mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
The old invalidation lattice was incorrect because changes to control flow could cause changes to the call graph, so we've decided to change the way passes invalidate analysis. In the new scheme, the lattice is replaced with a list of traits that passes preserve or invalidate. The current traits are Calls and Branches. Now, passes report which traits they preserve, which is the opposite of the previous implementation where passes needed to report what they invalidate. Node: I tried to limit the changes in this commit to mechanical changes to ease the review. I will cleanup some of the code in a following commit. Swift SVN r26449
510 lines
18 KiB
C++
510 lines
18 KiB
C++
//===-- Devirtualizer.cpp ------ Devirtualize virtual calls ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Devirtualizes virtual function calls into direct function calls.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-devirtualizer-pass"
|
|
#include "swift/Basic/DemangleWrappers.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SILAnalysis/ClassHierarchyAnalysis.h"
|
|
#include "swift/SILPasses/Utils/Generics.h"
|
|
#include "swift/SILPasses/Passes.h"
|
|
#include "swift/SILPasses/PassManager.h"
|
|
#include "swift/SILPasses/Transforms.h"
|
|
#include "swift/SILPasses/Utils/Devirtualize.h"
|
|
#include "swift/SILPasses/Utils/SILInliner.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace swift;
|
|
|
|
// The number of subclasses to allow when placing polymorphic inline caches.
|
|
static const int MaxNumPolymorphicInlineCaches = 6;
|
|
|
|
STATISTIC(NumInlineCaches, "Number of monomorphic inline caches inserted");
|
|
|
|
namespace {
|
|
|
|
class SILDevirtualizationPass : public SILModuleTransform {
|
|
public:
|
|
virtual ~SILDevirtualizationPass() {}
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
|
|
/// A list of devirtualized calls.
|
|
GenericSpecializer::AIList DevirtualizedCalls;
|
|
|
|
bool Changed = false;
|
|
|
|
// Perform devirtualization locally and compute potential polymorphic
|
|
// arguments for all existing functions.
|
|
for (auto &F : *getModule()) {
|
|
DEBUG(llvm::dbgs() << "*** Devirtualizing Function: "
|
|
<< demangle_wrappers::demangleSymbolAsString(F.getName())
|
|
<< "\n");
|
|
for (auto &BB : F) {
|
|
for (auto II = BB.begin(), IE = BB.end(); II != IE;) {
|
|
ApplyInst *AI = dyn_cast<ApplyInst>(&*II);
|
|
++II;
|
|
|
|
if (!AI)
|
|
continue;
|
|
|
|
if (ApplyInst *NewAI = devirtualizeApply(AI)) {
|
|
DevirtualizedCalls.push_back(NewAI);
|
|
Changed |= true;
|
|
}
|
|
}
|
|
}
|
|
DEBUG(llvm::dbgs() << "\n");
|
|
}
|
|
|
|
// Invalidate the analysis of caller functions.
|
|
for (auto *AI : DevirtualizedCalls) {
|
|
invalidateAnalysis(AI->getFunction(),
|
|
SILAnalysis::PreserveKind::Branches);
|
|
}
|
|
|
|
if (Changed) {
|
|
bool Specialized = false;
|
|
|
|
// Try to specialize the devirtualized calls.
|
|
auto GS = GenericSpecializer(getModule());
|
|
|
|
// Try to specialize the newly devirtualized calls.
|
|
if (GS.specialize(DevirtualizedCalls)) {
|
|
Specialized = true;
|
|
DEBUG(llvm::dbgs() << "Specialized some generic functions\n");
|
|
}
|
|
|
|
|
|
if (Specialized) {
|
|
// We've specialized some functions and created new ones, so invalidate
|
|
// the world.
|
|
invalidateAnalysis(SILAnalysis::PreserveKind::Branches);
|
|
}
|
|
|
|
PM->scheduleAnotherIteration();
|
|
}
|
|
}
|
|
|
|
StringRef getName() override { return "Devirtualization"; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createDevirtualizer() {
|
|
return new SILDevirtualizationPass();
|
|
}
|
|
|
|
// A utility function for cloning the apply instruction.
|
|
static ApplyInst *CloneApply(ApplyInst *AI, SILBuilder &Builder) {
|
|
// Clone the Apply.
|
|
auto Args = AI->getArguments();
|
|
SmallVector<SILValue, 8> Ret(Args.size());
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
Ret[i] = Args[i];
|
|
|
|
auto NAI = Builder.createApply(AI->getLoc(), AI->getCallee(),
|
|
AI->getSubstCalleeSILType(),
|
|
AI->getType(),
|
|
AI->getSubstitutions(),
|
|
Ret, AI->isTransparent());
|
|
NAI->setDebugScope(AI->getDebugScope());
|
|
return NAI;
|
|
}
|
|
|
|
/// Insert monomorphic inline caches for a specific class or metatype
|
|
/// type \p SubClassTy.
|
|
static ApplyInst* insertMonomorphicInlineCaches(ApplyInst *AI,
|
|
SILType SubType) {
|
|
// Bail if this class_method cannot be devirtualized.
|
|
if (!canDevirtualizeClassMethod(AI, SubType))
|
|
return nullptr;
|
|
|
|
// Create a diamond shaped control flow and a checked_cast_branch
|
|
// instruction that checks the exact type of the object.
|
|
// This cast selects between two paths: one that calls the slow dynamic
|
|
// dispatch and one that calls the specific method.
|
|
SILBasicBlock::iterator It = AI;
|
|
SILFunction *F = AI->getFunction();
|
|
SILBasicBlock *Entry = AI->getParent();
|
|
|
|
// Iden is the basic block containing the direct call.
|
|
SILBasicBlock *Iden = F->createBasicBlock();
|
|
// Virt is the block containing the slow virtual call.
|
|
SILBasicBlock *Virt = F->createBasicBlock();
|
|
Iden->createBBArg(SubType);
|
|
|
|
SILBasicBlock *Continue = Entry->splitBasicBlock(It);
|
|
|
|
SILBuilderWithScope<> Builder(Entry, AI->getDebugScope());
|
|
// Create the checked_cast_branch instruction that checks at runtime if the
|
|
// class instance is identical to the SILType.
|
|
|
|
ClassMethodInst *CMI = cast<ClassMethodInst>(AI->getCallee());
|
|
|
|
It = Builder.createCheckedCastBranch(AI->getLoc(), /*exact*/ true,
|
|
CMI->getOperand(), SubType, Iden,
|
|
Virt);
|
|
|
|
SILBuilder VirtBuilder(Virt);
|
|
SILBuilder IdenBuilder(Iden);
|
|
// This is the class reference downcasted into subclass SubType.
|
|
SILValue DownCastedClassInstance = Iden->getBBArg(0);
|
|
|
|
// Try sinking the retain of the class instance into the diamond. This may
|
|
// allow additional ARC optimizations on the fast path.
|
|
if (It != Entry->begin()) {
|
|
StrongRetainInst *SRI = dyn_cast<StrongRetainInst>(--It);
|
|
// Try to skip another instruction, in case the class_method came first.
|
|
if (!SRI && It != Entry->begin())
|
|
SRI = dyn_cast<StrongRetainInst>(--It);
|
|
if (SRI && SRI->getOperand() == CMI->getOperand()) {
|
|
VirtBuilder.createStrongRetain(SRI->getLoc(), CMI->getOperand())
|
|
->setDebugScope(SRI->getDebugScope());
|
|
IdenBuilder.createStrongRetain(SRI->getLoc(), DownCastedClassInstance)
|
|
->setDebugScope(SRI->getDebugScope());
|
|
SRI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Copy the two apply instructions into the two blocks.
|
|
ApplyInst *IdenAI = CloneApply(AI, IdenBuilder);
|
|
ApplyInst *VirtAI = CloneApply(AI, VirtBuilder);
|
|
|
|
// Create a PHInode for returning the return value from both apply
|
|
// instructions.
|
|
SILArgument *Arg = Continue->createBBArg(AI->getType());
|
|
IdenBuilder.createBranch(AI->getLoc(), Continue, ArrayRef<SILValue>(IdenAI))
|
|
->setDebugScope(AI->getDebugScope());
|
|
VirtBuilder.createBranch(AI->getLoc(), Continue, ArrayRef<SILValue>(VirtAI))
|
|
->setDebugScope(AI->getDebugScope());
|
|
|
|
// Remove the old Apply instruction.
|
|
AI->replaceAllUsesWith(Arg);
|
|
AI->eraseFromParent();
|
|
|
|
// Update the stats.
|
|
NumInlineCaches++;
|
|
|
|
// Devirtualize the apply instruction on the identical path.
|
|
auto *NewAI = devirtualizeClassMethod(IdenAI, DownCastedClassInstance);
|
|
assert(NewAI && "Expected to be able to devirtualize apply!");
|
|
(void) NewAI;
|
|
|
|
// Sink class_method instructions down to their single user.
|
|
if (CMI->hasOneUse())
|
|
CMI->moveBefore(CMI->use_begin()->getUser());
|
|
|
|
return VirtAI;
|
|
}
|
|
|
|
/// \brief Returns true, if a method implementation to be called by the
|
|
/// default case handler of a speculative devirtualization is statically
|
|
/// known. This happens if it can be proven that generated
|
|
/// checked_cast_br instructions cover all other possible cases.
|
|
///
|
|
/// \p CHA class hierarchy analysis to be used
|
|
/// \p AI invocation instruction
|
|
/// \p CD static class of the instance whose method is being invoked
|
|
/// \p Subs set of direct subclasses of this class
|
|
static bool isDefaultCaseKnown(ClassHierarchyAnalysis *CHA,
|
|
ApplyInst *AI,
|
|
ClassDecl *CD,
|
|
ClassHierarchyAnalysis::ClassList &Subs) {
|
|
ClassMethodInst *CMI = cast<ClassMethodInst>(AI->getCallee());
|
|
auto *Method = CMI->getMember().getFuncDecl();
|
|
const DeclContext *DC = AI->getModule().getAssociatedContext();
|
|
|
|
if (CD->isFinal())
|
|
return true;
|
|
|
|
// Without an associated context we cannot perform any
|
|
// access-based optimizations.
|
|
if (!DC)
|
|
return false;
|
|
|
|
// Only handle classes defined within the SILModule's associated context.
|
|
if (!CD->isChildContextOf(DC))
|
|
return false;
|
|
|
|
if (!CD->hasAccessibility())
|
|
return false;
|
|
|
|
// Only consider 'private' members, unless we are in whole-module compilation.
|
|
switch (CD->getAccessibility()) {
|
|
case Accessibility::Public:
|
|
return false;
|
|
case Accessibility::Internal:
|
|
if (!AI->getModule().isWholeModule())
|
|
return false;
|
|
break;
|
|
case Accessibility::Private:
|
|
break;
|
|
}
|
|
|
|
// This is a private or a module internal class.
|
|
//
|
|
// We can analyze the class hierarchy rooted at it and
|
|
// eventually devirtualize a method call more efficiently.
|
|
|
|
// First, analyze all direct subclasses.
|
|
// We know that a dedicated checked_cast_br check is
|
|
// generated for each direct subclass by insertInlineCaches.
|
|
for (auto S : Subs) {
|
|
// Check if the subclass overrides a method
|
|
auto *FD = S->findOverridingDecl(Method);
|
|
if (!FD)
|
|
continue;
|
|
if (CHA->hasKnownDirectSubclasses(S)) {
|
|
// This subclass has its own subclasses and
|
|
// they will use this implementation or provide
|
|
// their own. In either case it is not covered by
|
|
// checked_cast_br instructions generated by
|
|
// insertInlineCaches. Therefore it increases
|
|
// the number of remaining cases to be handled
|
|
// by the default case handler.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Then, analyze indirect subclasses.
|
|
|
|
// Set of indirect subclasses for the class.
|
|
auto &IndirectSubs = CHA->getIndirectSubClasses(CD);
|
|
|
|
// Check if any indirect subclasses use an implementation
|
|
// of the method different from the implementation in
|
|
// the current class. If this is the case, then such
|
|
// an indirect subclass would need a dedicated
|
|
// checked_cast_br check to be devirtualized. But this is
|
|
// not done by insertInlineCaches yet and therefore
|
|
// such a subclass should be handled by the "default"
|
|
// case handler, which essentially means that "default"
|
|
// case cannot be devirtualized since it covers more
|
|
// then one alternative.
|
|
for (auto S : IndirectSubs) {
|
|
auto *ImplFD = S->findImplementingMethod(Method);
|
|
if (ImplFD != Method) {
|
|
// Different implementation is used by a subclass.
|
|
// Therefore, the default case is not known.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Try to insert inline cahces for the call \p AI. This function
|
|
/// returns true if a change was made.
|
|
static bool insertInlineCaches(ApplyInst *AI, ClassHierarchyAnalysis *CHA) {
|
|
ClassMethodInst *CMI = cast<ClassMethodInst>(AI->getCallee());
|
|
|
|
// We cannot devirtualize in cases where dynamic calls are
|
|
// semantically required.
|
|
if (CMI->isVolatile())
|
|
return false;
|
|
|
|
// Strip any upcasts off of our 'self' value, potentially leaving us
|
|
// with a value whose type is closer (in the class hierarchy) to the
|
|
// actual dynamic type.
|
|
auto SubTypeValue = CMI->getOperand().stripUpCasts();
|
|
SILType SubType = SubTypeValue.getType();
|
|
|
|
// Bail if any generic types parameters of the class instance type are
|
|
// unbound.
|
|
// We cannot devirtualize unbound generic calls yet.
|
|
if (isClassWithUnboundGenericParameters(SubType, AI->getModule()))
|
|
return false;
|
|
|
|
auto &M = CMI->getModule();
|
|
auto ClassType = SubType;
|
|
if (SubType.is<MetatypeType>())
|
|
ClassType = SubType.getMetatypeInstanceType(M);
|
|
|
|
ClassDecl *CD = ClassType.getClassOrBoundGenericClass();
|
|
assert(CD && "Expected decl for class type!");
|
|
|
|
if (!CHA->hasKnownDirectSubclasses(CD)) {
|
|
// If there is only one possible alternative for this method,
|
|
// try to devirtualize it completely.
|
|
ClassHierarchyAnalysis::ClassList Subs;
|
|
if (isDefaultCaseKnown(CHA, AI, CD, Subs))
|
|
return bool(tryDevirtualizeClassMethod(AI, SubTypeValue));
|
|
|
|
DEBUG(llvm::dbgs() << "Inserting monomorphic inline caches for class " <<
|
|
CD->getName() << "\n");
|
|
return insertMonomorphicInlineCaches(AI, SubType);
|
|
}
|
|
|
|
// Collect the direct subclasses for the class.
|
|
auto &Subs = CHA->getDirectSubClasses(CD);
|
|
|
|
if (Subs.size() > MaxNumPolymorphicInlineCaches) {
|
|
DEBUG(llvm::dbgs() << "Class " << CD->getName() << " has too many (" <<
|
|
Subs.size() << ") subclasses. Not inserting inline caches.\n");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << "Class " << CD->getName() << " is a superclass. "
|
|
"Inserting polymorphic inline caches.\n");
|
|
|
|
// Perform a speculative devirtualization of a method invocation.
|
|
// It replaces an indirect class_method-based call by a code to perform
|
|
// a direct call of the method implementation based on the dynamic class
|
|
// of the instance.
|
|
//
|
|
// The code is generated according to the following principles:
|
|
//
|
|
// - For each direct subclass, a dedicated checked_cast_br instruction
|
|
// is generated to check if a dynamic class of the instance is exactly
|
|
// this subclass.
|
|
//
|
|
// - If this check succeeds, then it jumps to the code which performs a
|
|
// direct call of a method implementation specific to this subclass.
|
|
//
|
|
// - If this check fails, then a different subclass is checked by means of
|
|
// checked_cast_br in a similar way.
|
|
//
|
|
// - Finally, if the instance does not exactly match any of the direct
|
|
// subclasses, the "default" case code is generated, which should handle
|
|
// all remaining alternatives, i.e. it should be able to dispatch to any
|
|
// possible remaining method implementations. Typically this is achieved by
|
|
// using a class_method instruction, which performs an indirect invocation.
|
|
// But if it can be proven that only one specific implementation of
|
|
// a method will be always invoked by this code, then a class_method-based
|
|
// call can be devirtualized and replaced by a more efficient direct
|
|
// invocation of this specific method implementation.
|
|
//
|
|
// Remark: With the current implementation of a speculative devirtualization,
|
|
// if devirtualization of the "default" case is possible, then it would
|
|
// by construction directly invoke the implementation of the method
|
|
// corresponding to the static type of the instance. This may change
|
|
// in the future, if we start using PGO for ordering of checked_cast_br
|
|
// checks.
|
|
|
|
// TODO: The ordering of checks may benefit from using a PGO, because
|
|
// the most probable alternatives could be checked first.
|
|
|
|
// Number of subclasses which cannot be handled by checked_cast_br checks.
|
|
int NotHandledSubsNum = 0;
|
|
// True if any instructions were changed or generated.
|
|
bool Changed = false;
|
|
|
|
for (auto S : Subs) {
|
|
DEBUG(llvm::dbgs() << "Inserting a cache for class " << CD->getName() <<
|
|
" and subclass " << S->getName() << "\n");
|
|
|
|
CanType CanClassType = S->getDeclaredType()->getCanonicalType();
|
|
SILType ClassType = SILType::getPrimitiveObjectType(CanClassType);
|
|
if (!ClassType.getClassOrBoundGenericClass()) {
|
|
// This subclass cannot be handled. This happens e.g. if it is
|
|
// a generic class.
|
|
NotHandledSubsNum++;
|
|
continue;
|
|
}
|
|
|
|
auto ClassOrMetatypeType = ClassType;
|
|
if (auto EMT = SubType.getAs<AnyMetatypeType>()) {
|
|
auto InstTy = ClassType.getSwiftRValueType();
|
|
auto *MetaTy = MetatypeType::get(InstTy, EMT->getRepresentation());
|
|
auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy);
|
|
ClassOrMetatypeType = SILType::getPrimitiveObjectType(CanMetaTy);
|
|
}
|
|
|
|
// Pass the metatype of the subclass.
|
|
AI = insertMonomorphicInlineCaches(AI, ClassOrMetatypeType);
|
|
if (!AI) {
|
|
NotHandledSubsNum++;
|
|
continue;
|
|
}
|
|
Changed = true;
|
|
}
|
|
|
|
// Check if there is only a single statically known implementation
|
|
// of the method which can be called by the default case handler.
|
|
if (NotHandledSubsNum || !isDefaultCaseKnown(CHA, AI, CD, Subs)) {
|
|
// Devirtualization of remaining cases is not possible,
|
|
// because more than one implementation of the method
|
|
// needs to be handled here. Thus, an indirect call through
|
|
// the class_method cannot be eliminated completely.
|
|
//
|
|
// But we can still try to devirtualize the static class of instance
|
|
// if it is possible.
|
|
return insertMonomorphicInlineCaches(AI, SubType);
|
|
}
|
|
|
|
// At this point it is known that there is only one remaining method
|
|
// implementation which is not covered by checked_cast_br checks yet.
|
|
// So, it is safe to replace a class_method invocation by
|
|
// a direct call of this remaining implementation.
|
|
ApplyInst *NewAI = tryDevirtualizeClassMethod(AI, SubTypeValue);
|
|
assert(NewAI && "Expected to be able to devirtualize apply!");
|
|
(void) NewAI;
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
/// Generate inline caches of virtual calls by speculating that the requested
|
|
/// class is at the bottom of the class hierarchy.
|
|
class SILInlineCaches : public SILFunctionTransform {
|
|
public:
|
|
virtual ~SILInlineCaches() {}
|
|
|
|
void run() override {
|
|
ClassHierarchyAnalysis *CHA = PM->getAnalysis<ClassHierarchyAnalysis>();
|
|
|
|
bool Changed = false;
|
|
|
|
// Collect virtual calls that may be specialized.
|
|
SmallVector<ApplyInst *, 16> ToSpecialize;
|
|
for (auto &BB : *getFunction()) {
|
|
for (auto II = BB.begin(), IE = BB.end(); II != IE; ++II) {
|
|
ApplyInst *AI = dyn_cast<ApplyInst>(&*II);
|
|
if (AI && isa<ClassMethodInst>(AI->getCallee()))
|
|
ToSpecialize.push_back(AI);
|
|
}
|
|
}
|
|
|
|
// Create the inline caches.
|
|
for (auto AI : ToSpecialize)
|
|
Changed |= insertInlineCaches(AI, CHA);
|
|
|
|
if (Changed) {
|
|
invalidateAnalysis(SILAnalysis::PreserveKind::Nothing);
|
|
}
|
|
}
|
|
|
|
StringRef getName() override { return "Inline Caches"; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createInlineCaches() {
|
|
return new SILInlineCaches();
|
|
}
|
|
|