Files
swift-mirror/lib/AST/ASTWalker.cpp
Hamish Knight d915202cfd [AST] Allow configurable lazy initializer walking
Allow ASTWalker subclasses to specify whether
they want to visit lazy variable initializers as
part of the pattern binding, getter body, or not
at all.
2022-08-19 14:03:39 +01:00

1992 lines
50 KiB
C++

//===--- ASTWalker.cpp - AST Traversal ------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements a recursive traversal of every node in an AST.
//
// It's important to update this traversal whenever the AST is
// changed, whether by adding a new node class or adding a new child
// to an existing node. Many walker implementations rely on being
// invoked with every node in the AST.
//
// Please follow these general rules when implementing traversal for
// a node:
//
// - Every node should be walked. If a node has both syntactic and
// semantic components, you should make sure you visit every node
// in both.
//
// - Nodes should only be walked once. So if a node has both
// syntactic and semantic components, but the type-checker builds
// the semantic components directly on top of the syntactic
// components, walking the semantic components will be sufficient
// to visit all the nodes in both.
//
// - Explicitly-written nodes should be walked in left-to-right
// syntactic order. The ordering of implicit nodes isn't
// particularly important.
//
// Note that semantic components will generally preserve the
// syntactic order of their children because doing something else
// could illegally change order of evaluation. This is why, for
// example, shuffling a TupleExpr creates a DestructureTupleExpr
// instead of just making a new TupleExpr with the elements in
// different order.
//
// - Sub-expressions and sub-statements should be replaceable.
// It's reasonable to expect that the replacement won't be
// completely unrelated to the original, but try to avoid making
// assumptions about the exact representation type. For example,
// assuming that a child expression is literally a TupleExpr may
// only be a reasonable assumption in an unchecked parse tree.
//
// - Avoid relying on the AST being type-checked or even
// well-formed during traversal.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/GenericParamList.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrettyStackTrace.h"
using namespace swift;
void ASTWalker::anchor() {}
namespace {
/// Traversal - This class implements a simple expression/statement
/// recursive traverser which queries a user-provided walker class
/// on every node in an AST.
class Traversal : public ASTVisitor<Traversal, Expr*, Stmt*,
/*Decl*/ bool,
Pattern *, /*TypeRepr*/ bool>
{
friend class ASTVisitor<Traversal, Expr*, Stmt*, bool, Pattern*, bool>;
typedef ASTVisitor<Traversal, Expr*, Stmt*, bool, Pattern*, bool> inherited;
ASTWalker &Walker;
/// RAII object that sets the parent of the walk context
/// appropriately.
class SetParentRAII {
ASTWalker &Walker;
decltype(ASTWalker::Parent) PriorParent;
public:
template<typename T>
SetParentRAII(ASTWalker &walker, T *newParent)
: Walker(walker), PriorParent(walker.Parent) {
walker.Parent = newParent;
}
~SetParentRAII() {
Walker.Parent = PriorParent;
}
};
Expr *visit(Expr *E) {
SetParentRAII SetParent(Walker, E);
return inherited::visit(E);
}
Stmt *visit(Stmt *S) {
SetParentRAII SetParent(Walker, S);
return inherited::visit(S);
}
Pattern *visit(Pattern *P) {
SetParentRAII SetParent(Walker, P);
return inherited::visit(P);
}
bool visit(Decl *D) {
SetParentRAII SetParent(Walker, D);
return inherited::visit(D);
}
bool visit(TypeRepr *T) {
SetParentRAII SetParent(Walker, T);
return inherited::visit(T);
}
bool visit(ParameterList *PL) {
return inherited::visit(PL);
}
//===--------------------------------------------------------------------===//
// Decls
//===--------------------------------------------------------------------===//
bool visitGenericParamListIfNeeded(GenericContext *GC) {
// Must check this first in case extensions have not been bound yet
if (Walker.shouldWalkIntoGenericParams()) {
if (auto *params = GC->getParsedGenericParams()) {
doIt(params);
}
return true;
}
return false;
}
bool visitTrailingRequirements(GenericContext *GC) {
if (const auto Where = GC->getTrailingWhereClause()) {
for (auto &Req: Where->getRequirements())
if (doIt(Req))
return true;
}
return false;
}
bool visitImportDecl(ImportDecl *ID) {
return false;
}
bool visitExtensionDecl(ExtensionDecl *ED) {
if (auto *typeRepr = ED->getExtendedTypeRepr())
if (doIt(typeRepr))
return true;
for (auto &Inherit : ED->getInherited()) {
if (auto *const TyR = Inherit.getTypeRepr())
if (doIt(TyR))
return true;
}
if (visitTrailingRequirements(ED))
return true;
for (Decl *M : ED->getMembers()) {
if (doIt(M))
return true;
if (Walker.shouldWalkAccessorsTheOldWay()) {
// Pretend that accessors share a parent with the storage.
//
// FIXME: Update existing ASTWalkers to deal with accessors appearing as
// children of the storage instead.
if (auto *ASD = dyn_cast<AbstractStorageDecl>(M)) {
for (auto AD : ASD->getAllAccessors()) {
if (doIt(AD))
return true;
}
}
}
}
return false;
}
bool visitPatternBindingDecl(PatternBindingDecl *PBD) {
bool isPropertyWrapperBackingProperty = false;
if (auto singleVar = PBD->getSingleVar()) {
isPropertyWrapperBackingProperty =
singleVar->getOriginalWrappedProperty() != nullptr;
}
for (auto idx : range(PBD->getNumPatternEntries())) {
if (Pattern *Pat = doIt(PBD->getPattern(idx)))
PBD->setPattern(idx, Pat, PBD->getInitContext(idx));
else
return true;
if (!PBD->getInit(idx) || isPropertyWrapperBackingProperty)
continue;
if (PBD->isInitializerSubsumed(idx) &&
Walker.getLazyInitializerWalkingBehavior() !=
LazyInitializerWalking::InPatternBinding) {
break;
}
#ifndef NDEBUG
PrettyStackTraceDecl debugStack("walking into initializer for", PBD);
#endif
if (Expr *E2 = doIt(PBD->getInit(idx)))
PBD->setInit(idx, E2);
else
return true;
}
return false;
}
bool visitEnumCaseDecl(EnumCaseDecl *ECD) {
// We'll visit the EnumElementDecls separately.
return false;
}
bool visitTopLevelCodeDecl(TopLevelCodeDecl *TLCD) {
if (BraceStmt *S = cast_or_null<BraceStmt>(doIt(TLCD->getBody()))) {
TLCD->setBody(S);
return false;
}
return true;
}
bool visitIfConfigDecl(IfConfigDecl *ICD) {
// By default, just visit the elements that are actually
// injected into the enclosing context.
return false;
}
bool visitPoundDiagnosticDecl(PoundDiagnosticDecl *PDD) {
// By default, ignore #error/#warning.
return false;
}
bool visitOperatorDecl(OperatorDecl *OD) {
return false;
}
bool visitPrecedenceGroupDecl(PrecedenceGroupDecl *PGD) {
return false;
}
bool visitTypeAliasDecl(TypeAliasDecl *TAD) {
bool WalkGenerics = visitGenericParamListIfNeeded(TAD);
if (auto typerepr = TAD->getUnderlyingTypeRepr())
if (doIt(typerepr))
return true;
return WalkGenerics && visitTrailingRequirements(TAD);
}
bool visitOpaqueTypeDecl(OpaqueTypeDecl *OTD) {
if (Walker.shouldWalkIntoGenericParams() && OTD->getGenericParams()) {
if (doIt(OTD->getGenericParams()))
return true;
}
return false;
}
bool visitAbstractTypeParamDecl(AbstractTypeParamDecl *TPD) {
for (const auto &Inherit: TPD->getInherited()) {
if (auto *const TyR = Inherit.getTypeRepr())
if (doIt(TyR))
return true;
}
if (const auto ATD = dyn_cast<AssociatedTypeDecl>(TPD)) {
if (const auto DefaultTy = ATD->getDefaultDefinitionTypeRepr())
if (doIt(DefaultTy))
return true;
if (auto *WhereClause = ATD->getTrailingWhereClause()) {
for (auto &Req: WhereClause->getRequirements()) {
if (doIt(Req))
return true;
}
}
}
return false;
}
bool visitNominalTypeDecl(NominalTypeDecl *NTD) {
#ifndef NDEBUG
PrettyStackTraceDecl debugStack("walking into", NTD);
#endif
bool WalkGenerics = visitGenericParamListIfNeeded(NTD);
for (const auto &Inherit : NTD->getInherited()) {
if (auto *const TyR = Inherit.getTypeRepr())
if (doIt(Inherit.getTypeRepr()))
return true;
}
// Visit requirements
if (WalkGenerics && visitTrailingRequirements(NTD))
return true;
for (Decl *Member : NTD->getMembers()) {
if (doIt(Member))
return true;
if (Walker.shouldWalkAccessorsTheOldWay()) {
// Pretend that accessors share a parent with the storage.
//
// FIXME: Update existing ASTWalkers to deal with accessors appearing as
// children of the storage instead.
if (auto *ASD = dyn_cast<AbstractStorageDecl>(Member)) {
for (auto AD : ASD->getAllAccessors()) {
if (doIt(AD))
return true;
}
}
}
}
return false;
}
bool visitModuleDecl(ModuleDecl *MD) {
// TODO: should we recurse within the module?
return false;
}
bool visitVarDecl(VarDecl *VD) {
if (!Walker.shouldWalkAccessorsTheOldWay()) {
for (auto *AD : VD->getAllAccessors())
if (doIt(AD))
return true;
}
return false;
}
bool visitParamDecl(ParamDecl *P) {
// Don't walk into the type if the decl is implicit, or if the type is
// implicit.
if (!P->isImplicit()) {
if (auto *repr = P->getTypeRepr()) {
if (doIt(repr)) {
return true;
}
}
}
if (auto *E = P->getStructuralDefaultExpr()) {
auto res = doIt(E);
if (!res) return true;
P->setDefaultExpr(res, /*isTypeChecked*/ (bool)res->getType());
}
if (!Walker.shouldWalkAccessorsTheOldWay()) {
for (auto *AD : P->getAllAccessors())
if (doIt(AD))
return true;
}
return false;
}
bool visitSubscriptDecl(SubscriptDecl *SD) {
bool WalkGenerics = visitGenericParamListIfNeeded(SD);
visit(SD->getIndices());
if (auto *const TyR = SD->getElementTypeRepr())
if (doIt(TyR))
return true;
// Visit trailing requirements
if (WalkGenerics && visitTrailingRequirements(SD))
return true;
if (!Walker.shouldWalkAccessorsTheOldWay()) {
for (auto *AD : SD->getAllAccessors())
if (doIt(AD))
return true;
}
return false;
}
bool visitMissingMemberDecl(MissingMemberDecl *MMD) {
return false;
}
bool visitAbstractFunctionDecl(AbstractFunctionDecl *AFD) {
#ifndef NDEBUG
PrettyStackTraceDecl debugStack("walking into body of", AFD);
#endif
bool WalkGenerics =
// accessor generics are visited from the storage decl
!isa<AccessorDecl>(AFD) && visitGenericParamListIfNeeded(AFD);
if (auto *PD = AFD->getImplicitSelfDecl(/*createIfNeeded=*/false))
visit(PD);
visit(AFD->getParameters());
if (auto *FD = dyn_cast<FuncDecl>(AFD)) {
if (!isa<AccessorDecl>(FD))
if (auto *const TyR = FD->getResultTypeRepr())
if (doIt(TyR))
return true;
}
// Visit trailing requirements
if (WalkGenerics && visitTrailingRequirements(AFD))
return true;
if (AFD->getBody(/*canSynthesize=*/false)) {
AbstractFunctionDecl::BodyKind PreservedKind = AFD->getBodyKind();
if (BraceStmt *S = cast_or_null<BraceStmt>(doIt(AFD->getBody())))
AFD->setBody(S, PreservedKind);
else
return true;
}
if (auto ctor = dyn_cast<ConstructorDecl>(AFD)) {
if (auto superInit = ctor->getSuperInitCall()) {
if ((superInit = doIt(superInit)))
ctor->setSuperInitCall(superInit);
else
return true;
}
}
return false;
}
bool visitEnumElementDecl(EnumElementDecl *ED) {
if (auto *PL = ED->getParameterList()) {
visit(PL);
}
if (auto *rawLiteralExpr = ED->getRawValueUnchecked()) {
if (Expr *newRawExpr = doIt(rawLiteralExpr)) {
auto *newLiteralRawExpr = cast<LiteralExpr>(newRawExpr);
ED->setRawValueExpr(newLiteralRawExpr);
} else {
return true;
}
}
return false;
}
//===--------------------------------------------------------------------===//
// Exprs
//===--------------------------------------------------------------------===//
// A macro for handling the "semantic expressions" that are common
// on sugared expression nodes like string interpolation. The
// semantic expression is set up by type-checking to include all the
// other children as sub-expressions, so if it exists, we should
// just bypass the rest of the visitation.
#define HANDLE_SEMANTIC_EXPR(NODE) \
do { \
if (Expr *_semanticExpr = NODE->getSemanticExpr()) { \
if ((_semanticExpr = doIt(_semanticExpr))) { \
NODE->setSemanticExpr(_semanticExpr); \
} else { \
return nullptr; \
} \
return NODE; \
} \
} while (false)
Expr *visitErrorExpr(ErrorExpr *E) { return E; }
Expr *visitCodeCompletionExpr(CodeCompletionExpr *E) {
if (Expr *baseExpr = E->getBase()) {
Expr *newBaseExpr = doIt(baseExpr);
if (!newBaseExpr)
return nullptr;
E->setBase(newBaseExpr);
}
return E;
}
Expr *visitLiteralExpr(LiteralExpr *E) { return E; }
Expr *visitDiscardAssignmentExpr(DiscardAssignmentExpr *E) { return E; }
Expr *visitTypeExpr(TypeExpr *E) {
if (!E->isImplicit())
if (auto *typerepr = E->getTypeRepr())
if (doIt(typerepr))
return nullptr;
return E;
}
Expr *visitSuperRefExpr(SuperRefExpr *E) { return E; }
Expr *visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *E) {
return E;
}
Expr *visitOverloadedDeclRefExpr(OverloadedDeclRefExpr *E) { return E; }
Expr *visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) { return E; }
Expr *visitUnresolvedMemberExpr(UnresolvedMemberExpr *E) { return E; }
Expr *visitOpaqueValueExpr(OpaqueValueExpr *E) { return E; }
Expr *visitPropertyWrapperValuePlaceholderExpr(
PropertyWrapperValuePlaceholderExpr *E) {
if (E->getOpaqueValuePlaceholder()) {
if (auto *placeholder = doIt(E->getOpaqueValuePlaceholder()))
E->setOpaqueValuePlaceholder(dyn_cast<OpaqueValueExpr>(placeholder));
else
return nullptr;
}
if (Walker.shouldWalkIntoPropertyWrapperPlaceholderValue()) {
if (E->getOriginalWrappedValue()) {
if (auto *newValue = doIt(E->getOriginalWrappedValue()))
E->setOriginalWrappedValue(newValue);
else
return nullptr;
}
}
return E;
}
Expr *visitAppliedPropertyWrapperExpr(AppliedPropertyWrapperExpr *E) {
if (auto *newValue = doIt(E->getValue())) {
E->setValue(newValue);
} else {
return nullptr;
}
return E;
}
Expr *visitDefaultArgumentExpr(DefaultArgumentExpr *E) { return E; }
Expr *visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E) {
if (auto oldAppendingExpr = E->getAppendingExpr()) {
if (auto appendingExpr = doIt(oldAppendingExpr))
E->setAppendingExpr(dyn_cast<TapExpr>(appendingExpr));
else
return nullptr;
}
return E;
}
Expr *visitObjectLiteralExpr(ObjectLiteralExpr *E) {
if (auto *args = doIt(E->getArgs())) {
E->setArgs(args);
} else {
return nullptr;
}
return E;
}
Expr *visitCollectionExpr(CollectionExpr *E) {
for (auto &elt : E->getElements())
if (Expr *Sub = doIt(elt))
elt = Sub;
else
return nullptr;
return E;
}
Expr *visitDeclRefExpr(DeclRefExpr *E) {
return E;
}
Expr *visitMemberRefExpr(MemberRefExpr *E) {
if (Expr *Base = doIt(E->getBase())) {
E->setBase(Base);
return E;
}
return nullptr;
}
Expr *visitDynamicMemberRefExpr(DynamicMemberRefExpr *E) {
if (Expr *Base = doIt(E->getBase())) {
E->setBase(Base);
return E;
}
return nullptr;
}
Expr *visitAnyTryExpr(AnyTryExpr *E) {
if (Expr *subExpr = doIt(E->getSubExpr())) {
E->setSubExpr(subExpr);
return E;
}
return nullptr;
}
Expr *visitIdentityExpr(IdentityExpr *E) {
if (Expr *subExpr = doIt(E->getSubExpr())) {
E->setSubExpr(subExpr);
return E;
}
return nullptr;
}
Expr *visitTupleExpr(TupleExpr *E) {
for (unsigned i = 0, e = E->getNumElements(); i != e; ++i)
if (E->getElement(i)) {
if (Expr *Elt = doIt(E->getElement(i)))
E->setElement(i, Elt);
else
return nullptr;
}
return E;
}
Expr *visitPackExpr(PackExpr *E) {
for (unsigned i = 0, e = E->getNumElements(); i != e; ++i)
if (E->getElement(i)) {
if (Expr *Elt = doIt(E->getElement(i)))
E->setElement(i, Elt);
else
return nullptr;
}
return E;
}
Expr *visitSubscriptExpr(SubscriptExpr *E) {
if (Expr *Base = doIt(E->getBase()))
E->setBase(Base);
else
return nullptr;
if (auto *args = doIt(E->getArgs())) {
E->setArgs(args);
} else {
return nullptr;
}
return E;
}
Expr *visitKeyPathApplicationExpr(KeyPathApplicationExpr *E) {
if (Expr *Base = doIt(E->getBase()))
E->setBase(Base);
else
return nullptr;
if (Expr *KeyPath = doIt(E->getKeyPath()))
E->setKeyPath(KeyPath);
else
return nullptr;
return E;
}
Expr *visitDynamicSubscriptExpr(DynamicSubscriptExpr *E) {
if (Expr *Base = doIt(E->getBase()))
E->setBase(Base);
else
return nullptr;
if (auto *args = doIt(E->getArgs())) {
E->setArgs(args);
} else {
return nullptr;
}
return E;
}
Expr *visitUnresolvedDotExpr(UnresolvedDotExpr *E) {
if (!E->getBase())
return E;
if (Expr *E2 = doIt(E->getBase())) {
E->setBase(E2);
return E;
}
return nullptr;
}
Expr *visitUnresolvedSpecializeExpr(UnresolvedSpecializeExpr *E) {
if (!E->getSubExpr())
return E;
if (Expr *Sub = doIt(E->getSubExpr()))
E->setSubExpr(Sub);
else
return nullptr;
for (auto &TyLoc : E->getUnresolvedParams()) {
if (doIt(TyLoc))
return nullptr;
}
return E;
}
Expr *visitTupleElementExpr(TupleElementExpr *E) {
if (Expr *E2 = doIt(E->getBase())) {
E->setBase(E2);
return E;
}
return nullptr;
}
Expr *visitImplicitConversionExpr(ImplicitConversionExpr *E) {
if (Expr *E2 = doIt(E->getSubExpr())) {
E->setSubExpr(E2);
return E;
}
return nullptr;
}
Expr *visitErasureExpr(ErasureExpr *E) {
if (Expr *E2 = doIt(E->getSubExpr())) {
E->setSubExpr(E2);
} else {
return nullptr;
}
for (unsigned i = 0; i < E->getArgumentConversions().size(); ++i) {
const auto &conv = E->getArgumentConversions()[i];
auto kConv = conv.Conversion;
if (!kConv) {
return nullptr;
} else if (Expr *E2 = doIt(kConv)) {
E->setArgumentConversion(i, {conv.OrigValue, E2});
} else {
return nullptr;
}
}
return E;
}
Expr *visitCollectionUpcastConversionExpr(CollectionUpcastConversionExpr *E) {
if (Expr *E2 = doIt(E->getSubExpr())) {
E->setSubExpr(E2);
} else {
return nullptr;
}
if (auto &keyConv = E->getKeyConversion()) {
auto kConv = keyConv.Conversion;
if (!kConv) {
return nullptr;
} else if (Expr *E2 = doIt(kConv)) {
E->setKeyConversion({keyConv.OrigValue, E2});
} else {
return nullptr;
}
}
if (auto &valueConv = E->getValueConversion()) {
auto vConv = valueConv.Conversion;
if (!vConv) {
return nullptr;
} else if (Expr *E2 = doIt(vConv)) {
E->setValueConversion({valueConv.OrigValue, E2});
} else {
return nullptr;
}
}
return E;
}
Expr *visitDestructureTupleExpr(DestructureTupleExpr *E) {
if (auto *src = doIt(E->getSubExpr())) {
E->setSubExpr(src);
} else {
return nullptr;
}
if (auto *dst = doIt(E->getResultExpr())) {
E->setResultExpr(dst);
} else {
return nullptr;
}
return E;
}
Expr *visitTryExpr(TryExpr *E) {
if (Expr *E2 = doIt(E->getSubExpr())) {
E->setSubExpr(E2);
return E;
}
return nullptr;
}
Expr *visitForceTryExpr(ForceTryExpr *E) {
if (Expr *E2 = doIt(E->getSubExpr())) {
E->setSubExpr(E2);
return E;
}
return nullptr;
}
Expr *visitOptionalTryExpr(OptionalTryExpr *E) {
if (Expr *E2 = doIt(E->getSubExpr())) {
E->setSubExpr(E2);
return E;
}
return nullptr;
}
Expr *visitInOutExpr(InOutExpr *E) {
if (Expr *E2 = doIt(E->getSubExpr())) {
E->setSubExpr(E2);
return E;
}
return nullptr;
}
Expr *visitVarargExpansionExpr(VarargExpansionExpr *E) {
if (Expr *E2 = doIt(E->getSubExpr())) {
E->setSubExpr(E2);
return E;
}
return nullptr;
}
Expr *visitSequenceExpr(SequenceExpr *E) {
for (unsigned i = 0, e = E->getNumElements(); i != e; ++i)
if (Expr *Elt = doIt(E->getElement(i)))
E->setElement(i, Elt);
else
return nullptr;
return E;
}
Expr *visitDynamicTypeExpr(DynamicTypeExpr *E) {
Expr *base = E->getBase();
if ((base = doIt(base)))
E->setBase(base);
else
return nullptr;
return E;
}
Expr *visitCaptureListExpr(CaptureListExpr *expr) {
for (auto c : expr->getCaptureList()) {
if (Walker.shouldWalkCaptureInitializerExpressions()) {
for (auto entryIdx : range(c.PBD->getNumPatternEntries())) {
if (auto newInit = doIt(c.PBD->getInit(entryIdx)))
c.PBD->setInit(entryIdx, newInit);
else
return nullptr;
}
} else {
if (doIt(c.PBD))
return nullptr;
}
}
ClosureExpr *body = expr->getClosureBody();
if ((body = cast_or_null<ClosureExpr>(doIt(body))))
expr->setClosureBody(body);
else
return nullptr;
return expr;
}
Expr *visitClosureExpr(ClosureExpr *expr) {
visit(expr->getParameters());
if (expr->hasExplicitResultType()) {
if (doIt(expr->getExplicitResultTypeRepr()))
return nullptr;
}
// If the closure was separately type checked and we don't want to
// visit separately-checked closure bodies, bail out now.
if (expr->isSeparatelyTypeChecked() &&
!Walker.shouldWalkIntoSeparatelyCheckedClosure(expr))
return expr;
// Handle other closures.
if (BraceStmt *body = cast_or_null<BraceStmt>(doIt(expr->getBody()))) {
expr->setBody(body, expr->hasSingleExpressionBody());
return expr;
}
return nullptr;
}
Expr *visitAutoClosureExpr(AutoClosureExpr *E) {
if (Expr *E2 = doIt(E->getSingleExpressionBody())) {
E->setBody(E2);
return E;
}
return nullptr;
}
Expr *visitApplyExpr(ApplyExpr *E) {
if (E->getFn()) {
Expr *E2 = doIt(E->getFn());
if (E2 == nullptr) return nullptr;
E->setFn(E2);
}
if (auto *args = doIt(E->getArgs())) {
E->setArgs(args);
} else {
return nullptr;
}
return E;
}
Expr *visitSelfApplyExpr(SelfApplyExpr *E) {
if (E->getBase()) {
Expr *E2 = doIt(E->getBase());
if (E2 == nullptr) return nullptr;
E->setBase(E2);
}
if (E->getFn()) {
Expr *E2 = doIt(E->getFn());
if (E2 == nullptr) return nullptr;
E->setFn(E2);
}
return E;
}
Expr *visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E) {
Expr *E2 = doIt(E->getLHS());
if (E2 == nullptr) return nullptr;
E->setLHS(E2);
E2 = doIt(E->getRHS());
if (E2 == nullptr) return nullptr;
E->setRHS(E2);
return E;
}
Expr *visitExplicitCastExpr(ExplicitCastExpr *E) {
if (Expr *Sub = E->getSubExpr()) {
Sub = doIt(Sub);
if (!Sub) return nullptr;
E->setSubExpr(Sub);
}
if (auto *const tyRepr = E->getCastTypeRepr())
if (doIt(tyRepr))
return nullptr;
return E;
}
Expr *visitArrowExpr(ArrowExpr *E) {
if (Expr *Args = E->getArgsExpr()) {
Args = doIt(Args);
if (!Args) return nullptr;
E->setArgsExpr(Args);
}
if (Expr *Result = E->getResultExpr()) {
Result = doIt(Result);
if (!Result) return nullptr;
E->setResultExpr(Result);
}
return E;
}
Expr *visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *E) {
Expr *Sub = doIt(E->getSubExpr());
if (!Sub) return nullptr;
E->setSubExpr(Sub);
return E;
}
Expr *visitAssignExpr(AssignExpr *AE) {
if (Expr *Dest = AE->getDest()) {
if (!(Dest = doIt(Dest)))
return nullptr;
AE->setDest(Dest);
}
if (Expr *Src = AE->getSrc()) {
if (!(Src = doIt(AE->getSrc())))
return nullptr;
AE->setSrc(Src);
}
return AE;
}
Expr *visitEnumIsCaseExpr(EnumIsCaseExpr *E) {
if (Expr *Sub = E->getSubExpr()) {
if (!(Sub = doIt(Sub)))
return nullptr;
E->setSubExpr(Sub);
}
if (auto *typerepr = E->getCaseTypeRepr())
if (doIt(typerepr))
return nullptr;
return E;
}
Expr *visitIfExpr(IfExpr *E) {
if (Expr *Cond = E->getCondExpr()) {
Cond = doIt(Cond);
if (!Cond) return nullptr;
E->setCondExpr(Cond);
}
Expr *Then = doIt(E->getThenExpr());
if (!Then) return nullptr;
E->setThenExpr(Then);
if (Expr *Else = E->getElseExpr()) {
Else = doIt(Else);
if (!Else) return nullptr;
E->setElseExpr(Else);
}
return E;
}
Expr *visitUnresolvedPatternExpr(UnresolvedPatternExpr *E) {
Pattern *sub = doIt(E->getSubPattern());
if (!sub) return nullptr;
E->setSubPattern(sub);
return E;
}
Expr *visitBindOptionalExpr(BindOptionalExpr *E) {
Expr *sub = doIt(E->getSubExpr());
if (!sub) return nullptr;
E->setSubExpr(sub);
return E;
}
Expr *visitOptionalEvaluationExpr(OptionalEvaluationExpr *E) {
Expr *sub = doIt(E->getSubExpr());
if (!sub) return nullptr;
E->setSubExpr(sub);
return E;
}
Expr *visitForceValueExpr(ForceValueExpr *E) {
Expr *sub = doIt(E->getSubExpr());
if (!sub) return nullptr;
E->setSubExpr(sub);
return E;
}
Expr *visitOpenExistentialExpr(OpenExistentialExpr *E) {
Expr *existential = doIt(E->getExistentialValue());
if (!existential) return nullptr;
Expr *sub = doIt(E->getSubExpr());
if (!sub) return nullptr;
E->setExistentialValue(existential);
E->setSubExpr(sub);
return E;
}
Expr *visitMakeTemporarilyEscapableExpr(MakeTemporarilyEscapableExpr *E) {
Expr *closure = doIt(E->getNonescapingClosureValue());
if (!closure) return nullptr;
Expr *sub = doIt(E->getSubExpr());
if (!sub) return nullptr;
E->setNonescapingClosureValue(closure);
E->setSubExpr(sub);
return E;
}
Expr *visitEditorPlaceholderExpr(EditorPlaceholderExpr *E) {
HANDLE_SEMANTIC_EXPR(E);
return E;
}
Expr *visitLazyInitializerExpr(LazyInitializerExpr *E) {
// The initializer is opaque unless we specifically want to visit it as part
// of the accessor body.
if (Walker.getLazyInitializerWalkingBehavior() !=
LazyInitializerWalking::InAccessor) {
return E;
}
auto *sub = doIt(E->getSubExpr());
if (!sub)
return nullptr;
E->setSubExpr(sub);
return E;
}
Expr *visitObjCSelectorExpr(ObjCSelectorExpr *E) {
Expr *sub = doIt(E->getSubExpr());
if (!sub) return nullptr;
E->setSubExpr(sub);
return E;
}
Expr *visitKeyPathExpr(KeyPathExpr *E) {
// For an ObjC key path, the string literal expr serves as the semantic
// expression.
if (auto objcStringLiteral = E->getObjCStringLiteralExpr()) {
Expr *sub = doIt(objcStringLiteral);
if (!sub) return nullptr;
E->setObjCStringLiteralExpr(sub);
}
auto components = E->getComponents();
if (components.empty()) {
// No components means a parsed-only/pre-resolution Swift key path.
assert(!E->isObjC());
if (auto parsedRoot = E->getParsedRoot()) {
Expr *newRoot = doIt(parsedRoot);
if (!newRoot)
return nullptr;
E->setParsedRoot(newRoot);
}
if (auto parsedPath = E->getParsedPath()) {
Expr *newPath = doIt(parsedPath);
if (!newPath)
return nullptr;
E->setParsedPath(newPath);
}
return E;
}
if (!E->isObjC()) {
auto rootType = E->getRootType();
if (rootType && doIt(rootType))
return nullptr;
}
for (auto &origComponent : components) {
auto component = origComponent;
switch (auto kind = component.getKind()) {
case KeyPathExpr::Component::Kind::Subscript:
case KeyPathExpr::Component::Kind::UnresolvedSubscript: {
if (auto *newArgs = doIt(component.getSubscriptArgs())) {
component.setSubscriptArgs(newArgs);
} else {
return nullptr;
}
break;
}
case KeyPathExpr::Component::Kind::OptionalChain:
case KeyPathExpr::Component::Kind::OptionalWrap:
case KeyPathExpr::Component::Kind::OptionalForce:
case KeyPathExpr::Component::Kind::Property:
case KeyPathExpr::Component::Kind::UnresolvedProperty:
case KeyPathExpr::Component::Kind::Invalid:
case KeyPathExpr::Component::Kind::Identity:
case KeyPathExpr::Component::Kind::TupleElement:
case KeyPathExpr::Component::Kind::DictionaryKey:
case KeyPathExpr::Component::Kind::CodeCompletion:
// No subexpr to visit.
break;
}
}
return E;
}
Expr *visitKeyPathDotExpr(KeyPathDotExpr *E) { return E; }
Expr *visitOneWayExpr(OneWayExpr *E) {
if (auto oldSubExpr = E->getSubExpr()) {
if (auto subExpr = doIt(oldSubExpr)) {
E->setSubExpr(subExpr);
} else {
return nullptr;
}
}
return E;
}
Expr *visitTapExpr(TapExpr *E) {
if (auto oldSubExpr = E->getSubExpr()) {
if (auto subExpr = doIt(oldSubExpr)) {
E->setSubExpr(subExpr);
} else {
return nullptr;
}
}
if (!Walker.shouldWalkIntoTapExpression())
return E;
if (auto oldBody = E->getBody()) {
if (auto body = doIt(oldBody)) {
E->setBody(dyn_cast<BraceStmt>(body));
}
else {
return nullptr;
}
}
return E;
}
Expr *visitRegexLiteralExpr(RegexLiteralExpr *E) {
return E;
}
Expr *visitTypeJoinExpr(TypeJoinExpr *E) {
if (auto *newVar = dyn_cast<DeclRefExpr>(doIt(E->getVar()))) {
E->setVar(newVar);
} else {
return nullptr;
}
for (unsigned i = 0, e = E->getNumElements(); i != e; ++i) {
if (auto *origElt = E->getElement(i)) {
if (Expr *Elt = doIt(origElt))
E->setElement(i, Elt);
else
return nullptr;
}
}
return E;
}
//===--------------------------------------------------------------------===//
// Everything Else
//===--------------------------------------------------------------------===//
#define STMT(Id, Parent) Stmt *visit##Id##Stmt(Id##Stmt *S);
#include "swift/AST/StmtNodes.def"
#define PATTERN(Id, Parent) Pattern *visit##Id##Pattern(Id##Pattern *P);
#include "swift/AST/PatternNodes.def"
#define TYPEREPR(Id, Parent) bool visit##Id##TypeRepr(Id##TypeRepr *T);
#include "swift/AST/TypeReprNodes.def"
bool visitParameterList(ParameterList *PL) {
if (!Walker.walkToParameterListPre(PL))
return false;
for (auto P : *PL) {
// Walk each parameter's decl and typeloc and default value.
if (doIt(P))
return true;
}
return Walker.walkToParameterListPost(PL);
}
public:
Traversal(ASTWalker &walker) : Walker(walker) {}
Expr *doIt(Expr *E) {
// Do the pre-order visitation. If it returns false, we just
// skip entering subnodes of this tree.
auto Pre = Walker.walkToExprPre(E);
if (!Pre.first || !Pre.second)
return Pre.second;
// Otherwise, visit the children.
E = visit(Pre.second);
// If we didn't bail out, do post-order visitation.
if (E) E = Walker.walkToExprPost(E);
return E;
}
Stmt *doIt(Stmt *S) {
// Do the pre-order visitation. If it returns false, we just
// skip entering subnodes of this tree.
auto Pre = Walker.walkToStmtPre(S);
if (!Pre.first || !Pre.second)
return Pre.second;
// Otherwise, visit the children.
S = visit(S);
// If we didn't bail out, do post-order visitation.
if (S) S = Walker.walkToStmtPost(S);
return S;
}
bool shouldSkip(Decl *D) {
if (auto *VD = dyn_cast<VarDecl>(D)) {
// VarDecls are walked via their NamedPattern, ignore them if we encounter
// then in the few cases where they are also pushed outside as members.
// In all those cases we can walk them via the pattern binding decl.
// This is used for when vising VarDecls from source, when visiting a
// module file we walk them as we encounter them.
if (Walker.Parent.getAsModule() &&
D->getDeclContext()->getParentSourceFile())
return true;
if (Walker.Parent.getAsDecl() && VD->getParentPatternBinding())
return true;
auto walkerParentAsStmt = Walker.Parent.getAsStmt();
if (isa_and_nonnull<BraceStmt>(walkerParentAsStmt))
return true;
}
return false;
}
/// Returns true on failure.
bool doIt(Decl *D) {
if (shouldSkip(D))
return false;
// Do the pre-order visitation. If it returns false, we just
// skip entering subnodes of this tree.
if (!Walker.walkToDeclPre(D))
return false;
if (visit(D))
return true;
return !Walker.walkToDeclPost(D);
}
Pattern *doIt(Pattern *P) {
// Do the pre-order visitation. If it returns false, we just
// skip entering subnodes of this tree.
auto Pre = Walker.walkToPatternPre(P);
if (!Pre.first || !Pre.second)
return Pre.second;
// Otherwise, visit the children.
P = visit(P);
// If we didn't bail out, do post-order visitation.
if (P) P = Walker.walkToPatternPost(P);
return P;
}
bool doIt(const StmtCondition &C) {
for (auto &elt : C) {
switch (elt.getKind()) {
case StmtConditionElement::CK_Availability: break;
case StmtConditionElement::CK_Boolean: {
auto E = elt.getBoolean();
// Walk an expression condition normally.
E = doIt(E);
if (!E)
return true;
elt.setBoolean(E);
break;
}
case StmtConditionElement::CK_PatternBinding: {
auto *P = doIt(elt.getPattern());
if (!P) return true;
elt.setPattern(P);
auto *I = doIt(elt.getInitializer());
if (!I) return true;
elt.setInitializer(I);
}
}
}
return false;
}
/// Returns true on failure.
bool doIt(TypeRepr *T) {
// Do the pre-order visitation. If it returns false, we just
// skip entering subnodes of this tree.
if (!Walker.walkToTypeReprPre(T))
return false;
// Otherwise, visit the children.
if (visit(T))
return true;
// If we didn't bail out, do post-order visitation.
return !Walker.walkToTypeReprPost(T);
}
bool doIt(RequirementRepr &Req) {
switch (Req.getKind()) {
case RequirementReprKind::SameType:
if (doIt(Req.getFirstTypeRepr()) || doIt(Req.getSecondTypeRepr()))
return true;
break;
case RequirementReprKind::TypeConstraint:
if (doIt(Req.getSubjectRepr()) || doIt(Req.getConstraintRepr()))
return true;
break;
case RequirementReprKind::LayoutConstraint:
if (doIt(Req.getSubjectRepr()))
return true;
break;
}
return false;
}
bool doIt(GenericParamList *GPL) {
// Visit generic params
for (auto &P : GPL->getParams()) {
if (doIt(P))
return true;
}
// Visit param conformance
for (auto Req : GPL->getRequirements()) {
if (doIt(Req))
return true;
}
return false;
}
ArgumentList *doIt(ArgumentList *ArgList) {
bool WalkChildren;
std::tie(WalkChildren, ArgList) = Walker.walkToArgumentListPre(ArgList);
if (!WalkChildren || !ArgList)
return ArgList;
for (auto Idx : indices(*ArgList)) {
auto *E = doIt(ArgList->getExpr(Idx));
if (!E) return nullptr;
ArgList->setExpr(Idx, E);
}
return Walker.walkToArgumentListPost(ArgList);
}
};
} // end anonymous namespace
#pragma mark Statement traversal
Stmt *Traversal::visitBreakStmt(BreakStmt *BS) {
return BS;
}
Stmt *Traversal::visitContinueStmt(ContinueStmt *CS) {
return CS;
}
Stmt *Traversal::visitFallthroughStmt(FallthroughStmt *CS) {
return CS;
}
Stmt *Traversal::visitFailStmt(FailStmt *FS) {
return FS;
}
Stmt *Traversal::visitThrowStmt(ThrowStmt *TS) {
if (Expr *E = doIt(TS->getSubExpr())) {
TS->setSubExpr(E);
return TS;
}
return nullptr;
}
Stmt *Traversal::visitPoundAssertStmt(PoundAssertStmt *S) {
if (auto *condition = doIt(S->getCondition())) {
S->setCondition(condition);
} else {
return nullptr;
}
return S;
}
Stmt *Traversal::visitBraceStmt(BraceStmt *BS) {
for (auto &Elem : BS->getElements()) {
if (auto *SubExpr = Elem.dyn_cast<Expr*>()) {
if (Expr *E2 = doIt(SubExpr))
Elem = E2;
else
return nullptr;
continue;
}
if (auto *S = Elem.dyn_cast<Stmt*>()) {
if (Stmt *S2 = doIt(S))
Elem = S2;
else
return nullptr;
continue;
}
auto *D = Elem.get<Decl*>();
if (doIt(D))
return nullptr;
if (Walker.shouldWalkAccessorsTheOldWay()) {
// Pretend that accessors share a parent with the storage.
//
// FIXME: Update existing ASTWalkers to deal with accessors appearing as
// children of the storage instead.
if (auto *ASD = dyn_cast<AbstractStorageDecl>(D)) {
for (auto AD : ASD->getAllAccessors()) {
if (doIt(AD))
return nullptr;
}
}
}
}
return BS;
}
Stmt *Traversal::visitReturnStmt(ReturnStmt *RS) {
if (!RS->hasResult())
return RS;
if (Expr *E = doIt(RS->getResult()))
RS->setResult(E);
else
return nullptr;
return RS;
}
Stmt *Traversal::visitYieldStmt(YieldStmt *YS) {
for (auto &yield : YS->getMutableYields()) {
if (Expr *E = doIt(yield))
yield = E;
else
return nullptr;
}
return YS;
}
Stmt *Traversal::visitDeferStmt(DeferStmt *DS) {
if (doIt(DS->getTempDecl()))
return nullptr;
if (Expr *Call = doIt(DS->getCallExpr()))
DS->setCallExpr(Call);
else
return nullptr;
return DS;
}
Stmt *Traversal::visitIfStmt(IfStmt *IS) {
if (doIt(IS->getCond()))
return nullptr;
if (Stmt *S2 = doIt(IS->getThenStmt()))
IS->setThenStmt(S2);
else
return nullptr;
if (IS->getElseStmt()) {
if (Stmt *S2 = doIt(IS->getElseStmt()))
IS->setElseStmt(S2);
else
return nullptr;
}
return IS;
}
Stmt *Traversal::visitGuardStmt(GuardStmt *US) {
if (doIt(US->getCond()))
return nullptr;
if (BraceStmt *S2 = cast_or_null<BraceStmt>(doIt(US->getBody())))
US->setBody(S2);
else
return nullptr;
return US;
}
Stmt *Traversal::visitDoStmt(DoStmt *DS) {
if (BraceStmt *S2 = cast_or_null<BraceStmt>(doIt(DS->getBody())))
DS->setBody(S2);
else
return nullptr;
return DS;
}
Stmt *Traversal::visitDoCatchStmt(DoCatchStmt *stmt) {
// Transform the body of the 'do'.
if (Stmt *newBody = doIt(stmt->getBody())) {
stmt->setBody(newBody);
} else {
return nullptr;
}
// Transform each of the catch clauses:
for (CaseStmt *&clause : stmt->getMutableCatches()) {
if (auto newClause = doIt(clause)) {
clause = cast<CaseStmt>(newClause);
} else {
return nullptr;
}
}
return stmt;
}
Stmt *Traversal::visitWhileStmt(WhileStmt *WS) {
if (doIt(WS->getCond()))
return nullptr;
if (Stmt *S2 = doIt(WS->getBody()))
WS->setBody(S2);
else
return nullptr;
return WS;
}
Stmt *Traversal::visitRepeatWhileStmt(RepeatWhileStmt *RWS) {
if (Stmt *S2 = doIt(RWS->getBody()))
RWS->setBody(S2);
else
return nullptr;
if (Expr *E2 = doIt(RWS->getCond()))
RWS->setCond(E2);
else
return nullptr;
return RWS;
}
Stmt *Traversal::visitForEachStmt(ForEachStmt *S) {
if (Pattern *P = S->getPattern()) {
if ((P = doIt(P)))
assert(P == S->getPattern() && "cannot change pattern of ForEachStmt");
else
return nullptr;
}
// The iterator decl is built directly on top of the sequence
// expression, so don't visit both.
//
// If for-in is already type-checked, the type-checked version
// of the sequence is going to be visited as part of `iteratorVar`.
if (S->getTypeCheckedSequence()) {
if (auto IteratorVar = S->getIteratorVar()) {
if (doIt(IteratorVar))
return nullptr;
}
if (auto NextCall = S->getNextCall()) {
if ((NextCall = doIt(NextCall)))
S->setNextCall(NextCall);
else
return nullptr;
}
} else {
if (Expr *Sequence = S->getParsedSequence()) {
if ((Sequence = doIt(Sequence)))
S->setParsedSequence(Sequence);
else
return nullptr;
}
}
if (Expr *Where = S->getWhere()) {
if ((Where = doIt(Where)))
S->setWhere(Where);
else
return nullptr;
}
if (auto IteratorNext = S->getConvertElementExpr()) {
if ((IteratorNext = doIt(IteratorNext)))
S->setConvertElementExpr(IteratorNext);
else
return nullptr;
}
if (Stmt *Body = S->getBody()) {
if ((Body = doIt(Body)))
S->setBody(cast<BraceStmt>(Body));
else
return nullptr;
}
return S;
}
Stmt *Traversal::visitSwitchStmt(SwitchStmt *S) {
if (Expr *newSubject = doIt(S->getSubjectExpr()))
S->setSubjectExpr(newSubject);
else
return nullptr;
for (auto N : S->getRawCases()) {
if (Stmt *aCase = N.dyn_cast<Stmt*>()) {
assert(isa<CaseStmt>(aCase));
if (Stmt *aStmt = doIt(aCase)) {
assert(aCase == aStmt && "switch case remap not supported");
(void)aStmt;
} else
return nullptr;
} else {
assert(isa<IfConfigDecl>(N.get<Decl*>()) ||
isa<PoundDiagnosticDecl>(N.get<Decl*>()));
if (doIt(N.get<Decl*>()))
return nullptr;
}
}
return S;
}
Stmt *Traversal::visitCaseStmt(CaseStmt *S) {
for (auto &CLI : S->getMutableCaseLabelItems()) {
if (auto *newPattern = doIt(CLI.getPattern()))
CLI.setPattern(newPattern, /*resolved=*/CLI.isPatternResolved());
else
return nullptr;
if (CLI.getGuardExpr()) {
if (auto *newGuard = doIt(CLI.getGuardExpr()))
CLI.setGuardExpr(newGuard);
else
return nullptr;
}
}
if (BraceStmt *newBody = cast_or_null<BraceStmt>(doIt(S->getBody())))
S->setBody(newBody);
else
return nullptr;
return S;
}
#pragma mark Pattern traversal
Pattern *Traversal::visitParenPattern(ParenPattern *P) {
if (Pattern *newSub = doIt(P->getSubPattern()))
P->setSubPattern(newSub);
else
return nullptr;
return P;
}
Pattern *Traversal::visitTuplePattern(TuplePattern *P) {
for (auto &element : P->getElements()) {
if (Pattern *newField = doIt(element.getPattern()))
element.setPattern(newField);
else
return nullptr;
}
return P;
}
Pattern *Traversal::visitNamedPattern(NamedPattern *P) {
if (doIt(P->getDecl()))
return nullptr;
return P;
}
Pattern *Traversal::visitAnyPattern(AnyPattern *P) {
return P;
}
Pattern *Traversal::visitTypedPattern(TypedPattern *P) {
if (Pattern *newSub = doIt(P->getSubPattern()))
P->setSubPattern(newSub);
else
return nullptr;
if (!P->isImplicit())
if (auto *TR = P->getTypeRepr())
if (doIt(TR))
return nullptr;
return P;
}
Pattern *Traversal::visitIsPattern(IsPattern *P) {
if (auto sub = P->getSubPattern()) {
if (Pattern *newSub = doIt(sub)) {
P->setSubPattern(newSub);
} else {
return nullptr;
}
}
if (!P->isImplicit())
if (auto *TR = P->getCastTypeRepr())
if (doIt(TR))
return nullptr;
return P;
}
Pattern *Traversal::visitEnumElementPattern(EnumElementPattern *P) {
if (auto *TR = P->getParentTypeRepr())
if (doIt(TR))
return nullptr;
if (!P->hasSubPattern())
return P;
if (Pattern *newSub = doIt(P->getSubPattern())) {
P->setSubPattern(newSub);
return P;
}
return nullptr;
}
Pattern *Traversal::visitExprPattern(ExprPattern *P) {
// If the pattern has been type-checked, walk the match expression, which
// includes the explicit subexpression.
if (P->getMatchExpr()) {
if (Expr *newMatch = doIt(P->getMatchExpr())) {
P->setMatchExpr(newMatch);
return P;
}
return nullptr;
}
if (Expr *newSub = doIt(P->getSubExpr())) {
P->setSubExpr(newSub);
return P;
}
return nullptr;
}
Pattern *Traversal::visitBindingPattern(BindingPattern *P) {
if (Pattern *newSub = doIt(P->getSubPattern())) {
P->setSubPattern(newSub);
return P;
}
return nullptr;
}
Pattern *Traversal::visitOptionalSomePattern(OptionalSomePattern *P) {
if (Pattern *newSub = doIt(P->getSubPattern())) {
P->setSubPattern(newSub);
return P;
}
return nullptr;
}
Pattern *Traversal::visitBoolPattern(BoolPattern *P) {
return P;
}
#pragma mark Type representation traversal
bool Traversal::visitErrorTypeRepr(ErrorTypeRepr *T) {
return false;
}
bool Traversal::visitAttributedTypeRepr(AttributedTypeRepr *T) {
return doIt(T->getTypeRepr());
}
bool Traversal::visitSimpleIdentTypeRepr(SimpleIdentTypeRepr *T) {
return false;
}
bool Traversal::visitGenericIdentTypeRepr(GenericIdentTypeRepr *T) {
for (auto genArg : T->getGenericArgs()) {
if (doIt(genArg))
return true;
}
return false;
}
bool Traversal::visitCompoundIdentTypeRepr(CompoundIdentTypeRepr *T) {
for (auto comp : T->getComponents()) {
if (doIt(comp))
return true;
}
return false;
}
bool Traversal::visitFunctionTypeRepr(FunctionTypeRepr *T) {
return doIt(T->getArgsTypeRepr()) || doIt(T->getResultTypeRepr());
}
bool Traversal::visitArrayTypeRepr(ArrayTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitDictionaryTypeRepr(DictionaryTypeRepr *T) {
return doIt(T->getKey()) || doIt(T->getValue());
}
bool Traversal::visitOptionalTypeRepr(OptionalTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitImplicitlyUnwrappedOptionalTypeRepr(ImplicitlyUnwrappedOptionalTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitTupleTypeRepr(TupleTypeRepr *T) {
for (auto &elem : T->getElements()) {
if (doIt(elem.Type))
return true;
}
return false;
}
bool Traversal::visitCompositionTypeRepr(CompositionTypeRepr *T) {
for (auto elem : T->getTypes()) {
if (doIt(elem))
return true;
}
return false;
}
bool Traversal::visitMetatypeTypeRepr(MetatypeTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitProtocolTypeRepr(ProtocolTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitInOutTypeRepr(InOutTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitSharedTypeRepr(SharedTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitOwnedTypeRepr(OwnedTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitIsolatedTypeRepr(IsolatedTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitCompileTimeConstTypeRepr(CompileTimeConstTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitOpaqueReturnTypeRepr(OpaqueReturnTypeRepr *T) {
return doIt(T->getConstraint());
}
bool Traversal::visitNamedOpaqueReturnTypeRepr(NamedOpaqueReturnTypeRepr *T) {
return doIt(T->getBase());
}
bool Traversal::visitExistentialTypeRepr(ExistentialTypeRepr *T) {
return doIt(T->getConstraint());
}
bool Traversal::visitPlaceholderTypeRepr(PlaceholderTypeRepr *T) {
return false;
}
bool Traversal::visitFixedTypeRepr(FixedTypeRepr *T) {
return false;
}
bool Traversal::visitSILBoxTypeRepr(SILBoxTypeRepr *T) {
for (auto &field : T->getFields()) {
if (doIt(field.getFieldType()))
return true;
}
for (auto &arg : T->getGenericArguments()) {
if (doIt(arg))
return true;
}
return false;
}
Expr *Expr::walk(ASTWalker &walker) {
return Traversal(walker).doIt(this);
}
Stmt *Stmt::walk(ASTWalker &walker) {
return Traversal(walker).doIt(this);
}
Pattern *Pattern::walk(ASTWalker &walker) {
return Traversal(walker).doIt(this);
}
TypeRepr *TypeRepr::walk(ASTWalker &walker) {
Traversal(walker).doIt(this);
return this;
}
StmtConditionElement *StmtConditionElement::walk(ASTWalker &walker) {
Traversal(walker).doIt(*this);
return this;
}
bool Decl::walk(ASTWalker &walker) {
return Traversal(walker).doIt(this);
}
bool GenericParamList::walk(ASTWalker &walker) {
return Traversal(walker).doIt(this);
}
ArgumentList *ArgumentList::walk(ASTWalker &walker) {
return Traversal(walker).doIt(this);
}