Files
swift-mirror/lib/SILPasses/GenericSpecializer.cpp
Michael Gottesman d866316e04 [specializer] Teach the specializer how to handle indentity {unconditional_checked_cast,checked_cast_br} super_to_archetype.
This is working under the assumption that every class is in a certain
sense its own super class (or we are allowing it to be so for these
casts).

Swift SVN r18020
2014-05-13 20:15:31 +00:00

854 lines
32 KiB
C++

//===-- Specializer.cpp ------ Performs Generic Specialization ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "specialization"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SILPasses/Passes.h"
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SILPasses/Transforms.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Mangle.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumSpecialized, "Number of functions specialized");
STATISTIC(NumCMSpecialized, "Number of ClassMethodInst specialized");
namespace {
/// TypeSubCloner - a utility class for cloning and remapping types.
class TypeSubCloner : public SILCloner<TypeSubCloner> {
friend class SILVisitor<TypeSubCloner>;
friend class SILCloner<TypeSubCloner>;
public:
/// Clone and remap the types in \p F according to the substitution
/// list in \p Subs.
static SILFunction *cloneFunction(SILFunction *F,
TypeSubstitutionMap &InterfaceSubs,
TypeSubstitutionMap &ContextSubs,
StringRef NewName, ApplyInst *Caller) {
// Clone and specialize the function.
TypeSubCloner TSC(F, InterfaceSubs, ContextSubs, NewName, Caller);
TSC.populateCloned();
return TSC.getCloned();
}
private:
TypeSubCloner(SILFunction *F,
TypeSubstitutionMap &InterfaceSubs,
TypeSubstitutionMap &ContextSubs,
StringRef NewName,
ApplyInst *Caller)
: SILCloner(*initCloned(F, InterfaceSubs, NewName)),
SwiftMod(F->getModule().getSwiftModule()),
SubsMap(ContextSubs),
OrigFunc(F),
CallerInst(Caller) { }
/// Clone the body of the function into the empty function that was created
/// by initCloned.
void populateCloned();
SILType remapType(SILType Ty) {
return SILType::substType(OrigFunc->getModule(), SwiftMod, SubsMap, Ty);
}
ProtocolConformance *remapConformance(SILType Ty, ProtocolConformance *C) {
// If Ty does not have unbound generic types, we did not specialize it so
// just return C. This relies on the fact that we do not partially
// specialize.
if (!hasUnboundGenericTypes(Ty.getSwiftRValueType()->getCanonicalType()))
return C;
// Otherwise we need to create a specialized conformance for C. Remap the
// type...
CanType Type = remapType(Ty).getSwiftRValueType()->getCanonicalType();
// And create the new specialized conformance.
ASTContext &AST = SwiftMod->getASTContext();
return AST.getSpecializedConformance(Type, C,
CallerInst->getSubstitutions());
}
void visitClassMethodInst(ClassMethodInst *Inst) {
NumCMSpecialized++;
doPostProcess(Inst,
Builder.createClassMethod(getOpLocation(Inst->getLoc()),
getOpValue(Inst->getOperand()),
Inst->getMember(),
// No need to translate the return
// type because this is the type of
// the fetched method.
Inst->getType(),
Inst->isVolatile()));
}
void visitApplyInst(ApplyInst *Inst) {
auto Args = getOpValueArray<8>(Inst->getArguments());
// Handle recursions by replacing the apply to the callee with an apply to
// the newly specialized function.
SILValue CalleeVal = Inst->getCallee();
FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(CalleeVal);
if (FRI && FRI->getReferencedFunction() == Inst->getFunction()) {
FRI = Builder.createFunctionRef(getOpLocation(Inst->getLoc()),
&Builder.getFunction());
ApplyInst *NAI =
Builder.createApply(getOpLocation(Inst->getLoc()), FRI, Args,
Inst->isTransparent());
doPostProcess(Inst, NAI);
return;
}
SmallVector<Substitution, 16> TempSubstList;
for (auto &Sub : Inst->getSubstitutions())
TempSubstList.push_back(Sub.subst(Inst->getModule().getSwiftModule(),
OrigFunc->getContextGenericParams(),
CallerInst->getSubstitutions()));
ApplyInst *N = Builder.createApply(
getOpLocation(Inst->getLoc()), getOpValue(CalleeVal),
getOpType(Inst->getSubstCalleeSILType()), getOpType(Inst->getType()),
TempSubstList, Args, Inst->isTransparent());
doPostProcess(Inst, N);
}
void visitPartialApplyInst(PartialApplyInst *Inst) {
auto Args = getOpValueArray<8>(Inst->getArguments());
// Handle recursions by replacing the apply to the callee with an apply to
// the newly specialized function.
SILValue CalleeVal = Inst->getCallee();
FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(CalleeVal);
if (FRI && FRI->getReferencedFunction() == Inst->getFunction()) {
FRI = Builder.createFunctionRef(getOpLocation(Inst->getLoc()),
&Builder.getFunction());
PartialApplyInst *NPAI =
Builder.createPartialApply(getOpLocation(Inst->getLoc()), FRI,
getOpType(Inst->getSubstCalleeSILType()),
ArrayRef<Substitution>(),
Args,
getOpType(Inst->getType()));
doPostProcess(Inst, NPAI);
return;
}
SmallVector<Substitution, 16> TempSubstList;
for (auto &Sub : Inst->getSubstitutions())
TempSubstList.push_back(Sub.subst(Inst->getModule().getSwiftModule(),
OrigFunc->getContextGenericParams(),
CallerInst->getSubstitutions()));
PartialApplyInst *N = Builder.createPartialApply(
getOpLocation(Inst->getLoc()), getOpValue(CalleeVal),
getOpType(Inst->getSubstCalleeSILType()), TempSubstList, Args,
getOpType(Inst->getType()));
doPostProcess(Inst, N);
}
void visitWitnessMethodInst(WitnessMethodInst *Inst) {
DEBUG(llvm::dbgs()<<"Specializing : " << *Inst << "\n");
// Specialize the Self substitution of the witness_method.
//
// FIXME: This needs to not only handle Self but all Self derived types so
// we handle type aliases correctly.
auto sub =
Inst->getSelfSubstitution().subst(Inst->getModule().getSwiftModule(),
OrigFunc->getContextGenericParams(),
CallerInst->getSubstitutions());
assert(sub.Conformance.size() == 1 &&
"didn't get conformance from substitution?!");
// If we don't have a witness table for this conformance, create a witness
// table declaration for it.
SILModule &OtherMod = getCloned()->getModule();
if (!OtherMod.lookUpWitnessTable(sub.Conformance[0]).first)
OtherMod.createWitnessTableDeclaration(sub.Conformance[0]);
// We already subst so getOpConformance is not needed.
doPostProcess(Inst, Builder.createWitnessMethod(
getOpLocation(Inst->getLoc()),
getOpType(Inst->getLookupType()),
sub.Conformance[0], Inst->getMember(),
getOpType(Inst->getType()), Inst->isVolatile()));
}
// If we are performing one of the following checked casts:
//
// 1. Archetype to Archetype.
// 2. Archetype to Concrete.
// 3. Concrete to Archetype
//
// since we don't do partial specialization, we know both must types must now
// be concrete. Modify the checked cast appropriately.
//
// If the two types are non-classes, we enforce that after specialization they
// must both either be trivially equal (in which case we just propagate the
// operand) or trivially different implying we insert a trap + undef propagate
// of uses.
//
// If the two types are classes, we allow for additionally down/upcast
// relationships. Casting in between two unrelated classes means we insert a
// runtime trap to match the semantics of the instruction.
void
convertArchetypeConcreteCastToConcreteCast(UnconditionalCheckedCastInst *Inst) {
// Grab both the from and to types.
SILType OpFromTy = getOpType(Inst->getOperand().getType());
SILType OpToTy = getOpType(Inst->getType());
SILLocation Loc = getOpLocation(Inst->getLoc());
// If the from/to type is the same, just propagate the operand along to all
// uses.
if (OpFromTy == OpToTy) {
auto Pair = std::make_pair(SILValue(Inst),
getOpValue(Inst->getOperand()));
ValueMap.insert(Pair);
return;
}
// Ok, we know that the types differ. See if we are performing an upcast
// or downcast.
ClassDecl *FromDecl = OpFromTy.getClassOrBoundGenericClass();
ClassDecl *ToDecl = OpToTy.getClassOrBoundGenericClass();
// If either of the types are not classes, then we are either comparing
// non-classes which differ implying a runtime trap *or* a class and a
// non-class which yields also a runtime trap.
if (!FromDecl || !ToDecl) {
Builder.createApply(Loc, Builder.createBuiltinTrap(Loc),
ArrayRef<SILValue>());
auto Pair = std::make_pair(SILValue(Inst),
SILValue(SILUndef::get(OpToTy,
Inst->getModule())));
ValueMap.insert(Pair);
return;
}
// Ok, we know that we have two classes. If From is a super class of To,
// insert a checked downcast.
if (OpFromTy.isSuperclassOf(OpToTy)) {
SILValue OtherOp = getOpValue(Inst->getOperand());
auto *UCCI = Builder.createUnconditionalCheckedCast(
Loc, CheckedCastKind::Downcast, OtherOp, OpToTy);
doPostProcess(Inst, UCCI);
return;
}
// If ToTy is a super class of FromTy, we are performing an upcast.
if (OpToTy.isSuperclassOf(OpFromTy)) {
doPostProcess(Inst, Builder.createUpcast(
Loc, getOpValue(Inst->getOperand()), OpToTy));
return;
}
// Ok, we have an invalid cast. Insert a trap so we trap at runtime as
// the spec for the instruction requires and propagate undef to all
// uses.
Builder.createApply(Loc, Builder.createBuiltinTrap(Loc),
ArrayRef<SILValue>());
auto Pair = std::make_pair(SILValue(Inst),
SILValue(SILUndef::get(OpToTy,
Inst->getModule())));
ValueMap.insert(Pair);
}
void visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *Inst) {
// Change the check kind depending on how our specialization affected.
CheckedCastKind Kind = Inst->getCastKind();
switch (Kind) {
case CheckedCastKind::Unresolved:
case CheckedCastKind::Coercion:
case CheckedCastKind::ArrayDowncast:
llvm_unreachable("invalid for SIL");
// These are not affected by specialization.
case CheckedCastKind::Downcast:
case CheckedCastKind::ExistentialToConcrete:
case CheckedCastKind::ConcreteToUnrelatedExistential:
SILCloner<TypeSubCloner>::visitUnconditionalCheckedCastInst(Inst);
return;
case CheckedCastKind::SuperToArchetype: {
SILValue OpValue = getOpValue(Inst->getOperand());
SILType OpFromTy = OpValue.getType();
SILType OpToTy = getOpType(Inst->getType());
// If the from/to type is the same, just propagate the operand along to
// all uses.
if (OpFromTy == OpToTy) {
auto Pair = std::make_pair(SILValue(Inst),
OpValue);
ValueMap.insert(Pair);
return;
}
// Otherwise we assume this is an unconditional_checked_cast downcast.
SILLocation OpLoc = getOpLocation(Inst->getLoc());
CheckedCastKind OpCastKind = CheckedCastKind::Downcast;
doPostProcess(Inst,
getBuilder().createUnconditionalCheckedCast(OpLoc,
OpCastKind,
OpValue,
OpToTy));
return;
}
case CheckedCastKind::ArchetypeToArchetype:
case CheckedCastKind::ArchetypeToConcrete:
case CheckedCastKind::ConcreteToArchetype:
convertArchetypeConcreteCastToConcreteCast(Inst);
return;
case CheckedCastKind::ExistentialToArchetype: {
SILValue OpValue = getOpValue(Inst->getOperand());
SILType OpFromTy = OpValue.getType();
SILType OpToTy = getOpType(Inst->getType());
// If the from/to type is the same, just propagate the operand along to
// all uses.
if (OpFromTy == OpToTy) {
auto Pair = std::make_pair(SILValue(Inst),
OpValue);
ValueMap.insert(Pair);
return;
}
// Otherwise we assume that we are performing an ExistentialToConcrete
// cast.
SILLocation OpLoc = getOpLocation(Inst->getLoc());
CheckedCastKind OpCastKind = CheckedCastKind::ExistentialToConcrete;
doPostProcess(Inst,
getBuilder().createUnconditionalCheckedCast(OpLoc,
OpCastKind,
OpValue,
OpToTy));
return;
}
}
}
// If we are performing an archetype to archetype cast, since we don't do
// partial specialization, we know both must types must now be
// concrete. Modify the checked cast appropriately.
//
// If the two types are non-classes, we enforce that after specialization they
// must both either be trivially equal (in which case we just propagate the
// operand) or trivially different implying we insert a trap + undef propagate
// of uses.
//
//
// If the two types are classes, we allow for additionally down/upcast
// relationships. Casting in between two unrelated classes means we insert a
// runtime trap to match the semantics of the instruction.
void visitCheckedCastBrArchToArchCast(CheckedCastBranchInst *Inst) {
// Grab both the from and to types.
SILType OpFromTy = getOpType(Inst->getOperand().getType());
SILType OpToTy = getOpType(Inst->getCastType());
SILLocation OpLoc = getOpLocation(Inst->getLoc());
SILBasicBlock *OpSuccBB = getOpBasicBlock(Inst->getSuccessBB());
SILBasicBlock *OpFailBB = getOpBasicBlock(Inst->getFailureBB());
// If the from/to type is the same, create a branch to the success basic
// block with the relevant argument.
if (OpFromTy == OpToTy) {
auto Args = ArrayRef<SILValue>(getOpValue(Inst->getOperand()));
auto *Br = Builder.createBranch(OpLoc, OpSuccBB, Args);
doPostProcess(Inst, Br);
return;
}
// Ok, we know that the types differ. See if we are performing an upcast
// or downcast.
ClassDecl *FromDecl = OpFromTy.getClassOrBoundGenericClass();
ClassDecl *ToDecl = OpToTy.getClassOrBoundGenericClass();
// If either of the types are not classes, then we are either comparing
// non-classes which differ *or* a class and a non-class which implies
// branch to the failure BB.
if (!FromDecl || !ToDecl) {
doPostProcess(Inst, Builder.createBranch(OpLoc, OpFailBB));
return;
}
// Ok, we know that we have two classes. If From is a super class of To,
// insert a downcast...
if (OpFromTy.isSuperclassOf(OpToTy)) {
SILValue OtherOp = getOpValue(Inst->getOperand());
// FIXME: When we have a unchecked downcast, replace the unconditional
// checked cast here with that.
auto *Downcast = Builder.createUnconditionalCheckedCast(
OpLoc, CheckedCastKind::Downcast, OtherOp, OpToTy);
doPostProcess(Inst, Builder.createBranch(OpLoc, OpSuccBB,
ArrayRef<SILValue>(Downcast)));
return;
}
// If ToTy is a super class of FromTy, we are performing an upcast.
if (OpToTy.isSuperclassOf(OpFromTy)) {
UpcastInst *Upcast =
Builder.createUpcast(OpLoc, getOpValue(Inst->getOperand()), OpToTy);
doPostProcess(Inst, Builder.createBranch(OpLoc, OpSuccBB,
ArrayRef<SILValue>(Upcast)));
return;
}
// Ok, we have an invalid cast. Jump to fail BB.
doPostProcess(Inst, Builder.createBranch(OpLoc, OpFailBB));
}
void visitCheckedCastBranchInst(CheckedCastBranchInst *Inst) {
// Change the check kind depending on how our specialization affected.
CheckedCastKind Kind = Inst->getCastKind();
switch (Kind) {
case CheckedCastKind::Unresolved:
case CheckedCastKind::Coercion:
case CheckedCastKind::ArrayDowncast:
llvm_unreachable("invalid for SIL");
// These are not affected by specialization.
case CheckedCastKind::Downcast:
case CheckedCastKind::ExistentialToConcrete:
case CheckedCastKind::ConcreteToUnrelatedExistential:
SILCloner<TypeSubCloner>::visitCheckedCastBranchInst(Inst);
return;
case CheckedCastKind::SuperToArchetype: {
// Just change the type of cast to a checked_cast_br downcast
SILLocation OpLoc = getOpLocation(Inst->getLoc());
SILValue OpValue = getOpValue(Inst->getOperand());
SILType OpFromTy = OpValue.getType();
SILType OpToTy = getOpType(Inst->getCastType());
SILBasicBlock *OpSuccBB = getOpBasicBlock(Inst->getSuccessBB());
// If the from/to type is the same, insert a branch to the success basic
// block with the relevant argument.
if (OpFromTy == OpToTy) {
auto Args = ArrayRef<SILValue>(getOpValue(Inst->getOperand()));
auto *Br = Builder.createBranch(OpLoc, OpSuccBB, Args);
doPostProcess(Inst, Br);
return;
}
// Otherwise we assume that we are performing a checked_cast_kind
// downcast.
SILBasicBlock *OpFailBB = getOpBasicBlock(Inst->getFailureBB());
CheckedCastKind OpCastKind = CheckedCastKind::Downcast;
doPostProcess(Inst,
getBuilder().createCheckedCastBranch(OpLoc,
OpCastKind,
OpValue,
OpToTy,
OpSuccBB,
OpFailBB));
return;
}
case CheckedCastKind::ArchetypeToArchetype:
case CheckedCastKind::ArchetypeToConcrete:
case CheckedCastKind::ConcreteToArchetype:
visitCheckedCastBrArchToArchCast(Inst);
return;
case CheckedCastKind::ExistentialToArchetype: {
SILLocation OpLoc = getOpLocation(Inst->getLoc());
SILValue OpValue = getOpValue(Inst->getOperand());
SILType OpFromTy = OpValue.getType();
SILType OpToTy = getOpType(Inst->getCastType());
SILBasicBlock *OpSuccBB = getOpBasicBlock(Inst->getSuccessBB());
// If the from/to type is the same, insert a branch to the success basic
// block with the relevant argument.
if (OpFromTy == OpToTy) {
auto Args = ArrayRef<SILValue>(getOpValue(Inst->getOperand()));
auto *Br = Builder.createBranch(OpLoc, OpSuccBB, Args);
doPostProcess(Inst, Br);
return;
}
// Otherwise we assume that we are performing an ExistentialToConcrete
// cast.
SILBasicBlock *OpFailBB = getOpBasicBlock(Inst->getFailureBB());
CheckedCastKind OpCastKind = CheckedCastKind::ExistentialToConcrete;
doPostProcess(Inst,
getBuilder().createCheckedCastBranch(OpLoc,
OpCastKind,
OpValue,
OpToTy,
OpSuccBB,
OpFailBB));
return;
}
}
}
static SILLinkage getSpecializedLinkage(SILLinkage orig) {
switch (orig) {
case SILLinkage::Public:
case SILLinkage::PublicExternal:
case SILLinkage::Shared:
case SILLinkage::Hidden:
case SILLinkage::HiddenExternal:
// Specializations of public or hidden symbols can be shared by all TUs
// that specialize the definition.
return SILLinkage::Shared;
case SILLinkage::Private:
// Specializations of private symbols should remain so.
return SILLinkage::Private;
}
}
/// Create a new empty function with the correct arguments and a unique name.
static SILFunction *initCloned(SILFunction *Orig,
TypeSubstitutionMap &InterfaceSubs,
StringRef NewName) {
SILModule &M = Orig->getModule();
Module *SM = M.getSwiftModule();
CanSILFunctionType FTy =
SILType::substFuncType(M, SM, InterfaceSubs,
Orig->getLoweredFunctionType(),
/*dropGenerics = */ true);
assert((Orig->isTransparent() || Orig->isBare() || Orig->getLocation())
&& "SILFunction missing location");
assert((Orig->isTransparent() || Orig->isBare() || Orig->getDebugScope())
&& "SILFunction missing DebugScope");
assert(!Orig->isGlobalInit() && "Global initializer cannot be cloned");
// Create a new empty function.
SILFunction *NewF =
SILFunction::create(M, getSpecializedLinkage(Orig->getLinkage()),
NewName, FTy, nullptr,
Orig->getLocation(), Orig->isBare(),
Orig->isTransparent(), 0,
Orig->getDebugScope(), Orig->getDeclContext());
NumSpecialized++;
return NewF;
}
SILFunction *getCloned() { return &getBuilder().getFunction(); }
/// The Swift module that the cloned function belongs to.
Module *SwiftMod;
/// The substitutions list for the specialization.
TypeSubstitutionMap &SubsMap;
/// The original function to specialize.
SILFunction *OrigFunc;
/// The ApplyInst that is the caller to the cloned function.
ApplyInst *CallerInst;
};
} // end anonymous namespace.
void TypeSubCloner::populateCloned() {
SILFunction *Cloned = getCloned();
SILModule &M = Cloned->getModule();
// Create arguments for the entry block.
SILBasicBlock *OrigEntryBB = OrigFunc->begin();
SILBasicBlock *ClonedEntryBB = new (M) SILBasicBlock(Cloned);
// Create the entry basic block with the function arguments.
auto I = OrigEntryBB->bbarg_begin(), E = OrigEntryBB->bbarg_end();
while (I != E) {
SILValue MappedValue =
new (M) SILArgument(remapType((*I)->getType()), ClonedEntryBB,
(*I)->getDecl());
ValueMap.insert(std::make_pair(*I, MappedValue));
++I;
}
getBuilder().setInsertionPoint(ClonedEntryBB);
BBMap.insert(std::make_pair(OrigEntryBB, ClonedEntryBB));
// Recursively visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions other than terminators.
visitSILBasicBlock(OrigEntryBB);
// Now iterate over the BBs and fix up the terminators.
for (auto BI = BBMap.begin(), BE = BBMap.end(); BI != BE; ++BI) {
getBuilder().setInsertionPoint(BI->second);
visit(BI->first->getTerminator());
}
}
/// Check if we can clone and remap types this function.
static bool canSpecializeFunction(SILFunction *F) {
return !F->isExternalDeclaration();
}
/// \brief return true if we can specialize the function type with a specific
/// substitution list without doing partial specialization.
static bool canSpecializeFunctionWithSubList(SILFunction *F,
TypeSubstitutionMap &SubsMap) {
CanSILFunctionType N =
SILType::substFuncType(F->getModule(), F->getModule().getSwiftModule(),
SubsMap, F->getLoweredFunctionType(),
/*dropGenerics = */ true);
return !hasUnboundGenericTypes(N);
}
namespace {
struct GenericSpecializer {
/// A list of ApplyInst instructions.
typedef SmallVector<ApplyInst *, 16> AIList;
/// The SIL Module.
SILModule *M;
/// Maps a function to all of the ApplyInst that call it.
llvm::MapVector<SILFunction *, AIList> ApplyInstMap;
/// A worklist of functions to specialize.
std::vector<SILFunction*> Worklist;
GenericSpecializer(SILModule *Mod) : M(Mod) {}
bool specializeApplyInstGroup(SILFunction *F, AIList &List);
/// Scan the function and collect all of the ApplyInst with generic
/// substitutions into buckets according to the called function.
void collectApplyInst(SILFunction &F);
/// The driver for the generic specialization pass.
bool specialize(const std::vector<SILFunction *> &BotUpFuncList) {
bool Changed = false;
for (auto &F : *M)
collectApplyInst(F);
// Initialize the worklist with a call-graph bottom-up list of functions.
// We specialize the functions in a top-down order, starting from the end
// of the list.
Worklist.insert(Worklist.begin(),
BotUpFuncList.begin(), BotUpFuncList.end());
while (Worklist.size()) {
SILFunction *F = Worklist.back();
Worklist.pop_back();
if (ApplyInstMap.count(F))
Changed |= specializeApplyInstGroup(F, ApplyInstMap[F]);
}
return Changed;
}
};
} // end anonymous namespace.
void GenericSpecializer::collectApplyInst(SILFunction &F) {
// Don't collect apply inst from transparent functions since we do not want to
// expose shared functions in the mandatory inliner. We will specialize the
// relevant callsites after we inline.
if (F.isTransparent())
return;
// Scan all of the instructions in this function in search of ApplyInsts.
for (auto &BB : F)
for (auto &I : BB) {
ApplyInst *AI = dyn_cast<ApplyInst>(&I);
if (!AI || !AI->hasSubstitutions())
continue;
SILValue CalleeVal = AI->getCallee();
FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(CalleeVal);
if (!FRI)
continue;
SILFunction *Callee = FRI->getReferencedFunction();
if (Callee->isExternalDeclaration())
if (!M->linkFunction(Callee, SILModule::LinkingMode::LinkAll))
continue;
// Save the ApplyInst into the function/bucket that it calls.
ApplyInstMap[Callee].push_back(AI);
}
}
static bool hasSameSubstitutions(ApplyInst *A, ApplyInst *B) {
if (A == B)
return true;
ArrayRef<swift::Substitution> SubsA = A->getSubstitutions();
ArrayRef<swift::Substitution> SubsB = B->getSubstitutions();
if (SubsA.size() != SubsB.size())
return false;
for (int i = 0, e = SubsA.size(); i != e; ++i)
if (SubsA[i] != SubsB[i])
return false;
return true;
}
void dumpTypeSubstitutionMap(const TypeSubstitutionMap &map) {
llvm::errs() << "{\n";
for (auto &kv : map) {
llvm::errs() << " ";
kv.first->print(llvm::errs());
llvm::errs() << " => ";
kv.second->print(llvm::errs());
llvm::errs() << "\n";
}
llvm::errs() << "}\n";
}
bool
GenericSpecializer::specializeApplyInstGroup(SILFunction *F, AIList &List) {
bool Changed = false;
// Make sure we can specialize this function.
if (!canSpecializeFunction(F))
return false;
DEBUG(llvm::dbgs() << "*** Processing: " << F->getName() << "\n");
SmallVector<AIList, 4> Buckets;
// Sort the incoming ApplyInst instructions into multiple buckets of AI with
// exactly the same substitution lists.
for (auto &AI : List) {
bool Placed = false;
DEBUG(llvm::dbgs() << "Function: " << AI->getFunction()->getName() << "; ApplyInst: " << *AI);
// Scan the existing buckets and search for a bucket of the right type.
for (int i = 0, e = Buckets.size(); i < e; ++i) {
assert(Buckets[i].size() && "Found an empty bucket!");
if (hasSameSubstitutions(Buckets[i][0], AI)) {
Buckets[i].push_back(AI);
Placed = true;
break;
}
}
// Continue if the AI is placed in a bucket.
if (Placed)
continue;
// Create a new bucket and place the AI.
Buckets.push_back(AIList());
Buckets[Buckets.size() - 1].push_back(AI);
}
// For each bucket of AI instructions of the same type.
for (auto &Bucket : Buckets) {
assert(Bucket.size() && "Empty bucket!");
DEBUG(llvm::dbgs() << " Bucket: \n");
DEBUG(for (auto *AI : Bucket) {
llvm::dbgs() << " ApplyInst: " << *AI;
});
// Create the substitution maps.
TypeSubstitutionMap InterfaceSubs
= F->getLoweredFunctionType()->getGenericSignature()
->getSubstitutionMap(Bucket[0]->getSubstitutions());
TypeSubstitutionMap ContextSubs
= F->getContextGenericParams()
->getSubstitutionMap(Bucket[0]->getSubstitutions());
if (!canSpecializeFunctionWithSubList(F, InterfaceSubs)) {
DEBUG(llvm::dbgs() << " Can not specialize with interface subs.\n");
continue;
}
llvm::SmallString<64> ClonedName;
{
llvm::raw_svector_ostream buffer(ClonedName);
buffer << "_TTS";
Mangle::Mangler mangle(buffer);
for (auto &Sub : Bucket[0]->getSubstitutions()) {
DEBUG(llvm::dbgs() << " Replacement Type: "; Sub.Replacement->getCanonicalType().dump());
mangle.mangleType(Sub.Replacement->getCanonicalType(),
ResilienceExpansion::Minimal, 0);
for (auto C : Sub.Conformance) {
if (!C)
goto null_conformances;
mangle.mangleProtocolConformance(C);
}
null_conformances:;
buffer << '_';
}
buffer << '_' << F->getName();
}
SILFunction *NewF;
bool createdFunction;
// If we already have this specialization, reuse it.
if (auto PrevF = M->lookUpFunction(ClonedName)) {
NewF = PrevF;
createdFunction = false;
} else {
// Create a new function.
NewF = TypeSubCloner::cloneFunction(F, InterfaceSubs, ContextSubs,
ClonedName, Bucket[0]);
createdFunction = true;
}
// Replace all of the AI functions with the new function.
for (auto &AI : Bucket)
replaceWithSpecializedFunction(AI, NewF);
Changed = true;
// Analyze the ApplyInsts in the new function.
if (createdFunction) {
collectApplyInst(*NewF);
Worklist.push_back(NewF);
}
}
return Changed;
}
namespace {
class SILGenericSpecializerTransform : public SILModuleTransform {
public:
SILGenericSpecializerTransform() {}
void run() {
CallGraphAnalysis* CGA = PM->getAnalysis<CallGraphAnalysis>();
// Collect a call-graph bottom-up list of functions and specialize the
// functions in reverse order.
bool Changed = GenericSpecializer(getModule()).
specialize(CGA->bottomUpCallGraphOrder());
if (Changed) {
// Schedule another iteration of the transformation pipe.
PM->scheduleAnotherIteration();
// Invalidate the call graph.
invalidateAnalysis(SILAnalysis::InvalidationKind::CallGraph);
}
}
StringRef getName() override { return "Generic Specialization"; }
};
} // end anonymous namespace
SILTransform *swift::createGenericSpecializer() {
return new SILGenericSpecializerTransform();
}