Files
swift-mirror/lib/SILGen/SILGenProlog.cpp
Slava Pestov d8b61ff24b Sema: Peel off typeCheckParameterList()'s specifier computation into a request
Since getSpecifier() now kicks off a request instead of always
returning what was previously set, we can't pass a ParamSpecifier
to the ParamDecl constructor anymore. Instead, callers either
call setSpecifier() if the ParamDecl is synthesized, or they
rely on the request, which can compute the specifier in three
specific cases:

- Ordinary parsed parameters get their specifier from the TypeRepr.

- The 'self' parameter's specifier is based on the self access kind.

- Accessor parameters are either the 'newValue' parameter of a
  setter, or a cloned subscript parameter.

For closure parameters with inferred types, we still end up
calling setSpecifier() twice, once to set the initial defalut
value and a second time when applying the solution in the
case that we inferred an 'inout' specifier. In practice this
should not be a big problem because expression type checking
walks the AST in a pre-determined order anyway.
2019-10-10 15:00:07 -04:00

550 lines
19 KiB
C++

//===--- SILGenProlog.cpp - Function prologue emission --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGenFunction.h"
#include "Initialization.h"
#include "ManagedValue.h"
#include "Scope.h"
#include "swift/SIL/SILArgument.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ParameterList.h"
using namespace swift;
using namespace Lowering;
SILValue SILGenFunction::emitSelfDecl(VarDecl *selfDecl) {
// Emit the implicit 'self' argument.
SILType selfType = getLoweredLoadableType(selfDecl->getType());
SILValue selfValue = F.begin()->createFunctionArgument(selfType, selfDecl);
VarLocs[selfDecl] = VarLoc::get(selfValue);
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
uint16_t ArgNo = 1; // Hardcoded for destructors.
B.createDebugValue(PrologueLoc, selfValue,
SILDebugVariable(selfDecl->isLet(), ArgNo));
return selfValue;
}
namespace {
/// Cleanup that writes back to an inout argument on function exit.
class CleanupWriteBackToInOut : public Cleanup {
VarDecl *var;
SILValue inoutAddr;
public:
CleanupWriteBackToInOut(VarDecl *var, SILValue inoutAddr)
: var(var), inoutAddr(inoutAddr) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
// Assign from the local variable to the inout address with an
// 'autogenerated' copyaddr.
l.markAutoGenerated();
SGF.B.createCopyAddr(l, SGF.VarLocs[var].value, inoutAddr,
IsNotTake, IsNotInitialization);
}
};
} // end anonymous namespace
namespace {
class StrongReleaseCleanup : public Cleanup {
SILValue box;
public:
StrongReleaseCleanup(SILValue box) : box(box) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
SGF.B.emitDestroyValueOperation(l, box);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "DeallocateValueBuffer\n"
<< "State: " << getState() << "box: " << box << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
/*RetTy*/ ManagedValue>
{
public:
SILGenFunction &SGF;
SILBasicBlock *parent;
SILLocation loc;
ArrayRef<SILParameterInfo> &parameters;
EmitBBArguments(SILGenFunction &sgf, SILBasicBlock *parent, SILLocation l,
ArrayRef<SILParameterInfo> &parameters)
: SGF(sgf), parent(parent), loc(l), parameters(parameters) {}
ManagedValue visitType(CanType t) {
return visitType(t, /*isInOut=*/false);
}
ManagedValue visitType(CanType t, bool isInOut) {
// The calling convention always uses minimal resilience expansion.
auto argType =
SGF.SGM.Types.getLoweredType(t, ResilienceExpansion::Minimal);
if (isInOut)
argType = SILType::getPrimitiveAddressType(argType.getASTType());
// Pop the next parameter info.
auto parameterInfo = parameters.front();
parameters = parameters.slice(1);
auto paramType = SGF.F.mapTypeIntoContext(SGF.getSILType(parameterInfo));
ManagedValue mv = SGF.B.createInputFunctionArgument(
paramType, loc.getAsASTNode<ValueDecl>());
if (argType != paramType) {
// This is a hack to deal with the fact that Self.Type comes in as a
// static metatype, but we have to downcast it to a dynamic Self
// metatype to get the right semantics.
assert(
cast<DynamicSelfType>(
argType.castTo<MetatypeType>().getInstanceType())
.getSelfType()
== paramType.castTo<MetatypeType>().getInstanceType());
mv = SGF.B.createUncheckedBitCast(loc, mv, argType);
}
if (isInOut)
return mv;
// This can happen if the value is resilient in the calling convention
// but not resilient locally.
if (argType.isLoadable(SGF.F) && argType.isAddress()) {
if (mv.isPlusOne(SGF))
mv = SGF.B.createLoadTake(loc, mv);
else
mv = SGF.B.createLoadBorrow(loc, mv);
}
// If the value is a (possibly optional) ObjC block passed into the entry
// point of the function, then copy it so we can treat the value reliably
// as a heap object. Escape analysis can eliminate this copy if it's
// unneeded during optimization.
CanType objectType = t;
if (auto theObjTy = t.getOptionalObjectType())
objectType = theObjTy;
if (isa<FunctionType>(objectType) &&
cast<FunctionType>(objectType)->getRepresentation()
== FunctionType::Representation::Block) {
SILValue blockCopy = SGF.B.createCopyBlock(loc, mv.getValue());
mv = SGF.emitManagedRValueWithCleanup(blockCopy);
}
return mv;
}
ManagedValue visitTupleType(CanTupleType t) {
SmallVector<ManagedValue, 4> elements;
auto &tl = SGF.SGM.Types.getTypeLowering(t, ResilienceExpansion::Minimal);
bool canBeGuaranteed = tl.isLoadable();
// Collect the exploded elements.
for (auto fieldType : t.getElementTypes()) {
auto elt = visit(fieldType);
// If we can't borrow one of the elements as a guaranteed parameter, then
// we have to +1 the tuple.
if (elt.hasCleanup())
canBeGuaranteed = false;
elements.push_back(elt);
}
if (tl.isLoadable() || !SGF.silConv.useLoweredAddresses()) {
SmallVector<SILValue, 4> elementValues;
if (canBeGuaranteed) {
// If all of the elements were guaranteed, we can form a guaranteed tuple.
for (auto element : elements)
elementValues.push_back(element.getUnmanagedValue());
} else {
// Otherwise, we need to move or copy values into a +1 tuple.
for (auto element : elements) {
SILValue value = element.hasCleanup()
? element.forward(SGF)
: element.copyUnmanaged(SGF, loc).forward(SGF);
elementValues.push_back(value);
}
}
auto tupleValue = SGF.B.createTuple(loc, tl.getLoweredType(),
elementValues);
return canBeGuaranteed
? ManagedValue::forUnmanaged(tupleValue)
: SGF.emitManagedRValueWithCleanup(tupleValue);
} else {
// If the type is address-only, we need to move or copy the elements into
// a tuple in memory.
// TODO: It would be a bit more efficient to use a preallocated buffer
// in this case.
auto buffer = SGF.emitTemporaryAllocation(loc, tl.getLoweredType());
for (auto i : indices(elements)) {
auto element = elements[i];
auto elementBuffer = SGF.B.createTupleElementAddr(loc, buffer,
i, element.getType().getAddressType());
if (element.hasCleanup())
element.forwardInto(SGF, loc, elementBuffer);
else
element.copyInto(SGF, loc, elementBuffer);
}
return SGF.emitManagedRValueWithCleanup(buffer);
}
}
};
} // end anonymous namespace
namespace {
/// A helper for creating SILArguments and binding variables to the argument
/// names.
struct ArgumentInitHelper {
SILGenFunction &SGF;
SILFunction &f;
SILGenBuilder &initB;
/// An ArrayRef that we use in our SILParameterList queue. Parameters are
/// sliced off of the front as they're emitted.
ArrayRef<SILParameterInfo> parameters;
uint16_t ArgNo = 0;
ArgumentInitHelper(SILGenFunction &SGF, SILFunction &f)
: SGF(SGF), f(f), initB(SGF.B),
parameters(f.getLoweredFunctionType()->getParameters()) {
}
unsigned getNumArgs() const { return ArgNo; }
ManagedValue makeArgument(Type ty, bool isInOut, SILBasicBlock *parent,
SILLocation l) {
assert(ty && "no type?!");
// Create an RValue by emitting destructured arguments into a basic block.
CanType canTy = ty->getCanonicalType();
EmitBBArguments argEmitter(SGF, parent, l, parameters);
// Note: inouts of tuples are not exploded, so we bypass visit().
if (isInOut)
return argEmitter.visitType(canTy, /*isInOut=*/true);
return argEmitter.visit(canTy);
}
/// Create a SILArgument and store its value into the given Initialization,
/// if not null.
void makeArgumentIntoBinding(Type ty, SILBasicBlock *parent, ParamDecl *pd) {
SILLocation loc(pd);
loc.markAsPrologue();
ManagedValue argrv = makeArgument(ty, pd->isInOut(), parent, loc);
if (pd->isInOut()) {
assert(argrv.getType().isAddress() && "expected inout to be address");
} else {
assert(pd->isImmutable() && "expected parameter to be immutable!");
// If the variable is immutable, we can bind the value as is.
// Leave the cleanup on the argument, if any, in place to consume the
// argument if we're responsible for it.
}
SGF.VarLocs[pd] = SILGenFunction::VarLoc::get(argrv.getValue());
SILValue value = argrv.getValue();
SILDebugVariable varinfo(pd->isImmutable(), ArgNo);
if (!argrv.getType().isAddress()) {
SGF.B.createDebugValue(loc, value, varinfo);
} else {
if (auto AllocStack = dyn_cast<AllocStackInst>(value))
AllocStack->setArgNo(ArgNo);
else
SGF.B.createDebugValueAddr(loc, value, varinfo);
}
}
void emitParam(ParamDecl *PD) {
auto type = PD->getType();
assert(type->isMaterializable());
++ArgNo;
if (PD->hasName()) {
makeArgumentIntoBinding(type, &*f.begin(), PD);
return;
}
emitAnonymousParam(type, PD, PD);
}
void emitAnonymousParam(Type type, SILLocation paramLoc, ParamDecl *PD) {
// A value bound to _ is unused and can be immediately released.
Scope discardScope(SGF.Cleanups, CleanupLocation(PD));
// Manage the parameter.
auto argrv = makeArgument(type, PD->isInOut(), &*f.begin(), paramLoc);
// Emit debug information for the argument.
SILLocation loc(PD);
loc.markAsPrologue();
if (argrv.getType().isAddress())
SGF.B.createDebugValueAddr(loc, argrv.getValue(),
SILDebugVariable(PD->isLet(), ArgNo));
else
SGF.B.createDebugValue(loc, argrv.getValue(),
SILDebugVariable(PD->isLet(), ArgNo));
}
};
} // end anonymous namespace
static void makeArgument(Type ty, ParamDecl *decl,
SmallVectorImpl<SILValue> &args, SILGenFunction &SGF) {
assert(ty && "no type?!");
// Destructure tuple value arguments.
if (TupleType *tupleTy = decl->isInOut() ? nullptr : ty->getAs<TupleType>()) {
for (auto fieldType : tupleTy->getElementTypes())
makeArgument(fieldType, decl, args, SGF);
} else {
auto loweredTy = SGF.SGM.Types.getLoweredType(ty,
ResilienceExpansion::Minimal);
if (decl->isInOut())
loweredTy = SILType::getPrimitiveAddressType(loweredTy.getASTType());
auto arg = SGF.F.begin()->createFunctionArgument(loweredTy, decl);
args.push_back(arg);
}
}
void SILGenFunction::bindParameterForForwarding(ParamDecl *param,
SmallVectorImpl<SILValue> &parameters) {
makeArgument(param->getType(), param, parameters, *this);
}
void SILGenFunction::bindParametersForForwarding(const ParameterList *params,
SmallVectorImpl<SILValue> &parameters) {
for (auto param : *params)
bindParameterForForwarding(param, parameters);
}
static void emitCaptureArguments(SILGenFunction &SGF,
GenericSignature origGenericSig,
CapturedValue capture,
uint16_t ArgNo) {
auto *VD = cast<VarDecl>(capture.getDecl());
SILLocation Loc(VD);
Loc.markAsPrologue();
// Local function to get the captured variable type within the capturing
// context.
auto getVarTypeInCaptureContext = [&]() -> Type {
auto interfaceType = VD->getInterfaceType()->getCanonicalType(
origGenericSig);
return SGF.F.mapTypeIntoContext(interfaceType);
};
auto expansion = SGF.F.getResilienceExpansion();
switch (SGF.SGM.Types.getDeclCaptureKind(capture, expansion)) {
case CaptureKind::Constant: {
auto type = getVarTypeInCaptureContext();
auto &lowering = SGF.getTypeLowering(type);
// Constant decls are captured by value.
SILType ty = lowering.getLoweredType();
SILValue val = SGF.F.begin()->createFunctionArgument(ty, VD);
bool NeedToDestroyValueAtExit = false;
// If the original variable was settable, then Sema will have treated the
// VarDecl as an lvalue, even in the closure's use. As such, we need to
// allow formation of the address for this captured value. Create a
// temporary within the closure to provide this address.
if (VD->isSettable(VD->getDeclContext())) {
auto addr = SGF.emitTemporaryAllocation(VD, ty);
// We have created a copy that needs to be destroyed.
val = SGF.B.emitCopyValueOperation(Loc, val);
NeedToDestroyValueAtExit = true;
lowering.emitStore(SGF.B, VD, val, addr, StoreOwnershipQualifier::Init);
val = addr;
}
SGF.VarLocs[VD] = SILGenFunction::VarLoc::get(val);
if (auto *AllocStack = dyn_cast<AllocStackInst>(val))
AllocStack->setArgNo(ArgNo);
else {
SILDebugVariable DbgVar(/*Constant*/ true, ArgNo);
SGF.B.createDebugValue(Loc, val, DbgVar);
}
// TODO: Closure contexts should always be guaranteed.
if (NeedToDestroyValueAtExit && !lowering.isTrivial())
SGF.enterDestroyCleanup(val);
break;
}
case CaptureKind::Box: {
// LValues are captured as a retained @box that owns
// the captured value.
auto type = getVarTypeInCaptureContext();
auto boxTy = SGF.SGM.Types.getContextBoxTypeForCapture(VD,
SGF.SGM.Types.getLoweredRValueType(type),
SGF.F.getGenericEnvironment(), /*mutable*/ true);
SILValue box = SGF.F.begin()->createFunctionArgument(
SILType::getPrimitiveObjectType(boxTy), VD);
SILValue addr = SGF.B.createProjectBox(VD, box, 0);
SGF.VarLocs[VD] = SILGenFunction::VarLoc::get(addr, box);
SILDebugVariable DbgVar(/*Constant*/ false, ArgNo);
SGF.B.createDebugValueAddr(Loc, addr, DbgVar);
break;
}
case CaptureKind::StorageAddress: {
// Non-escaping stored decls are captured as the address of the value.
auto type = getVarTypeInCaptureContext();
SILType ty = SGF.getLoweredType(type).getAddressType();
SILValue addr = SGF.F.begin()->createFunctionArgument(ty, VD);
SGF.VarLocs[VD] = SILGenFunction::VarLoc::get(addr);
SILDebugVariable DbgVar(/*Constant*/ true, ArgNo);
SGF.B.createDebugValueAddr(Loc, addr, DbgVar);
break;
}
}
}
void SILGenFunction::emitProlog(const CaptureInfo &captureInfo,
ParameterList *paramList,
ParamDecl *selfParam,
DeclContext *DC,
Type resultType,
bool throws,
SourceLoc throwsLoc) {
uint16_t ArgNo = emitProlog(paramList, selfParam, resultType,
DC, throws, throwsLoc);
// Emit an unreachable instruction if a parameter type is
// uninhabited
if (paramList) {
for (auto *param : *paramList) {
if (param->getType()->isStructurallyUninhabited()) {
SILLocation unreachableLoc(param);
unreachableLoc.markAsPrologue();
B.createUnreachable(unreachableLoc);
break;
}
}
}
// Emit the capture argument variables. These are placed last because they
// become the first curry level of the SIL function.
for (auto capture : captureInfo.getCaptures()) {
if (capture.isDynamicSelfMetadata()) {
auto selfMetatype = MetatypeType::get(
captureInfo.getDynamicSelfType());
SILType ty = getLoweredType(selfMetatype);
SILValue val = F.begin()->createFunctionArgument(ty);
(void) val;
continue;
}
if (capture.isOpaqueValue()) {
OpaqueValueExpr *opaqueValue = capture.getOpaqueValue();
Type type = opaqueValue->getType()->mapTypeOutOfContext();
type = F.mapTypeIntoContext(type);
auto &lowering = getTypeLowering(type);
SILType ty = lowering.getLoweredType();
SILValue val = F.begin()->createFunctionArgument(ty);
OpaqueValues[opaqueValue] = ManagedValue::forUnmanaged(val);
// Opaque values are always passed 'owned', so add a clean up if needed.
if (!lowering.isTrivial())
enterDestroyCleanup(val);
continue;
}
emitCaptureArguments(*this, DC->getGenericSignatureOfContext(),
capture, ++ArgNo);
}
}
static void emitIndirectResultParameters(SILGenFunction &SGF, Type resultType,
DeclContext *DC) {
// Expand tuples.
if (auto tupleType = resultType->getAs<TupleType>()) {
for (auto eltType : tupleType->getElementTypes()) {
emitIndirectResultParameters(SGF, eltType, DC);
}
return;
}
// If the return type is address-only, emit the indirect return argument.
// The calling convention always uses minimal resilience expansion.
auto &resultTI =
SGF.SGM.Types.getTypeLowering(DC->mapTypeIntoContext(resultType),
ResilienceExpansion::Minimal);
if (!SILModuleConventions::isReturnedIndirectlyInSIL(
resultTI.getLoweredType(), SGF.SGM.M)) {
return;
}
auto &ctx = SGF.getASTContext();
auto var = new (ctx) ParamDecl(SourceLoc(), SourceLoc(),
ctx.getIdentifier("$return_value"), SourceLoc(),
ctx.getIdentifier("$return_value"),
DC);
var->setSpecifier(ParamSpecifier::InOut);
var->setInterfaceType(resultType);
auto *arg =
SGF.F.begin()->createFunctionArgument(resultTI.getLoweredType(), var);
(void)arg;
}
uint16_t SILGenFunction::emitProlog(ParameterList *paramList,
ParamDecl *selfParam,
Type resultType,
DeclContext *DC,
bool throws,
SourceLoc throwsLoc) {
// Create the indirect result parameters.
auto genericSig = DC->getGenericSignatureOfContext();
resultType = resultType->getCanonicalType(genericSig);
emitIndirectResultParameters(*this, resultType, DC);
// Emit the argument variables in calling convention order.
ArgumentInitHelper emitter(*this, F);
// Add the SILArguments and use them to initialize the local argument
// values.
if (paramList)
for (auto *param : *paramList)
emitter.emitParam(param);
if (selfParam)
emitter.emitParam(selfParam);
// Record the ArgNo of the artificial $error inout argument.
unsigned ArgNo = emitter.getNumArgs();
if (throws) {
auto NativeErrorTy = SILType::getExceptionType(getASTContext());
ManagedValue Undef = emitUndef(NativeErrorTy);
SILDebugVariable DbgVar("$error", /*Constant*/ false, ++ArgNo);
RegularLocation loc = RegularLocation::getAutoGeneratedLocation();
if (throwsLoc.isValid())
loc = throwsLoc;
B.createDebugValue(loc, Undef.getValue(), DbgVar);
}
return ArgNo;
}