Files
swift-mirror/lib/AST/RequirementMachine/RewriteSystem.cpp
Slava Pestov d8215bb155 RequirementMachine: Rework 'implied rules' computation in computeRedundantRequirementDiagnostics()
For efficiency I want to keep replacement paths for redundant rules
unsubstituted, so that earlier replacement paths can reference
redundant rules that appear later in the RedundantRules array.

Right now we expand replacement paths so that their RewriteSteps
only mention non-redundant rules.

This patch refactors the computeRedundantRequirementDiagnostics()
method a bit:

The impliedRequirements set is now named nonExplicitNonRedundantRules,
and in addition to storing these rules themselves, the set also
stores any _redundant_ rules that reference these rules via their
replacement paths.

Since this is computing a transitive closure, we walk the
RedundantRules array in reverse. A replacement path can only
reference a redundant rule if that redundant rule appears later
in the array.
2022-03-25 22:28:03 -04:00

774 lines
25 KiB
C++

//===--- RewriteSystem.cpp - Generics with term rewriting -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <vector>
#include "RewriteContext.h"
#include "RewriteLoop.h"
#include "RewriteSystem.h"
#include "Rule.h"
#include "Trie.h"
using namespace swift;
using namespace rewriting;
RewriteSystem::RewriteSystem(RewriteContext &ctx)
: Context(ctx), Debug(ctx.getDebugOptions()) {
Initialized = 0;
Complete = 0;
Minimized = 0;
RecordLoops = 0;
LongestInitialRule = 0;
}
RewriteSystem::~RewriteSystem() {
Trie.updateHistograms(Context.RuleTrieHistogram,
Context.RuleTrieRootHistogram);
}
/// Initialize the rewrite system using rewrite rules built by the RuleBuilder.
///
/// - recordLoops: Whether this is a rewrite system built from user-written
/// requirements, in which case we will perform minimization using rewrite
/// loops recorded during completion.
///
/// - protos: If this is a rewrite system built from a protocol connected
/// component, this contains the members of the protocol. For a rewrite
/// system built from a generic signature, this is empty. Used by
/// RewriteSystem::isInMinimizationDomain().
///
/// These parameters should be populated from the corresponding fields of the
/// RuleBuilder instance:
///
/// - writtenRequirements: The user-written requirements, if any, used to
/// track source locations for redundancy diagnostics.
///
/// - importedRules: Rewrite rules for referenced protocols. These come from
/// the Requirement Machine instances for these protocols' connected
/// components, so they are already confluent and can be imported verbatim.
///
/// - permanentRules: Permanent rules, such as associated type introduction
/// rules for associated types defined in protocols in this connected
/// component.
///
/// - requirementRules: Rules corresponding to generic requirements written
/// by the user.
///
/// This can only be called once. It adds the rules to the rewrite system,
/// allowing computeConfluentCompletion() to be called to compute the
/// complete rewrite system.
void RewriteSystem::initialize(
bool recordLoops, ArrayRef<const ProtocolDecl *> protos,
std::vector<StructuralRequirement> &&writtenRequirements,
std::vector<Rule> &&importedRules,
std::vector<std::pair<MutableTerm, MutableTerm>> &&permanentRules,
std::vector<std::tuple<MutableTerm, MutableTerm, Optional<unsigned>>>
&&requirementRules) {
assert(!Initialized);
Initialized = 1;
RecordLoops = recordLoops;
Protos = protos;
WrittenRequirements = std::move(writtenRequirements);
addRules(std::move(importedRules),
std::move(permanentRules),
std::move(requirementRules));
for (const auto &rule : getLocalRules()) {
LongestInitialRule = std::max(LongestInitialRule, rule.getDepth());
}
}
/// Reduce a term by applying all rewrite rules until fixed point.
///
/// If \p path is non-null, records the series of rewrite steps taken.
bool RewriteSystem::simplify(MutableTerm &term, RewritePath *path) const {
bool changed = false;
MutableTerm original;
RewritePath subpath;
bool debug = false;
if (Debug.contains(DebugFlags::Simplify)) {
original = term;
debug = true;
}
while (true) {
bool tryAgain = false;
auto from = term.begin();
auto end = term.end();
while (from < end) {
auto ruleID = Trie.find(from, end);
if (ruleID) {
const auto &rule = getRule(*ruleID);
auto to = from + rule.getLHS().size();
assert(std::equal(from, to, rule.getLHS().begin()));
unsigned startOffset = (unsigned)(from - term.begin());
unsigned endOffset = term.size() - rule.getLHS().size() - startOffset;
term.rewriteSubTerm(from, to, rule.getRHS());
if (path || debug) {
subpath.add(RewriteStep::forRewriteRule(startOffset, endOffset, *ruleID,
/*inverse=*/false));
}
changed = true;
tryAgain = true;
break;
}
++from;
}
if (!tryAgain)
break;
}
if (debug) {
if (changed) {
llvm::dbgs() << "= Simplified " << original << " to " << term << " via ";
subpath.dump(llvm::dbgs(), original, *this);
llvm::dbgs() << "\n";
} else {
llvm::dbgs() << "= Irreducible term: " << term << "\n";
}
}
if (path != nullptr) {
assert(changed != subpath.empty());
path->append(subpath);
}
return changed;
}
/// Adds a rewrite rule, returning true if the new rule was non-trivial.
///
/// If both sides simplify to the same term, the rule is trivial and discarded,
/// and this method returns false.
///
/// If \p path is non-null, the new rule is derived from existing rules in the
/// rewrite system; the path records a series of rewrite steps which transform
/// \p lhs to \p rhs.
bool RewriteSystem::addRule(MutableTerm lhs, MutableTerm rhs,
const RewritePath *path) {
// FIXME:
// assert(!Complete || path != nullptr &&
// "Rules added by completion must have a path");
assert(!lhs.empty());
assert(!rhs.empty());
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "# Adding rule " << lhs << " == " << rhs << "\n\n";
}
// Now simplify both sides as much as possible with the rules we have so far.
//
// This avoids unnecessary work in the completion algorithm.
RewritePath lhsPath;
RewritePath rhsPath;
simplify(lhs, &lhsPath);
simplify(rhs, &rhsPath);
RewritePath loop;
if (path) {
// Produce a path from the simplified lhs to the simplified rhs.
// (1) First, apply lhsPath in reverse to produce the original lhs.
lhsPath.invert();
loop.append(lhsPath);
// (2) Now, apply the path from the original lhs to the original rhs
// given to us by the completion procedure.
loop.append(*path);
// (3) Finally, apply rhsPath to produce the simplified rhs, which
// is the same as the simplified lhs.
loop.append(rhsPath);
}
// If the left hand side and right hand side are already equivalent, we're
// done.
Optional<int> result = lhs.compare(rhs, Context);
if (*result == 0) {
// If this rule is a consequence of existing rules, add a homotopy
// generator.
if (path) {
// We already have a loop, since the simplified lhs is identical to the
// simplified rhs.
recordRewriteLoop(lhs, loop);
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## Recorded trivial loop at " << lhs << ": ";
loop.dump(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n\n";
}
}
return false;
}
// Orient the two terms so that the left hand side is greater than the
// right hand side.
if (*result < 0) {
std::swap(lhs, rhs);
loop.invert();
}
assert(*lhs.compare(rhs, Context) > 0);
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## Simplified and oriented rule " << lhs << " => " << rhs << "\n\n";
}
unsigned newRuleID = Rules.size();
Rules.emplace_back(Term::get(lhs, Context), Term::get(rhs, Context));
if (path) {
// We have a rewrite path from the simplified lhs to the simplified rhs;
// add a rewrite step applying the new rule in reverse to close the loop.
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
newRuleID, /*inverse=*/true));
recordRewriteLoop(lhs, loop);
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## Recorded non-trivial loop at " << lhs << ": ";
loop.dump(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n\n";
}
}
auto oldRuleID = Trie.insert(lhs.begin(), lhs.end(), newRuleID);
if (oldRuleID) {
llvm::errs() << "Duplicate rewrite rule!\n";
const auto &oldRule = getRule(*oldRuleID);
llvm::errs() << "Old rule #" << *oldRuleID << ": ";
oldRule.dump(llvm::errs());
llvm::errs() << "\nTrying to replay what happened when I simplified this term:\n";
Debug |= DebugFlags::Simplify;
MutableTerm term = lhs;
simplify(lhs);
dump(llvm::errs());
abort();
}
// Tell the caller that we added a new rule.
return true;
}
/// Add a new rule, marking it permanent.
bool RewriteSystem::addPermanentRule(MutableTerm lhs, MutableTerm rhs) {
bool added = addRule(std::move(lhs), std::move(rhs));
if (added)
Rules.back().markPermanent();
return added;
}
/// Add a new rule, marking it explicit.
bool RewriteSystem::addExplicitRule(MutableTerm lhs, MutableTerm rhs,
Optional<unsigned> requirementID) {
bool added = addRule(std::move(lhs), std::move(rhs));
if (added) {
Rules.back().markExplicit();
Rules.back().setRequirementID(requirementID);
}
return added;
}
/// Add a set of rules from a RuleBuilder.
///
/// This is used when building a rewrite system in initialize() above.
///
/// It is also used when conditional requirement inference pulls in additional
/// protocols after the fact.
void RewriteSystem::addRules(
std::vector<Rule> &&importedRules,
std::vector<std::pair<MutableTerm, MutableTerm>> &&permanentRules,
std::vector<std::tuple<MutableTerm, MutableTerm, Optional<unsigned>>> &&requirementRules) {
unsigned ruleCount = Rules.size();
if (ruleCount == 0) {
// Fast path if this is called from initialization; just steal the
// underlying storage of the imported rule vector.
Rules = std::move(importedRules);
}
else {
// Otherwise, copy the imported rules in.
Rules.insert(Rules.end(), importedRules.begin(), importedRules.end());
}
// If this is the initial call, note the first non-imported rule so that
// we can skip over imported rules later.
if (ruleCount == 0)
FirstLocalRule = Rules.size();
// Add the imported rules to the trie.
for (unsigned newRuleID = ruleCount, e = Rules.size();
newRuleID < e; ++newRuleID) {
const auto &newRule = Rules[newRuleID];
// Skip simplified rules. At the very least we need to skip RHS-simplified
// rules since their left hand sides might duplicate existing rules; the
// others are skipped purely as an optimization.
if (newRule.isLHSSimplified() ||
newRule.isRHSSimplified() ||
newRule.isSubstitutionSimplified())
continue;
auto oldRuleID = Trie.insert(newRule.getLHS().begin(),
newRule.getLHS().end(),
newRuleID);
if (oldRuleID) {
llvm::errs() << "Imported rules have duplicate left hand sides!\n";
llvm::errs() << "New rule #" << newRuleID << ": " << newRule << "\n";
const auto &oldRule = getRule(*oldRuleID);
llvm::errs() << "Old rule #" << *oldRuleID << ": " << oldRule << "\n\n";
dump(llvm::errs());
abort();
}
}
// Now add our own rules.
for (const auto &rule : permanentRules)
addPermanentRule(rule.first, rule.second);
for (const auto &rule : requirementRules) {
auto lhs = std::get<0>(rule);
auto rhs = std::get<1>(rule);
auto requirementID = std::get<2>(rule);
// When this is called while adding conditional requirements, there
// shouldn't be any new structural requirement IDs.
assert(ruleCount == 0 || !requirementID.hasValue());
addExplicitRule(lhs, rhs, requirementID);
}
}
/// Delete any rules whose left hand sides can be reduced by other rules.
///
/// Must be run after the completion procedure, since the deletion of
/// rules is only valid to perform if the rewrite system is confluent.
void RewriteSystem::simplifyLeftHandSides() {
assert(Complete);
for (unsigned ruleID = FirstLocalRule, e = Rules.size(); ruleID < e; ++ruleID) {
auto &rule = getRule(ruleID);
if (rule.isLHSSimplified())
continue;
// First, see if the left hand side of this rule can be reduced using
// some other rule.
auto lhs = rule.getLHS();
auto begin = lhs.begin();
auto end = lhs.end();
while (begin < end) {
if (auto otherRuleID = Trie.find(begin++, end)) {
// A rule does not obsolete itself.
if (*otherRuleID == ruleID)
continue;
// Ignore other deleted rules.
const auto &otherRule = getRule(*otherRuleID);
if (otherRule.isLHSSimplified())
continue;
if (Debug.contains(DebugFlags::Completion)) {
const auto &otherRule = getRule(*otherRuleID);
llvm::dbgs() << "$ Deleting rule " << rule << " because "
<< "its left hand side contains " << otherRule
<< "\n";
}
rule.markLHSSimplified();
break;
}
}
}
}
/// Reduce the right hand sides of all remaining rules as much as
/// possible.
///
/// Must be run after the completion procedure, since the deletion of
/// rules is only valid to perform if the rewrite system is confluent.
void RewriteSystem::simplifyRightHandSides() {
assert(Complete);
for (unsigned ruleID = FirstLocalRule, e = Rules.size(); ruleID < e; ++ruleID) {
auto &rule = getRule(ruleID);
if (rule.isRHSSimplified())
continue;
// Now, try to reduce the right hand side.
RewritePath rhsPath;
MutableTerm rhs(rule.getRHS());
if (!simplify(rhs, &rhsPath))
continue;
auto lhs = rule.getLHS();
// We're adding a new rule, so the old rule won't apply anymore.
rule.markRHSSimplified();
unsigned newRuleID = Rules.size();
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## RHS simplification adds a rule " << lhs << " => " << rhs << "\n\n";
}
// Add a new rule with the simplified right hand side.
Rules.emplace_back(lhs, Term::get(rhs, Context));
auto oldRuleID = Trie.insert(lhs.begin(), lhs.end(), newRuleID);
assert(oldRuleID == ruleID);
(void) oldRuleID;
// Produce a loop at the original lhs.
RewritePath loop;
// (1) First, apply the original rule to produce the original rhs.
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
ruleID, /*inverse=*/false));
// (2) Next, apply rhsPath to produce the simplified rhs.
loop.append(rhsPath);
// (3) Finally, apply the new rule in reverse to produce the original lhs.
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
newRuleID, /*inverse=*/true));
if (Debug.contains(DebugFlags::Completion)) {
llvm::dbgs() << "$ Right hand side simplification recorded a loop at ";
llvm::dbgs() << lhs << ": ";
loop.dump(llvm::dbgs(), MutableTerm(lhs), *this);
llvm::dbgs() << "\n";
}
recordRewriteLoop(MutableTerm(lhs), loop);
}
}
/// When minimizing a generic signature, we only care about loops where the
/// basepoint is a generic parameter symbol.
///
/// When minimizing protocol requirement signatures, we only care about loops
/// where the basepoint is a protocol symbol or associated type symbol whose
/// protocol is part of the connected component.
///
/// All other loops can be discarded since they do not encode redundancies
/// that are relevant to us.
bool RewriteSystem::isInMinimizationDomain(const ProtocolDecl *proto) const {
assert(Protos.empty() || proto != nullptr);
if (proto == nullptr && Protos.empty())
return true;
if (std::find(Protos.begin(), Protos.end(), proto) != Protos.end())
return true;
return false;
}
void RewriteSystem::recordRewriteLoop(MutableTerm basepoint,
RewritePath path) {
RewriteLoop loop(basepoint, path);
loop.verify(*this);
if (!RecordLoops)
return;
// Ignore the rewrite loop if it is not part of our minimization domain.
if (!isInMinimizationDomain(basepoint.getRootProtocol()))
return;
Loops.push_back(loop);
}
void RewriteSystem::verifyRewriteRules(ValidityPolicy policy) const {
#define ASSERT_RULE(expr) \
if (!(expr)) { \
llvm::errs() << "&&& Malformed rewrite rule: " << rule << "\n"; \
llvm::errs() << "&&& " << #expr << "\n\n"; \
dump(llvm::errs()); \
abort(); \
}
for (const auto &rule : getLocalRules()) {
const auto &lhs = rule.getLHS();
const auto &rhs = rule.getRHS();
for (unsigned index : indices(lhs)) {
auto symbol = lhs[index];
// The left hand side can contain a single name symbol if it has the form
// T.N or T.N.[p], where T is some prefix that does not contain name
// symbols, N is a name symbol, and [p] is an optional property symbol.
//
// In the latter case, we have a protocol typealias, or a rule derived
// via resolving a critical pair involving a protocol typealias.
//
// Any other valid occurrence of a name symbol should have been reduced by
// an associated type introduction rule [P].N, marking the rule as
// LHS-simplified.
if (!rule.isLHSSimplified() &&
(rule.isPropertyRule()
? index != lhs.size() - 2
: index != lhs.size() - 1)) {
// This is only true if the input requirements were valid.
if (policy == DisallowInvalidRequirements) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Name);
} else {
// FIXME: Assert that we diagnosed an error
}
}
if (index != lhs.size() - 1) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Layout);
ASSERT_RULE(!symbol.hasSubstitutions());
}
if (index != 0) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::GenericParam);
}
if (index != 0 && index != lhs.size() - 1) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Protocol);
}
}
for (unsigned index : indices(rhs)) {
auto symbol = rhs[index];
// The right hand side can contain a single name symbol if it has the form
// T.N, where T is some prefix that does not contain name symbols, and
// N is a name symbol.
//
// In this case, we have a protocol typealias, or a rule derived via
// resolving a critical pair involving a protocol typealias.
//
// Any other valid occurrence of a name symbol should have been reduced by
// an associated type introduction rule [P].N, marking the rule as
// RHS-simplified.
if (!rule.isRHSSimplified() &&
index != rhs.size() - 1) {
// This is only true if the input requirements were valid.
if (policy == DisallowInvalidRequirements) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Name);
} else {
// FIXME: Assert that we diagnosed an error
}
}
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Layout);
ASSERT_RULE(!symbol.hasSubstitutions());
if (index != 0) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::GenericParam);
}
// Completion can produce rules like [P:T].[Q:R] => [P:T].[Q]
// which are immediately simplified away.
if (!rule.isRHSSimplified() &&
index != 0) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Protocol);
}
}
auto lhsDomain = lhs.getRootProtocol();
auto rhsDomain = rhs.getRootProtocol();
ASSERT_RULE(lhsDomain == rhsDomain);
}
#undef ASSERT_RULE
}
/// Computes the set of explicit redundant requirements to
/// emit warnings for in the source code.
void RewriteSystem::computeRedundantRequirementDiagnostics(
SmallVectorImpl<RequirementError> &errors) {
// Collect all rule IDs for each unique requirement ID.
llvm::SmallDenseMap<unsigned, llvm::SmallVector<unsigned, 2>>
rulesPerRequirement;
// Collect non-explicit requirements that are not redundant.
llvm::SmallDenseSet<unsigned, 2> nonExplicitNonRedundantRules;
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
auto &rule = getRules()[ruleID];
if (rule.isPermanent())
continue;
if (!isInMinimizationDomain(rule.getLHS().getRootProtocol()))
continue;
auto requirementID = rule.getRequirementID();
if (!requirementID.hasValue()) {
if (!rule.isRedundant())
nonExplicitNonRedundantRules.insert(ruleID);
continue;
}
rulesPerRequirement[*requirementID].push_back(ruleID);
}
// Compute the set of redundant rules which transitively reference a
// non-explicit non-redundant rule. This updates nonExplicitNonRedundantRules.
//
// Since earlier redundant paths might reference rules which appear later in
// the list but not vice versa, walk the redundant paths in reverse order.
for (const auto &pair : llvm::reverse(RedundantRules)) {
// Pre-condition: the replacement path only references redundant rules
// which we have already seen. If any of those rules transitively reference
// a non-explicit, non-redundant rule, they have been inserted into the
// nonExplicitNonRedundantRules set on previous iterations.
unsigned ruleID = pair.first;
const auto &rewritePath = pair.second;
// Check if this rewrite path references a rule that is already known to
// either be non-explicit and non-redundant, or reference such a rule via
// it's redundancy path.
for (auto step : rewritePath) {
switch (step.Kind) {
case RewriteStep::Rule: {
if (nonExplicitNonRedundantRules.count(step.getRuleID())) {
nonExplicitNonRedundantRules.insert(ruleID);
continue;
}
break;
}
case RewriteStep::LeftConcreteProjection:
case RewriteStep::Decompose:
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::RightConcreteProjection:
break;
}
}
// Post-condition: If the current replacement path transitively references
// any non-explicit, non-redundant rules, then nonExplicitNonRedundantRules
// contains the current rule.
}
// We diagnose a redundancy if the rule is redundant, and if its replacement
// path does not transitively involve any non-explicit, non-redundant rules.
auto isRedundantRule = [&](unsigned ruleID) {
const auto &rule = getRules()[ruleID];
return (rule.isRedundant() &&
nonExplicitNonRedundantRules.count(ruleID) == 0);
};
// Finally walk through the written requirements, diagnosing any that are
// redundant.
for (auto requirementID : indices(WrittenRequirements)) {
auto requirement = WrittenRequirements[requirementID];
// Inferred requirements can be re-stated without warning.
if (requirement.inferred)
continue;
auto pairIt = rulesPerRequirement.find(requirementID);
// If there are no rules for this structural requirement, then the
// requirement is unnecessary in the source code.
//
// This means the requirement was determined to be vacuous by
// requirement lowering and produced no rules, or the rewrite rules were
// trivially simplified by RewriteSystem::addRule().
if (pairIt == rulesPerRequirement.end()) {
errors.push_back(
RequirementError::forRedundantRequirement(requirement.req,
requirement.loc));
continue;
}
// If all rules derived from this structural requirement are redundant,
// then the requirement is unnecessary in the source code.
const auto &ruleIDs = pairIt->second;
if (llvm::all_of(ruleIDs, isRedundantRule)) {
auto requirement = WrittenRequirements[requirementID];
errors.push_back(
RequirementError::forRedundantRequirement(requirement.req,
requirement.loc));
}
}
}
void RewriteSystem::dump(llvm::raw_ostream &out) const {
out << "Rewrite system: {\n";
for (const auto &rule : Rules) {
out << "- " << rule;
if (auto ID = rule.getRequirementID()) {
auto requirement = WrittenRequirements[*ID];
out << " [ID: " << *ID << " - ";
requirement.req.dump(out);
out << " at ";
requirement.loc.print(out, Context.getASTContext().SourceMgr);
out << "]";
}
out << "\n";
}
out << "}\n";
if (!Relations.empty()) {
out << "Relations: {\n";
for (const auto &relation : Relations) {
out << "- " << relation.first << " =>> " << relation.second << "\n";
}
out << "}\n";
}
if (!Differences.empty()) {
out << "Type differences: {\n";
for (const auto &difference : Differences) {
difference.dump(out);
out << "\n";
}
out << "}\n";
}
if (!Loops.empty()) {
out << "Rewrite loops: {\n";
for (unsigned loopID : indices(Loops)) {
const auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
out << "- (#" << loopID << ") ";
loop.dump(out, *this);
out << "\n";
}
}
out << "}\n";
}