mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Extend the module trace format with a field indicating whether a given module, or any module it depends on, was compiled with strict memory safety enabled. This separate output from the compiler can be used as part of an audit to determine what parts of Swift programs are built with strict memory safety checking enabled.
977 lines
38 KiB
C++
977 lines
38 KiB
C++
//===--- ModuleTrace.cpp -- Emit a trace of all loaded Swift modules ------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Dependencies.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/DiagnosticEngine.h"
|
|
#include "swift/AST/DiagnosticsFrontend.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/ModuleLoader.h"
|
|
#include "swift/AST/PluginRegistry.h"
|
|
#include "swift/AST/SourceFile.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/Basic/FileTypes.h"
|
|
#include "swift/Basic/JSONSerialization.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/Frontend/Frontend.h"
|
|
#include "swift/Frontend/FrontendOptions.h"
|
|
#include "swift/Frontend/ModuleInterfaceSupport.h"
|
|
#include "swift/IDE/SourceEntityWalker.h"
|
|
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/ObjCMethodReferenceInfo.h"
|
|
#include "clang/Basic/Module.h"
|
|
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/JSON.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/YAMLTraits.h"
|
|
#include "llvm/Support/FileUtilities.h"
|
|
#include "llvm/Support/LockFileManager.h"
|
|
|
|
#if !defined(_MSC_VER) && !defined(__MINGW32__)
|
|
#include <unistd.h>
|
|
#else
|
|
#include <io.h>
|
|
#endif
|
|
|
|
using namespace swift;
|
|
|
|
namespace {
|
|
struct SwiftModuleTraceInfo {
|
|
Identifier Name;
|
|
std::string Path;
|
|
bool IsImportedDirectly;
|
|
bool SupportsLibraryEvolution;
|
|
bool StrictMemorySafety;
|
|
};
|
|
|
|
struct SwiftMacroTraceInfo {
|
|
Identifier Name;
|
|
std::string Path;
|
|
};
|
|
|
|
struct LoadedModuleTraceFormat {
|
|
static const unsigned CurrentVersion = 2;
|
|
unsigned Version;
|
|
Identifier Name;
|
|
std::string Arch;
|
|
bool StrictMemorySafety;
|
|
std::vector<SwiftModuleTraceInfo> SwiftModules;
|
|
std::vector<SwiftMacroTraceInfo> SwiftMacros;
|
|
};
|
|
} // namespace
|
|
|
|
namespace swift {
|
|
namespace json {
|
|
template <> struct ObjectTraits<SwiftModuleTraceInfo> {
|
|
static void mapping(Output &out, SwiftModuleTraceInfo &contents) {
|
|
StringRef name = contents.Name.str();
|
|
out.mapRequired("name", name);
|
|
out.mapRequired("path", contents.Path);
|
|
out.mapRequired("isImportedDirectly", contents.IsImportedDirectly);
|
|
out.mapRequired("supportsLibraryEvolution",
|
|
contents.SupportsLibraryEvolution);
|
|
out.mapRequired("strictMemorySafety",
|
|
contents.StrictMemorySafety);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct ObjectTraits<SwiftMacroTraceInfo> {
|
|
static void mapping(Output &out, SwiftMacroTraceInfo &contents) {
|
|
StringRef name = contents.Name.str();
|
|
out.mapRequired("name", name);
|
|
out.mapRequired("path", contents.Path);
|
|
}
|
|
};
|
|
|
|
// Version notes:
|
|
// 1. Keys: name, arch, swiftmodules
|
|
// 2. New keys: version, swiftmodulesDetailedInfo
|
|
template <> struct ObjectTraits<LoadedModuleTraceFormat> {
|
|
static void mapping(Output &out, LoadedModuleTraceFormat &contents) {
|
|
out.mapRequired("version", contents.Version);
|
|
|
|
StringRef name = contents.Name.str();
|
|
out.mapRequired("name", name);
|
|
|
|
out.mapRequired("arch", contents.Arch);
|
|
|
|
out.mapRequired("strictMemorySafety", contents.StrictMemorySafety);
|
|
|
|
// The 'swiftmodules' key is kept for backwards compatibility.
|
|
std::vector<std::string> moduleNames;
|
|
for (auto &m : contents.SwiftModules)
|
|
moduleNames.push_back(m.Path);
|
|
out.mapRequired("swiftmodules", moduleNames);
|
|
|
|
out.mapRequired("swiftmodulesDetailedInfo", contents.SwiftModules);
|
|
|
|
out.mapRequired("swiftmacros", contents.SwiftMacros);
|
|
}
|
|
};
|
|
} // namespace json
|
|
} // namespace swift
|
|
|
|
static bool isClangOverlayOf(ModuleDecl *potentialOverlay,
|
|
ModuleDecl *potentialUnderlying) {
|
|
return !potentialOverlay->isNonSwiftModule() &&
|
|
potentialUnderlying->isNonSwiftModule() &&
|
|
potentialOverlay->getName() == potentialUnderlying->getName();
|
|
}
|
|
|
|
// TODO: Delete this once changes from https://reviews.llvm.org/D83449 land on
|
|
// apple/llvm-project's swift/main branch.
|
|
template <typename SetLike, typename Item>
|
|
static bool contains(const SetLike &setLike, Item item) {
|
|
return setLike.find(item) != setLike.end();
|
|
}
|
|
|
|
/// Get a set of modules imported by \p module.
|
|
///
|
|
/// By default, all imports are included.
|
|
static void getImmediateImports(
|
|
ModuleDecl *module, SmallPtrSetImpl<ModuleDecl *> &imports,
|
|
ModuleDecl::ImportFilter importFilter = ModuleDecl::getImportFilterAll()) {
|
|
SmallVector<ImportedModule, 8> importList;
|
|
module->getImportedModules(importList, importFilter);
|
|
|
|
for (ImportedModule &import : importList)
|
|
imports.insert(import.importedModule);
|
|
}
|
|
|
|
namespace {
|
|
/// Helper type for computing (approximate) information about ABI-dependencies.
|
|
///
|
|
/// This misses out on details such as typealiases and more.
|
|
/// See the "isImportedDirectly" field above for more details.
|
|
class ABIDependencyEvaluator {
|
|
/// Map of ABIs exported by a particular module, excluding itself.
|
|
///
|
|
/// For example, consider (primed letters represent Clang modules):
|
|
/// \code
|
|
/// - A is @_exported-imported by B
|
|
/// - B is #imported by C' (via a compiler-generated umbrella header)
|
|
/// - C' is @_exported-imported by C (Swift overlay)
|
|
/// - D' is #imported by E'
|
|
/// - D' is @_exported-imported by D (Swift overlay)
|
|
/// - E' is @_exported-imported by E (Swift overlay)
|
|
/// \endcode
|
|
///
|
|
/// Then the \c abiExportMap will be
|
|
/// \code
|
|
/// { A: {}, B: {A}, C: {B}, C': {B}, D: {}, D': {}, E: {D}, E': {D'} }
|
|
/// \endcode
|
|
///
|
|
/// \b WARNING: Use \c reexposeImportedABI instead of inserting directly.
|
|
llvm::DenseMap<ModuleDecl *, llvm::DenseSet<ModuleDecl *>> abiExportMap;
|
|
|
|
/// Stack for depth-first traversal.
|
|
SmallVector<ModuleDecl *, 32> searchStack;
|
|
|
|
llvm::DenseSet<ModuleDecl *> visited;
|
|
|
|
/// Helper function to handle invariant violations as crashes in debug mode.
|
|
void
|
|
crashOnInvariantViolation(llvm::function_ref<void(raw_ostream &)> f) const;
|
|
|
|
/// Computes the ABI exports for \p importedModule and adds them to
|
|
/// \p module's ABI exports.
|
|
///
|
|
/// If \p includeImportedModule is true, also adds \p importedModule to
|
|
/// \p module's ABI exports.
|
|
///
|
|
/// Correct way to add entries to \c abiExportMap.
|
|
void reexposeImportedABI(ModuleDecl *module, ModuleDecl *importedModule,
|
|
bool includeImportedModule = true);
|
|
|
|
/// Check if a Swift module is an overlay for some Clang module.
|
|
///
|
|
/// FIXME: Delete this hack once https://github.com/apple/swift/issues/55804 is fixed and ModuleDecl has the right API which we can use directly.
|
|
bool isOverlayOfClangModule(ModuleDecl *swiftModule);
|
|
|
|
/// Check for cases where we have a fake cycle through an overlay.
|
|
///
|
|
/// Sometimes, we have fake cycles in the import graph due to the Clang
|
|
/// importer injecting overlays between Clang modules. These don't represent
|
|
/// an actual cycle in the build, so we should ignore them.
|
|
///
|
|
/// We check this lazily after detecting a cycle because it is difficult to
|
|
/// determine at the point where we see the overlay whether it was incorrectly
|
|
/// injected by the Clang importer or whether any of its imports will
|
|
/// eventually lead to a cycle.
|
|
///
|
|
/// For more details, see [NOTE: ABIDependencyEvaluator-fake-cycle-detection]
|
|
///
|
|
/// \param startOfCycle A pointer to the element of \c searchStack where
|
|
/// the module \em first appeared.
|
|
///
|
|
/// \pre The module on top of \c searchStack is the same module as
|
|
/// *startOfCycle.
|
|
///
|
|
/// \pre searchStack.begin() <= startOfCycle < searchStack.end()
|
|
bool isFakeCycleThroughOverlay(ModuleDecl **startOfCycle);
|
|
|
|
/// Recursive step in computing ABI dependencies.
|
|
///
|
|
/// Use this method instead of using the \c forClangModule/\c forSwiftModule
|
|
/// methods.
|
|
void computeABIDependenciesForModule(ModuleDecl *module);
|
|
void computeABIDependenciesForSwiftModule(ModuleDecl *module);
|
|
void computeABIDependenciesForClangModule(ModuleDecl *module);
|
|
|
|
static void printModule(const ModuleDecl *module, llvm::raw_ostream &os);
|
|
|
|
template <typename SetLike>
|
|
static void printModuleSet(const SetLike &set, llvm::raw_ostream &os);
|
|
|
|
public:
|
|
ABIDependencyEvaluator() = default;
|
|
ABIDependencyEvaluator(const ABIDependencyEvaluator &) = delete;
|
|
ABIDependencyEvaluator(ABIDependencyEvaluator &&) = default;
|
|
|
|
void getABIDependenciesForSwiftModule(
|
|
ModuleDecl *module, SmallPtrSetImpl<ModuleDecl *> &abiDependencies);
|
|
|
|
void printABIExportMap(llvm::raw_ostream &os) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
// See [NOTE: Bailing-vs-crashing-in-trace-emission].
|
|
// TODO: Use PrettyStackTrace instead?
|
|
void ABIDependencyEvaluator::crashOnInvariantViolation(
|
|
llvm::function_ref<void(raw_ostream &)> f) const {
|
|
#ifndef NDEBUG
|
|
SmallVector<char, 0> msg;
|
|
llvm::raw_svector_ostream os(msg);
|
|
os << "error: invariant violation: ";
|
|
f(os);
|
|
llvm::report_fatal_error(msg);
|
|
#endif
|
|
}
|
|
|
|
// [NOTE: Trace-Clang-submodule-complexity]
|
|
//
|
|
// A Clang module may have zero or more submodules. In practice, when traversing
|
|
// the imports of a module, we observe that different submodules of the same
|
|
// top-level module (almost) freely import each other. Despite this, we still
|
|
// need to conceptually traverse the tree formed by the submodule relationship
|
|
// (with the top-level module being the root).
|
|
//
|
|
// This needs to be taken care of in two ways:
|
|
// 1. We need to make sure we only go towards the leaves. It's okay if we "jump"
|
|
// branches, so long as we don't try to visit an ancestor when one of its
|
|
// descendants is still on the traversal stack, so that we don't end up with
|
|
// arbitrarily complex intra-module cycles.
|
|
// See also: [NOTE: Intra-module-leafwards-traversal].
|
|
// 2. When adding entries to the ABI export map, we need to avoid marking
|
|
// dependencies within the same top-level module. This step is needed in
|
|
// addition to step 1 to avoid creating cycles like
|
|
// Overlay -> Underlying -> Submodule -> Overlay.
|
|
|
|
void ABIDependencyEvaluator::reexposeImportedABI(ModuleDecl *module,
|
|
ModuleDecl *importedModule,
|
|
bool includeImportedModule) {
|
|
if (module == importedModule) {
|
|
crashOnInvariantViolation([&](raw_ostream &os) {
|
|
os << "module ";
|
|
printModule(module, os);
|
|
os << " imports itself!\n";
|
|
});
|
|
return;
|
|
}
|
|
|
|
auto addToABIExportMap = [this](ModuleDecl *module, ModuleDecl *reexport) {
|
|
if (module == reexport) {
|
|
crashOnInvariantViolation([&](raw_ostream &os) {
|
|
os << "expected module ";
|
|
printModule(reexport, os);
|
|
os << " to not re-export itself\n";
|
|
});
|
|
return;
|
|
}
|
|
if (reexport->isNonSwiftModule() && module->isNonSwiftModule() &&
|
|
module->getTopLevelModule() == reexport->getTopLevelModule()) {
|
|
// Dependencies within the same top-level Clang module are not useful.
|
|
// See also: [NOTE: Trace-Clang-submodule-complexity].
|
|
return;
|
|
}
|
|
|
|
// We only care about dependencies across top-level modules and we want to
|
|
// avoid exploding abiExportMap with submodules. So we only insert entries
|
|
// after calling getTopLevelModule().
|
|
|
|
if (::isClangOverlayOf(module, reexport)) {
|
|
// For overlays, we need to have a dependency on the underlying module.
|
|
// Otherwise, we might accidentally create a Swift -> Swift cycle.
|
|
abiExportMap[module].insert(
|
|
reexport->getTopLevelModule(/*preferOverlay*/ false));
|
|
return;
|
|
}
|
|
abiExportMap[module].insert(
|
|
reexport->getTopLevelModule(/*preferOverlay*/ true));
|
|
};
|
|
|
|
computeABIDependenciesForModule(importedModule);
|
|
if (includeImportedModule) {
|
|
addToABIExportMap(module, importedModule);
|
|
}
|
|
// Force creation of default value if missing. This prevents abiExportMap from
|
|
// growing (and moving) when calling addToABIExportMap. If abiExportMap gets
|
|
// moved, then abiExportMap[importedModule] will be moved, forcing us to
|
|
// create a defensive copy to avoid iterator invalidation on move.
|
|
(void)abiExportMap[module];
|
|
for (auto reexportedModule : abiExportMap[importedModule])
|
|
addToABIExportMap(module, reexportedModule);
|
|
}
|
|
|
|
bool ABIDependencyEvaluator::isOverlayOfClangModule(ModuleDecl *swiftModule) {
|
|
assert(!swiftModule->isNonSwiftModule());
|
|
|
|
llvm::SmallPtrSet<ModuleDecl *, 8> importList;
|
|
::getImmediateImports(swiftModule, importList,
|
|
{ModuleDecl::ImportFilterKind::Exported});
|
|
bool isOverlay =
|
|
llvm::any_of(importList, [&](ModuleDecl *importedModule) -> bool {
|
|
return isClangOverlayOf(swiftModule, importedModule);
|
|
});
|
|
return isOverlay;
|
|
}
|
|
|
|
// [NOTE: ABIDependencyEvaluator-fake-cycle-detection]
|
|
//
|
|
// First, let's consider a concrete example.
|
|
// - In Clang-land, ToyKit #imports CoreDoll.
|
|
// - The Swift overlay for CoreDoll imports both CoreDoll and ToyKit.
|
|
// Importing ToyKit from CoreDoll's overlay informally violates the layering
|
|
// of frameworks, but it doesn't actually create any cycles in the build
|
|
// dependencies.
|
|
// ┌───────────────────────────┐
|
|
// ┌───│ CoreDoll.swiftmodule │
|
|
// │ └───────────────────────────┘
|
|
// │ │
|
|
// import ToyKit @_exported import CoreDoll
|
|
// │ │
|
|
// │ │
|
|
// ▼ │
|
|
// ┌──────────────────────────┐ │
|
|
// │ ToyKit (ToyKit/ToyKit.h) │ │
|
|
// └──────────────────────────┘ │
|
|
// │ │
|
|
// #import <CoreDoll/CoreDoll.h> │
|
|
// │ │
|
|
// ▼ │
|
|
// ┌──────────────────────────────┐ │
|
|
// │CoreDoll (CoreDoll/CoreDoll.h)│◀──┘
|
|
// └──────────────────────────────┘
|
|
//
|
|
// Say we are trying to build a Swift module that imports ToyKit. Due to how
|
|
// module loading works, the Clang importer inserts the CoreDoll overlay
|
|
// between the ToyKit and CoreDoll Clang modules, creating a cycle in the
|
|
// import graph.
|
|
//
|
|
// ┌──────────────────────────┐
|
|
// │ ToyKit (ToyKit/ToyKit.h) │◀──────────┐
|
|
// └──────────────────────────┘ │
|
|
// │ │
|
|
// #import <CoreDoll/CoreDoll.h> import ToyKit
|
|
// │ │
|
|
// ▼ │
|
|
// ┌────────────────────────────┐ │
|
|
// │ CoreDoll.swiftmodule │─────────┘
|
|
// └────────────────────────────┘
|
|
// │
|
|
// @_exported import CoreDoll
|
|
// │
|
|
// ▼
|
|
// ┌──────────────────────────────┐
|
|
// │CoreDoll (CoreDoll/CoreDoll.h)│
|
|
// └──────────────────────────────┘
|
|
//
|
|
// This means that, at some point, searchStack will look like:
|
|
//
|
|
// [others] → ToyKit → CoreDoll (overlay) → ToyKit
|
|
//
|
|
// In the general case, there may be arbitrarily many modules in the cycle,
|
|
// including submodules.
|
|
//
|
|
// [others] → ToyKit → [others] → CoreDoll (overlay) → [others] → ToyKit
|
|
//
|
|
// where "[others]" indicates 0 or more modules of any kind.
|
|
//
|
|
// To detect this, we check that the start of the cycle is a Clang module and
|
|
// that there is at least one overlay between it and its recurrence at the end
|
|
// of the searchStack. If so, we assume we have detected a benign cycle which
|
|
// can be safely ignored.
|
|
|
|
bool ABIDependencyEvaluator::isFakeCycleThroughOverlay(
|
|
ModuleDecl **startOfCycle) {
|
|
assert(startOfCycle >= searchStack.begin() &&
|
|
startOfCycle < searchStack.end() &&
|
|
"startOfCycleIter points to an element in searchStack");
|
|
// The startOfCycle module must be a Clang module.
|
|
if (!(*startOfCycle)->isNonSwiftModule())
|
|
return false;
|
|
// Next, we must have zero or more modules followed by a Swift overlay for a
|
|
// Clang module.
|
|
return std::any_of(
|
|
startOfCycle + 1, searchStack.end(), [this](ModuleDecl *module) {
|
|
return !module->isNonSwiftModule() && isOverlayOfClangModule(module);
|
|
});
|
|
}
|
|
|
|
void ABIDependencyEvaluator::computeABIDependenciesForModule(
|
|
ModuleDecl *module) {
|
|
auto moduleIter = llvm::find(searchStack, module);
|
|
if (moduleIter != searchStack.end()) {
|
|
if (isFakeCycleThroughOverlay(moduleIter))
|
|
return;
|
|
crashOnInvariantViolation([&](raw_ostream &os) {
|
|
os << "unexpected cycle in import graph!\n";
|
|
for (auto m : searchStack) {
|
|
printModule(m, os);
|
|
if (!m->isNonSwiftModule()) {
|
|
os << " (isOverlay = " << isOverlayOfClangModule(m) << ")";
|
|
}
|
|
os << "\ndepends on ";
|
|
}
|
|
printModule(module, os);
|
|
os << '\n';
|
|
});
|
|
return;
|
|
}
|
|
if (::contains(visited, module))
|
|
return;
|
|
searchStack.push_back(module);
|
|
if (module->isNonSwiftModule())
|
|
computeABIDependenciesForClangModule(module);
|
|
else
|
|
computeABIDependenciesForSwiftModule(module);
|
|
searchStack.pop_back();
|
|
visited.insert(module);
|
|
}
|
|
|
|
void ABIDependencyEvaluator::computeABIDependenciesForSwiftModule(
|
|
ModuleDecl *module) {
|
|
SmallPtrSet<ModuleDecl *, 32> allImports;
|
|
::getImmediateImports(module, allImports);
|
|
for (auto import : allImports) {
|
|
computeABIDependenciesForModule(import);
|
|
if (::isClangOverlayOf(module, import)) {
|
|
reexposeImportedABI(module, import,
|
|
/*includeImportedModule=*/false);
|
|
}
|
|
}
|
|
|
|
SmallPtrSet<ModuleDecl *, 32> reexportedImports;
|
|
::getImmediateImports(module, reexportedImports,
|
|
{ModuleDecl::ImportFilterKind::Exported});
|
|
for (auto reexportedImport : reexportedImports) {
|
|
reexposeImportedABI(module, reexportedImport);
|
|
}
|
|
}
|
|
|
|
void ABIDependencyEvaluator::computeABIDependenciesForClangModule(
|
|
ModuleDecl *module) {
|
|
SmallPtrSet<ModuleDecl *, 32> imports;
|
|
::getImmediateImports(module, imports);
|
|
for (auto import : imports) {
|
|
// There are three cases here which can potentially create cycles:
|
|
//
|
|
// 1. Clang modules importing the stdlib.
|
|
// See [NOTE: Pure-Clang-modules-privately-import-stdlib].
|
|
// 2. Overlay S @_exported-imports underlying module S' and another Clang
|
|
// module C'. C' (transitively) #imports S' but it gets treated as if
|
|
// C' imports S. This creates a cycle: S -> C' -> ... -> S.
|
|
// In practice, this case is hit for
|
|
// Darwin (Swift) -> SwiftOverlayShims (Clang) -> Darwin (Swift).
|
|
// We may also hit this in a slightly different direction, in case
|
|
// the module directly imports SwiftOverlayShims:
|
|
// SwiftOverlayShims -> Darwin (Swift) -> SwiftOverlayShims
|
|
// The latter is handled later by isFakeCycleThroughOverlay.
|
|
// 3. [NOTE: Intra-module-leafwards-traversal]
|
|
// Cycles within the same top-level module.
|
|
// These don't matter for us, since we only care about the dependency
|
|
// graph at the granularity of top-level modules. So we ignore these
|
|
// by only considering parent -> submodule dependencies.
|
|
// See also [NOTE: Trace-Clang-submodule-complexity].
|
|
if (import->isStdlibModule()) {
|
|
continue;
|
|
}
|
|
if (!import->isNonSwiftModule() && isOverlayOfClangModule(import) &&
|
|
llvm::find(searchStack, import) != searchStack.end()) {
|
|
continue;
|
|
}
|
|
if (import->isNonSwiftModule() &&
|
|
module->getTopLevelModule() == import->getTopLevelModule() &&
|
|
(module == import ||
|
|
!import->findUnderlyingClangModule()->isSubModuleOf(
|
|
module->findUnderlyingClangModule()))) {
|
|
continue;
|
|
}
|
|
computeABIDependenciesForModule(import);
|
|
reexposeImportedABI(module, import);
|
|
}
|
|
}
|
|
|
|
void ABIDependencyEvaluator::getABIDependenciesForSwiftModule(
|
|
ModuleDecl *module, SmallPtrSetImpl<ModuleDecl *> &abiDependencies) {
|
|
computeABIDependenciesForModule(module);
|
|
SmallPtrSet<ModuleDecl *, 32> allImports;
|
|
::getImmediateImports(module, allImports);
|
|
for (auto directDependency : allImports) {
|
|
abiDependencies.insert(directDependency);
|
|
for (auto exposedDependency : abiExportMap[directDependency]) {
|
|
abiDependencies.insert(exposedDependency);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ABIDependencyEvaluator::printModule(const ModuleDecl *module,
|
|
llvm::raw_ostream &os) {
|
|
module->getReverseFullModuleName().printForward(os);
|
|
os << (module->isNonSwiftModule() ? " (Clang)" : " (Swift)");
|
|
os << " @ " << llvm::format("0x%llx", reinterpret_cast<uintptr_t>(module));
|
|
}
|
|
|
|
template <typename SetLike>
|
|
void ABIDependencyEvaluator::printModuleSet(const SetLike &set,
|
|
llvm::raw_ostream &os) {
|
|
os << "{ ";
|
|
for (auto module : set) {
|
|
printModule(module, os);
|
|
os << ", ";
|
|
}
|
|
os << "}";
|
|
}
|
|
|
|
void ABIDependencyEvaluator::printABIExportMap(llvm::raw_ostream &os) const {
|
|
os << "ABI Export Map {{\n";
|
|
for (auto &entry : abiExportMap) {
|
|
printModule(entry.first, os);
|
|
os << " : ";
|
|
printModuleSet(entry.second, os);
|
|
os << "\n";
|
|
}
|
|
os << "}}\n";
|
|
}
|
|
|
|
/// Compute the per-module information to be recorded in the trace file.
|
|
//
|
|
// The most interesting/tricky thing here is _which_ paths get recorded in
|
|
// the trace file as dependencies. It depends on how the module was synthesized.
|
|
// The key points are:
|
|
//
|
|
// 1. Paths to swiftmodules in the module cache or in the prebuilt cache are not
|
|
// recorded - Precondition: the corresponding path to the swiftinterface must
|
|
// already be present as a key in pathToModuleDecl.
|
|
// 2. swiftmodules next to a swiftinterface are saved if they are up-to-date.
|
|
//
|
|
// FIXME: Use the VFS instead of handling paths directly. We are particularly
|
|
// sloppy about handling relative paths in the dependency tracker.
|
|
static void computeSwiftModuleTraceInfo(
|
|
ASTContext &ctx, const SmallPtrSetImpl<ModuleDecl *> &abiDependencies,
|
|
const llvm::DenseMap<StringRef, ModuleDecl *> &pathToModuleDecl,
|
|
const DependencyTracker &depTracker, StringRef prebuiltCachePath,
|
|
std::vector<SwiftModuleTraceInfo> &traceInfo) {
|
|
using namespace llvm::sys;
|
|
|
|
auto computeAdjacentInterfacePath = [](SmallVectorImpl<char> &modPath) {
|
|
auto swiftInterfaceExt =
|
|
file_types::getExtension(file_types::TY_SwiftModuleInterfaceFile);
|
|
path::replace_extension(modPath, swiftInterfaceExt);
|
|
};
|
|
|
|
SmallString<256> buffer;
|
|
auto deps = depTracker.getDependencies();
|
|
SmallVector<std::string, 16> dependencies{deps.begin(), deps.end()};
|
|
auto incrDeps = depTracker.getIncrementalDependencyPaths();
|
|
dependencies.append(incrDeps.begin(), incrDeps.end());
|
|
// NOTE: macro dependencies are handled differently.
|
|
// See 'computeSwiftMacroTraceInfo()'.
|
|
for (const auto &depPath : dependencies) {
|
|
|
|
// Decide if this is a swiftmodule based on the extension of the raw
|
|
// dependency path, as the true file may have a different one.
|
|
// For example, this might happen when the canonicalized path points to
|
|
// a Content Addressed Storage (CAS) location.
|
|
auto moduleFileType =
|
|
file_types::lookupTypeForExtension(path::extension(depPath));
|
|
auto isSwiftmodule = moduleFileType == file_types::TY_SwiftModuleFile;
|
|
auto isSwiftinterface =
|
|
moduleFileType == file_types::TY_SwiftModuleInterfaceFile;
|
|
|
|
if (!(isSwiftmodule || isSwiftinterface))
|
|
continue;
|
|
|
|
auto dep = pathToModuleDecl.find(depPath);
|
|
if (dep != pathToModuleDecl.end()) {
|
|
// Great, we recognize the path! Check if the file is still around.
|
|
|
|
ModuleDecl *depMod = dep->second;
|
|
if (depMod->isResilient() && !isSwiftinterface) {
|
|
// FIXME: Ideally, we would check that the swiftmodule has a
|
|
// swiftinterface next to it. Tracked by rdar://problem/56351399.
|
|
}
|
|
|
|
// FIXME: Better error handling
|
|
StringRef realDepPath =
|
|
fs::real_path(depPath, buffer, /*expand_tile*/ true)
|
|
? StringRef(depPath) // Couldn't find the canonical path, assume
|
|
// this is good enough.
|
|
: buffer.str();
|
|
|
|
bool isImportedDirectly = ::contains(abiDependencies, depMod);
|
|
|
|
traceInfo.push_back(
|
|
{/*Name=*/
|
|
depMod->getName(),
|
|
/*Path=*/
|
|
realDepPath.str(),
|
|
// TODO: There is an edge case which is not handled here.
|
|
// When we build a framework using -import-underlying-module, or an
|
|
// app/test using -import-objc-header, we should look at the direct
|
|
// imports of the bridging modules, and mark those as our direct
|
|
// imports.
|
|
// TODO: Add negative test cases for the comment above.
|
|
// TODO: Describe precise semantics of "isImportedDirectly".
|
|
/*IsImportedDirectly=*/
|
|
isImportedDirectly,
|
|
/*SupportsLibraryEvolution=*/
|
|
depMod->isResilient(),
|
|
depMod->strictMemorySafety()});
|
|
buffer.clear();
|
|
|
|
continue;
|
|
}
|
|
|
|
// If the depTracker had an interface, that means that we must've
|
|
// built a swiftmodule from that interface, so we should have that
|
|
// filename available.
|
|
if (isSwiftinterface) {
|
|
// FIXME: Use PrettyStackTrace instead.
|
|
llvm::errs() << "WARNING: unexpected path for swiftinterface file:\n"
|
|
<< depPath << "\n"
|
|
<< "The module <-> path mapping we have is:\n";
|
|
for (auto &m : pathToModuleDecl)
|
|
llvm::errs() << m.second->getName() << " <-> " << m.first << '\n';
|
|
continue;
|
|
}
|
|
|
|
// Skip cached modules in the prebuilt cache. We will add the corresponding
|
|
// swiftinterface from the SDK directly, but this isn't checked. :-/
|
|
//
|
|
// FIXME: This is incorrect if both paths are not relative w.r.t. to the
|
|
// same root.
|
|
if (StringRef(depPath).starts_with(prebuiltCachePath))
|
|
continue;
|
|
|
|
// If we have a swiftmodule next to an interface, that interface path will
|
|
// be saved (not checked), so don't save the path to this swiftmodule.
|
|
SmallString<256> moduleAdjacentInterfacePath(depPath);
|
|
computeAdjacentInterfacePath(moduleAdjacentInterfacePath);
|
|
if (::contains(pathToModuleDecl, moduleAdjacentInterfacePath))
|
|
continue;
|
|
|
|
// FIXME: The behavior of fs::exists for relative paths is undocumented.
|
|
// Use something else instead?
|
|
if (fs::exists(moduleAdjacentInterfacePath)) {
|
|
// This should be an error but it is not because of funkiness around
|
|
// compatible modules such as us having both armv7s.swiftinterface
|
|
// and armv7.swiftinterface in the dependency tracker.
|
|
continue;
|
|
}
|
|
buffer.clear();
|
|
|
|
// We might land here when we have a arm.swiftmodule in the cache path
|
|
// which added a dependency on a arm.swiftinterface (which was not loaded).
|
|
}
|
|
|
|
// Almost a re-implementation of reversePathSortedFilenames :(.
|
|
std::sort(traceInfo.begin(), traceInfo.end(),
|
|
[](const SwiftModuleTraceInfo &m1,
|
|
const SwiftModuleTraceInfo &m2) -> bool {
|
|
return std::lexicographical_compare(
|
|
m1.Path.rbegin(), m1.Path.rend(), m2.Path.rbegin(),
|
|
m2.Path.rend());
|
|
});
|
|
}
|
|
|
|
static void
|
|
computeSwiftMacroTraceInfo(ASTContext &ctx, const DependencyTracker &depTracker,
|
|
std::vector<SwiftMacroTraceInfo> &traceInfo) {
|
|
for (const auto ¯oDep : depTracker.getMacroPluginDependencies()) {
|
|
traceInfo.push_back({macroDep.moduleName, macroDep.path});
|
|
}
|
|
|
|
// Again, almost a re-implementation of reversePathSortedFilenames :(.
|
|
std::sort(
|
|
traceInfo.begin(), traceInfo.end(),
|
|
[](const SwiftMacroTraceInfo &m1, const SwiftMacroTraceInfo &m2) -> bool {
|
|
return std::lexicographical_compare(m1.Path.rbegin(), m1.Path.rend(),
|
|
m2.Path.rbegin(), m2.Path.rend());
|
|
});
|
|
}
|
|
|
|
// [NOTE: Bailing-vs-crashing-in-trace-emission] There are certain edge cases
|
|
// in trace emission where an invariant that you think should hold does not hold
|
|
// in practice. For example, sometimes we have seen modules without any
|
|
// corresponding filename.
|
|
//
|
|
// Since the trace is a supplementary output for build system consumption, it
|
|
// it better to emit it on a best-effort basis instead of crashing and failing
|
|
// the build.
|
|
//
|
|
// Moreover, going forward, it would be nice if trace emission were more robust
|
|
// so we could emit the trace on a best-effort basis even if the dependency
|
|
// graph is ill-formed, so that the trace can be used as a debugging aid.
|
|
bool swift::emitLoadedModuleTraceIfNeeded(ModuleDecl *mainModule,
|
|
DependencyTracker *depTracker,
|
|
const FrontendOptions &opts,
|
|
const InputFile &input) {
|
|
ASTContext &ctxt = mainModule->getASTContext();
|
|
assert(!ctxt.hadError() &&
|
|
"We should've already exited earlier if there was an error.");
|
|
|
|
auto loadedModuleTracePath = input.getLoadedModuleTracePath();
|
|
if (loadedModuleTracePath.empty())
|
|
return false;
|
|
|
|
SmallPtrSet<ModuleDecl *, 32> abiDependencies;
|
|
{
|
|
ABIDependencyEvaluator evaluator{};
|
|
evaluator.getABIDependenciesForSwiftModule(mainModule, abiDependencies);
|
|
}
|
|
|
|
llvm::DenseMap<StringRef, ModuleDecl *> pathToModuleDecl;
|
|
for (const auto &module : ctxt.getLoadedModules()) {
|
|
ModuleDecl *loadedDecl = module.second;
|
|
if (!loadedDecl) {
|
|
llvm::errs() << "WARNING: Unable to load module '" << module.first
|
|
<< ".\n";
|
|
continue;
|
|
}
|
|
if (loadedDecl == mainModule)
|
|
continue;
|
|
if (loadedDecl->getModuleFilename().empty()) {
|
|
// FIXME: rdar://problem/59853077
|
|
// Ideally, this shouldn't happen. As a temporary workaround, avoid
|
|
// crashing with a message while we investigate the problem.
|
|
llvm::errs() << "WARNING: Module '" << loadedDecl->getName().str()
|
|
<< "' has an empty filename. This is probably an "
|
|
<< "invariant violation.\n"
|
|
<< "Please report it as a compiler bug.\n";
|
|
continue;
|
|
}
|
|
pathToModuleDecl.insert(
|
|
std::make_pair(loadedDecl->getModuleFilename(), loadedDecl));
|
|
}
|
|
|
|
std::vector<SwiftModuleTraceInfo> swiftModules;
|
|
computeSwiftModuleTraceInfo(ctxt, abiDependencies, pathToModuleDecl,
|
|
*depTracker, opts.PrebuiltModuleCachePath,
|
|
swiftModules);
|
|
|
|
std::vector<SwiftMacroTraceInfo> swiftMacros;
|
|
computeSwiftMacroTraceInfo(ctxt, *depTracker, swiftMacros);
|
|
|
|
LoadedModuleTraceFormat trace = {
|
|
/*version=*/LoadedModuleTraceFormat::CurrentVersion,
|
|
/*name=*/mainModule->getName(),
|
|
/*arch=*/ctxt.LangOpts.Target.getArchName().str(),
|
|
mainModule ? mainModule->strictMemorySafety() : false,
|
|
swiftModules, swiftMacros};
|
|
|
|
// raw_fd_ostream is unbuffered, and we may have multiple processes writing,
|
|
// so first write to memory and then dump the buffer to the trace file.
|
|
std::string stringBuffer;
|
|
{
|
|
llvm::raw_string_ostream memoryBuffer(stringBuffer);
|
|
json::Output jsonOutput(memoryBuffer, /*UserInfo=*/{},
|
|
/*PrettyPrint=*/false);
|
|
json::jsonize(jsonOutput, trace, /*Required=*/true);
|
|
}
|
|
stringBuffer += "\n";
|
|
|
|
// Write output via atomic append.
|
|
llvm::vfs::OutputConfig config;
|
|
config.setAppend().setAtomicWrite();
|
|
auto outputFile =
|
|
ctxt.getOutputBackend().createFile(loadedModuleTracePath, config);
|
|
|
|
if (!outputFile) {
|
|
ctxt.Diags.diagnose(SourceLoc(), diag::error_opening_output,
|
|
loadedModuleTracePath,
|
|
toString(outputFile.takeError()));
|
|
return true;
|
|
}
|
|
|
|
*outputFile << stringBuffer;
|
|
|
|
if (auto err = outputFile->keep()) {
|
|
ctxt.Diags.diagnose(SourceLoc(), diag::error_opening_output,
|
|
loadedModuleTracePath, toString(std::move(err)));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
class ObjcMethodReferenceCollector: public SourceEntityWalker {
|
|
unsigned CurrentFileID;
|
|
llvm::DenseMap<const clang::ObjCMethodDecl*, unsigned> results;
|
|
bool visitDeclReference(ValueDecl *D, CharSourceRange Range,
|
|
TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef,
|
|
Type T, ReferenceMetaData Data) override {
|
|
if (!Range.isValid())
|
|
return true;
|
|
if (auto *clangD = dyn_cast_or_null<clang::ObjCMethodDecl>(D->getClangDecl()))
|
|
Info.References[CurrentFileID].push_back(clangD);
|
|
return true;
|
|
}
|
|
|
|
clang::ObjCMethodReferenceInfo Info;
|
|
|
|
public:
|
|
ObjcMethodReferenceCollector(ModuleDecl *MD) {
|
|
Info.ToolName = "swift-compiler-version";
|
|
Info.ToolVersion =
|
|
getSwiftInterfaceCompilerVersionForCurrentCompiler(MD->getASTContext());
|
|
auto &Opts = MD->getASTContext().LangOpts;
|
|
Info.Target = Opts.Target.str();
|
|
Info.TargetVariant = Opts.TargetVariant.has_value() ?
|
|
Opts.TargetVariant->str() : "";
|
|
}
|
|
void setFileBeforeVisiting(SourceFile *SF) {
|
|
assert(SF && "need to visit actual source files");
|
|
Info.FilePaths.push_back(SF->getFilename().str());
|
|
CurrentFileID = Info.FilePaths.size();
|
|
}
|
|
void serializeAsJson(llvm::raw_ostream &OS) {
|
|
clang::serializeObjCMethodReferencesAsJson(Info, OS);
|
|
}
|
|
};
|
|
|
|
static void createFineModuleTraceFile(CompilerInstance &instance,
|
|
const InputFile &input) {
|
|
StringRef tracePath = input.getFineModuleTracePath();
|
|
if (tracePath.empty()) {
|
|
// we basically rely on the passing down of module trace file path
|
|
// as an indicator that this job needs to emit an ObjC message trace file.
|
|
// FIXME: add a separate swift-frontend flag for ObjC message trace path
|
|
// specifically.
|
|
return;
|
|
}
|
|
ModuleDecl *MD = instance.getMainModule();
|
|
auto &ctx = MD->getASTContext();
|
|
// Write output via atomic append.
|
|
llvm::vfs::OutputConfig config;
|
|
config.setAppend().setAtomicWrite();
|
|
auto outputFile = ctx.getOutputBackend().createFile(tracePath, config);
|
|
if (!outputFile) {
|
|
ctx.Diags.diagnose(SourceLoc(), diag::error_opening_output, tracePath,
|
|
toString(outputFile.takeError()));
|
|
return;
|
|
}
|
|
ObjcMethodReferenceCollector collector(MD);
|
|
instance.forEachFileToTypeCheck([&](SourceFile& SF) {
|
|
collector.setFileBeforeVisiting(&SF);
|
|
collector.walk(SF);
|
|
return false;
|
|
});
|
|
|
|
// print this json line.
|
|
std::string stringBuffer;
|
|
{
|
|
llvm::raw_string_ostream memoryBuffer(stringBuffer);
|
|
collector.serializeAsJson(memoryBuffer);
|
|
}
|
|
stringBuffer += "\n";
|
|
|
|
// Write output via atomic append.
|
|
*outputFile << stringBuffer;
|
|
if (auto err = outputFile->keep()) {
|
|
ctx.Diags.diagnose(SourceLoc(), diag::error_opening_output,
|
|
tracePath, toString(std::move(err)));
|
|
return;
|
|
}
|
|
}
|
|
|
|
static bool shouldActionTypeEmitFineModuleTrace(FrontendOptions::ActionType action) {
|
|
// Only full compilation jobs should emit fine module tracing file.
|
|
// Other partial compilation jobs, such as emitting modules, only typecheck partially
|
|
// so walking into every function bodies may be risky.
|
|
switch(action) {
|
|
case swift::FrontendOptions::ActionType::Typecheck:
|
|
case swift::FrontendOptions::ActionType::EmitSILGen:
|
|
case swift::FrontendOptions::ActionType::EmitSIL:
|
|
case swift::FrontendOptions::ActionType::EmitAssembly:
|
|
case swift::FrontendOptions::ActionType::EmitLoweredSIL:
|
|
case swift::FrontendOptions::ActionType::EmitIRGen:
|
|
case swift::FrontendOptions::ActionType::EmitIR:
|
|
case swift::FrontendOptions::ActionType::EmitBC:
|
|
case swift::FrontendOptions::ActionType::EmitObject:
|
|
return true;
|
|
case swift::FrontendOptions::ActionType::NoneAction:
|
|
case swift::FrontendOptions::ActionType::Parse:
|
|
case swift::FrontendOptions::ActionType::ResolveImports:
|
|
case swift::FrontendOptions::ActionType::DumpParse:
|
|
case swift::FrontendOptions::ActionType::DumpInterfaceHash:
|
|
case swift::FrontendOptions::ActionType::DumpAST:
|
|
case swift::FrontendOptions::ActionType::PrintAST:
|
|
case swift::FrontendOptions::ActionType::PrintASTDecl:
|
|
case swift::FrontendOptions::ActionType::DumpScopeMaps:
|
|
case swift::FrontendOptions::ActionType::DumpAvailabilityScopes:
|
|
case swift::FrontendOptions::ActionType::EmitImportedModules:
|
|
case swift::FrontendOptions::ActionType::EmitPCH:
|
|
case swift::FrontendOptions::ActionType::EmitModuleOnly:
|
|
case swift::FrontendOptions::ActionType::MergeModules:
|
|
case swift::FrontendOptions::ActionType::CompileModuleFromInterface:
|
|
case swift::FrontendOptions::ActionType::TypecheckModuleFromInterface:
|
|
case swift::FrontendOptions::ActionType::EmitSIBGen:
|
|
case swift::FrontendOptions::ActionType::EmitSIB:
|
|
case swift::FrontendOptions::ActionType::Immediate:
|
|
case swift::FrontendOptions::ActionType::REPL:
|
|
case swift::FrontendOptions::ActionType::DumpTypeInfo:
|
|
case swift::FrontendOptions::ActionType::EmitPCM:
|
|
case swift::FrontendOptions::ActionType::DumpPCM:
|
|
case swift::FrontendOptions::ActionType::ScanDependencies:
|
|
case swift::FrontendOptions::ActionType::PrintVersion:
|
|
case swift::FrontendOptions::ActionType::PrintFeature:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool swift::emitFineModuleTraceIfNeeded(CompilerInstance &Instance,
|
|
const FrontendOptions &opts) {
|
|
if (opts.DisableFineModuleTracing) {
|
|
return false;
|
|
}
|
|
if (!shouldActionTypeEmitFineModuleTrace(opts.RequestedAction)) {
|
|
return false;
|
|
}
|
|
ModuleDecl *mainModule = Instance.getMainModule();
|
|
ASTContext &ctxt = mainModule->getASTContext();
|
|
if (ctxt.blockListConfig.hasBlockListAction(mainModule->getNameStr(),
|
|
BlockListKeyKind::ModuleName, BlockListAction::SkipEmittingFineModuleTrace))
|
|
return false;
|
|
assert(!ctxt.hadError() &&
|
|
"We should've already exited earlier if there was an error.");
|
|
|
|
opts.InputsAndOutputs.forEachInput([&](const InputFile &input) {
|
|
createFineModuleTraceFile(Instance, input);
|
|
return true;
|
|
});
|
|
return false;
|
|
}
|