this
/// is sufficient for the purpose of eliminating potential aliasing.
///
class ABCAnalysis {
// List of arrays in memory which are unsafe.
ArraySet UnsafeArrays;
// If true, all arrays in memory are considered to be unsafe. In this case the
// list in UnsafeArrays is not relevant.
bool allArraysInMemoryAreUnsafe;
ArraySet &ReleaseSafeArrayReferences;
RCIdentityFunctionInfo *RCIA;
bool LoopMode;
public:
ABCAnalysis(bool loopMode, ArraySet &ReleaseSafe,
RCIdentityFunctionInfo *rcia)
: allArraysInMemoryAreUnsafe(false),
ReleaseSafeArrayReferences(ReleaseSafe), RCIA(rcia),
LoopMode(loopMode) {}
ABCAnalysis(const ABCAnalysis &) = delete;
ABCAnalysis &operator=(const ABCAnalysis &) = delete;
/// Find safe array bounds check in a loop. A bounds_check is safe if no size
/// modifying instruction to the same array has been seen so far.
///
/// The code relies on isIdentifiedUnderlyingArrayObject' to make sure that a
/// 'safe arrays' is not aliased.
/// If an instruction is encountered that might modify any array this method
/// stops further analysis and returns false. Otherwise, true is returned and
/// the safe arrays can be queried.
void analyzeBlock(SILBasicBlock *BB) {
for (auto &Inst : *BB)
analyzeInstruction(&Inst);
}
/// Returns false if the instruction may change the size of any array. All
/// redundant safe array accesses seen up to the instruction can be removed.
void analyze(SILInstruction *I) {
assert(!LoopMode &&
"This function can only be used in on cfg without loops");
(void)LoopMode;
analyzeInstruction(I);
}
/// Returns true if the Array is unsafe.
bool isUnsafe(SILValue Array) const {
return allArraysInMemoryAreUnsafe || UnsafeArrays.count(Array) != 0;
}
/// Returns true if all arrays in memory are considered to be unsafe and
/// clears this flag.
bool clearArraysUnsafeFlag() {
bool arraysUnsafe = allArraysInMemoryAreUnsafe;
allArraysInMemoryAreUnsafe = false;
return arraysUnsafe;
}
private:
/// Analyze one instruction wrt. the instructions we have seen so far.
void analyzeInstruction(SILInstruction *Inst) {
SILValue Array;
ArrayCallKind K;
auto BoundsEffect =
mayChangeArraySize(Inst, K, Array, ReleaseSafeArrayReferences, RCIA);
if (BoundsEffect == ArrayBoundsEffect::kMayChangeAny) {
DEBUG(llvm::dbgs() << " no safe because kMayChangeAny " << *Inst);
allArraysInMemoryAreUnsafe = true;
// No need to store specific arrays in this case.
UnsafeArrays.clear();
return;
}
assert(Array ||
K == ArrayCallKind::kNone &&
"Need to have an array for array semantic functions");
// We need to make sure that the array container is not aliased in ways
// that we don't understand.
if (Array && !isIdentifiedUnderlyingArrayObject(Array)) {
DEBUG(llvm::dbgs()
<< " not safe because of not identified underlying object "
<< *Array << " in " << *Inst);
allArraysInMemoryAreUnsafe = true;
// No need to store specific arrays in this case.
UnsafeArrays.clear();
return;
}
if (BoundsEffect == ArrayBoundsEffect::kMayChangeArg) {
UnsafeArrays.insert(Array);
return;
}
assert(BoundsEffect == ArrayBoundsEffect::kNone);
}
};
// Get the pair of array and index. Because we want to disambiguate between the
// two types of check bounds checks merge in the type into the lower bit of one
// of the addresse index.
static std::pair<ValueBase *, ArrayAccessDesc>
getArrayIndexPair(SILValue Array, SILValue ArrayIndex, ArrayCallKind K) {
assert((K == ArrayCallKind::kCheckIndex ||
K == ArrayCallKind::kCheckSubscript) &&
"Must be a bounds check call");
return std::make_pair(
Array,
ArrayAccessDesc(ArrayIndex, K == ArrayCallKind::kCheckIndex));
}
/// Remove redundant checks in a basic block. This pass will reset the state
/// after an instruction that may modify any array allowing removal of redundant
/// checks up to that point and after that point.
static bool removeRedundantChecksInBlock(SILBasicBlock &BB, ArraySet &Arrays,
RCIdentityFunctionInfo *RCIA) {
ABCAnalysis ABC(false, Arrays, RCIA);
IndexedArraySet RedundantChecks;
bool Changed = false;
DEBUG(llvm::dbgs() << "Removing in BB\n");
DEBUG(BB.dump());
// Process all instructions in the current block.
for (auto Iter = BB.begin(); Iter != BB.end();) {
auto Inst = &*Iter;
++Iter;
ABC.analyze(Inst);
if (ABC.clearArraysUnsafeFlag()) {
// Any array may be modified -> forget everything. This is just a
// shortcut to the isUnsafe test for a specific array below.
RedundantChecks.clear();
continue;
}
// Is this a check_bounds.
ArraySemanticsCall ArrayCall(Inst);
auto Kind = ArrayCall.getKind();
if (Kind != ArrayCallKind::kCheckSubscript &&
Kind != ArrayCallKind::kCheckIndex) {
DEBUG(llvm::dbgs() << " not a check_bounds call " << *Inst);
continue;
}
auto Array = ArrayCall.getSelf();
// Get the underlying array pointer.
Array = getArrayStructPointer(Kind, Array);
// Is this an unsafe array whose size could have been changed?
if (ABC.isUnsafe(Array)) {
DEBUG(llvm::dbgs() << " not a safe array argument " << *Array);
continue;
}
// Get the array index.
auto ArrayIndex = ArrayCall.getIndex();
if (!ArrayIndex)
continue;
auto IndexedArray =
getArrayIndexPair(Array, ArrayIndex, Kind);
DEBUG(llvm::dbgs() << " IndexedArray: " << *Array << " and "
<< *ArrayIndex);
// Saw a check for the first time.
if (!RedundantChecks.count(IndexedArray)) {
DEBUG(llvm::dbgs() << " first time: " << *Inst
<< " with array argument: " << *Array);
RedundantChecks.insert(IndexedArray);
continue;
}
// Remove the bounds check.
ArrayCall.removeCall();
Changed = true;
}
return Changed;
}
/// Walk down the dominator tree inside the loop, removing redundant checks.
static bool removeRedundantChecks(DominanceInfoNode *CurBB,
ABCAnalysis &ABC,
IndexedArraySet &DominatingSafeChecks,
SILLoop *Loop) {
auto *BB = CurBB->getBlock();
if (!Loop->contains(BB))
return false;
bool Changed = false;
// When we come back from the dominator tree recursion we need to remove
// checks that we have seen for the first time.
SmallVector<std::pair<ValueBase *, ArrayAccessDesc>, 8> SafeChecksToPop;
// Process all instructions in the current block.
for (auto Iter = BB->begin(); Iter != BB->end();) {
auto Inst = &*Iter;
++Iter;
// Is this a check_bounds.
ArraySemanticsCall ArrayCall(Inst);
auto Kind = ArrayCall.getKind();
if (Kind != ArrayCallKind::kCheckSubscript &&
Kind != ArrayCallKind::kCheckIndex) {
DEBUG(llvm::dbgs() << " not a check_bounds call " << *Inst);
continue;
}
auto Array = ArrayCall.getSelf();
// Get the underlying array pointer.
Array = getArrayStructPointer(Kind, Array);
// Is this an unsafe array whose size could have been changed?
if (ABC.isUnsafe(Array)) {
DEBUG(llvm::dbgs() << " not a safe array argument " << *Array);
continue;
}
// Get the array index.
auto ArrayIndex = ArrayCall.getIndex();
if (!ArrayIndex)
continue;
auto IndexedArray =
getArrayIndexPair(Array, ArrayIndex, Kind);
// Saw a check for the first time.
if (!DominatingSafeChecks.count(IndexedArray)) {
DEBUG(llvm::dbgs() << " first time: " << *Inst
<< " with array arg: " << *Array);
DominatingSafeChecks.insert(IndexedArray);
SafeChecksToPop.push_back(IndexedArray);
continue;
}
// Remove the bounds check.
ArrayCall.removeCall();
Changed = true;
}
// Traverse the children in the dominator tree inside the loop.
for (auto Child: *CurBB)
Changed |=
removeRedundantChecks(Child, ABC, DominatingSafeChecks, Loop);
// Remove checks we have seen for the first time.
std::for_each(SafeChecksToPop.begin(), SafeChecksToPop.end(),
[&](std::pair<ValueBase *, ArrayAccessDesc> &V) {
DominatingSafeChecks.erase(V);
});
return Changed;
}
static CondFailInst *hasCondFailUse(SILValue V) {
for (auto *Op : V->getUses())
if (auto C = dyn_cast<CondFailInst>(Op->getUser()))
return C;
return nullptr;
}
/// Checks whether the apply instruction is checked for overflow by looking for
/// a cond_fail on the second result.
static CondFailInst *isOverflowChecked(BuiltinInst *AI) {
for (auto *Op : AI->getUses()) {
if (!match(Op->getUser(), m_TupleExtractInst(m_ValueBase(), 1)))
continue;
TupleExtractInst *TEI = cast<TupleExtractInst>(Op->getUser());
if (CondFailInst *C = hasCondFailUse(TEI))
return C;
}
return nullptr;
}
/// Look for checks that guarantee that start is less than or equal to end.
static bool isSignedLessEqual(SILValue Start, SILValue End, SILBasicBlock &BB) {
// If we have an inclusive range "low...up" the loop exit count will be
// "up + 1" but the overflow check is on "up".
SILValue PreInclusiveEnd;
if (!match(
End,
m_TupleExtractInst(m_ApplyInst(BuiltinValueKind::SAddOver,
m_SILValue(PreInclusiveEnd), m_One()),
0)))
PreInclusiveEnd = SILValue();
bool IsPreInclusiveEndLEQ = false;
bool IsPreInclusiveEndGTEnd = false;
for (auto &Inst : BB)
if (auto CF = dyn_cast<CondFailInst>(&Inst)) {
// Try to match a cond_fail on "XOR , (SLE Start, End), 1".
if (match(CF->getOperand(),
m_ApplyInst(BuiltinValueKind::Xor,
m_ApplyInst(BuiltinValueKind::ICMP_SLE,
m_Specific(Start),
m_Specific(End)),
m_One())))
return true;
// Inclusive ranges will have a check on the upper value (before adding
// one).
if (PreInclusiveEnd) {
if (match(CF->getOperand(),
m_ApplyInst(BuiltinValueKind::Xor,
m_ApplyInst(BuiltinValueKind::ICMP_SLE,
m_Specific(Start),
m_Specific(PreInclusiveEnd)),
m_One())))
IsPreInclusiveEndLEQ = true;
if (match(CF->getOperand(),
m_ApplyInst(BuiltinValueKind::Xor,
m_ApplyInst(BuiltinValueKind::ICMP_SGT,
m_Specific(End),
m_Specific(PreInclusiveEnd)),
m_One())))
IsPreInclusiveEndGTEnd = true;
if (IsPreInclusiveEndLEQ && IsPreInclusiveEndGTEnd)
return true;
}
}
return false;
}
static bool isLessThan(SILValue Start, SILValue End) {
auto S = dyn_cast<IntegerLiteralInst>(Start);
if (!S)
return false;
auto E = dyn_cast<IntegerLiteralInst>(End);
if (!E)
return false;
return S->getValue().slt(E->getValue());
}
static BuiltinValueKind swapCmpID(BuiltinValueKind ID) {
switch (ID) {
case BuiltinValueKind::ICMP_EQ: return BuiltinValueKind::ICMP_EQ;
case BuiltinValueKind::ICMP_NE: return BuiltinValueKind::ICMP_NE;
case BuiltinValueKind::ICMP_SLE: return BuiltinValueKind::ICMP_SGE;
case BuiltinValueKind::ICMP_SLT: return BuiltinValueKind::ICMP_SGT;
case BuiltinValueKind::ICMP_SGE: return BuiltinValueKind::ICMP_SLE;
case BuiltinValueKind::ICMP_SGT: return BuiltinValueKind::ICMP_SLT;
case BuiltinValueKind::ICMP_ULE: return BuiltinValueKind::ICMP_UGE;
case BuiltinValueKind::ICMP_ULT: return BuiltinValueKind::ICMP_UGT;
case BuiltinValueKind::ICMP_UGE: return BuiltinValueKind::ICMP_ULE;
case BuiltinValueKind::ICMP_UGT: return BuiltinValueKind::ICMP_ULT;
default:
return ID;
}
}
static BuiltinValueKind invertCmpID(BuiltinValueKind ID) {
switch (ID) {
case BuiltinValueKind::ICMP_EQ: return BuiltinValueKind::ICMP_NE;
case BuiltinValueKind::ICMP_NE: return BuiltinValueKind::ICMP_EQ;
case BuiltinValueKind::ICMP_SLE: return BuiltinValueKind::ICMP_SGT;
case BuiltinValueKind::ICMP_SLT: return BuiltinValueKind::ICMP_SGE;
case BuiltinValueKind::ICMP_SGE: return BuiltinValueKind::ICMP_SLT;
case BuiltinValueKind::ICMP_SGT: return BuiltinValueKind::ICMP_SLE;
case BuiltinValueKind::ICMP_ULE: return BuiltinValueKind::ICMP_UGT;
case BuiltinValueKind::ICMP_ULT: return BuiltinValueKind::ICMP_UGE;
case BuiltinValueKind::ICMP_UGE: return BuiltinValueKind::ICMP_ULT;
case BuiltinValueKind::ICMP_UGT: return BuiltinValueKind::ICMP_ULE;
default:
return ID;
}
}
/// Checks if Start to End is the range of 0 to the count of an array.
/// Returns the array is this is the case.
static SILValue getZeroToCountArray(SILValue Start, SILValue End) {
auto *IL = dyn_cast<IntegerLiteralInst>(Start);
if (!IL || IL->getValue() != 0)
return SILValue();
auto *SEI = dyn_cast<StructExtractInst>(End);
if (!SEI)
return SILValue();
ArraySemanticsCall SemCall(SEI->getOperand());
if (SemCall.getKind() != ArrayCallKind::kGetCount)
return SILValue();
return SemCall.getSelf();
}
/// Checks whether the cond_br in the preheader's predecessor ensures that the
/// loop is only executed if "Start < End".
static bool isLessThanCheck(SILValue Start, SILValue End,
CondBranchInst *CondBr, SILBasicBlock *Preheader) {
auto *BI = dyn_cast<BuiltinInst>(CondBr->getCondition());
if (!BI)
return false;
BuiltinValueKind Id = BI->getBuiltinInfo().ID;
if (BI->getNumOperands() != 2)
return false;
SILValue LeftArg = BI->getOperand(0);
SILValue RightArg = BI->getOperand(1);
if (RightArg == Start) {
std::swap(LeftArg, RightArg);
Id = swapCmpID(Id);
}
if (LeftArg != Start || RightArg != End)
return false;
if (CondBr->getTrueBB() != Preheader) {
assert(CondBr->getFalseBB() == Preheader);
Id = invertCmpID(Id);
}
switch (Id) {
case BuiltinValueKind::ICMP_SLT:
case BuiltinValueKind::ICMP_ULT:
return true;
case BuiltinValueKind::ICMP_NE:
// Special case: if it is a 0-to-count loop, we know that the count cannot
// be negative. In this case the 'Start < End' check can also be done with
// 'count != 0'.
return getZeroToCountArray(Start, End);
default:
return false;
}
}
/// Checks whether there are checks in the preheader's predecessor that ensure
/// that "Start < End".
static bool isRangeChecked(SILValue Start, SILValue End,
SILBasicBlock *Preheader, DominanceInfo *DT) {
// Check two constants.
if (isLessThan(Start, End))
return true;
// Look for a branch on EQ around the Preheader.
auto *PreheaderPred = Preheader->getSinglePredecessorBlock();
if (!PreheaderPred)
return false;
auto *CondBr = dyn_cast<CondBranchInst>(PreheaderPred->getTerminator());
if (!CondBr)
return false;
if (isLessThanCheck(Start, End, CondBr, Preheader))
return true;
// Walk up the dominator tree looking for a range check ("SLE Start, End").
DominanceInfoNode *CurDTNode = DT->getNode(PreheaderPred);
while (CurDTNode) {
if (isSignedLessEqual(Start, End, *CurDTNode->getBlock()))
return true;
CurDTNode = CurDTNode->getIDom();
}
return false;
}
static bool dominates(DominanceInfo *DT, SILValue V, SILBasicBlock *B) {
if (auto ValueBB = V->getParentBlock())
return DT->dominates(ValueBB, B);
return false;
}
/// Subtract a constant from a builtin integer value.
static SILValue getSub(SILLocation Loc, SILValue Val, unsigned SubVal,
SILBuilder &B) {
SmallVector<SILValue, 4> Args(1, Val);
Args.push_back(B.createIntegerLiteral(Loc, Val->getType(), SubVal));
Args.push_back(B.createIntegerLiteral(
Loc, SILType::getBuiltinIntegerType(1, B.getASTContext()), -1));
auto *AI = B.createBuiltinBinaryFunctionWithOverflow(
Loc, "ssub_with_overflow", Args);
return B.createTupleExtract(Loc, AI, 0);
}
/// A canonical induction variable incremented by one from Start to End-1.
struct InductionInfo {
SILArgument *HeaderVal;
BuiltinInst *Inc;
SILValue Start;
SILValue End;
BuiltinValueKind Cmp;
bool IsOverflowCheckInserted;
InductionInfo()
: Cmp(BuiltinValueKind::None), IsOverflowCheckInserted(false) {}
InductionInfo(SILArgument *HV, BuiltinInst *I, SILValue S, SILValue E,
BuiltinValueKind C, bool IsOverflowChecked = false)
: HeaderVal(HV), Inc(I), Start(S), End(E), Cmp(C),
IsOverflowCheckInserted(IsOverflowChecked) {}
bool isValid() { return Start && End; }
operator bool() { return isValid(); }
SILInstruction *getInstruction() { return Inc; }
SILValue getFirstValue() {
return Start;
}
SILValue getLastValue(SILLocation &Loc, SILBuilder &B) {
return getSub(Loc, End, 1, B);
}
/// If necessary insert an overflow for this induction variable.
/// If we compare for equality we need to make sure that the range does wrap.
/// We would have trapped either when overflowing or when accessing an array
/// out of bounds in the original loop.
/// Returns true if an overflow check was inserted.
bool checkOverflow(SILBuilder &Builder) {
if (IsOverflowCheckInserted || Cmp != BuiltinValueKind::ICMP_EQ)
return false;
auto Loc = Inc->getLoc();
auto ResultTy = SILType::getBuiltinIntegerType(1, Builder.getASTContext());
auto *CmpSGE = Builder.createBuiltinBinaryFunction(
Loc, "cmp_sge", Start->getType(), ResultTy, {Start, End});
Builder.createCondFail(Loc, CmpSGE);
IsOverflowCheckInserted = true;
// We can now remove the cond fail on the increment the above comparison
// guarantees that the addition won't overflow.
auto *CondFail = isOverflowChecked(cast<BuiltinInst>(Inc));
if (CondFail)
CondFail->eraseFromParent();
return true;
}
};
/// Analyze canonical induction variables in a loop to find their start and end
/// values.
/// At the moment we only handle very simple induction variables that increment
/// by one and use equality comparison.
class InductionAnalysis {
using InductionInfoMap = llvm::DenseMap<SILArgument *, InductionInfo *>;
DominanceInfo *DT;
SILBasicBlock *Preheader;
SILBasicBlock *Header;
SILBasicBlock *ExitingBlk;
SILBasicBlock *ExitBlk;
IVInfo &IVs;
InductionInfoMap Map;
llvm::SpecificBumpPtrAllocator<InductionInfo> Allocator;
public:
InductionAnalysis(DominanceInfo *D, IVInfo &IVs, SILBasicBlock *Preheader,
SILBasicBlock *Header, SILBasicBlock *ExitingBlk,
SILBasicBlock *ExitBlk)
: DT(D), Preheader(Preheader), Header(Header), ExitingBlk(ExitingBlk),
ExitBlk(ExitBlk), IVs(IVs) {}
InductionAnalysis(const InductionAnalysis &) = delete;
InductionAnalysis &operator=(const InductionAnalysis &) = delete;
bool analyze() {
bool FoundIndVar = false;
for (auto *Arg : Header->getArguments()) {
// Look for induction variables.
IVInfo::IVDesc IV;
if (!(IV = IVs.getInductionDesc(Arg))) {
DEBUG(llvm::dbgs() << " not an induction variable: " << *Arg);
continue;
}
InductionInfo *Info;
if (!(Info = analyzeIndVar(Arg, IV.Inc, IV.IncVal))) {
DEBUG(llvm::dbgs() << " could not analyze the induction on: " << *Arg);
continue;
}
DEBUG(llvm::dbgs() << " found an induction variable: " << *Arg);
FoundIndVar = true;
Map[Arg] = Info;
}
return FoundIndVar;
}
InductionInfo *operator[](SILArgument *A) {
InductionInfoMap::iterator It = Map.find(A);
if (It == Map.end())
return nullptr;
return It->second;
}
private:
/// Analyze one potential induction variable starting at Arg.
InductionInfo *analyzeIndVar(SILArgument *HeaderVal, BuiltinInst *Inc,
IntegerLiteralInst *IncVal) {
if (IncVal->getValue() != 1)
return nullptr;
// Find the start value.
auto *PreheaderTerm = dyn_cast<BranchInst>(Preheader->getTerminator());
if (!PreheaderTerm)
return nullptr;
auto Start = PreheaderTerm->getArg(HeaderVal->getIndex());
// Find the exit condition.
auto CondBr = dyn_cast<CondBranchInst>(ExitingBlk->getTerminator());
if (!CondBr)
return nullptr;
if (ExitBlk == CondBr->getFalseBB())
return nullptr;
assert(ExitBlk == CondBr->getTrueBB() &&
"The loop's exiting blocks terminator must exit");
auto Cond = CondBr->getCondition();
SILValue End;
// Look for a compare of induction variable + 1.
// TODO: obviously we need to handle many more patterns.
if (!match(Cond, m_ApplyInst(BuiltinValueKind::ICMP_EQ,
m_TupleExtractInst(m_Specific(Inc), 0),
m_SILValue(End))) &&
!match(Cond,
m_ApplyInst(BuiltinValueKind::ICMP_EQ, m_SILValue(End),
m_TupleExtractInst(m_Specific(Inc), 0)))) {
DEBUG(llvm::dbgs() << " found no exit condition\n");
return nullptr;
}
// Make sure our end value is loop invariant.
if (!dominates(DT, End, Preheader))
return nullptr;
DEBUG(llvm::dbgs() << " found an induction variable (ICMP_EQ): "
<< *HeaderVal << " start: " << *Start
<< " end: " << *End);
// Check whether the addition is overflow checked by a cond_fail or whether
// code in the preheader's predecessor ensures that we won't overflow.
bool IsRangeChecked = false;
if (!isOverflowChecked(Inc)) {
IsRangeChecked = isRangeChecked(Start, End, Preheader, DT);
if (!IsRangeChecked)
return nullptr;
}
return new (Allocator.Allocate()) InductionInfo(
HeaderVal, Inc, Start, End, BuiltinValueKind::ICMP_EQ, IsRangeChecked);
}
};
/// A block in the loop is guaranteed to be executed if it dominates the single
/// exiting block.
static bool isGuaranteedToBeExecuted(DominanceInfo *DT, SILBasicBlock *Block,
SILBasicBlock *SingleExitingBlk) {
// If there are multiple exiting blocks then no block in the loop is
// guaranteed to be executed in _all_ iterations until the upper bound of the
// induction variable is reached.
if (!SingleExitingBlk)
return false;
return DT->dominates(Block, SingleExitingBlk);
}
/// Describes the access function "a[f(i)]" that is based on a canonical
/// induction variable.
class AccessFunction {
InductionInfo *Ind;
AccessFunction(InductionInfo *I) { Ind = I; }
public:
operator bool() { return Ind != nullptr; }
static AccessFunction getLinearFunction(SILValue Idx,
InductionAnalysis &IndVars) {
// Match the actual induction variable buried in the integer struct.
// %2 = struct $Int(%1 : $Builtin.Word)
// = apply %check_bounds(%array, %2) : $@convention(thin) (Int, ArrayInt) -> ()
auto ArrayIndexStruct = dyn_cast<StructInst>(Idx);
if (!ArrayIndexStruct)
return nullptr;
auto AsArg =
dyn_cast<SILArgument>(ArrayIndexStruct->getElements()[0]);
if (!AsArg)
return nullptr;
if (auto *Ind = IndVars[AsArg])
return AccessFunction(Ind);
return nullptr;
}
/// Returns true if the loop iterates from 0 until count of \p Array.
bool isZeroToCount(SILValue Array) {
return getZeroToCountArray(Ind->Start, Ind->End) == Array;
}
/// Hoists the necessary check for beginning and end of the induction
/// encapsulated by this access function to the header.
void hoistCheckToPreheader(ArraySemanticsCall CheckToHoist,
SILBasicBlock *Preheader,
DominanceInfo *DT) {
ApplyInst *AI = CheckToHoist;
SILLocation Loc = AI->getLoc();
SILBuilderWithScope Builder(Preheader->getTerminator(), AI);
// Get the first induction value.
auto FirstVal = Ind->getFirstValue();
// Clone the struct for the start index.
auto Start = cast<SingleValueInstruction>(CheckToHoist.getIndex())
->clone(Preheader->getTerminator());
// Set the new start index to the first value of the induction.
Start->setOperand(0, FirstVal);
// Clone and fixup the load, retain sequence to the header.
auto NewCheck = CheckToHoist.copyTo(Preheader->getTerminator(), DT);
NewCheck->setOperand(1, Start);
// Get the last induction value.
auto LastVal = Ind->getLastValue(Loc, Builder);
// Clone the struct for the end index.
auto End = cast<SingleValueInstruction>(CheckToHoist.getIndex())
->clone(Preheader->getTerminator());
// Set the new end index to the last value of the induction.
End->setOperand(0, LastVal);
NewCheck = CheckToHoist.copyTo(Preheader->getTerminator(), DT);
NewCheck->setOperand(1, End);
}
};
static bool hasArrayType(SILValue Value, SILModule &M) {
return Value->getType().getNominalOrBoundGenericNominal() ==
M.getASTContext().getArrayDecl();
}
/// Hoist bounds check in the loop to the loop preheader.
static bool hoistChecksInLoop(DominanceInfo *DT, DominanceInfoNode *DTNode,
ABCAnalysis &ABC, InductionAnalysis &IndVars,
SILBasicBlock *Preheader, SILBasicBlock *Header,
SILBasicBlock *SingleExitingBlk) {
bool Changed = false;
auto *CurBB = DTNode->getBlock();
bool blockAlwaysExecutes = isGuaranteedToBeExecuted(DT, CurBB,
SingleExitingBlk);
for (auto Iter = CurBB->begin(); Iter != CurBB->end();) {
auto Inst = &*Iter;
++Iter;
ArraySemanticsCall ArrayCall(Inst);
auto Kind = ArrayCall.getKind();
if (Kind != ArrayCallKind::kCheckSubscript &&
Kind != ArrayCallKind::kCheckIndex) {
DEBUG(llvm::dbgs() << " not a check_bounds call " << *Inst);
continue;
}
auto ArrayVal = ArrayCall.getSelf();
// Get the underlying array pointer.
SILValue Array = getArrayStructPointer(Kind, ArrayVal);
// The array must strictly dominate the header.
if (!dominates(DT, Array, Preheader)) {
DEBUG(llvm::dbgs() << " does not dominated header" << *Array);
continue;
}
// Is this a safe array whose size could not have changed?
// This is either a SILValue which is defined outside the loop or it is an
// array, which loaded from memory and the memory is not changed in the loop.
if (!dominates(DT, ArrayVal, Preheader) && ABC.isUnsafe(Array)) {
DEBUG(llvm::dbgs() << " not a safe array argument " << *Array);
continue;
}
// Get the array index.
auto ArrayIndex = ArrayCall.getIndex();
if (!ArrayIndex)
continue;
// Make sure we know how-to hoist the array call.
if (!ArrayCall.canHoist(Preheader->getTerminator(), DT))
continue;
// Invariant check.
if (blockAlwaysExecutes && dominates(DT, ArrayIndex, Preheader)) {
assert(ArrayCall.canHoist(Preheader->getTerminator(), DT) &&
"Must be able to hoist the instruction.");
Changed = true;
ArrayCall.hoist(Preheader->getTerminator(), DT);
DEBUG(llvm::dbgs() << " could hoist invariant bounds check: " << *Inst);
continue;
}
// Get the access function "a[f(i)]". At the moment this handles only the
// identity function.
auto F = AccessFunction::getLinearFunction(ArrayIndex, IndVars);
if (!F) {
DEBUG(llvm::dbgs() << " not a linear function " << *Inst);
continue;
}
// Check if the loop iterates from 0 to the count of this array.
if (F.isZeroToCount(ArrayVal) &&
// This works only for Arrays but not e.g. for ArraySlice.
hasArrayType(ArrayVal, Header->getModule())) {
// We can remove the check. This is even possible if the block does not
// dominate the loop exit block.
Changed = true;
ArrayCall.removeCall();
DEBUG(llvm::dbgs() << " Bounds check removed\n");
continue;
}
// For hoisting bounds checks the block must dominate the exit block.
if (!blockAlwaysExecutes)
continue;
// Hoist the access function and the check to the preheader for start and
// end of the induction.
assert(ArrayCall.canHoist(Preheader->getTerminator(), DT) &&
"Must be able to hoist the call");
F.hoistCheckToPreheader(ArrayCall, Preheader, DT);
// Remove the old check in the loop and the match the retain with a release.
ArrayCall.removeCall();
DEBUG(llvm::dbgs() << " Bounds check hoisted\n");
Changed = true;
}
DEBUG(Preheader->getParent()->dump());
// Traverse the children in the dominator tree.
for (auto Child: *DTNode)
Changed |= hoistChecksInLoop(DT, Child, ABC, IndVars, Preheader,
Header, SingleExitingBlk);
return Changed;
}
/// A dominating cond_fail on the same value ensures that this value is false.
static bool isValueKnownFalseAt(SILValue Val, SILInstruction *At,
DominanceInfo *DT) {
auto *Inst = Val->getDefiningInstruction();
if (!Inst ||
std::next(SILBasicBlock::iterator(Inst)) == Inst->getParent()->end())
return false;
auto *CF = dyn_cast<CondFailInst>(std::next(SILBasicBlock::iterator(Inst)));
return CF && DT->properlyDominates(CF, At);
}
/// Based on the induction variable information this comparison is known to be
/// true.
static bool isComparisonKnownTrue(BuiltinInst *Builtin, InductionInfo &IndVar) {
if (!IndVar.IsOverflowCheckInserted ||
IndVar.Cmp != BuiltinValueKind::ICMP_EQ)
return false;
return match(Builtin,
m_ApplyInst(BuiltinValueKind::ICMP_SLE, m_Specific(IndVar.Start),
m_Specific(IndVar.HeaderVal))) ||
match(Builtin, m_ApplyInst(BuiltinValueKind::ICMP_SLT,
m_Specific(IndVar.HeaderVal),
m_Specific(IndVar.End)));
}
/// Based on the induction variable information this comparison is known to be
/// false.
static bool isComparisonKnownFalse(BuiltinInst *Builtin,
InductionInfo &IndVar) {
if (!IndVar.IsOverflowCheckInserted ||
IndVar.Cmp != BuiltinValueKind::ICMP_EQ)
return false;
// Pattern match a false condition patterns that we can detect and optimize:
// Iteration count < 0 (start)
// Iteration count + 1 <= 0 (start)
// Iteration count + 1 < 0 (start)
// Iteration count + 1 == 0 (start)
auto MatchIndVarHeader = m_Specific(IndVar.HeaderVal);
auto MatchIncrementIndVar = m_TupleExtractInst(
m_ApplyInst(BuiltinValueKind::SAddOver, MatchIndVarHeader, m_One()), 0);
auto MatchIndVarStart = m_Specific(IndVar.Start);
if (match(Builtin,
m_ApplyInst(BuiltinValueKind::ICMP_SLT,
m_CombineOr(MatchIndVarHeader, MatchIncrementIndVar),
MatchIndVarStart)) ||
match(Builtin, m_ApplyInst(BuiltinValueKind::ICMP_EQ,
MatchIncrementIndVar, MatchIndVarStart)) ||
match(Builtin, m_ApplyInst(BuiltinValueKind::ICMP_SLE,
MatchIncrementIndVar, MatchIndVarStart))) {
return true;
}
return false;
}
/// Analyze the loop for arrays that are not modified and perform dominator tree
/// based redundant bounds check removal.
static bool hoistBoundsChecks(SILLoop *Loop, DominanceInfo *DT, SILLoopInfo *LI,
IVInfo &IVs, ArraySet &Arrays,
RCIdentityFunctionInfo *RCIA, bool ShouldVerify) {
auto *Header = Loop->getHeader();
if (!Header) return false;
auto *Preheader = Loop->getLoopPreheader();
if (!Preheader) {
// TODO: create one if necessary.
return false;
}
// Only handle innermost loops for now.
if (!Loop->getSubLoops().empty())
return false;
DEBUG(llvm::dbgs() << "Attempting to remove redundant checks in " << *Loop);
DEBUG(Header->getParent()->dump());
// Collect safe arrays. Arrays are safe if there is no function call that
// could mutate their size in the loop.
ABCAnalysis ABC(true, Arrays, RCIA);
for (auto *BB : Loop->getBlocks()) {
ABC.analyzeBlock(BB);
}
// Remove redundant checks down the dominator tree inside the loop,
// starting at the header.
// We may not go to dominated blocks outside the loop, because we didn't
// check for safety outside the loop (with ABCAnalysis).
IndexedArraySet DominatingSafeChecks;
bool Changed = removeRedundantChecks(DT->getNode(Header), ABC,
DominatingSafeChecks, Loop);
if (!EnableABCHoisting)
return Changed;
DEBUG(llvm::dbgs() << "Attempting to hoist checks in " << *Loop);
// Find an exiting block.
SILBasicBlock *SingleExitingBlk = Loop->getExitingBlock();
SILBasicBlock *ExitingBlk = SingleExitingBlk;
SILBasicBlock *ExitBlk = Loop->getExitBlock();
SILBasicBlock *Latch = Loop->getLoopLatch();
if (!ExitingBlk || !Latch || !ExitBlk) {
DEBUG(llvm::dbgs()
<< "No single exiting block or latch found\n");
if (!Latch)
return Changed;
// Look back a split edge.
if (!Loop->isLoopExiting(Latch) && Latch->getSinglePredecessorBlock() &&
Loop->isLoopExiting(Latch->getSinglePredecessorBlock()))
Latch = Latch->getSinglePredecessorBlock();
if (Loop->isLoopExiting(Latch) && Latch->getSuccessors().size() == 2) {
ExitingBlk = Latch;
ExitBlk = Loop->contains(Latch->getSuccessors()[0])
? Latch->getSuccessors()[1]
: Latch->getSuccessors()[0];
DEBUG(llvm::dbgs() << "Found a latch ...\n");
} else return Changed;
}
DEBUG(Preheader->getParent()->dump());
// Find canonical induction variables.
InductionAnalysis IndVars(DT, IVs, Preheader, Header, ExitingBlk, ExitBlk);
bool IVarsFound = IndVars.analyze();
if (!IVarsFound) {
DEBUG(llvm::dbgs() << "No induction variables found\n");
}
// Hoist the overflow check of induction variables out of the loop. This also
// needs to happen for memory safety. Also remove superflous range checks.
if (IVarsFound) {
SILValue TrueVal;
SILValue FalseVal;
for (auto *Arg : Header->getArguments()) {
if (auto *IV = IndVars[Arg]) {
SILBuilderWithScope B(Preheader->getTerminator(), IV->getInstruction());
// Only if the loop has a single exiting block (which contains the
// induction variable check) we may hoist the overflow check.
if (SingleExitingBlk)
Changed |= IV->checkOverflow(B);
if (!IV->IsOverflowCheckInserted)
continue;
for (auto *BB : Loop->getBlocks())
for (auto &Inst : *BB) {
auto *Builtin = dyn_cast<BuiltinInst>(&Inst);
if (!Builtin)
continue;
if (isComparisonKnownTrue(Builtin, *IV)) {
if (!TrueVal)
TrueVal = SILValue(B.createIntegerLiteral(
Builtin->getLoc(), Builtin->getType(), -1));
Builtin->replaceAllUsesWith(TrueVal);
Changed = true;
continue;
}
if (isComparisonKnownFalse(Builtin, *IV)) {
if (!FalseVal) {
FalseVal = SILValue(B.createIntegerLiteral(
Builtin->getLoc(), Builtin->getType(), 0));
}
Builtin->replaceAllUsesWith(FalseVal);
Changed = true;
continue;
}
// Check whether a dominating check of the condition let's us
// replace
// the condition by false.
SILValue Left, Right;
if (match(Builtin, m_Or(m_SILValue(Left), m_SILValue(Right)))) {
if (isValueKnownFalseAt(Left, Builtin, DT)) {
if (!FalseVal)
FalseVal = SILValue(B.createIntegerLiteral(
Builtin->getLoc(), Builtin->getType(), 0));
Builtin->setOperand(0, FalseVal);
Changed = true;
}
if (isValueKnownFalseAt(Right, Builtin, DT)) {
if (!FalseVal)
FalseVal = SILValue(B.createIntegerLiteral(
Builtin->getLoc(), Builtin->getType(), 0));
Builtin->setOperand(1, FalseVal);
Changed = true;
}
}
}
}
}
}
DEBUG(Preheader->getParent()->dump());
// Hoist bounds checks.
Changed |= hoistChecksInLoop(DT, DT->getNode(Header), ABC, IndVars,
Preheader, Header, SingleExitingBlk);
if (Changed) {
Preheader->getParent()->verify();
}
return Changed;
}
#ifndef NDEBUG
static void reportBoundsChecks(SILFunction *F) {
unsigned NumBCs = 0;
F->dump();
for (auto &BB : *F) {
for (auto &Inst : BB) {
ArraySemanticsCall ArrayCall(&Inst);
auto Kind = ArrayCall.getKind();
if (Kind != ArrayCallKind::kCheckSubscript)
continue;
auto Array = ArrayCall.getSelf();
++NumBCs;
llvm::dbgs() << " # CheckBounds: " << Inst
<< " with array arg: " << *Array
<< " and index: " << Inst.getOperand(1);
}
}
llvm::dbgs() << " ### " << NumBCs << " bounds checks in " << F->getName()
<< "\n";
}
#else
static void reportBoundsChecks(SILFunction *F) {}
#endif
namespace {
/// Remove redundant checks in basic blocks and hoist redundant checks out of
/// loops.
class ABCOpt : public SILFunctionTransform {
public:
ABCOpt() {}
void run() override {
if (!EnableABCOpts)
return;
auto *LA = PM->getAnalysis<SILLoopAnalysis>();
assert(LA);
auto *DA = PM->getAnalysis<DominanceAnalysis>();
assert(DA);
auto *IVA = PM->getAnalysis<IVAnalysis>();
assert(IVA);
SILFunction *F = getFunction();
assert(F);
SILLoopInfo *LI = LA->get(F);
assert(LI);
DominanceInfo *DT = DA->get(F);
assert(DT);
IVInfo &IVs = *IVA->get(F);
auto *RCIA = getAnalysis<RCIdentityAnalysis>()->get(F);
auto *DestAnalysis = PM->getAnalysis<DestructorAnalysis>();
if (ShouldReportBoundsChecks) { reportBoundsChecks(F); };
// Collect all arrays in this function. A release is only 'safe' if we know
// its deinitializer does not have sideeffects that could cause memory
// safety issues. A deinit could deallocate array or put a different array
// in its location.
ArraySet ReleaseSafeArrays;
for (auto &BB : *F)
for (auto &Inst : BB) {
ArraySemanticsCall Call(&Inst);
if (Call && Call.hasSelf()) {
DEBUG(llvm::dbgs() << "Gathering " << *(ApplyInst*)Call);
auto rcRoot = RCIA->getRCIdentityRoot(Call.getSelf());
// Check the type of the array. We need to have an array element type
// that is not calling a deinit function.
if (DestAnalysis->mayStoreToMemoryOnDestruction(rcRoot->getType()))
continue;
ReleaseSafeArrays.insert(rcRoot);
ReleaseSafeArrays.insert(
getArrayStructPointer(ArrayCallKind::kCheckIndex, rcRoot));
}
}
// Remove redundant checks on a per basic block basis.
bool Changed = false;
for (auto &BB : *F)
Changed |= removeRedundantChecksInBlock(BB, ReleaseSafeArrays, RCIA);
if (ShouldReportBoundsChecks) { reportBoundsChecks(F); };
bool ShouldVerify = getOptions().VerifyAll;
if (LI->empty()) {
DEBUG(llvm::dbgs() << "No loops in " << F->getName() << "\n");
} else {
// Remove redundant checks along the dominator tree in a loop and hoist
// checks.
for (auto *LoopIt : *LI) {
// Process loops recursively bottom-up in the loop tree.
SmallVector<SILLoop *, 8> Worklist;
Worklist.push_back(LoopIt);
for (unsigned i = 0; i < Worklist.size(); ++i) {
auto *L = Worklist[i];
for (auto *SubLoop : *L)
Worklist.push_back(SubLoop);
}
while (!Worklist.empty()) {
Changed |= hoistBoundsChecks(Worklist.pop_back_val(), DT, LI, IVs,
ReleaseSafeArrays, RCIA, ShouldVerify);
}
}
if (ShouldReportBoundsChecks) { reportBoundsChecks(F); };
}
if (Changed) {
PM->invalidateAnalysis(F,
SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
};
} // end anonymous namespace
SILTransform *swift::createABCOpt() {
return new ABCOpt();
}