Files
swift-mirror/lib/Parse/ParsePattern.cpp
David Farler d6e2b58382 Preserve whitespace and comments during lexing as Trivia
Store leading a trailing "trivia" around a token, such as whitespace,
comments, doc comments, and escaping backticks. These are syntactically
important for preserving formatting when printing ASTs but don't
semantically affect the program.

Tokens take all trailing trivia up to, but not including, the next
newline. This is important to maintain checks that statements without
semicolon separators start on a new line, among other things.

Trivia are now data attached to the ends of tokens, not tokens
themselves.

Create a new Syntax sublibrary for upcoming immutable, persistent,
thread-safe ASTs, which will contain only the syntactic information
about source structure, as well as for generating new source code, and
structural editing. Proactively move swift::Token into there.

Since this patch is getting a bit large, a token fuzzer which checks
for round-trip equivlence with the workflow:

fuzzer => token stream => file1
  => Lexer => token stream => file 2 => diff(file1, file2)

Will arrive in a subsequent commit.

This patch does not change the grammar.
2016-11-15 16:11:57 -08:00

1137 lines
40 KiB
C++

//===--- ParsePattern.cpp - Swift Language Parser for Patterns ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Pattern Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/CodeCompletionCallbacks.h"
#include "swift/Parse/Parser.h"
#include "swift/AST/ASTWalker.h"
#include "swift/Basic/StringExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
/// \brief Determine the kind of a default argument given a parsed
/// expression that has not yet been type-checked.
static DefaultArgumentKind getDefaultArgKind(Expr *init) {
if (!init)
return DefaultArgumentKind::None;
auto magic = dyn_cast<MagicIdentifierLiteralExpr>(init);
if (!magic)
return DefaultArgumentKind::Normal;
switch (magic->getKind()) {
case MagicIdentifierLiteralExpr::Column:
return DefaultArgumentKind::Column;
case MagicIdentifierLiteralExpr::File:
return DefaultArgumentKind::File;
case MagicIdentifierLiteralExpr::Line:
return DefaultArgumentKind::Line;
case MagicIdentifierLiteralExpr::Function:
return DefaultArgumentKind::Function;
case MagicIdentifierLiteralExpr::DSOHandle:
return DefaultArgumentKind::DSOHandle;
}
}
void Parser::DefaultArgumentInfo::setFunctionContext(AbstractFunctionDecl *AFD){
for (auto context : ParsedContexts) {
context->changeFunction(AFD);
}
}
static ParserStatus parseDefaultArgument(Parser &P,
Parser::DefaultArgumentInfo *defaultArgs,
unsigned argIndex,
Expr *&init,
Parser::ParameterContextKind paramContext) {
SourceLoc equalLoc = P.consumeToken(tok::equal);
// Enter a fresh default-argument context with a meaningless parent.
// We'll change the parent to the function later after we've created
// that declaration.
auto initDC = new (P.Context) DefaultArgumentInitializer(P.CurDeclContext,
argIndex);
Parser::ParseFunctionBody initScope(P, initDC);
ParserResult<Expr> initR = P.parseExpr(diag::expected_init_value);
// Record the default-argument context if we're supposed to accept default
// arguments here.
if (defaultArgs) {
defaultArgs->ParsedContexts.push_back(initDC);
}
Diag<> diagID = { DiagID() };
switch (paramContext) {
case Parser::ParameterContextKind::Function:
case Parser::ParameterContextKind::Operator:
case Parser::ParameterContextKind::Initializer:
break;
case Parser::ParameterContextKind::Closure:
diagID = diag::no_default_arg_closure;
break;
case Parser::ParameterContextKind::Subscript:
diagID = diag::no_default_arg_subscript;
break;
case Parser::ParameterContextKind::Curried:
diagID = diag::no_default_arg_curried;
break;
}
assert(((diagID.ID != DiagID()) == !defaultArgs ||
// Sometimes curried method parameter lists get default arg info.
// Remove this when they go away.
paramContext == Parser::ParameterContextKind::Curried) &&
"Default arguments specified for an unexpected parameter list kind");
if (diagID.ID != DiagID()) {
auto inFlight = P.diagnose(equalLoc, diagID);
if (initR.isNonNull())
inFlight.fixItRemove(SourceRange(equalLoc, initR.get()->getEndLoc()));
return ParserStatus();
}
defaultArgs->HasDefaultArgument = true;
if (initR.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (initR.isNull())
return makeParserError();
init = initR.get();
return ParserStatus();
}
/// Determine whether we are at the start of a parameter name when
/// parsing a parameter.
static bool startsParameterName(Parser &parser, bool isClosure) {
// '_' cannot be a type, so it must be a parameter name.
if (parser.Tok.is(tok::kw__))
return true;
// To have a parameter name here, we need a name.
if (!parser.Tok.canBeArgumentLabel())
return false;
// If the next token can be an argument label or is ':', this is a name.
auto nextTok = parser.peekToken();
if (nextTok.is(tok::colon) || nextTok.canBeArgumentLabel())
return true;
// The identifier could be a name or it could be a type. In a closure, we
// assume it's a name, because the type can be inferred. Elsewhere, we
// assume it's a type.
return isClosure;
}
ParserStatus
Parser::parseParameterClause(SourceLoc &leftParenLoc,
SmallVectorImpl<ParsedParameter> &params,
SourceLoc &rightParenLoc,
DefaultArgumentInfo *defaultArgs,
ParameterContextKind paramContext) {
assert(params.empty() && leftParenLoc.isInvalid() &&
rightParenLoc.isInvalid() && "Must start with empty state");
// Consume the starting '(';
leftParenLoc = consumeToken(tok::l_paren);
// Trivial case: empty parameter list.
if (Tok.is(tok::r_paren)) {
rightParenLoc = consumeToken(tok::r_paren);
return ParserStatus();
}
// Parse the parameter list.
bool isClosure = paramContext == ParameterContextKind::Closure;
return parseList(tok::r_paren, leftParenLoc, rightParenLoc, tok::comma,
/*OptionalSep=*/false, /*AllowSepAfterLast=*/false,
diag::expected_rparen_parameter,
[&]() -> ParserStatus {
ParsedParameter param;
ParserStatus status;
SourceLoc StartLoc = Tok.getLoc();
unsigned defaultArgIndex = defaultArgs ? defaultArgs->NextIndex++ : 0;
// Attributes.
bool FoundCCToken;
parseDeclAttributeList(param.Attrs, FoundCCToken);
if (FoundCCToken) {
if (CodeCompletion) {
CodeCompletion->completeDeclAttrKeyword(nullptr, isInSILMode(), true);
} else {
status |= makeParserCodeCompletionStatus();
}
}
// ('inout' | 'let' | 'var')?
bool hasSpecifier = false;
while (Tok.isAny(tok::kw_inout, tok::kw_let, tok::kw_var)) {
if (!hasSpecifier) {
if (Tok.is(tok::kw_let)) {
diagnose(Tok, diag::parameter_let_as_attr)
.fixItRemove(Tok.getLoc());
} else {
// We handle the var error in sema for a better fixit and inout is
// handled later in this function for better fixits.
param.SpecifierKind = Tok.is(tok::kw_inout) ? ParsedParameter::InOut :
ParsedParameter::Var;
}
param.LetVarInOutLoc = consumeToken();
hasSpecifier = true;
} else {
// Redundant specifiers are fairly common, recognize, reject, and recover
// from this gracefully.
diagnose(Tok, diag::parameter_inout_var_let_repeated)
.fixItRemove(Tok.getLoc());
consumeToken();
}
}
if (startsParameterName(*this, isClosure)) {
// identifier-or-none for the first name
if (Tok.is(tok::kw__)) {
param.FirstNameLoc = consumeToken();
} else {
assert(Tok.canBeArgumentLabel() && "startsParameterName() lied");
param.FirstName = Context.getIdentifier(Tok.getText());
param.FirstNameLoc = consumeToken();
}
// identifier-or-none? for the second name
if (Tok.canBeArgumentLabel()) {
if (!Tok.is(tok::kw__))
param.SecondName = Context.getIdentifier(Tok.getText());
param.SecondNameLoc = consumeToken();
}
// Operators and closures cannot have API names.
if ((paramContext == ParameterContextKind::Operator ||
paramContext == ParameterContextKind::Closure) &&
!param.FirstName.empty() &&
param.SecondNameLoc.isValid()) {
diagnose(param.FirstNameLoc, diag::parameter_operator_keyword_argument,
isClosure)
.fixItRemoveChars(param.FirstNameLoc, param.SecondNameLoc);
param.FirstName = param.SecondName;
param.FirstNameLoc = param.SecondNameLoc;
param.SecondName = Identifier();
param.SecondNameLoc = SourceLoc();
}
// (':' ('inout')? type)?
if (consumeIf(tok::colon)) {
SourceLoc postColonLoc = Tok.getLoc();
bool hasDeprecatedInOut =
param.SpecifierKind == ParsedParameter::InOut;
bool hasValidInOut = false;
while (Tok.is(tok::kw_inout)) {
hasValidInOut = true;
if (hasSpecifier) {
diagnose(Tok.getLoc(), diag::parameter_inout_var_let_repeated)
.fixItRemove(param.LetVarInOutLoc);
consumeToken(tok::kw_inout);
} else {
hasSpecifier = true;
param.LetVarInOutLoc = consumeToken(tok::kw_inout);
param.SpecifierKind = ParsedParameter::InOut;
}
}
if (!hasValidInOut && hasDeprecatedInOut) {
diagnose(Tok.getLoc(), diag::inout_as_attr_disallowed)
.fixItRemove(param.LetVarInOutLoc)
.fixItInsert(postColonLoc, "inout ");
}
auto type = parseType(diag::expected_parameter_type);
status |= type;
param.Type = type.getPtrOrNull();
if (param.SpecifierKind == ParsedParameter::InOut) {
if (auto *fnTR = dyn_cast_or_null<FunctionTypeRepr>(param.Type)) {
// If the input to the function isn't parenthesized, apply the inout
// to the first (only) parameter, as we would in Swift 2. (This
// syntax is deprecated in Swift 3.)
TypeRepr *argsTR = fnTR->getArgsTypeRepr();
if (!isa<TupleTypeRepr>(argsTR)) {
auto *newArgsTR =
new (Context) InOutTypeRepr(argsTR, param.LetVarInOutLoc);
auto *newTR =
new (Context) FunctionTypeRepr(fnTR->getGenericParams(),
newArgsTR,
fnTR->getThrowsLoc(),
fnTR->getArrowLoc(),
fnTR->getResultTypeRepr());
newTR->setGenericEnvironment(fnTR->getGenericEnvironment());
param.Type = newTR;
param.SpecifierKind = ParsedParameter::Let;
param.LetVarInOutLoc = SourceLoc();
}
}
}
// If we didn't parse a type, then we already diagnosed that the type
// was invalid. Remember that.
if (type.isParseError() && !type.hasCodeCompletion())
param.isInvalid = true;
}
} else {
// Otherwise, we have invalid code. Check to see if this looks like a
// type. If so, diagnose it as a common error.
bool isBareType = false;
{
BacktrackingScope backtrack(*this);
isBareType = canParseType() && Tok.isAny(tok::comma, tok::r_paren,
tok::equal);
}
if (isBareType) {
// Otherwise, if this is a bare type, then the user forgot to name the
// parameter, e.g. "func foo(Int) {}"
SourceLoc typeStartLoc = Tok.getLoc();
auto type = parseType(diag::expected_parameter_type, false);
status |= type;
param.Type = type.getPtrOrNull();
// Unnamed parameters must be written as "_: Type".
if (param.Type) {
diagnose(typeStartLoc, diag::parameter_unnamed)
.fixItInsert(typeStartLoc, "_: ");
}
} else {
// Otherwise, we're not sure what is going on, but this doesn't smell
// like a parameter.
diagnose(Tok, diag::expected_parameter_name);
param.isInvalid = true;
param.FirstNameLoc = Tok.getLoc();
status.setIsParseError();
}
}
// '...'?
if (Tok.isEllipsis())
param.EllipsisLoc = consumeToken();
// ('=' expr)?
if (Tok.is(tok::equal)) {
SourceLoc EqualLoc = Tok.getLoc();
status |= parseDefaultArgument(*this, defaultArgs, defaultArgIndex,
param.DefaultArg, paramContext);
if (param.EllipsisLoc.isValid() && param.DefaultArg) {
// The range of the complete default argument.
SourceRange defaultArgRange;
if (auto init = param.DefaultArg)
defaultArgRange = SourceRange(param.EllipsisLoc, init->getEndLoc());
diagnose(EqualLoc, diag::parameter_vararg_default)
.highlight(param.EllipsisLoc)
.fixItRemove(defaultArgRange);
param.isInvalid = true;
param.DefaultArg = nullptr;
}
}
// If we haven't made progress, don't add the parameter.
if (Tok.getLoc() == StartLoc) {
// If we took a default argument index for this parameter, but didn't add
// one, then give it back.
if (defaultArgs) defaultArgs->NextIndex--;
return status;
}
params.push_back(param);
return status;
});
}
/// Map parsed parameters to a ParameterList.
static ParameterList *
mapParsedParameters(Parser &parser,
SourceLoc leftParenLoc,
MutableArrayRef<Parser::ParsedParameter> params,
SourceLoc rightParenLoc,
bool isFirstParameterClause,
SmallVectorImpl<Identifier> *argNames,
Parser::ParameterContextKind paramContext) {
auto &ctx = parser.Context;
// Local function to create a pattern for a single parameter.
auto createParam = [&](Parser::ParsedParameter &paramInfo,
Identifier argName, SourceLoc argNameLoc,
Identifier paramName, SourceLoc paramNameLoc)
-> ParamDecl * {
auto specifierKind = paramInfo.SpecifierKind;
bool isLet = specifierKind == Parser::ParsedParameter::Let;
auto param = new (ctx) ParamDecl(isLet, paramInfo.LetVarInOutLoc,
argNameLoc, argName,
paramNameLoc, paramName, Type(),
parser.CurDeclContext);
param->getAttrs() = paramInfo.Attrs;
if (argNameLoc.isInvalid() && paramNameLoc.isInvalid())
param->setImplicit();
// If we diagnosed this parameter as a parse error, propagate to the decl.
if (paramInfo.isInvalid)
param->setInvalid();
// If a type was provided, create the type for the parameter.
if (auto type = paramInfo.Type) {
// If 'inout' was specified, turn the type into an in-out type.
if (specifierKind == Parser::ParsedParameter::InOut)
type = new (ctx) InOutTypeRepr(type, paramInfo.LetVarInOutLoc);
param->getTypeLoc() = TypeLoc(type);
} else if (paramContext != Parser::ParameterContextKind::Closure) {
// Non-closure parameters require a type.
if (!param->isInvalid())
parser.diagnose(param->getLoc(), diag::missing_parameter_type);
param->getTypeLoc() = TypeLoc::withoutLoc(ErrorType::get(ctx));
param->setInvalid();
} else if (specifierKind == Parser::ParsedParameter::InOut) {
parser.diagnose(paramInfo.LetVarInOutLoc, diag::inout_must_have_type);
paramInfo.LetVarInOutLoc = SourceLoc();
specifierKind = Parser::ParsedParameter::Let;
}
return param;
};
// Collect the elements of the tuple patterns for argument and body
// parameters.
SmallVector<ParamDecl*, 4> elements;
SourceLoc ellipsisLoc;
for (auto &param : params) {
// Whether the provided name is API by default depends on the parameter
// context.
bool isKeywordArgumentByDefault;
switch (paramContext) {
case Parser::ParameterContextKind::Closure:
case Parser::ParameterContextKind::Subscript:
case Parser::ParameterContextKind::Operator:
isKeywordArgumentByDefault = !isFirstParameterClause;
break;
case Parser::ParameterContextKind::Curried:
case Parser::ParameterContextKind::Initializer:
isKeywordArgumentByDefault = true;
break;
case Parser::ParameterContextKind::Function:
isKeywordArgumentByDefault = true;
break;
}
// Create the pattern.
ParamDecl *result = nullptr;
Identifier argName;
Identifier paramName;
if (param.SecondNameLoc.isValid()) {
argName = param.FirstName;
paramName = param.SecondName;
// Both names were provided, so pass them in directly.
result = createParam(param, argName, param.FirstNameLoc,
paramName, param.SecondNameLoc);
// If the first and second names are equivalent and non-empty, and we
// would have an argument label by default, complain.
if (isKeywordArgumentByDefault && param.FirstName == param.SecondName
&& !param.FirstName.empty()) {
parser.diagnose(param.FirstNameLoc,
diag::parameter_extraneous_double_up,
param.FirstName)
.fixItRemoveChars(param.FirstNameLoc, param.SecondNameLoc);
}
} else {
if (isKeywordArgumentByDefault)
argName = param.FirstName;
paramName = param.FirstName;
result = createParam(param, argName, SourceLoc(),
param.FirstName, param.FirstNameLoc);
}
// If this parameter had an ellipsis, check whether it's the last parameter.
if (param.EllipsisLoc.isValid()) {
if (ellipsisLoc.isValid()) {
parser.diagnose(param.EllipsisLoc, diag::multiple_parameter_ellipsis)
.highlight(ellipsisLoc)
.fixItRemove(param.EllipsisLoc);
param.EllipsisLoc = SourceLoc();
} else if (!result->getTypeLoc().getTypeRepr()) {
parser.diagnose(param.EllipsisLoc, diag::untyped_pattern_ellipsis)
.highlight(result->getSourceRange());
param.EllipsisLoc = SourceLoc();
} else {
ellipsisLoc = param.EllipsisLoc;
result->setVariadic();
}
}
if (param.DefaultArg) {
assert(isFirstParameterClause &&
"Default arguments are only permitted on the first param clause");
result->setDefaultArgumentKind(getDefaultArgKind(param.DefaultArg));
result->setDefaultValue(param.DefaultArg);
}
elements.push_back(result);
if (argNames)
argNames->push_back(argName);
}
return ParameterList::create(ctx, leftParenLoc, elements, rightParenLoc);
}
/// Parse a single parameter-clause.
ParserResult<ParameterList> Parser::parseSingleParameterClause(
ParameterContextKind paramContext,
SmallVectorImpl<Identifier> *namePieces) {
ParserStatus status;
SmallVector<ParsedParameter, 4> params;
SourceLoc leftParenLoc, rightParenLoc;
// Parse the parameter clause.
status |= parseParameterClause(leftParenLoc, params, rightParenLoc,
/*defaultArgs=*/nullptr, paramContext);
// Turn the parameter clause into argument and body patterns.
auto paramList = mapParsedParameters(*this, leftParenLoc, params,
rightParenLoc, true, namePieces,
paramContext);
return makeParserResult(status, paramList);
}
/// Parse function arguments.
/// func-arguments:
/// curried-arguments | selector-arguments
/// curried-arguments:
/// parameter-clause+
/// selector-arguments:
/// '(' selector-element ')' (identifier '(' selector-element ')')+
/// selector-element:
/// identifier '(' pattern-atom (':' type)? ('=' expr)? ')'
///
ParserStatus
Parser::parseFunctionArguments(SmallVectorImpl<Identifier> &NamePieces,
SmallVectorImpl<ParameterList*> &BodyParams,
ParameterContextKind paramContext,
DefaultArgumentInfo &DefaultArgs) {
// Parse parameter-clauses.
ParserStatus status;
bool isFirstParameterClause = true;
unsigned FirstBodyPatternIndex = BodyParams.size();
while (Tok.is(tok::l_paren)) {
SmallVector<ParsedParameter, 4> params;
SourceLoc leftParenLoc, rightParenLoc;
// Parse the parameter clause.
status |= parseParameterClause(leftParenLoc, params, rightParenLoc,
&DefaultArgs, paramContext);
// Turn the parameter clause into argument and body patterns.
auto pattern = mapParsedParameters(*this, leftParenLoc, params,
rightParenLoc,
isFirstParameterClause,
isFirstParameterClause ? &NamePieces
: nullptr,
paramContext);
BodyParams.push_back(pattern);
isFirstParameterClause = false;
paramContext = ParameterContextKind::Curried;
}
// If the decl uses currying syntax, complain that that syntax has gone away.
if (BodyParams.size() - FirstBodyPatternIndex > 1) {
SourceRange allPatternsRange(
BodyParams[FirstBodyPatternIndex]->getStartLoc(),
BodyParams.back()->getEndLoc());
auto diag = diagnose(allPatternsRange.Start,
diag::parameter_curry_syntax_removed);
diag.highlight(allPatternsRange);
bool seenArg = false;
for (unsigned i = FirstBodyPatternIndex; i < BodyParams.size() - 1; i++) {
// Replace ")(" with ", ", so "(x: Int)(y: Int)" becomes
// "(x: Int, y: Int)". But just delete them if they're not actually
// separating any arguments, e.g. in "()(y: Int)".
StringRef replacement(", ");
auto *leftParamList = BodyParams[i];
auto *rightParamList = BodyParams[i + 1];
if (leftParamList->size() != 0)
seenArg = true;
if (!seenArg || rightParamList->size() == 0)
replacement = "";
diag.fixItReplace(SourceRange(leftParamList->getEndLoc(),
rightParamList->getStartLoc()),
replacement);
}
}
return status;
}
/// Parse a function definition signature.
/// func-signature:
/// func-arguments func-throws? func-signature-result?
/// func-signature-result:
/// '->' type
///
/// Note that this leaves retType as null if unspecified.
ParserStatus
Parser::parseFunctionSignature(Identifier SimpleName,
DeclName &FullName,
SmallVectorImpl<ParameterList*> &bodyParams,
DefaultArgumentInfo &defaultArgs,
SourceLoc &throwsLoc,
bool &rethrows,
TypeRepr *&retType) {
SmallVector<Identifier, 4> NamePieces;
NamePieces.push_back(SimpleName);
FullName = SimpleName;
ParserStatus Status;
// We force first type of a func declaration to be a tuple for consistency.
if (Tok.is(tok::l_paren)) {
ParameterContextKind paramContext;
if (SimpleName.isOperator())
paramContext = ParameterContextKind::Operator;
else
paramContext = ParameterContextKind::Function;
Status = parseFunctionArguments(NamePieces, bodyParams, paramContext,
defaultArgs);
FullName = DeclName(Context, SimpleName,
llvm::makeArrayRef(NamePieces.begin() + 1,
NamePieces.end()));
if (bodyParams.empty()) {
// If we didn't get anything, add a () pattern to avoid breaking
// invariants.
assert(Status.hasCodeCompletion() || Status.isError());
bodyParams.push_back(ParameterList::createEmpty(Context));
}
} else {
diagnose(Tok, diag::func_decl_without_paren);
Status = makeParserError();
// Recover by creating a '() -> ?' signature.
bodyParams.push_back(ParameterList::createEmpty(Context, PreviousLoc,
PreviousLoc));
FullName = DeclName(Context, SimpleName, bodyParams.back());
}
// Check for the 'throws' keyword.
rethrows = false;
if (Tok.is(tok::kw_throws)) {
throwsLoc = consumeToken();
} else if (Tok.is(tok::kw_rethrows)) {
throwsLoc = consumeToken();
rethrows = true;
} else if (Tok.is(tok::kw_throw)) {
throwsLoc = consumeToken();
diagnose(throwsLoc, diag::throw_in_function_type)
.fixItReplace(throwsLoc, "throws");
}
SourceLoc arrowLoc;
auto diagnoseInvalidThrows = [&]() -> Optional<InFlightDiagnostic> {
if (throwsLoc.isValid())
return None;
if (Tok.is(tok::kw_throws)) {
throwsLoc = consumeToken();
} else if (Tok.is(tok::kw_rethrows)) {
throwsLoc = consumeToken();
rethrows = true;
}
if (!throwsLoc.isValid())
return None;
auto diag = rethrows ? diag::rethrows_in_wrong_position
: diag::throws_in_wrong_position;
return diagnose(Tok, diag);
};
// If there's a trailing arrow, parse the rest as the result type.
if (Tok.isAny(tok::arrow, tok::colon)) {
if (!consumeIf(tok::arrow, arrowLoc)) {
// FixIt ':' to '->'.
diagnose(Tok, diag::func_decl_expected_arrow)
.fixItReplace(Tok.getLoc(), " -> ");
arrowLoc = consumeToken(tok::colon);
}
// Check for 'throws' and 'rethrows' after the arrow, but
// before the type, and correct it.
if (auto diagOpt = diagnoseInvalidThrows()) {
assert(arrowLoc.isValid());
assert(throwsLoc.isValid());
(*diagOpt).fixItExchange(SourceRange(arrowLoc),
SourceRange(throwsLoc));
}
ParserResult<TypeRepr> ResultType =
parseType(diag::expected_type_function_result);
if (ResultType.hasCodeCompletion())
return ResultType;
retType = ResultType.getPtrOrNull();
if (!retType) {
Status.setIsParseError();
return Status;
}
} else {
// Otherwise, we leave retType null.
retType = nullptr;
}
// Check for 'throws' and 'rethrows' after the type and correct it.
if (auto diagOpt = diagnoseInvalidThrows()) {
assert(arrowLoc.isValid());
assert(retType);
SourceLoc typeEndLoc = Lexer::getLocForEndOfToken(SourceMgr,
retType->getEndLoc());
SourceLoc throwsEndLoc = Lexer::getLocForEndOfToken(SourceMgr, throwsLoc);
(*diagOpt).fixItInsert(arrowLoc, rethrows ? "rethrows " : "throws ")
.fixItRemoveChars(typeEndLoc, throwsEndLoc);
}
return Status;
}
ParserStatus
Parser::parseConstructorArguments(DeclName &FullName,
ParameterList *&BodyParams,
DefaultArgumentInfo &DefaultArgs) {
// If we don't have the leading '(', complain.
if (!Tok.is(tok::l_paren)) {
// Complain that we expected '('.
{
auto diag = diagnose(Tok, diag::expected_lparen_initializer);
if (Tok.is(tok::l_brace))
diag.fixItInsertAfter(PreviousLoc, "()");
}
// Create an empty parameter list to recover.
BodyParams = ParameterList::createEmpty(Context, PreviousLoc, PreviousLoc);
FullName = DeclName(Context, Context.Id_init, BodyParams);
return makeParserError();
}
// Parse the parameter-clause.
SmallVector<ParsedParameter, 4> params;
SourceLoc leftParenLoc, rightParenLoc;
// Parse the parameter clause.
ParserStatus status
= parseParameterClause(leftParenLoc, params, rightParenLoc,
&DefaultArgs, ParameterContextKind::Initializer);
// Turn the parameter clause into argument and body patterns.
llvm::SmallVector<Identifier, 2> namePieces;
BodyParams = mapParsedParameters(*this, leftParenLoc, params,
rightParenLoc,
/*isFirstParameterClause=*/true,
&namePieces,
ParameterContextKind::Initializer);
FullName = DeclName(Context, Context.Id_init, namePieces);
return status;
}
/// Parse a pattern with an optional type annotation.
///
/// typed-pattern ::= pattern (':' type)?
///
ParserResult<Pattern> Parser::parseTypedPattern() {
auto result = parsePattern();
// Now parse an optional type annotation.
if (Tok.is(tok::colon)) {
SourceLoc colonLoc = consumeToken(tok::colon);
if (result.isNull()) // Recover by creating AnyPattern.
result = makeParserErrorResult(new (Context) AnyPattern(colonLoc));
ParserResult<TypeRepr> Ty = parseType();
if (Ty.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
if (!Ty.isNull()) {
// Attempt to diagnose initializer calls incorrectly written
// as typed patterns, such as "var x: [Int]()".
if (Tok.isFollowingLParen()) {
BacktrackingScope backtrack(*this);
// Create a local context if needed so we can parse trailing closures.
LocalContext dummyContext;
Optional<ContextChange> contextChange;
if (!CurLocalContext) {
contextChange.emplace(*this, CurDeclContext, &dummyContext);
}
SourceLoc lParenLoc, rParenLoc;
SmallVector<Expr *, 2> args;
SmallVector<Identifier, 2> argLabels;
SmallVector<SourceLoc, 2> argLabelLocs;
Expr *trailingClosure;
ParserStatus status = parseExprList(tok::l_paren, tok::r_paren,
/*isPostfix=*/true,
/*isExprBasic=*/false,
lParenLoc, args, argLabels,
argLabelLocs, rParenLoc,
trailingClosure);
if (status.isSuccess()) {
backtrack.cancelBacktrack();
// Suggest replacing ':' with '='
diagnose(lParenLoc, diag::initializer_as_typed_pattern)
.highlight({Ty.get()->getStartLoc(), rParenLoc})
.fixItReplace(colonLoc, " = ");
result.setIsParseError();
}
}
} else {
Ty = makeParserResult(new (Context) ErrorTypeRepr(PreviousLoc));
}
result = makeParserResult(result,
new (Context) TypedPattern(result.get(), Ty.get()));
}
return result;
}
/// Parse a pattern.
/// pattern ::= identifier
/// pattern ::= '_'
/// pattern ::= pattern-tuple
/// pattern ::= 'var' pattern
/// pattern ::= 'let' pattern
///
ParserResult<Pattern> Parser::parsePattern() {
switch (Tok.getKind()) {
case tok::l_paren:
return parsePatternTuple();
case tok::kw__:
return makeParserResult(new (Context) AnyPattern(consumeToken(tok::kw__)));
case tok::identifier: {
Identifier name;
SourceLoc loc = consumeIdentifier(&name);
bool isLet = InVarOrLetPattern != IVOLP_InVar;
return makeParserResult(createBindingFromPattern(loc, name, isLet));
}
case tok::code_complete:
if (!CurDeclContext->getAsNominalTypeOrNominalTypeExtensionContext()) {
// This cannot be an overridden property, so just eat the token. We cannot
// code complete anything here -- we expect an identifier.
consumeToken(tok::code_complete);
}
return nullptr;
case tok::kw_var:
case tok::kw_let: {
bool isLet = Tok.is(tok::kw_let);
SourceLoc varLoc = consumeToken();
// 'var' and 'let' patterns shouldn't nest.
if (InVarOrLetPattern == IVOLP_InLet ||
InVarOrLetPattern == IVOLP_InVar)
diagnose(varLoc, diag::var_pattern_in_var, unsigned(isLet));
// 'let' isn't valid inside an implicitly immutable context, but var is.
if (isLet && InVarOrLetPattern == IVOLP_ImplicitlyImmutable)
diagnose(varLoc, diag::let_pattern_in_immutable_context);
// In our recursive parse, remember that we're in a var/let pattern.
llvm::SaveAndRestore<decltype(InVarOrLetPattern)>
T(InVarOrLetPattern, isLet ? IVOLP_InLet : IVOLP_InVar);
ParserResult<Pattern> subPattern = parsePattern();
if (subPattern.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
if (subPattern.isNull())
return nullptr;
return makeParserResult(new (Context) VarPattern(varLoc, isLet,
subPattern.get()));
}
default:
if (Tok.isKeyword() &&
(peekToken().is(tok::colon) || peekToken().is(tok::equal))) {
diagnose(Tok, diag::keyword_cant_be_identifier, Tok.getText());
diagnose(Tok, diag::backticks_to_escape)
.fixItReplace(Tok.getLoc(), "`" + Tok.getText().str() + "`");
SourceLoc Loc = Tok.getLoc();
consumeToken();
return makeParserErrorResult(new (Context) AnyPattern(Loc));
}
diagnose(Tok, diag::expected_pattern);
return nullptr;
}
}
Pattern *Parser::createBindingFromPattern(SourceLoc loc, Identifier name,
bool isLet) {
auto var = new (Context) VarDecl(/*static*/ false, /*IsLet*/ isLet,
loc, name, Type(), CurDeclContext);
return new (Context) NamedPattern(var);
}
/// Parse an element of a tuple pattern.
///
/// pattern-tuple-element:
/// (identifier ':')? pattern
std::pair<ParserStatus, Optional<TuplePatternElt>>
Parser::parsePatternTupleElement() {
// If this element has a label, parse it.
Identifier Label;
SourceLoc LabelLoc;
// If the tuple element has a label, parse it.
if (Tok.is(tok::identifier) && peekToken().is(tok::colon)) {
LabelLoc = consumeIdentifier(&Label);
consumeToken(tok::colon);
}
// Parse the pattern.
ParserResult<Pattern> pattern = parsePattern();
if (pattern.hasCodeCompletion())
return std::make_pair(makeParserCodeCompletionStatus(), None);
if (pattern.isNull())
return std::make_pair(makeParserError(), None);
auto Elt = TuplePatternElt(Label, LabelLoc, pattern.get());
return std::make_pair(makeParserSuccess(), Elt);
}
/// Parse a tuple pattern.
///
/// pattern-tuple:
/// '(' pattern-tuple-body? ')'
/// pattern-tuple-body:
/// pattern-tuple-element (',' pattern-tuple-body)*
ParserResult<Pattern> Parser::parsePatternTuple() {
StructureMarkerRAII ParsingPatternTuple(*this, Tok);
SourceLoc LPLoc = consumeToken(tok::l_paren);
SourceLoc RPLoc;
// Parse all the elements.
SmallVector<TuplePatternElt, 8> elts;
ParserStatus ListStatus =
parseList(tok::r_paren, LPLoc, RPLoc, tok::comma, /*OptionalSep=*/false,
/*AllowSepAfterLast=*/false,
diag::expected_rparen_tuple_pattern_list,
[&] () -> ParserStatus {
// Parse the pattern tuple element.
ParserStatus EltStatus;
Optional<TuplePatternElt> elt;
std::tie(EltStatus, elt) = parsePatternTupleElement();
if (EltStatus.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (!elt)
return makeParserError();
// Add this element to the list.
elts.push_back(*elt);
return makeParserSuccess();
});
return makeParserResult(
ListStatus,
TuplePattern::createSimple(Context, LPLoc, elts, RPLoc));
}
/// Parse an optional type annotation on a pattern.
///
/// pattern-type-annotation ::= (':' type)?
///
ParserResult<Pattern> Parser::
parseOptionalPatternTypeAnnotation(ParserResult<Pattern> result,
bool isOptional) {
// Parse an optional type annotation.
if (!consumeIf(tok::colon))
return result;
Pattern *P;
if (result.isNull()) // Recover by creating AnyPattern.
P = new (Context) AnyPattern(Tok.getLoc());
else
P = result.get();
ParserResult<TypeRepr> Ty = parseType();
if (Ty.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
TypeRepr *repr = Ty.getPtrOrNull();
if (!repr)
repr = new (Context) ErrorTypeRepr(PreviousLoc);
// In an if-let, the actual type of the expression is Optional of whatever
// was written.
if (isOptional)
repr = new (Context) OptionalTypeRepr(repr, Tok.getLoc());
return makeParserResult(new (Context) TypedPattern(P, repr));
}
/// matching-pattern ::= 'is' type
/// matching-pattern ::= matching-pattern-var
/// matching-pattern ::= expr
///
ParserResult<Pattern> Parser::parseMatchingPattern(bool isExprBasic) {
// TODO: Since we expect a pattern in this position, we should optimistically
// parse pattern nodes for productions shared by pattern and expression
// grammar. For short-term ease of initial implementation, we always go
// through the expr parser for ambiguous productions.
// Parse productions that can only be patterns.
if (Tok.isAny(tok::kw_var, tok::kw_let)) {
assert(Tok.isAny(tok::kw_let, tok::kw_var) && "expects var or let");
bool isLet = Tok.is(tok::kw_let);
SourceLoc varLoc = consumeToken();
return parseMatchingPatternAsLetOrVar(isLet, varLoc, isExprBasic);
}
// matching-pattern ::= 'is' type
if (Tok.is(tok::kw_is)) {
SourceLoc isLoc = consumeToken(tok::kw_is);
ParserResult<TypeRepr> castType = parseType();
if (castType.isNull() || castType.hasCodeCompletion())
return nullptr;
return makeParserResult(new (Context) IsPattern(isLoc, castType.get(),
nullptr));
}
// matching-pattern ::= expr
// Fall back to expression parsing for ambiguous forms. Name lookup will
// disambiguate.
ParserResult<Expr> subExpr =
parseExprImpl(diag::expected_pattern, isExprBasic);
if (subExpr.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (subExpr.isNull())
return nullptr;
// The most common case here is to parse something that was a lexically
// obvious pattern, which will come back wrapped in an immediate
// UnresolvedPatternExpr. Transform this now to simplify later code.
if (auto *UPE = dyn_cast<UnresolvedPatternExpr>(subExpr.get()))
return makeParserResult(UPE->getSubPattern());
return makeParserResult(new (Context) ExprPattern(subExpr.get()));
}
ParserResult<Pattern> Parser::parseMatchingPatternAsLetOrVar(bool isLet,
SourceLoc varLoc,
bool isExprBasic) {
// 'var' and 'let' patterns shouldn't nest.
if (InVarOrLetPattern == IVOLP_InLet ||
InVarOrLetPattern == IVOLP_InVar)
diagnose(varLoc, diag::var_pattern_in_var, unsigned(isLet));
// 'let' isn't valid inside an implicitly immutable context, but var is.
if (isLet && InVarOrLetPattern == IVOLP_ImplicitlyImmutable)
diagnose(varLoc, diag::let_pattern_in_immutable_context);
// In our recursive parse, remember that we're in a var/let pattern.
llvm::SaveAndRestore<decltype(InVarOrLetPattern)>
T(InVarOrLetPattern, isLet ? IVOLP_InLet : IVOLP_InVar);
ParserResult<Pattern> subPattern = parseMatchingPattern(isExprBasic);
if (subPattern.isNull())
return nullptr;
auto *varP = new (Context) VarPattern(varLoc, isLet, subPattern.get());
return makeParserResult(varP);
}
bool Parser::isOnlyStartOfMatchingPattern() {
return Tok.isAny(tok::kw_var, tok::kw_let, tok::kw_is);
}
static bool canParsePatternTuple(Parser &P);
/// pattern ::= identifier
/// pattern ::= '_'
/// pattern ::= pattern-tuple
/// pattern ::= 'var' pattern
/// pattern ::= 'let' pattern
static bool canParsePattern(Parser &P) {
switch (P.Tok.getKind()) {
case tok::identifier:
case tok::kw__:
P.consumeToken();
return true;
case tok::kw_let:
case tok::kw_var:
P.consumeToken();
return canParsePattern(P);
case tok::l_paren:
return canParsePatternTuple(P);
default:
return false;
}
}
static bool canParsePatternTuple(Parser &P) {
if (!P.consumeIf(tok::l_paren)) return false;
if (P.Tok.isNot(tok::r_paren)) {
do {
if (!canParsePattern(P)) return false;
} while (P.consumeIf(tok::comma));
}
return P.consumeIf(tok::r_paren);
}
/// typed-pattern ::= pattern (':' type)?
///
bool Parser::canParseTypedPattern() {
if (!canParsePattern(*this)) return false;
if (consumeIf(tok::colon))
return canParseType();
return true;
}