Files
swift-mirror/SwiftCompilerSources/Sources/Optimizer/Utilities/OwnershipLiveness.swift
Meghana Gupta d3e41e5f2b Update SwiftCompilerSources' OwnershipLiveness utility for borrow accessors
It uses a check on conformance to ForwardInstruction for walking down guaranteed forwarding uses.
Since apply of borrow accessors cannot be represented as ForwardingInstruction, handle them separately.

Representing apply of borrow accessors for consistent handling in the optimizer is TBD.
2025-09-14 23:38:10 -07:00

957 lines
36 KiB
Swift

//===--- OwnershipLiveness.swift - Utilities for ownership liveness -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Utilities that specify ownership SSA (OSSA) lifetimes.
//
// TODO: Implement ExtendedLinearLiveness. This requires
// MultiDefPrunedLiveness, which is not supported by InstructionRange.
//
// TODO: Move this all into SIL, along with DominatorTree. OSSA
// lifetimes and dominance are part of SIL semantics, and need to be
// verified. Remove uses of FunctionPassContext.
//
//===----------------------------------------------------------------------===//
import SIL
private let verbose = false
private func log(_ message: @autoclosure () -> String) {
if verbose {
print("### \(message())")
}
}
/// Compute liveness and return a range, which the caller must deinitialize.
///
/// `definingValue` must introduce an OSSA lifetime. It may be either
/// an owned value or introduce a borrowed value (BeginBorrowValue),
/// including:
///
/// 1. Owned non-phi values
/// 2. Owned phi values
/// 3. Borrow scope introducers: begin_borrow/load_borrow
/// 4. Reborrows: guaranteed phi that ends its operand's borrow scope and
/// requires post-dominating scope-ending uses (end_borrow or reborrow)
///
/// `definingValue`'s lifetime must already complete on all paths
/// (a.k.a linear). Only lifetime-ending operations generate liveness.
///
/// `definingValue` dominates the range. Forwarding and phi uses do
/// not extend the lifetime.
///
/// This is the simplest OSSA liveness analysis. It assumes that OSSA
/// lifetime completion has already run on `definingValue`, and it
/// cannot fix OSSA lifetimes after a transformation.
func computeLinearLiveness(for definingValue: Value, _ context: Context)
-> InstructionRange {
assert(definingValue.ownership == .owned || BeginBorrowValue(definingValue) != nil,
"value must define an OSSA lifetime")
// InstructionRange cannot directly represent the beginning of the block
// so we fake it with getRepresentativeInstruction().
var range = InstructionRange(for: definingValue, context)
// Compute liveness.
for use in definingValue.lookThroughBorrowedFromUser.uses {
let instruction = use.instruction
if use.endsLifetime || instruction is ExtendLifetimeInst {
range.insert(instruction)
}
}
return range
}
/// Compute known liveness and return a range, which the caller must deinitialize.
///
/// This computes a minimal liveness, ignoring pointer escaping uses.
///
/// The caller must call deinitialize() on the result.
func computeKnownLiveness(for definingValue: Value, visitInnerUses: Bool = false, _ context: FunctionPassContext)
-> InstructionRange {
// Ignore pointer escapes and other failures.
return InteriorLivenessResult.compute(for: definingValue, ignoreEscape: true,
visitInnerUses: visitInnerUses, context).acquireRange
}
/// Compute the live range for the borrow scopes of a guaranteed value. This returns a separate instruction range for
/// each of the value's borrow introducers.
///
/// TODO: This should return a single multiply-defined instruction range.
func computeBorrowLiveRange(for value: Value, _ context: FunctionPassContext)
-> SingleInlineArray<(BeginBorrowValue, InstructionRange)> {
assert(value.ownership == .guaranteed)
var ranges = SingleInlineArray<(BeginBorrowValue, InstructionRange)>()
// If introducers is empty, then the dependence is on a trivial value, so
// there is no ownership range.
for beginBorrow in value.getBorrowIntroducers(context) {
/// FIXME: Remove calls to computeKnownLiveness() as soon as lifetime completion runs immediately after
/// SILGen. Instead, this should compute linear liveness for borrowed value by switching over BeginBorrowValue, just
/// like LifetimeDependence.Scope.computeRange().
ranges.push((beginBorrow, computeKnownLiveness(for: beginBorrow.value, context)))
}
return ranges
}
/// If any interior pointer may escape, then record the first instance here. If 'ignoreEscape' is true, this
/// immediately aborts the walk, so further instances are unavailable.
///
/// .escaping may either be a non-address operand with
/// .pointerEscape ownership, or and address operand that escapes
/// the address (address_to_pointer).
///
/// .unknown is an address operand whose user is unrecognized.
enum InteriorPointerStatus: CustomDebugStringConvertible {
case nonescaping
case escaping(SingleInlineArray<Operand>)
case unknown(Operand)
mutating func setEscaping(operand: Operand) {
switch self {
case .nonescaping:
self = .escaping(SingleInlineArray(element: operand))
case let .escaping(oldOperands):
var newOperands = SingleInlineArray<Operand>()
newOperands.append(contentsOf: oldOperands)
newOperands.append(operand)
self = .escaping(newOperands)
case .unknown:
break
}
}
var debugDescription: String {
switch self {
case .nonescaping:
return "No pointer escape"
case let .escaping(operands):
return "Pointer escapes: " + operands.map({ "\($0)" }).joined(separator: "\n ")
case let .unknown(operand):
return "Unknown use: \(operand)"
}
}
}
typealias InnerScopeHandler = (Value) -> WalkResult
/// An OSSA lifetime begins with a single "defining" value, which must be owned, or must begin a borrow scope. A
/// complete OSSA lifetime has a linear lifetime, meaning that it has a lifetime-ending use on all paths. Interior
/// liveness computes liveness without assuming the lifetime is complete. To do this, it must find all "use points" and
/// prove that the defining value is never propagated beyond those points. This is used to initially complete OSSA
/// lifetimes and fix them after transformations that's don't preserve OSSA.
///
/// Invariants:
///
/// - The definition dominates all use points (hence the result is a single InstructionRange).
///
/// - Liveness does not extend beyond lifetime-ending operations (a.k.a. affine lifetimes).
///
/// - All inner scopes are complete. (Use `innerScopeHandler` to either complete them or to recursively compute their
/// liveness and either bail-out on or propagate inner pointer escapes outward).
struct InteriorLivenessResult: CustomDebugStringConvertible {
// 'success' may only be set to .abortWalk if pointerStatus != .nonescaping or visitInnerUses returned false.
// The client can therefore ensure success if it has already checked for pointer escapes.
let success: WalkResult
var range: InstructionRange
let pointerStatus: InteriorPointerStatus
/// Compute liveness for a single OSSA value without assuming a complete lifetime.
///
/// The caller must call acquireRange or deinitialize() on the result.
static func compute(for definingValue: Value, ignoreEscape: Bool = false, visitInnerUses: Bool,
_ context: FunctionPassContext,
innerScopeHandler: InnerScopeHandler? = nil) -> InteriorLivenessResult {
assert(definingValue.ownership == .owned || BeginBorrowValue(definingValue) != nil,
"value must define an OSSA lifetime")
var range = InstructionRange(for: definingValue, context)
var visitor = InteriorUseWalker(definingValue: definingValue, ignoreEscape: ignoreEscape,
visitInnerUses: visitInnerUses, context) {
range.insert($0.instruction)
return .continueWalk
}
defer { visitor.deinitialize() }
visitor.innerScopeHandler = innerScopeHandler
let success = visitor.visitUses()
assert(visitor.unenclosedPhis.isEmpty, "missing adjacent phis")
let result = InteriorLivenessResult(success: success, range: range, pointerStatus: visitor.pointerStatus)
log("Interior liveness for: \(definingValue)\n\(result)")
return result
}
/// Client must call deinitialize() on the result.
var acquireRange: InstructionRange { consuming get { range } }
mutating func deinitialize() {
range.deinitialize()
}
var debugDescription: String {
"\(success)\n\(range)\n\(pointerStatus)"
}
}
/// Classify ownership uses. This reduces operand ownership to a
/// visitor API that can be used by def-use walkers to ensure complete
/// handling of all legal SIL patterns.
///
/// Code that relies on the ownership effect of a use should conform
/// to this visitor. This facilitates correct handling of special cases
/// involving borrow scopes and interior pointers.
///
/// The top-level entry points are:
/// - `classify(operand:)`
/// - `visitOwnershipUses(of:)`
///
/// The implementation may recursively call back to the top-level
/// entry points. Additionally, the implementation may recurse into inner
/// borrow scopes, skipping over the uses within inner scopes using:
/// - `visitInnerBorrowUses(of: BorrowingInstruction, operand:)`
/// - `visitOwnedDependentUses(of: Value)`
///
/// Visitors implement:
///
/// - ownershipLeafUse(of:isInnerlifetime:)
/// - forwardingUse(of:isInnerlifetime:)
/// - interiorPointerUse(of:into:)
/// - pointerEscapingUse(of:)
/// - dependentUse(of:dependentValue:)
/// - dependentUse(of:dependentAddress:)
/// - borrowingUse(of:by:)
///
/// This only visits the first level of uses. The implementation may transitively visit forwarded, borrowed, dependent,
/// or address values in the overrides listed above.
///
/// `isInnerlifetime` indicates whether the value being used is
/// defined by the "outer" OSSA lifetime or an inner borrow scope.
/// When the OwnershipUseVisitor is invoked on an outer value
/// (visitOwnershipUses(of:)), it visits all the uses of that value
/// and also visits the lifetime-ending uses of any inner borrow
/// scopes. This provides a complete set of liveness "use points":
///
/// %0 = begin_borrow %outerValue
/// %1 = begin_borrow %0
/// end_borrow %1 // inner "use point" of %0
/// end_borrow %0 // outer use of %0
///
/// This becomes more complicated with reborrows and closures. The
/// implementation can simply rely on isInnerLifetime to know whether
/// the value being used is part of the outer lifetimes vs. its inner
/// lifetimes. This is important, for example, if the implementation
/// wants to know if the use ends the lifetime of the outer value.
///
/// Visitor implementations treat inner and outer uses differently. It
/// may, for example, assume that inner lifetimes are complete
/// and therefore only care about the lifetime-ending uses.
protocol OwnershipUseVisitor {
var context: Context { get }
/// A non-forwarding use.
///
/// `isInnerLifetime` indicates whether `operand` uses the original
/// OSSA lifetime. This use ends the original lifetime if
/// (!isInnerLifetime && use.endsLifetime).
mutating func ownershipLeafUse(of operand: Operand, isInnerLifetime: Bool) -> WalkResult
/// A forwarding operand.
///
/// Use ForwardingInstruction or ForwardingDefUseWalker to handle
/// downstream uses.
///
/// If `isInnerLifetime` is true, then the value depends on an inner borrow.
mutating func forwardingUse(of operand: Operand, isInnerLifetime: Bool) -> WalkResult
/// A use that projects an address.
mutating func interiorPointerUse(of: Operand, into address: Value) -> WalkResult
/// A use that escapes information from its operand's value.
///
/// Note: this may not find all relevant pointer escapes, such as
/// from owned forwarded values. Clients should generally check
/// findPointerEscape() before relying on a liveness result and
/// implement this as a fatalError.
mutating func pointerEscapingUse(of operand: Operand) -> WalkResult
/// A use that creates an implicit borrow scope over the lifetime of
/// an owned dependent value. The operand ownership is .borrow, but
/// there are no explicit scope-ending operations. Instead
/// BorrowingInstruction.scopeEndingOperands will return the final
/// consumes in the dependent value's forwarding chain.
mutating func dependentUse(of operand: Operand, dependentValue value: Value) -> WalkResult
/// A use that creates an implicit borrow scope over all reachable uses of a value stored in
/// `dependentAddress`. This could conservatively be handled has `pointerEscapingUse`, but note that accessing the
/// `dependentAddress` only keeps the original owner alive, it cannot modify the original (modifying a dependent
/// address is still just a "read" of the dependence source.
mutating func dependentUse(of operand: Operand, dependentAddress address: Value) -> WalkResult
/// A use that is scoped to an inner borrow scope.
mutating func borrowingUse(of operand: Operand, by borrowInst: BorrowingInstruction) -> WalkResult
}
extension OwnershipUseVisitor {
/// Classify a non-address type operand, dispatching to one of the
/// protocol methods below.
mutating func classify(operand: Operand) -> WalkResult {
switch operand.value.ownership {
case .owned:
return classifyOwned(operand: operand)
case .guaranteed:
return classifyGuaranteed(operand: operand)
case .none, .unowned:
return .continueWalk
}
}
/// Visit all uses that contribute to the ownership live
/// range of `value`. This does not assume that `value` has a
/// complete lifetime, and non-lifetime-ending uses are visited.
///
/// If `value` is a phi (owned or reborrowed), then find its inner
/// adjacent phis and treat them like inner borrows.
///
/// This is only called for uses in the outer lifetime.
mutating func visitOwnershipUses(of value: Value) -> WalkResult {
switch value.ownership {
case .owned:
return value.uses.ignoreTypeDependence.walk { classifyOwned(operand: $0) }
case .guaranteed:
return value.uses.ignoreTypeDependence.walk {
classifyGuaranteed(operand: $0) }
case .none, .unowned:
return .continueWalk
}
}
/// Handle an owned dependent value, such as a closure capture or owned mark_dependence.
///
/// Called by walkDownUses(of:) for owned values.
///
/// When a borrow introduces an owned value, each OSSA lifetime is effectively a separate borrow scope. A destroy or
/// consumes ends that borrow scope, while a forwarding consume effectively "reborrows".
///
/// %dependent = mark_dependence [nonescaping] %owned on %base // borrow 'owned'
/// // visit uses of owned 'dependent' value
/// %forwarded = move_value %dependent
/// destroy_value %forwarded // ends the inner borrow scope
///
/// Preconditions:
/// - value.ownership == .owned
/// - value.type.isEscapable
mutating func visitOwnedDependentUses(of value: Value) -> WalkResult {
assert(value.ownership == .owned, "inner value must be a reborrow or owned forward")
assert(value.type.isEscapable(in: value.parentFunction), "cannot handle non-escapable dependent values")
return value.uses.endingLifetime.walk {
switch $0.ownership {
case .forwardingConsume:
return forwardingUse(of: $0, isInnerLifetime: true)
case .destroyingConsume:
return ownershipLeafUse(of: $0, isInnerLifetime: true)
default:
fatalError("invalid owned lifetime ending operand ownership")
}
}
}
/// Visit uses of borrowing instruction (operandOwnerhip == .borrow),
/// skipping uses within the borrow scope.
///
/// %borrow = begin_borrow %def // visitInnerBorrowUses is called on this BorrowingInstruction
/// %address = ref_element_addr %borrow // ignored
/// end_borrow %borrow // visited as a leaf use of as inner lifetime.
///
mutating func visitInnerBorrowUses(of borrowInst: BorrowingInstruction, operand: Operand) -> WalkResult {
if let dependent = borrowInst.dependentValue {
if dependent.ownership == .guaranteed {
return visitOwnershipUses(of: dependent)
}
return pointerEscapingUse(of: operand)
}
// Otherwise, directly visit the scope ending uses as leaf uses.
//
// TODO: remove this stack by changing visitScopeEndingOperands to take a non-escaping closure.
var stack = Stack<Operand>(context)
defer { stack.deinitialize() }
let result = borrowInst.visitScopeEndingOperands(context) {
stack.push($0)
return .continueWalk
}
guard result == .continueWalk else {
// If the dependent value is not scoped then consider it a pointer escape.
return pointerEscapingUse(of: operand)
}
return stack.walk { ownershipLeafUse(of: $0, isInnerLifetime: true) }
}
}
extension OwnershipUseVisitor {
// This is only called for uses in the outer lifetime.
private mutating func classifyOwned(operand: Operand) -> WalkResult {
switch operand.ownership {
case .nonUse:
return .continueWalk
case .destroyingConsume:
return ownershipLeafUse(of: operand, isInnerLifetime: false)
case .forwardingConsume:
return forwardingUse(of: operand, isInnerLifetime: false)
case .pointerEscape:
if let mdai = operand.instruction as? MarkDependenceAddrInst, operand == mdai.baseOperand {
return dependentUse(of: operand, dependentAddress: mdai.address)
}
return pointerEscapingUse(of: operand)
case .instantaneousUse, .forwardingUnowned, .unownedInstantaneousUse, .bitwiseEscape:
return ownershipLeafUse(of: operand, isInnerLifetime: false)
case .borrow:
return visitBorrowingUse(of: operand)
case .anyInteriorPointer:
return visitInteriorPointerUse(of: operand)
// TODO: .interiorPointer should instead be handled like .anyInteriorPointer.
case .interiorPointer, .trivialUse, .endBorrow, .reborrow, .guaranteedForwarding:
fatalError("ownership incompatible with an owned value");
}
}
// This is only called for uses in the outer lifetime.
private mutating func classifyGuaranteed(operand: Operand)
-> WalkResult {
switch operand.ownership {
case .nonUse:
return .continueWalk
case .pointerEscape:
// TODO: Change ProjectBox ownership to InteriorPointer and allow them to take owned values.
if operand.instruction is ProjectBoxInst {
return visitInteriorPointerUse(of: operand)
}
if let mdai = operand.instruction as? MarkDependenceAddrInst, operand == mdai.baseOperand {
return dependentUse(of: operand, dependentAddress: mdai.address)
}
return pointerEscapingUse(of: operand)
case .instantaneousUse, .forwardingUnowned, .unownedInstantaneousUse, .bitwiseEscape, .endBorrow, .reborrow:
return ownershipLeafUse(of: operand, isInnerLifetime: false)
case .guaranteedForwarding:
return forwardingUse(of: operand, isInnerLifetime: false)
case .borrow:
return visitBorrowingUse(of: operand)
case .interiorPointer, .anyInteriorPointer:
return visitInteriorPointerUse(of: operand)
case .trivialUse, .forwardingConsume, .destroyingConsume:
fatalError("ownership incompatible with a guaranteed value")
}
}
private mutating func visitBorrowingUse(of operand: Operand) -> WalkResult {
switch operand.instruction {
case let pai as PartialApplyInst:
assert(!pai.mayEscape)
return dependentUse(of: operand, dependentValue: pai)
case let mdi as MarkDependenceInst:
// .borrow operand ownership only applies to the base operand of a non-escaping markdep that forwards a
// non-address value.
assert(operand == mdi.baseOperand && mdi.isNonEscaping)
return dependentUse(of: operand, dependentValue: mdi)
case let bfi as BorrowedFromInst where !bfi.borrowedPhi.isReborrow:
return dependentUse(of: operand, dependentValue: bfi)
default:
return borrowingUse(of: operand,
by: BorrowingInstruction(operand.instruction)!)
}
}
private mutating func visitInteriorPointerUse(of operand: Operand) -> WalkResult {
switch operand.instruction {
case is RefTailAddrInst, is RefElementAddrInst, is ProjectBoxInst,
is OpenExistentialBoxInst:
let svi = operand.instruction as! SingleValueInstruction
return interiorPointerUse(of: operand, into: svi)
default:
return pointerEscapingUse(of: operand)
}
}
}
/// Visit all interior uses of an OSSA lifetime.
///
/// - `definingValue` dominates all uses. Only dominated phis extend
/// the lifetime. All other phis must have a lifetime-ending outer
/// adjacent phi; otherwise they will be recorded as `unenclosedPhis`.
///
/// - Does not assume the current lifetime is linear. Transitively
/// follows guaranteed forwarding and address uses within the current
/// scope. Phis that are not dominated by definingValue or an outer
/// adjacent phi are marked "unenclosed" to signal an incomplete
/// lifetime.
///
/// - Assumes inner scopes *are* linear, including borrow and address
/// scopes (e.g. begin_borrow, load_borrow, begin_apply, store_borrow,
/// begin_access) A `innerScopeHandler` callback may be used to
/// complete inner scopes before updating liveness.
///
/// InteriorUseWalker can be used to complete (linearize) an OSSA
/// lifetime after transformation that invalidates OSSA.
///
/// Example:
///
/// %s = struct ...
/// %f = struct_extract %s // defines a guaranteed value (%f)
/// %b = begin_borrow %f
/// %a = ref_element_addr %b
/// _ = address_to_pointer %a
/// end_borrow %b // the only interior use of %f
///
/// When computing interior liveness for %f, %b is an inner
/// scope. Because inner scopes are complete, the only relevant use is
/// end_borrow %b. Despite the address_to_pointer instruction, %f does
/// not escape any dependent address.
///
/// TODO: Implement the hasPointerEscape flags on BeginBorrowInst,
/// MoveValueInst, and Allocation. Then this visitor should assert
/// that the forward-extended lifetime introducer has no pointer
/// escaping uses.
struct InteriorUseWalker {
let functionContext: FunctionPassContext
var context: Context { functionContext }
let definingValue: Value
let ignoreEscape: Bool
// If true, it's not assumed that inner scopes are linear. It forces to visit
// all interior uses if inner scopes.
let visitInnerUses: Bool
let useVisitor: (Operand) -> WalkResult
var innerScopeHandler: InnerScopeHandler? = nil
private func handleInner(borrowed value: Value) -> WalkResult {
guard let innerScopeHandler else {
return .continueWalk
}
return innerScopeHandler(value)
}
var unenclosedPhis: [Phi] = []
var function: Function { definingValue.parentFunction }
var pointerStatus: InteriorPointerStatus = .nonescaping
private var visited: ValueSet
mutating func deinitialize() {
visited.deinitialize()
}
init(definingValue: Value, ignoreEscape: Bool, visitInnerUses: Bool, _ context: FunctionPassContext,
visitor: @escaping (Operand) -> WalkResult) {
assert(!definingValue.type.isAddress, "address values have no ownership")
self.functionContext = context
self.definingValue = definingValue
self.ignoreEscape = ignoreEscape
self.visitInnerUses = visitInnerUses
self.useVisitor = visitor
self.visited = ValueSet(context)
}
mutating func visitUses() -> WalkResult {
return visitOwnershipUses(of: definingValue)
}
}
extension InteriorUseWalker: OwnershipUseVisitor {
/// This is invoked for all non-address uses of the outer lifetime,
/// even if the use forwards a value or produces an interior
/// pointer. This is only invoked for uses of an inner lifetime
/// if it ends the lifetime.
mutating func ownershipLeafUse(of operand: Operand, isInnerLifetime: Bool)
-> WalkResult {
useVisitor(operand)
}
// Visit owned and guaranteed forwarding operands.
//
// Guaranteed forwarding operands extend the outer lifetime.
//
// Owned forwarding operands end the outer lifetime but extend the
// inner lifetime (e.g. from a PartialApply or MarkDependence).
mutating func forwardingUse(of operand: Operand, isInnerLifetime: Bool)
-> WalkResult {
switch operand.value.ownership {
case .guaranteed:
assert(!isInnerLifetime, "inner guaranteed forwards are not walked")
return walkDown(operand: operand)
case .owned:
return isInnerLifetime ? walkDown(operand: operand) : useVisitor(operand)
default:
fatalError("forwarded values must have a lifetime")
}
}
mutating func interiorPointerUse(of operand: Operand, into address: Value)
-> WalkResult {
if useVisitor(operand) == .abortWalk {
return .abortWalk
}
return walkDownAddressUses(of: address)
}
// Handle partial_apply [on_stack] and mark_dependence [nonescaping].
mutating func dependentUse(of operand: Operand, dependentValue value: Value) -> WalkResult {
// OSSA lifetime ignores trivial types.
if value.type.isTrivial(in: function) {
return .continueWalk
}
guard value.type.isEscapable(in: function) else {
// Non-escapable dependent values can be lifetime-extended by copying, which is not handled by
// InteriorUseWalker. LifetimeDependenceDefUseWalker does this.
return pointerEscapingUse(of: operand)
}
if useVisitor(operand) == .abortWalk {
return .abortWalk
}
return walkDownUses(of: value)
}
mutating func dependentUse(of operand: Operand, dependentAddress address: Value) -> WalkResult {
// An mutable local variable depends a value that depends on the original interior pointer. This would require data
// flow to find local uses. InteriorUseWalker only walks the SSA uses.
pointerEscapingUse(of: operand)
}
mutating func pointerEscapingUse(of operand: Operand) -> WalkResult {
if useVisitor(operand) == .abortWalk {
return .abortWalk
}
return setPointerEscape(of: operand)
}
mutating func setPointerEscape(of operand: Operand) -> WalkResult {
pointerStatus.setEscaping(operand: operand)
return ignoreEscape ? .continueWalk : .abortWalk
}
// Call the innerScopeHandler before visiting the scope-ending uses.
mutating func borrowingUse(of operand: Operand, by borrowInst: BorrowingInstruction) -> WalkResult {
if let beginBorrow = BeginBorrowValue(resultOf: borrowInst) {
if handleInner(borrowed: beginBorrow.value) == .abortWalk {
return .abortWalk
}
}
if useVisitor(operand) == .abortWalk {
return .abortWalk
}
if visitInnerBorrowUses(of: borrowInst, operand: operand) == .abortWalk {
return .abortWalk
}
if !visitInnerUses {
return .continueWalk
}
guard let innerValue = borrowInst.innerValue else {
return setPointerEscape(of: operand)
}
// Call visitInnerBorrowUses before visitOwnershipUses because it will visit uses of tokens, such as
// the begin_apply token, which don't have ownership.
if innerValue.type.isAddress {
return interiorPointerUse(of: operand, into: innerValue)
}
return visitOwnershipUses(of: innerValue)
}
}
extension InteriorUseWalker: AddressUseVisitor {
/// An address projection produces a single address result and does not
/// escape its address operand in any other way.
mutating func projectedAddressUse(of operand: Operand, into value: Value)
-> WalkResult {
return walkDownAddressUses(of: value)
}
mutating func appliedAddressUse(of operand: Operand, by apply: FullApplySite)
-> WalkResult {
if apply is BeginApplyInst {
return scopedAddressUse(of: operand)
}
return leafAddressUse(of: operand)
}
mutating func scopedAddressUse(of operand: Operand) -> WalkResult {
switch operand.instruction {
case let ba as BeginAccessInst:
if handleInner(borrowed: ba) == .abortWalk {
return .abortWalk
}
return ba.scopeEndingOperands.walk { useVisitor($0) }
case let ba as BeginApplyInst:
if handleInner(borrowed: ba.token) == .abortWalk {
return .abortWalk
}
return ba.token.uses.walk {
useVisitor($0)
}
case let sb as StoreBorrowInst:
if handleInner(borrowed: sb) == .abortWalk {
return .abortWalk
}
return sb.uses.filterUses(ofType: EndBorrowInst.self).walk {
useVisitor($0)
}
case let load as LoadBorrowInst:
if handleInner(borrowed: load) == .abortWalk {
return .abortWalk
}
return load.uses.endingLifetime.walk {
useVisitor($0)
}
default:
fatalError("Unrecognized scoped address use: \(operand.instruction)")
}
}
mutating func scopeEndingAddressUse(of operand: Operand) -> WalkResult {
return .continueWalk
}
mutating func leafAddressUse(of operand: Operand) -> WalkResult {
return .continueWalk
}
mutating func loadedAddressUse(of operand: Operand, intoValue value: Value)
-> WalkResult {
return .continueWalk
}
mutating func loadedAddressUse(of operand: Operand, intoAddress address: Operand)
-> WalkResult {
return .continueWalk
}
mutating func yieldedAddressUse(of operand: Operand) -> WalkResult {
return .continueWalk
}
mutating func dependentAddressUse(of operand: Operand, dependentValue value: Value)
-> WalkResult {
// For Escapable values, simply continue the walk.
if value.mayEscape {
return walkDownUses(of: value)
}
// TODO: Handle non-escapable values by walking through copies as done by LifetimeDependenceDefUseWalker or
// NonEscapingClosureDefUseWalker. But this code path also handles non-escaping closures that have not been promoted
// to [on_stack] (and still have an escapable function type). Such closures may be incorrectly destroyed after their
// captures. To avoid this problem, either rewrite ClosureLifetimeFixup to produce correct OSSA lifetimes, or check
// for that special case and continue to bailout here.
return escapingAddressUse(of: operand)
}
mutating func dependentAddressUse(of operand: Operand, dependentAddress address: Value) -> WalkResult {
// TODO: consider data flow that finds reachable uses of `dependentAddress`.
return escapingAddressUse(of: operand)
}
mutating func escapingAddressUse(of operand: Operand) -> WalkResult {
pointerStatus.setEscaping(operand: operand)
return ignoreEscape ? .continueWalk : .abortWalk
}
mutating func unknownAddressUse(of operand: Operand) -> WalkResult {
pointerStatus = .unknown(operand)
return .abortWalk
}
private mutating func walkDownAddressUses(of address: Value) -> WalkResult {
assert(address.type.isAddress)
return address.uses.ignoreTypeDependence.walk {
// Record all uses
if useVisitor($0) == .abortWalk {
return .abortWalk
}
return classifyAddress(operand: $0)
}
}
}
// Helpers to walk down forwarding operations.
extension InteriorUseWalker {
// Walk down forwarding operands
private mutating func walkDown(operand: Operand) -> WalkResult {
// Record all uses
if useVisitor(operand) == .abortWalk {
return .abortWalk
}
if let inst = operand.instruction as? ForwardingInstruction {
return inst.forwardedResults.walk { walkDownUses(of: $0) }
}
// TODO: Represent apply of borrow accessors as ForwardingOperation and use that over ForwardingInstruction
if let apply = operand.instruction as? FullApplySite, apply.hasGuaranteedResult {
return walkDownUses(of: apply.singleDirectResult!)
}
// TODO: verify that ForwardInstruction handles all .forward operand ownership and assert that only phis can be
// reached: assert(Phi(using: operand) != nil)
return .continueWalk
}
private mutating func walkDownUses(of value: Value) -> WalkResult {
guard value.ownership.hasLifetime else {
return .continueWalk
}
guard visited.insert(value) else {
return .continueWalk
}
switch value.ownership {
case .owned:
// Each owned lifetime is an inner scope.
if handleInner(borrowed: value) == .abortWalk {
return .abortWalk
}
return visitOwnedDependentUses(of: value)
case .guaranteed:
// Handle a forwarded guaranteed value exactly like the outer borrow.
return visitOwnershipUses(of: value)
default:
fatalError("ownership requires a lifetime")
}
}
}
/// Cache the liveness boundary by taking a snapshot of its InstructionRange.
struct LivenessBoundary : CustomStringConvertible {
var lastUsers : Stack<Instruction>
var boundaryEdges : Stack<BasicBlock>
var deadDefs : Stack<Value>
// Compute the boundary of a singly-defined range.
init(value: Value, range: InstructionRange, _ context: Context) {
assert(range.blockRange.isValid)
lastUsers = Stack<Instruction>(context)
boundaryEdges = Stack<BasicBlock>(context)
deadDefs = Stack<Value>(context)
lastUsers.append(contentsOf: range.ends)
boundaryEdges.append(contentsOf: range.exitBlocks)
if lastUsers.isEmpty {
deadDefs.push(value)
assert(boundaryEdges.isEmpty)
}
}
var description: String {
(lastUsers.map { "last user: \($0.description)" }
+ boundaryEdges.map { "boundary edge: \($0.description)" }
+ deadDefs.map { "dead def: \($0.description)" }).joined(separator: "\n")
}
mutating func deinitialize() {
lastUsers.deinitialize()
boundaryEdges.deinitialize()
deadDefs.deinitialize()
}
}
let linearLivenessTest = FunctionTest("linear_liveness_swift") {
function, arguments, context in
let value = arguments.takeValue()
print("Linear liveness: \(value)")
var range = computeLinearLiveness(for: value, context)
defer { range.deinitialize() }
print("Live blocks:")
print(range)
var boundary = LivenessBoundary(value: value, range: range, context)
defer { boundary.deinitialize() }
print(boundary)
}
let interiorLivenessTest = FunctionTest("interior_liveness_swift") {
function, arguments, context in
let value = arguments.takeValue()
let visitInnerUses = arguments.hasUntaken ? arguments.takeBool() : false
print("Interior liveness\(visitInnerUses ? " with inner uses" : ""): \(value)")
var range = InstructionRange(for: value, context)
defer { range.deinitialize() }
var visitor = InteriorUseWalker(definingValue: value, ignoreEscape: true, visitInnerUses: visitInnerUses, context) {
range.insert($0.instruction)
return .continueWalk
}
defer { visitor.deinitialize() }
visitor.innerScopeHandler = {
print("Inner scope: \($0)")
return .continueWalk
}
let success = visitor.visitUses()
switch visitor.pointerStatus {
case .nonescaping:
break
case let .escaping(operands):
for operand in operands {
print("Pointer escape: \(operand.instruction)")
}
case let .unknown(operand):
print("Unrecognized SIL address user \(operand.instruction)")
}
if success == .abortWalk {
print("Incomplete liveness")
}
print(range)
var boundary = LivenessBoundary(value: value, range: range, context)
defer { boundary.deinitialize() }
print(boundary)
}
//
// TODO: Move this to InstructionRange.swift when computeLinearLiveness is in the SIL module.
//
let rangeOverlapsPathTest = FunctionTest("range_overlaps_path") {
function, arguments, context in
let rangeValue = arguments.takeValue()
print("Range of: \(rangeValue)")
var range = computeLinearLiveness(for: rangeValue, context)
defer { range.deinitialize() }
let pathInst = arguments.takeInstruction()
print("Path begin: \(pathInst)")
if let pathBegin = pathInst as? ScopedInstruction {
for end in pathBegin.endInstructions {
print("Overlap kind:", range.overlaps(pathBegin: pathInst, pathEnd: end, context))
}
return
}
if let pathValue = pathInst as? SingleValueInstruction, pathValue.ownership == .owned {
for end in pathValue.uses.endingLifetime {
print("Overlap kind:", range.overlaps(pathBegin: pathInst, pathEnd: end.instruction, context))
}
return
}
print("Test specification error: not a scoped or owned instruction: \(pathInst)")
}