Files
swift-mirror/lib/SILPasses/CapturePropagation.cpp
Nadav Rotem d78b376d07 [passes] Replace the old invalidation lattice with a new invalidation scheme.
The old invalidation lattice was incorrect because changes to control flow could cause changes to the
call graph, so we've decided to change the way passes invalidate analysis.  In the new scheme, the lattice
is replaced with a list of traits that passes preserve or invalidate. The current traits are Calls and Branches.
Now, passes report which traits they preserve, which is the opposite of the previous implementation where
passes needed to report what they invalidate.

Node: I tried to limit the changes in this commit to mechanical changes to ease the review. I will cleanup some
of the code in a following commit.

Swift SVN r26449
2015-03-23 21:18:58 +00:00

339 lines
12 KiB
C++

//===---- CapturePropagation.cpp - Propagate closure capture constants ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "capture-prop"
#include "swift/SILPasses/Passes.h"
#include "swift/Basic/Demangle.h"
#include "swift/SIL/Mangle.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILAnalysis/ColdBlockInfo.h"
#include "swift/SILAnalysis/DominanceAnalysis.h"
#include "swift/SILPasses/Transforms.h"
#include "swift/SILPasses/Utils/Local.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumCapturesPropagated, "Number of constant captures propagated");
namespace {
/// Propagate constants through closure captures by specializing the partially
/// applied function.
class CapturePropagation : public SILModuleTransform
{
public:
void run() override;
StringRef getName() override { return "Captured Constant Propagation"; }
protected:
bool optimizePartialApply(PartialApplyInst *PAI);
SILFunction *specializeConstClosure(PartialApplyInst *PAI,
SILFunction *SubstF);
void rewritePartialApply(PartialApplyInst *PAI, SILFunction *SpecialF);
};
} // namespace
static LiteralInst *getConstant(SILValue V) {
if (auto I = dyn_cast<ThinToThickFunctionInst>(V))
return getConstant(I->getOperand());
return dyn_cast<LiteralInst>(V);
}
static bool isOptimizableConstant(SILValue V) {
// We do not optimize string literals of length > 32 since we would need to
// encode them into the symbol name for uniqueness.
if (auto *SLI = dyn_cast<StringLiteralInst>(V))
return SLI->getValue().size() <= 32;
return true;
}
static bool isConstant(SILValue V) {
V = getConstant(V);
return V && isOptimizableConstant(V);
}
static llvm::SmallString<64> getClonedName(PartialApplyInst *PAI,
SILFunction *F) {
llvm::SmallString<64> ClonedName;
llvm::raw_svector_ostream buffer(ClonedName);
Mangle::Mangler M(buffer);
auto P = Mangle::SpecializationPass::CapturePropagation;
Mangle::FunctionSignatureSpecializationMangler Mangler(P, M, F);
// We know that all arguments are literal insts.
auto Args = PAI->getArguments();
for (unsigned i : indices(Args))
Mangler.setArgumentConstantProp(i, getConstant(Args[i]));
Mangler.mangle();
return ClonedName;
}
namespace {
/// Clone the partially applied function, replacing incoming arguments with
/// literal constants.
///
/// The cloned literals will retain the SILLocation from the partial apply's
/// caller, so the cloned function will have a mix of locations from different
/// functions.
class CapturePropagationCloner
: public SILClonerWithScopes<CapturePropagationCloner> {
using SuperTy = SILClonerWithScopes<CapturePropagationCloner>;
friend class SILVisitor<CapturePropagationCloner>;
friend class SILCloner<CapturePropagationCloner>;
SILFunction *OrigF;
bool IsCloningConstant;
public:
CapturePropagationCloner(SILFunction *OrigF, SILFunction *NewF)
: SuperTy(*NewF), OrigF(OrigF), IsCloningConstant(false) {}
void cloneBlocks(OperandValueArrayRef Args);
protected:
/// Literals cloned from the caller drop their location so the debug line
/// tables don't senselessly jump around. As a placeholder give them the
/// location of the newly cloned function.
SILLocation remapLocation(SILLocation InLoc) {
if (IsCloningConstant)
return getBuilder().getFunction().getLocation();
return InLoc;
}
/// Literals cloned from the caller take on the new function's debug scope.
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
assert(IsCloningConstant == (Orig->getFunction() != OrigF) &&
"Expect only cloned constants from the caller function.");
if (IsCloningConstant) {
Cloned->setDebugScope(getBuilder().getFunction().getDebugScope());
SILCloner<CapturePropagationCloner>::postProcess(Orig, Cloned);
} else
SILClonerWithScopes<CapturePropagationCloner>::postProcess(Orig, Cloned);
}
void cloneConstValue(SILValue Const);
};
} // namespace
/// Clone a constant value. Recursively walk the operand chain through cast
/// instructions to ensure that all dependents are cloned. Note that the
/// original value may not belong to the same function as the one being cloned
/// by cloneBlocks() (they may be from the partial apply caller).
void CapturePropagationCloner::cloneConstValue(SILValue Val) {
assert(IsCloningConstant && "incorrect mode");
auto Inst = dyn_cast<SILInstruction>(Val);
if (!Inst)
return;
auto II = InstructionMap.find(Inst);
if (II != InstructionMap.end())
return;
if (Inst->getNumOperands() > 0) {
// Only handle single operands for simple recursion without a worklist.
assert(Inst->getNumOperands() == 1 && "expected single-operand cast");
cloneConstValue(Inst->getOperand(0));
}
visit(Inst);
}
/// Clone the original partially applied function into the new specialized
/// function, replacing some arguments with literals.
void CapturePropagationCloner::cloneBlocks(
OperandValueArrayRef PartialApplyArgs) {
SILFunction &CloneF = getBuilder().getFunction();
SILModule &M = CloneF.getModule();
// Create the entry basic block with the function arguments.
SILBasicBlock *OrigEntryBB = OrigF->begin();
SILBasicBlock *ClonedEntryBB = new (M) SILBasicBlock(&CloneF);
CanSILFunctionType CloneFTy = CloneF.getLoweredFunctionType();
// Only clone the arguments that remain in the new function type. The trailing
// arguments are now propagated through the partial apply.
assert(!IsCloningConstant && "incorrect mode");
unsigned ParamIdx = 0;
for (unsigned NewParamEnd = CloneFTy->getParameters().size();
ParamIdx != NewParamEnd; ++ParamIdx) {
SILArgument *Arg = OrigEntryBB->getBBArg(ParamIdx);
SILValue MappedValue = new (M)
SILArgument(ClonedEntryBB, remapType(Arg->getType()), Arg->getDecl());
ValueMap.insert(std::make_pair(Arg, MappedValue));
}
assert(OrigEntryBB->bbarg_size() - ParamIdx == PartialApplyArgs.size()
&& "unexpected number of partial apply arguments");
// Replace the rest of the old arguments with constants.
BBMap.insert(std::make_pair(OrigEntryBB, ClonedEntryBB));
getBuilder().setInsertionPoint(ClonedEntryBB);
IsCloningConstant = true;
for (SILValue PartialApplyArg : PartialApplyArgs) {
assert(isConstant(PartialApplyArg) &&
"expected a constant arg to partial apply");
cloneConstValue(PartialApplyArg);
// The PartialApplyArg from the caller is now mapped to its cloned
// instruction. Also map the original argument to the cloned instruction.
SILArgument *InArg = OrigEntryBB->getBBArg(ParamIdx);
ValueMap.insert(std::make_pair(InArg, remapValue(PartialApplyArg)));
++ParamIdx;
}
IsCloningConstant = false;
// Recursively visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions other than terminators.
visitSILBasicBlock(OrigEntryBB);
// Now iterate over the BBs and fix up the terminators.
for (auto BI = BBMap.begin(), BE = BBMap.end(); BI != BE; ++BI) {
getBuilder().setInsertionPoint(BI->second);
visit(BI->first->getTerminator());
}
}
/// Given a partial_apply instruction, create a specialized callee by removing
/// all constant arguments and adding constant literals to the specialized
/// function body.
SILFunction *CapturePropagation::specializeConstClosure(PartialApplyInst *PAI,
SILFunction *OrigF) {
llvm::SmallString<64> Name = getClonedName(PAI, OrigF);
// See if we already have a version of this function in the module. If so,
// just return it.
if (auto *NewF = OrigF->getModule().lookUpFunction(Name.str())) {
DEBUG(llvm::dbgs() << " Found an already specialized version of the callee: ";
NewF->printName(llvm::dbgs()); llvm::dbgs() << "\n");
return NewF;
}
// The new partial_apply will no longer take any arguments--they are all
// expressed as literals. So its callee signature will be the same as its
// return signature.
CanSILFunctionType NewFTy =
Lowering::adjustFunctionType(PAI->getType().castTo<SILFunctionType>(),
FunctionType::Representation::Thin);
SILFunction *NewF = SILFunction::create(
*getModule(), SILLinkage::Shared, Name, NewFTy,
/*contextGenericParams*/ nullptr, OrigF->getLocation(), OrigF->isBare(),
OrigF->isTransparent(), OrigF->isFragile(), OrigF->isThunk(),
OrigF->getClassVisibility(),
OrigF->getInlineStrategy(), OrigF->getEffectsKind(),
/*InsertBefore*/ OrigF, OrigF->getDebugScope(), OrigF->getDeclContext());
DEBUG(llvm::dbgs() << " Specialize callee as ";
NewF->printName(llvm::dbgs()); llvm::dbgs() << " " << NewFTy << "\n");
CapturePropagationCloner cloner(OrigF, NewF);
cloner.cloneBlocks(PAI->getArguments());
return NewF;
}
void CapturePropagation::rewritePartialApply(PartialApplyInst *OrigPAI,
SILFunction *SpecialF) {
SILBuilderWithScope<2> Builder(OrigPAI);
auto FuncRef = Builder.createFunctionRef(OrigPAI->getLoc(), SpecialF);
auto NewPAI = Builder.createPartialApply(OrigPAI->getLoc(),
FuncRef,
SpecialF->getLoweredType(),
ArrayRef<Substitution>(),
ArrayRef<SILValue>(),
OrigPAI->getType());
OrigPAI->replaceAllUsesWith(NewPAI);
recursivelyDeleteTriviallyDeadInstructions(OrigPAI, true);
DEBUG(llvm::dbgs() << " Rewrote caller:\n" << *NewPAI);
}
/// For now, we conservative only specialize if doing so can eliminate dynamic
/// dispatch.
///
/// TODO: Check for other profitable constant propagation, like builtin compare.
static bool isProfitable(SILFunction *Callee) {
SILBasicBlock *EntryBB = Callee->begin();
for (auto *Arg : EntryBB->getBBArgs()) {
for (auto *Operand : Arg->getUses()) {
if (auto *AI = dyn_cast<ApplyInst>(Operand->getUser())) {
if (AI->getCallee() == Operand->get())
return true;
}
}
}
return false;
}
bool CapturePropagation::optimizePartialApply(PartialApplyInst *PAI) {
// Check if the partial_apply has generic substitutions.
// FIXME: We could handle generic thunks if it's worthwhile.
if (PAI->hasSubstitutions())
return false;
auto *FRI = dyn_cast<FunctionRefInst>(PAI->getCallee());
if (!FRI)
return false;
assert(!FRI->getFunctionType()->isPolymorphic() &&
"cannot specialize generic partial apply");
for (auto Arg : PAI->getArguments()) {
if (!isConstant(Arg))
return false;
}
SILFunction *SubstF = FRI->getReferencedFunction();
if (SubstF->isExternalDeclaration() || !isProfitable(SubstF))
return false;
DEBUG(llvm::dbgs() << "Specializing closure for constant arguments:\n"
<< " " << SubstF->getName() << "\n" << *PAI);
++NumCapturesPropagated;
SILFunction *NewF = specializeConstClosure(PAI, SubstF);
rewritePartialApply(PAI, NewF);
return true;
}
void CapturePropagation::run() {
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
bool HasChanged = false;
for (auto &F : *getModule()) {
// Cache cold blocks per function.
ColdBlockInfo ColdBlocks(DA);
for (auto &BB : F) {
if (ColdBlocks.isCold(&BB))
continue;
auto I = BB.begin();
while (I != BB.end()) {
SILInstruction *Inst = &*I;
++I;
if (PartialApplyInst *PAI = dyn_cast<PartialApplyInst>(Inst))
HasChanged |= optimizePartialApply(PAI);
}
}
}
// FIXME: This conservatively invalidates everything. But the transform
// actually changes neither the CFG nor the static call graph. I only made
// this conservative in case someone implements interprocedural/dynamic call
// graph analysis later.
if (HasChanged)
invalidateAnalysis(SILAnalysis::PreserveKind::Nothing);
}
SILTransform *swift::createCapturePropagation() {
return new CapturePropagation();
}