Files
swift-mirror/lib/AST/Decl.cpp
Joe Groff e7547adabd AST: Initial work to canonicalize generic signatures for mangling.
Currently GenericSignature::getCanonicalSignature isn't able to canonicalize the set of requirements due to fragile dependencies on generic signatures matching AllArchetypes order of their originating GenericParamLists. However, we shouldn't let that stop us from getting the mangling right, so implement a "getCanonicalManglingSignature" that builds the true canonical signature by feeding it into an ArchetypeBuilder and shedding unnecessary constraints. For now, just handle conformance and base class constraints; still to do are same-type constraints.

Swift SVN r28191
2015-05-06 01:29:15 +00:00

3951 lines
131 KiB
C++

//===--- Decl.cpp - Swift Language Decl ASTs ------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/ArchetypeBuilder.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Mangle.h"
#include "swift/AST/TypeLoc.h"
#include "clang/Lex/MacroInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/raw_ostream.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Basic/Fallthrough.h"
#include "clang/Basic/CharInfo.h"
#include "clang/AST/DeclObjC.h"
#include <algorithm>
using namespace swift;
bool impl::isTestingEnabled(const ValueDecl *VD) {
return VD->getModuleContext()->isTestingEnabled();
}
clang::SourceLocation ClangNode::getLocation() const {
if (auto D = getAsDecl())
return D->getLocation();
if (auto M = getAsMacro())
return M->getDefinitionLoc();
return clang::SourceLocation();
}
clang::SourceRange ClangNode::getSourceRange() const {
if (auto D = getAsDecl())
return D->getSourceRange();
if (auto M = getAsMacro())
return clang::SourceRange(M->getDefinitionLoc(), M->getDefinitionEndLoc());
return clang::SourceLocation();
}
// Only allow allocation of Decls using the allocator in ASTContext.
void *Decl::operator new(size_t Bytes, ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
// Only allow allocation of Modules using the allocator in ASTContext.
void *Module::operator new(size_t Bytes, ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
StringRef Decl::getKindName(DeclKind K) {
switch (K) {
#define DECL(Id, Parent) case DeclKind::Id: return #Id;
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("bad DeclKind");
}
DescriptiveDeclKind Decl::getDescriptiveKind() const {
#define TRIVIAL_KIND(Kind) \
case DeclKind::Kind: \
return DescriptiveDeclKind::Kind
switch (getKind()) {
TRIVIAL_KIND(Import);
TRIVIAL_KIND(Extension);
TRIVIAL_KIND(EnumCase);
TRIVIAL_KIND(TopLevelCode);
TRIVIAL_KIND(IfConfig);
TRIVIAL_KIND(PatternBinding);
TRIVIAL_KIND(InfixOperator);
TRIVIAL_KIND(PrefixOperator);
TRIVIAL_KIND(PostfixOperator);
TRIVIAL_KIND(TypeAlias);
TRIVIAL_KIND(GenericTypeParam);
TRIVIAL_KIND(AssociatedType);
TRIVIAL_KIND(Protocol);
TRIVIAL_KIND(Subscript);
TRIVIAL_KIND(Constructor);
TRIVIAL_KIND(Destructor);
TRIVIAL_KIND(EnumElement);
TRIVIAL_KIND(Param);
case DeclKind::Enum:
return cast<EnumDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericEnum
: DescriptiveDeclKind::Enum;
case DeclKind::Struct:
return cast<StructDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericStruct
: DescriptiveDeclKind::Struct;
case DeclKind::Class:
return cast<ClassDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericClass
: DescriptiveDeclKind::Class;
case DeclKind::Var: {
auto var = cast<VarDecl>(this);
switch (var->getCorrectStaticSpelling()) {
case StaticSpellingKind::None:
return var->isLet()? DescriptiveDeclKind::Let
: DescriptiveDeclKind::Var;
case StaticSpellingKind::KeywordStatic:
return var->isLet()? DescriptiveDeclKind::StaticLet
: DescriptiveDeclKind::StaticVar;
case StaticSpellingKind::KeywordClass:
return var->isLet()? DescriptiveDeclKind::ClassLet
: DescriptiveDeclKind::ClassVar;
}
}
case DeclKind::Func: {
auto func = cast<FuncDecl>(this);
// First, check for an accessor.
switch (func->getAccessorKind()) {
case AccessorKind::NotAccessor:
// Other classifications below.
break;
case AccessorKind::IsGetter:
return DescriptiveDeclKind::Getter;
case AccessorKind::IsSetter:
return DescriptiveDeclKind::Setter;
case AccessorKind::IsWillSet:
return DescriptiveDeclKind::WillSet;
case AccessorKind::IsDidSet:
return DescriptiveDeclKind::DidSet;
case AccessorKind::IsAddressor:
return DescriptiveDeclKind::Addressor;
case AccessorKind::IsMutableAddressor:
return DescriptiveDeclKind::MutableAddressor;
case AccessorKind::IsMaterializeForSet:
return DescriptiveDeclKind::MaterializeForSet;
}
if (!func->getName().empty() && func->getName().isOperator())
return DescriptiveDeclKind::OperatorFunction;
if (func->getDeclContext()->isLocalContext())
return DescriptiveDeclKind::LocalFunction;
if (func->getDeclContext()->isModuleScopeContext())
return DescriptiveDeclKind::GlobalFunction;
// We have a method.
switch (func->getCorrectStaticSpelling()) {
case StaticSpellingKind::None:
return DescriptiveDeclKind::Method;
case StaticSpellingKind::KeywordStatic:
return DescriptiveDeclKind::StaticMethod;
case StaticSpellingKind::KeywordClass:
return DescriptiveDeclKind::ClassMethod;
}
}
}
#undef TRIVIAL_KIND
llvm_unreachable("bad DescriptiveDeclKind");
}
StringRef Decl::getDescriptiveKindName(DescriptiveDeclKind K) {
#define ENTRY(Kind, String) case DescriptiveDeclKind::Kind: return String
switch (K) {
ENTRY(Import, "import");
ENTRY(Extension, "extension");
ENTRY(EnumCase, "case");
ENTRY(TopLevelCode, "top-level code");
ENTRY(IfConfig, "if configuration");
ENTRY(PatternBinding, "pattern binding");
ENTRY(Var, "var");
ENTRY(Param, "parameter");
ENTRY(Let, "let");
ENTRY(StaticVar, "static var");
ENTRY(StaticLet, "static let");
ENTRY(ClassVar, "class var");
ENTRY(ClassLet, "class let");
ENTRY(InfixOperator, "infix operator");
ENTRY(PrefixOperator, "prefix operator");
ENTRY(PostfixOperator, "postfix operator");
ENTRY(TypeAlias, "type alias");
ENTRY(GenericTypeParam, "generic parameter");
ENTRY(AssociatedType, "associated type");
ENTRY(Enum, "enum");
ENTRY(Struct, "struct");
ENTRY(Class, "class");
ENTRY(Protocol, "protocol");
ENTRY(GenericEnum, "generic enum");
ENTRY(GenericStruct, "generic struct");
ENTRY(GenericClass, "generic class");
ENTRY(Subscript, "subscript");
ENTRY(Constructor, "initializer");
ENTRY(Destructor, "deinitializer");
ENTRY(LocalFunction, "local function");
ENTRY(GlobalFunction, "global function");
ENTRY(OperatorFunction, "operator function");
ENTRY(Method, "instance method");
ENTRY(StaticMethod, "static method");
ENTRY(ClassMethod, "class method");
ENTRY(Getter, "getter");
ENTRY(Setter, "setter");
ENTRY(WillSet, "willSet observer");
ENTRY(DidSet, "didSet observer");
ENTRY(MaterializeForSet, "materializeForSet accessor");
ENTRY(Addressor, "address accessor");
ENTRY(MutableAddressor, "mutableAddress accessor");
ENTRY(EnumElement, "enum element");
}
#undef ENTRY
llvm_unreachable("bad DescriptiveDeclKind");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
StaticSpellingKind SSK) {
switch (SSK) {
case StaticSpellingKind::None:
return OS << "<none>";
case StaticSpellingKind::KeywordStatic:
return OS << "'static'";
case StaticSpellingKind::KeywordClass:
return OS << "'class'";
}
llvm_unreachable("bad StaticSpellingKind");
}
DeclContext *Decl::getInnermostDeclContext() {
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
return func;
if (auto nominal = dyn_cast<NominalTypeDecl>(this))
return nominal;
if (auto ext = dyn_cast<ExtensionDecl>(this))
return ext;
if (auto topLevel = dyn_cast<TopLevelCodeDecl>(this))
return topLevel;
return getDeclContext();
}
void Decl::setDeclContext(DeclContext *DC) {
Context = DC;
}
bool Decl::isUserAccessible() const {
if (auto VD = dyn_cast<VarDecl>(this)){
return VD->isUserAccessible();
}
return true;
}
Module *Decl::getModuleContext() const {
return getDeclContext()->getParentModule();
}
// Helper functions to verify statically whether source-location
// functions have been overridden.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceLocType(SourceLoc (Class::*)() const);
inline TwoChars checkSourceLocType(SourceLoc (Decl::*)() const);
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Decl::*)() const);
SourceRange Decl::getSourceRange() const {
switch (getKind()) {
#define DECL(ID, PARENT) \
static_assert(sizeof(checkSourceRangeType(&ID##Decl::getSourceRange)) == 1, \
#ID "Decl is missing getSourceRange()"); \
case DeclKind::ID: return cast<ID##Decl>(this)->getSourceRange();
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("Unknown decl kind");
}
SourceLoc Decl::getLoc() const {
switch (getKind()) {
#define DECL(ID, X) \
static_assert(sizeof(checkSourceLocType(&ID##Decl::getLoc)) == 1, \
#ID "Decl is missing getLoc()"); \
case DeclKind::ID: return cast<ID##Decl>(this)->getLoc();
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("Unknown decl kind");
}
bool Decl::isTransparent() const {
// Check if the declaration had the attribute.
if (getAttrs().hasAttribute<TransparentAttr>())
return true;
// Check if this is a function declaration which is within a transparent
// extension.
if (const AbstractFunctionDecl *FD = dyn_cast<AbstractFunctionDecl>(this)) {
if (const ExtensionDecl *ED = dyn_cast<ExtensionDecl>(FD->getParent()))
if (ED->isTransparent())
return true;
}
// If this is an accessor, check if the transparent attribute was set
// on the value decl.
if (const FuncDecl *FD = dyn_cast<FuncDecl>(this)) {
if (auto *ASD = FD->getAccessorStorageDecl())
return ASD->isTransparent();
}
return false;
}
bool Decl::isPrivateStdlibDecl(bool whitelistProtocols) const {
const Decl *D = this;
if (auto ExtD = dyn_cast<ExtensionDecl>(D))
return ExtD->getExtendedType().isPrivateStdlibType();
DeclContext *DC = D->getDeclContext()->getModuleScopeContext();
if (DC->getParentModule()->isBuiltinModule())
return true;
if (!DC->getParentModule()->isSystemModule())
return false;
auto FU = dyn_cast<FileUnit>(DC);
if (!FU)
return false;
// Check for Swift module and overlays.
if (FU->getKind() != FileUnitKind::SerializedAST)
return false;
if (auto AFD = dyn_cast<AbstractFunctionDecl>(D)) {
// Hide '~>' functions (but show the operator, because it defines
// precedence).
if (AFD->getNameStr() == "~>")
return true;
}
if (auto PD = dyn_cast<ProtocolDecl>(D)) {
if (PD->getNameStr().startswith("_Builtin"))
return true;
if (whitelistProtocols)
return false;
}
if (isa<ProtocolDecl>(D->getDeclContext()))
return false;
auto VD = dyn_cast<ValueDecl>(D);
if (!VD || !VD->hasName())
return false;
// If the name has leading underscore then it's a private symbol.
if (VD->getNameStr().startswith("_"))
return true;
// If it's a constructor with a parameter with leading underscore, it's a
// private function.
if (auto CD = dyn_cast<ConstructorDecl>(VD)) {
bool hasInternalParameter = false;
for (auto Pat : CD->getBodyParamPatterns()) {
Pat->forEachVariable([&](VarDecl *Param) {
if (Param->hasName() && Param->getNameStr().startswith("_")) {
hasInternalParameter = true;
}
});
if (hasInternalParameter)
return true;
}
}
return false;
}
bool Decl::isWeakImported(Module *fromModule) const {
// For a Clang declaration, trust Clang.
if (auto clangDecl = getClangDecl()) {
return clangDecl->isWeakImported();
}
// FIXME: Implement using AvailabilityAttr::getMinVersionAvailability().
return false;
}
GenericParamList::GenericParamList(SourceLoc LAngleLoc,
ArrayRef<GenericTypeParamDecl *> Params,
SourceLoc WhereLoc,
MutableArrayRef<RequirementRepr> Requirements,
SourceLoc RAngleLoc)
: Brackets(LAngleLoc, RAngleLoc), NumParams(Params.size()),
WhereLoc(WhereLoc), Requirements(Requirements),
OuterParameters(nullptr),
FirstTrailingWhereArg(Requirements.size()),
Builder(nullptr)
{
std::uninitialized_copy(Params.begin(), Params.end(),
reinterpret_cast<GenericTypeParamDecl **>(this + 1));
}
GenericParamList *
GenericParamList::create(ASTContext &Context,
SourceLoc LAngleLoc,
ArrayRef<GenericTypeParamDecl *> Params,
SourceLoc RAngleLoc) {
unsigned Size = sizeof(GenericParamList)
+ sizeof(GenericTypeParamDecl *) * Params.size();
void *Mem = Context.Allocate(Size, alignof(GenericParamList));
return new (Mem) GenericParamList(LAngleLoc, Params, SourceLoc(),
MutableArrayRef<RequirementRepr>(),
RAngleLoc);
}
GenericParamList *
GenericParamList::create(const ASTContext &Context,
SourceLoc LAngleLoc,
ArrayRef<GenericTypeParamDecl *> Params,
SourceLoc WhereLoc,
MutableArrayRef<RequirementRepr> Requirements,
SourceLoc RAngleLoc) {
unsigned Size = sizeof(GenericParamList)
+ sizeof(GenericTypeParamDecl *) * Params.size();
void *Mem = Context.Allocate(Size, alignof(GenericParamList));
return new (Mem) GenericParamList(LAngleLoc, Params,
WhereLoc,
Context.AllocateCopy(Requirements),
RAngleLoc);
}
void GenericParamList::addTrailingWhereClause(
ASTContext &ctx,
SourceLoc trailingWhereLoc,
ArrayRef<RequirementRepr> trailingRequirements) {
assert(TrailingWhereLoc.isInvalid() &&
"Already have a trailing where clause?");
TrailingWhereLoc = trailingWhereLoc;
FirstTrailingWhereArg = Requirements.size();
// Create a unified set of requirements.
auto newRequirements = ctx.AllocateUninitialized<RequirementRepr>(
Requirements.size() + trailingRequirements.size());
std::memcpy(newRequirements.data(), Requirements.data(),
Requirements.size() * sizeof(RequirementRepr));
std::memcpy(newRequirements.data() + Requirements.size(),
trailingRequirements.data(),
trailingRequirements.size() * sizeof(RequirementRepr));
Requirements = newRequirements;
}
GenericSignature *
GenericParamList::getAsCanonicalGenericSignature(
llvm::DenseMap<ArchetypeType *, Type> &archetypeMap,
ASTContext &C) const {
SmallVector<GenericTypeParamType *, 4> params;
SmallVector<Requirement, 4> requirements;
getAsGenericSignatureElements(C, archetypeMap, params, requirements);
// Canonicalize the types in the signature.
for (auto &param : params)
param = cast<GenericTypeParamType>(param->getCanonicalType());
for (auto &reqt : requirements)
reqt = Requirement(reqt.getKind(),
reqt.getFirstType()->getCanonicalType(),
reqt.getSecondType()->getCanonicalType());
return GenericSignature::get(params, requirements);
}
ArrayRef<Substitution>
GenericParamList::getForwardingSubstitutions(ASTContext &C) {
SmallVector<Substitution, 4> subs;
// TODO: IRGen wants substitutions for secondary archetypes.
// for (auto &param : params->getNestedGenericParams()) {
// ArchetypeType *archetype = param.getAsTypeParam()->getArchetype();
for (auto archetype : getAllNestedArchetypes()) {
// "Check conformance" on each declared protocol to build a
// conformance map.
SmallVector<ProtocolConformance *, 2> conformances;
for (ProtocolDecl *conformsTo : archetype->getConformsTo()) {
(void)conformsTo;
conformances.push_back(nullptr);
}
// Build an identity mapping with the derived conformances.
auto replacement = SubstitutedType::get(archetype, archetype, C);
subs.push_back({archetype, replacement, C.AllocateCopy(conformances)});
}
return C.AllocateCopy(subs);
}
// Helper for getAsGenericSignatureElements to remap an archetype in a
// requirement to a canonical dependent type.
Type
ArchetypeType::getAsDependentType(
const llvm::DenseMap<ArchetypeType*, Type> &archetypeMap) {
// Map associated archetypes to DependentMemberTypes.
if (auto parent = getParent()) {
auto assocTy = getAssocType();
assert(assocTy);
Type base = parent->getAsDependentType(archetypeMap);
return DependentMemberType::get(base, assocTy, getASTContext());
}
// Map primary archetypes to generic type parameters.
auto found = archetypeMap.find(this);
assert(found != archetypeMap.end()
&& "did not find generic param for archetype");
return found->second;
}
static Type getAsDependentType(Type t,
const llvm::DenseMap<ArchetypeType*, Type> &archetypeMap) {
if (!t->hasArchetype())
return t;
return t.transform([&](Type type) -> Type {
if (auto arch = type->getAs<ArchetypeType>())
return arch->getAsDependentType(archetypeMap);
return type;
});
}
// A helper to recursively collect the generic parameters from the outer levels
// of a generic parameter list.
void
GenericParamList::getAsGenericSignatureElements(ASTContext &C,
llvm::DenseMap<ArchetypeType *, Type> &archetypeMap,
SmallVectorImpl<GenericTypeParamType *> &genericParams,
SmallVectorImpl<Requirement> &requirements) const {
// Collect outer generic parameters first.
if (OuterParameters) {
OuterParameters->getAsGenericSignatureElements(C, archetypeMap,
genericParams,
requirements);
}
// Collect our parameters.
for (auto paramIndex : indices(getParams())) {
auto param = getParams()[paramIndex];
auto typeParamTy = param->getDeclaredType()->castTo<GenericTypeParamType>();
// Make sure we didn't visit this param already in the parent.
auto found = archetypeMap.find(param->getArchetype());
if (found != archetypeMap.end()) {
assert(found->second->isEqual(typeParamTy));
continue;
}
// Set up a mapping we can use to remap requirements to dependent types.
ArchetypeType *archetype = getPrimaryArchetypes()[paramIndex];
archetypeMap[archetype] = typeParamTy;
genericParams.push_back(typeParamTy);
requirements.push_back(Requirement(RequirementKind::WitnessMarker,
typeParamTy, typeParamTy));
// Collect conformance requirements declared on the archetype.
if (auto super = archetype->getSuperclass()) {
requirements.push_back(Requirement(RequirementKind::Conformance,
typeParamTy, super));
}
for (auto proto : archetype->getConformsTo()) {
requirements.push_back(Requirement(RequirementKind::Conformance,
typeParamTy, proto->getDeclaredType()));
}
}
// FIXME: Emit WitnessMarker requirements for associated types in an order
// that preserves AllArchetypes order but otherwise makes no sense.
for (auto assocTy : getAssociatedArchetypes()) {
auto depTy = getAsDependentType(assocTy, archetypeMap);
requirements.push_back(Requirement(RequirementKind::WitnessMarker,
depTy, depTy));
// Add conformance requirements for this associated archetype.
for (const auto &repr : getRequirements()) {
// Handle same-type requirements at last.
if (repr.getKind() != RequirementKind::Conformance)
continue;
// Primary conformance declarations would have already been gathered as
// conformance requirements of the archetype.
if (auto arch = repr.getSubject()->getAs<ArchetypeType>())
if (!arch->getParent())
continue;
auto depTyOfReqt = getAsDependentType(repr.getSubject(), archetypeMap);
if (depTyOfReqt.getPointer() != depTy.getPointer())
continue;
Requirement reqt(RequirementKind::Conformance,
getAsDependentType(repr.getSubject(), archetypeMap),
getAsDependentType(repr.getConstraint(), archetypeMap));
requirements.push_back(reqt);
}
}
// Add all of the same-type requirements.
if (Builder) {
for (auto req : Builder->getSameTypeRequirements()) {
auto firstType = req.first->getDependentType(*Builder, false);
Type secondType;
if (auto concrete = req.second.dyn_cast<Type>())
secondType = getAsDependentType(concrete, archetypeMap);
else if (auto secondPA =
req.second.dyn_cast<ArchetypeBuilder::PotentialArchetype*>())
secondType = secondPA->getDependentType(*Builder, false);
if (firstType->is<ErrorType>() || secondType->is<ErrorType>())
continue;
requirements.push_back(Requirement(RequirementKind::SameType,
firstType, secondType));
}
}
}
/// \brief Add the nested archetypes of the given archetype to the set
/// of all archetypes.
void GenericParamList::addNestedArchetypes(ArchetypeType *archetype,
SmallPtrSetImpl<ArchetypeType*> &known,
SmallVectorImpl<ArchetypeType*> &all) {
for (auto nested : archetype->getNestedTypes()) {
auto nestedArch = nested.second.getAsArchetype();
if (!nestedArch)
continue;
if (known.insert(nestedArch).second) {
assert(!nestedArch->isPrimary() && "Unexpected primary archetype");
all.push_back(nestedArch);
addNestedArchetypes(nestedArch, known, all);
}
}
}
ArrayRef<ArchetypeType*>
GenericParamList::deriveAllArchetypes(ArrayRef<GenericTypeParamDecl *> params,
SmallVectorImpl<ArchetypeType*> &all) {
// This should be kept in sync with ArchetypeBuilder::getAllArchetypes().
assert(all.empty());
llvm::SmallPtrSet<ArchetypeType*, 8> known;
// Collect all the primary archetypes.
for (auto param : params) {
auto archetype = param->getArchetype();
if (archetype->isPrimary() && known.insert(archetype).second)
all.push_back(archetype);
}
// Collect all the nested archetypes.
for (auto param : params) {
auto archetype = param->getArchetype();
addNestedArchetypes(archetype, known, all);
}
return all;
}
TrailingWhereClause::TrailingWhereClause(
SourceLoc whereLoc,
ArrayRef<RequirementRepr> requirements)
: WhereLoc(whereLoc),
NumRequirements(requirements.size())
{
memcpy(getRequirements().data(), requirements.data(),
NumRequirements * sizeof(RequirementRepr));
}
TrailingWhereClause *TrailingWhereClause::create(
ASTContext &ctx,
SourceLoc whereLoc,
ArrayRef<RequirementRepr> requirements) {
unsigned size = sizeof(TrailingWhereClause)
+ requirements.size() * sizeof(RequirementRepr);
void *mem = ctx.Allocate(size, alignof(TrailingWhereClause));
return new (mem) TrailingWhereClause(whereLoc, requirements);
}
ImportDecl *ImportDecl::create(ASTContext &Ctx, DeclContext *DC,
SourceLoc ImportLoc, ImportKind Kind,
SourceLoc KindLoc,
ArrayRef<AccessPathElement> Path,
const clang::Module *ClangMod) {
assert(!Path.empty());
assert(Kind == ImportKind::Module || Path.size() > 1);
size_t Size = sizeof(ImportDecl) + Path.size() * sizeof(AccessPathElement);
void *ptr = allocateMemoryForDecl<ImportDecl>(Ctx, Size, ClangMod != nullptr);
auto D = new (ptr) ImportDecl(DC, ImportLoc, Kind, KindLoc, Path);
if (ClangMod)
D->setClangNode(ClangMod);
return D;
}
ImportDecl::ImportDecl(DeclContext *DC, SourceLoc ImportLoc, ImportKind K,
SourceLoc KindLoc, ArrayRef<AccessPathElement> Path)
: Decl(DeclKind::Import, DC), ImportLoc(ImportLoc), KindLoc(KindLoc),
NumPathElements(Path.size()) {
ImportDeclBits.ImportKind = static_cast<unsigned>(K);
assert(getImportKind() == K && "not enough bits for ImportKind");
std::uninitialized_copy(Path.begin(), Path.end(), getPathBuffer());
}
ImportKind ImportDecl::getBestImportKind(const ValueDecl *VD) {
switch (VD->getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::EnumCase:
case DeclKind::IfConfig:
llvm_unreachable("not a ValueDecl");
case DeclKind::AssociatedType:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::GenericTypeParam:
case DeclKind::Subscript:
case DeclKind::EnumElement:
case DeclKind::Param:
llvm_unreachable("not a top-level ValueDecl");
case DeclKind::Protocol:
return ImportKind::Protocol;
case DeclKind::Class:
return ImportKind::Class;
case DeclKind::Enum:
return ImportKind::Enum;
case DeclKind::Struct:
return ImportKind::Struct;
case DeclKind::TypeAlias: {
Type underlyingTy = cast<TypeAliasDecl>(VD)->getUnderlyingType();
return getBestImportKind(underlyingTy->getAnyNominal());
}
case DeclKind::Func:
return ImportKind::Func;
case DeclKind::Var:
return ImportKind::Var;
}
llvm_unreachable("bad DeclKind");
}
Optional<ImportKind>
ImportDecl::findBestImportKind(ArrayRef<ValueDecl *> Decls) {
assert(!Decls.empty());
ImportKind FirstKind = ImportDecl::getBestImportKind(Decls.front());
// FIXME: Only functions can be overloaded.
if (Decls.size() == 1)
return FirstKind;
if (FirstKind != ImportKind::Func)
return None;
for (auto NextDecl : Decls.slice(1)) {
if (ImportDecl::getBestImportKind(NextDecl) != FirstKind)
return None;
}
return FirstKind;
}
template <typename T>
static void
loadAllConformances(const T *container,
const LazyLoaderArray<ProtocolConformance*> &loaderInfo) {
if (!loaderInfo.isLazy())
return;
// Don't try to load conformances re-entrant-ly.
auto resolver = loaderInfo.getLoader();
auto contextData = loaderInfo.getLoaderContextData();
const_cast<LazyLoaderArray<ProtocolConformance*> &>(loaderInfo) = {};
SmallVector<ProtocolConformance *, 8> Conformances;
resolver->loadAllConformances(container, contextData, Conformances);
const_cast<T *>(container)->setConformances(
container->getASTContext().AllocateCopy(Conformances));
}
DeclRange NominalTypeDecl::getMembers(bool forceDelayedMembers) const {
loadAllMembers();
if (forceDelayedMembers)
const_cast<NominalTypeDecl*>(this)->forceDelayedMemberDecls();
return IterableDeclContext::getMembers();
}
void NominalTypeDecl::setMemberLoader(LazyMemberLoader *resolver,
uint64_t contextData) {
IterableDeclContext::setLoader(resolver, contextData);
}
void NominalTypeDecl::setConformanceLoader(LazyMemberLoader *resolver,
uint64_t contextData) {
assert(!HaveConformanceLoader &&
"Already have a conformance loader");
HaveConformanceLoader = true;
getASTContext().recordConformanceLoader(this, resolver, contextData);
}
std::pair<LazyMemberLoader *, uint64_t>
NominalTypeDecl::takeConformanceLoaderSlow() {
assert(HaveConformanceLoader && "no conformance loader?");
HaveConformanceLoader = false;
return getASTContext().takeConformanceLoader(this);
}
ExtensionDecl::ExtensionDecl(SourceLoc extensionLoc,
ArrayRef<RefComponent> refComponents,
MutableArrayRef<TypeLoc> inherited,
DeclContext *parent,
TrailingWhereClause *trailingWhereClause)
: Decl(DeclKind::Extension, parent),
DeclContext(DeclContextKind::ExtensionDecl, parent),
IterableDeclContext(IterableDeclContextKind::ExtensionDecl),
ExtensionLoc(extensionLoc),
Inherited(inherited),
TrailingWhere(trailingWhereClause)
{
ExtensionDeclBits.Validated = false;
ExtensionDeclBits.CheckedInheritanceClause = false;
ExtensionDeclBits.DefaultAccessLevel = 0;
ExtensionDeclBits.NumRefComponents = refComponents.size();
ExtensionDeclBits.HaveConformanceLoader = false;
std::copy(refComponents.begin(), refComponents.end(),
getRefComponents().data());
for (auto &ref : getRefComponents()) {
if (ref.GenericParams)
for (auto param : *ref.GenericParams)
param->setDeclContext(this);
}
}
ExtensionDecl *ExtensionDecl::create(ASTContext &ctx, SourceLoc extensionLoc,
ArrayRef<RefComponent> refComponents,
MutableArrayRef<TypeLoc> inherited,
DeclContext *parent,
TrailingWhereClause *trailingWhereClause,
ClangNode clangNode) {
// Determine how much storage we require for this declaration.
unsigned size = sizeof(ExtensionDecl)
+ refComponents.size() * sizeof(RefComponent);
void *declPtr = allocateMemoryForDecl<ExtensionDecl>(ctx, size,
!clangNode.isNull());
// Construct the extension.
auto result = ::new (declPtr) ExtensionDecl(extensionLoc, refComponents,
inherited, parent,
trailingWhereClause);
if (clangNode)
result->setClangNode(clangNode);
return result;
}
SourceRange ExtensionDecl::getExtendedTypeRange() const {
if (!getRefComponents().front().IdentType.getTypeRepr())
return SourceRange();
SourceRange range;
range.Start
= getRefComponents().front().IdentType.getTypeRepr()->getStartLoc();
// If we have generic parameters, use the location of the '>'.
if (auto gp = getRefComponents().back().GenericParams) {
range.End = gp->getRAngleLoc();
}
// If we don't have a location for '>' or we don't have generic parameters,
// use the last identifier location.
if (range.End.isInvalid())
range.End = getRefComponents().back().IdentType.getTypeRepr()->getEndLoc();
return range;
}
void ExtensionDecl::setGenericSignature(GenericSignature *sig) {
assert(!GenericSig && "Already have generic signature");
GenericSig = sig;
}
DeclRange ExtensionDecl::getMembers(bool forceDelayedMembers) const {
loadAllMembers();
return IterableDeclContext::getMembers();
}
void ExtensionDecl::setMemberLoader(LazyMemberLoader *resolver,
uint64_t contextData) {
IterableDeclContext::setLoader(resolver, contextData);
}
void ExtensionDecl::setConformanceLoader(LazyMemberLoader *resolver,
uint64_t contextData) {
assert(!ExtensionDeclBits.HaveConformanceLoader &&
"Already have a conformance loader");
ExtensionDeclBits.HaveConformanceLoader = true;
getASTContext().recordConformanceLoader(this, resolver, contextData);
}
std::pair<LazyMemberLoader *, uint64_t>
ExtensionDecl::takeConformanceLoaderSlow() {
assert(ExtensionDeclBits.HaveConformanceLoader && "no conformance loader?");
ExtensionDeclBits.HaveConformanceLoader = false;
return getASTContext().takeConformanceLoader(this);
}
bool ExtensionDecl::isConstrainedExtension() const {
auto nominal = getExtendedType()->getAnyNominal();
// Error case: erroneous extension.
if (!nominal)
return false;
// Non-generic extension.
if (!getGenericSignature())
return false;
// If the generic signature differs from that of the nominal type, it's a
// constrained extension.
return getGenericSignature()->getCanonicalSignature()
!= nominal->getGenericSignature()->getCanonicalSignature();
}
PatternBindingDecl::PatternBindingDecl(SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc VarLoc,
unsigned NumPatternEntries,
DeclContext *Parent)
: Decl(DeclKind::PatternBinding, Parent),
StaticLoc(StaticLoc), VarLoc(VarLoc),
isInitializerTypeChecked(false),
numPatternEntries(NumPatternEntries) {
PatternBindingDeclBits.IsStatic = StaticLoc.isValid();
PatternBindingDeclBits.StaticSpelling =
static_cast<unsigned>(StaticSpelling);
}
PatternBindingDecl *
PatternBindingDecl::create(ASTContext &Ctx, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc VarLoc,
ArrayRef<PatternBindingEntry> PatternList,
DeclContext *Parent) {
size_t Size = sizeof(PatternBindingDecl) +
PatternList.size() * sizeof(PatternBindingEntry);
void *D = allocateMemoryForDecl<PatternBindingDecl>(Ctx, Size,
false);
auto PBD = ::new (D) PatternBindingDecl(StaticLoc, StaticSpelling, VarLoc,
PatternList.size(), Parent);
// Set up the patterns.
auto entries = PBD->getMutablePatternList();
unsigned elt = 0U-1;
for (auto pe : PatternList) {
++elt;
auto &newEntry = entries[elt];
newEntry = { nullptr, pe.Init };
PBD->setPattern(elt, pe.ThePattern);
}
return PBD;
}
static bool patternContainsVarDeclBinding(const Pattern *P, const VarDecl *VD) {
bool Result = false;
P->forEachVariable([&](VarDecl *FoundVD) {
Result |= FoundVD == VD;
});
return Result;
}
unsigned PatternBindingDecl::getPatternEntryIndexForVarDecl(const VarDecl *VD) const {
assert(VD && "Cannot find a null VarDecl");
auto List = getPatternList();
if (List.size() == 1) {
assert(patternContainsVarDeclBinding(List[0].ThePattern, VD) &&
"Single entry PatternBindingDecl is set up wrong");
return 0;
}
unsigned Result = 0;
for (auto entry : List) {
if (patternContainsVarDeclBinding(entry.ThePattern, VD))
return Result;
++Result;
}
assert(0 && "PatternBindingDecl doesn't bind the specified VarDecl!");
return ~0U;
}
SourceRange PatternBindingDecl::getSourceRange() const {
SourceLoc startLoc = getStartLoc();
// Take the init of the last pattern in the list.
if (auto init = getPatternList().back().Init) {
SourceLoc EndLoc = init->getEndLoc();
if (EndLoc.isValid())
return { startLoc, EndLoc };
}
// If the last pattern had no init, we take the end of its pattern.
return { startLoc, getPatternList().back().ThePattern->getEndLoc() };
}
static StaticSpellingKind getCorrectStaticSpellingForDecl(const Decl *D) {
auto StaticSpelling = StaticSpellingKind::KeywordStatic;
if (Type T = D->getDeclContext()->getDeclaredTypeInContext()) {
if (auto NTD = T->getAnyNominal()) {
if (isa<ClassDecl>(NTD))
StaticSpelling = StaticSpellingKind::KeywordClass;
}
}
return StaticSpelling;
}
StaticSpellingKind PatternBindingDecl::getCorrectStaticSpelling() const {
if (!isStatic())
return StaticSpellingKind::None;
return getCorrectStaticSpellingForDecl(this);
}
bool PatternBindingDecl::hasStorage() const {
// Walk the pattern, to check to see if any of the VarDecls included in it
// have storage.
bool HasStorage = false;
for (auto entry : getPatternList())
entry.ThePattern->forEachVariable([&](VarDecl *VD) {
if (VD->hasStorage())
HasStorage = true;
});
return HasStorage;
}
void PatternBindingDecl::setPattern(unsigned i, Pattern *P) {
auto PatternList = getMutablePatternList();
PatternList[i].ThePattern = P;
// Make sure that any VarDecl's contained within the pattern know about this
// PatternBindingDecl as their parent.
if (P)
P->forEachVariable([&](VarDecl *VD) {
VD->setParentPatternBinding(this);
});
}
VarDecl *PatternBindingDecl::getSingleVar() const {
if (getNumPatternEntries() == 1)
return getPatternList()[0].ThePattern->getSingleVar();
return nullptr;
}
SourceLoc TopLevelCodeDecl::getStartLoc() const {
return Body->getStartLoc();
}
SourceRange TopLevelCodeDecl::getSourceRange() const {
return Body->getSourceRange();
}
SourceRange IfConfigDecl::getSourceRange() const {
return SourceRange(getLoc(), EndLoc);
}
static bool isPolymorphic(const AbstractStorageDecl *storage) {
auto ctx = storage->getDeclContext()->getDeclaredTypeInContext();
if (!ctx) return false;
auto nominal = ctx->getNominalOrBoundGenericNominal();
assert(nominal && "context wasn't a nominal type?");
switch (nominal->getKind()) {
#define DECL(ID, BASE) case DeclKind::ID:
#define NOMINAL_TYPE_DECL(ID, BASE)
#include "swift/AST/DeclNodes.def"
llvm_unreachable("not a nominal type!");
case DeclKind::Struct:
case DeclKind::Enum:
return false;
case DeclKind::Protocol:
return true;
case DeclKind::Class:
// Final properties can always be direct, even in classes.
return !storage->isFinal();
}
llvm_unreachable("bad DeclKind");
}
/// Determines the access semantics to use in a DeclRefExpr or
/// MemberRefExpr use of this value in the specified context.
AccessSemantics
ValueDecl::getAccessSemanticsFromContext(const DeclContext *UseDC) const {
if (auto *var = dyn_cast<AbstractStorageDecl>(this)) {
// Observing member are accessed directly from within their didSet/willSet
// specifiers. This prevents assignments from becoming infinite loops.
if (auto *UseFD = dyn_cast<FuncDecl>(UseDC))
if (var->hasStorage() && var->hasAccessorFunctions() &&
UseFD->getAccessorStorageDecl() == var)
return AccessSemantics::DirectToStorage;
// "StoredWithTrivialAccessors" are generally always accessed indirectly,
// but if we know that the trivial accessor will always produce the same
// thing as the getter/setter (i.e., it can't be overriden), then just do a
// direct access.
//
// This is true in structs and for final properties.
// TODO: What about static properties?
switch (var->getStorageKind()) {
case AbstractStorageDecl::Stored:
case AbstractStorageDecl::StoredWithTrivialAccessors:
case AbstractStorageDecl::Addressed:
case AbstractStorageDecl::AddressedWithTrivialAccessors:
if (!isPolymorphic(var))
return AccessSemantics::DirectToStorage;
break;
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
case AbstractStorageDecl::Computed:
case AbstractStorageDecl::ComputedWithMutableAddress:
case AbstractStorageDecl::AddressedWithObservers:
break;
}
}
return AccessSemantics::Ordinary;
}
AccessStrategy
AbstractStorageDecl::getAccessStrategy(AccessSemantics semantics,
AccessKind accessKind) const {
switch (semantics) {
case AccessSemantics::DirectToStorage:
switch (getStorageKind()) {
case Stored:
case StoredWithTrivialAccessors:
case StoredWithObservers:
return AccessStrategy::Storage;
case Addressed:
case AddressedWithTrivialAccessors:
case AddressedWithObservers:
case ComputedWithMutableAddress:
return AccessStrategy::Addressor;
case InheritedWithObservers:
case Computed:
llvm_unreachable("cannot have direct-to-storage access to "
"computed storage");
}
llvm_unreachable("bad storage kind");
case AccessSemantics::DirectToAccessor:
assert(hasAccessorFunctions() &&
"direct-to-accessors access to storage without accessors?");
return AccessStrategy::DirectToAccessor;
case AccessSemantics::Ordinary:
switch (auto storageKind = getStorageKind()) {
case Stored:
return AccessStrategy::Storage;
case Addressed:
return AccessStrategy::Addressor;
case StoredWithObservers:
case InheritedWithObservers:
case AddressedWithObservers:
// An observing property backed by its own storage (i.e. which
// doesn't override anything) has a trivial getter implementation,
// but its setter is interesting.
if (accessKind != AccessKind::Read ||
storageKind == InheritedWithObservers) {
if (isPolymorphic(this))
return AccessStrategy::DispatchToAccessor;
return AccessStrategy::DirectToAccessor;
}
// Fall through to the trivial-implementation case.
SWIFT_FALLTHROUGH;
case StoredWithTrivialAccessors:
case AddressedWithTrivialAccessors:
// If the storage is polymorphic, either the getter or the
// setter could be overridden by something more interesting.
if (isPolymorphic(this))
return AccessStrategy::DispatchToAccessor;
// Otherwise, just access the storage directly.
if (storageKind == StoredWithObservers ||
storageKind == StoredWithTrivialAccessors) {
return AccessStrategy::Storage;
} else {
assert(storageKind == AddressedWithObservers ||
storageKind == AddressedWithTrivialAccessors);
return AccessStrategy::Addressor;
}
case ComputedWithMutableAddress:
if (isPolymorphic(this))
return AccessStrategy::DispatchToAccessor;
if (accessKind == AccessKind::Read)
return AccessStrategy::DirectToAccessor;
return AccessStrategy::Addressor;
case Computed:
if (isPolymorphic(this))
return AccessStrategy::DispatchToAccessor;
return AccessStrategy::DirectToAccessor;
}
llvm_unreachable("bad storage kind");
}
llvm_unreachable("bad access semantics");
}
bool ValueDecl::isDefinition() const {
switch (getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::Subscript:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::IfConfig:
llvm_unreachable("non-value decls shouldn't get here");
case DeclKind::Func:
case DeclKind::Constructor:
case DeclKind::Destructor:
return cast<AbstractFunctionDecl>(this)->hasBody();
case DeclKind::Var:
case DeclKind::Param:
case DeclKind::Enum:
case DeclKind::EnumElement:
case DeclKind::Struct:
case DeclKind::Class:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
case DeclKind::Protocol:
return true;
}
llvm_unreachable("bad DeclKind");
}
bool ValueDecl::isInstanceMember() const {
DeclContext *DC = getDeclContext();
if (!DC->isTypeContext())
return false;
switch (getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::IfConfig:
llvm_unreachable("Not a ValueDecl");
case DeclKind::Class:
case DeclKind::Enum:
case DeclKind::Protocol:
case DeclKind::Struct:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
// Types are not instance members.
return false;
case DeclKind::Constructor:
// Constructors are not instance members.
return false;
case DeclKind::Destructor:
// Destructors are technically instance members, although they
// can't actually be referenced as such.
return true;
case DeclKind::Func:
// Non-static methods are instance members.
return !cast<FuncDecl>(this)->isStatic();
case DeclKind::EnumElement:
case DeclKind::Param:
// enum elements and function parameters are not instance members.
return false;
case DeclKind::Subscript:
// Subscripts are always instance members.
return true;
case DeclKind::Var:
// Non-static variables are instance members.
return !cast<VarDecl>(this)->isStatic();
}
llvm_unreachable("bad DeclKind");
}
bool ValueDecl::needsCapture() const {
// We don't need to capture anything from non-local contexts.
if (!getDeclContext()->isLocalContext())
return false;
// We don't need to capture types.
if (isa<TypeDecl>(this))
return false;
return true;
}
ValueDecl *ValueDecl::getOverriddenDecl() const {
if (auto fd = dyn_cast<FuncDecl>(this))
return fd->getOverriddenDecl();
if (auto sdd = dyn_cast<AbstractStorageDecl>(this))
return sdd->getOverriddenDecl();
if (auto cd = dyn_cast<ConstructorDecl>(this))
return cd->getOverriddenDecl();
return nullptr;
}
bool swift::conflicting(const OverloadSignature& sig1,
const OverloadSignature& sig2) {
// If the base names are different, they can't conflict.
if (sig1.Name.getBaseName() != sig2.Name.getBaseName())
return false;
// If one is a compound name and the other is not, they do not conflict
// if one is a property and the other is a non-nullary function.
if (sig1.Name.isCompoundName() != sig2.Name.isCompoundName()) {
return !((sig1.IsProperty && sig2.Name.getArgumentNames().size() > 0) ||
(sig2.IsProperty && sig1.Name.getArgumentNames().size() > 0));
}
// You cannot overload functions based on whether or not one throws.
auto overloadedOnThrows = false;
if (sig1.InterfaceType && sig2.InterfaceType) {
if (auto fn1 = sig1.InterfaceType->getAs<AnyFunctionType>()) {
if (auto fn2 = sig2.InterfaceType->getAs<AnyFunctionType>()) {
if (fn1->throws() != fn2->throws()) {
overloadedOnThrows =
fn1->getInput()->isEqual(fn2->getInput()) &&
fn1->getResult()->isEqual(fn2->getResult());
}
}
}
}
return sig1.Name == sig2.Name &&
((sig1.InterfaceType == sig2.InterfaceType) || overloadedOnThrows) &&
sig1.UnaryOperator == sig2.UnaryOperator &&
sig1.IsInstanceMember == sig2.IsInstanceMember;
}
static Type mapSignatureFunctionType(ASTContext &ctx, Type type,
bool topLevelFunction,
bool isMethod,
bool isInitializer,
unsigned curryLevels);
/// Map a type within the signature of a declaration.
static Type mapSignatureType(ASTContext &ctx, Type type) {
return type.transform([&](Type type) -> Type {
if (type->is<FunctionType>()) {
return mapSignatureFunctionType(ctx, type, false, false, false, 1);
}
return type;
});
}
/// Map a signature type for a parameter.
static Type mapSignatureParamType(ASTContext &ctx, Type type) {
/// Translate implicitly unwrapped optionals into strict optionals.
if (auto uncheckedOptOf = type->getImplicitlyUnwrappedOptionalObjectType()) {
type = OptionalType::get(uncheckedOptOf);
}
return mapSignatureType(ctx, type);
}
/// Map a function's type to the type used for computing signatures,
/// which involves stripping noreturn, stripping default arguments,
/// transforming implicitly unwrapped optionals into strict optionals,
/// stripping 'inout' on the 'self' parameter etc.
static Type mapSignatureFunctionType(ASTContext &ctx, Type type,
bool topLevelFunction,
bool isMethod,
bool isInitializer,
unsigned curryLevels) {
if (curryLevels == 0) {
// In an initializer, ignore optionality.
if (isInitializer) {
if (auto objectType = type->getAnyOptionalObjectType())
type = objectType;
}
// Translate implicitly unwrapped optionals into strict optionals.
if (auto uncheckedOptOf = type->getImplicitlyUnwrappedOptionalObjectType()) {
type = OptionalType::get(uncheckedOptOf);
}
return mapSignatureType(ctx, type);
}
auto funcTy = type->castTo<AnyFunctionType>();
auto argTy = funcTy->getInput();
if (auto tupleTy = argTy->getAs<TupleType>()) {
SmallVector<TupleTypeElt, 4> elements;
bool anyChanged = false;
unsigned idx = 0;
for (const auto &elt : tupleTy->getElements()) {
Type eltTy = mapSignatureParamType(ctx, elt.getType());
if (anyChanged || eltTy.getPointer() != elt.getType().getPointer() ||
elt.hasInit()) {
if (!anyChanged) {
elements.reserve(tupleTy->getNumElements());
for (unsigned i = 0; i != idx; ++i) {
const TupleTypeElt &elt = tupleTy->getElement(i);
elements.push_back(TupleTypeElt(elt.getType(), elt.getName(),
DefaultArgumentKind::None,
elt.isVararg()));
}
anyChanged = true;
}
elements.push_back(TupleTypeElt(eltTy, elt.getName(),
DefaultArgumentKind::None,
elt.isVararg()));
}
++idx;
}
if (anyChanged) {
argTy = TupleType::get(elements, ctx);
}
} else {
if (isMethod) {
// In methods, map 'self' to an empty tuple to allow comparing two
// methods from different types to determine if they would conflict when
// placed into a single nominal decl.
argTy = TupleType::getEmpty(ctx);
} else
argTy = mapSignatureParamType(ctx, argTy);
}
// Map the result type.
auto resultTy = mapSignatureFunctionType(
ctx, funcTy->getResult(), topLevelFunction, false, isInitializer,
curryLevels - 1);
// At the top level, none of the extended information is relevant.
AnyFunctionType::ExtInfo info;
if (!topLevelFunction)
info = funcTy->getExtInfo();
// Rebuild the resulting function type.
//
// If the original function was generic, but our transformations removed all
// generic parameters from the signature, build a non-generic function type.
if (argTy->isDependentType() || resultTy->isDependentType())
if (auto genericFuncTy = dyn_cast<GenericFunctionType>(funcTy))
return GenericFunctionType::get(genericFuncTy->getGenericSignature(),
argTy, resultTy, info);
return FunctionType::get(argTy, resultTy, info);
}
OverloadSignature ValueDecl::getOverloadSignature() const {
OverloadSignature signature;
signature.Name = getFullName();
// Functions, initializers, and de-initializers include their
// interface types in their signatures as well as whether they are
// instance members.
if (auto afd = dyn_cast<AbstractFunctionDecl>(this)) {
signature.InterfaceType =
mapSignatureFunctionType(
getASTContext(), getInterfaceType(),
/*topLevelFunction=*/true,
/*isMethod=*/afd->getImplicitSelfDecl() != nullptr,
/*isInitializer=*/isa<ConstructorDecl>(afd),
afd->getNumParamPatterns())->getCanonicalType();
signature.IsInstanceMember = isInstanceMember();
// Unary operators also include prefix/postfix.
if (auto func = dyn_cast<FuncDecl>(this)) {
if (func->isUnaryOperator()) {
signature.UnaryOperator = func->getAttrs().getUnaryOperatorKind();
}
}
} else if (isa<SubscriptDecl>(this)) {
signature.InterfaceType
= getInterfaceType()->getWithoutDefaultArgs(getASTContext())
->getCanonicalType();
} else if (isa<VarDecl>(this)) {
signature.IsProperty = true;
signature.IsInstanceMember = isInstanceMember();
}
return signature;
}
void ValueDecl::setIsObjC(bool Value) {
bool CurrentValue = isObjC();
if (CurrentValue == Value)
return;
if (!Value) {
for (auto *Attr : getAttrs()) {
if (auto *OA = dyn_cast<ObjCAttr>(Attr))
OA->setInvalid();
}
} else {
getAttrs().add(ObjCAttr::createUnnamedImplicit(getASTContext()));
}
}
bool ValueDecl::canBeAccessedByDynamicLookup() const {
if (!hasName())
return false;
// Dynamic lookup can only find [objc] members.
if (!isObjC())
return false;
// Dynamic lookup can only find class and protocol members, or extensions of
// classes.
auto declaredType = getDeclContext()->getDeclaredTypeOfContext();
if (!declaredType)
return false;
auto nominalDC = declaredType->getAnyNominal();
if (!nominalDC ||
(!isa<ClassDecl>(nominalDC) && !isa<ProtocolDecl>(nominalDC)))
return false;
// Dynamic lookup cannot find results within a non-protocol generic context,
// because there is no sensible way to infer the generic arguments.
if (getDeclContext()->isGenericContext() && !isa<ProtocolDecl>(nominalDC))
return false;
// Dynamic lookup can find functions, variables, and subscripts.
if (isa<FuncDecl>(this) || isa<VarDecl>(this) || isa<SubscriptDecl>(this))
return true;
return false;
}
ArrayRef<ValueDecl *>
ValueDecl::getSatisfiedProtocolRequirements(bool Sorted) const {
// Dig out the nominal type.
NominalTypeDecl *NTD =
getDeclContext()->isNominalTypeOrNominalTypeExtensionContext();
if (!NTD || isa<ProtocolDecl>(NTD))
return {};
return NTD->getSatisfiedProtocolRequirementsForMember(this, Sorted);
}
void ValueDecl::setType(Type T) {
assert(!hasType() && "changing type of declaration");
overwriteType(T);
}
void ValueDecl::overwriteType(Type T) {
TypeAndAccess.setPointer(T);
if (!T.isNull() && T->is<ErrorType>())
setInvalid();
}
DeclContext *ValueDecl::getPotentialGenericDeclContext() {
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
return func;
if (auto NTD = dyn_cast<NominalTypeDecl>(this))
return NTD;
auto parentDC = getDeclContext();
if (parentDC->isTypeContext())
return parentDC;
return nullptr;
}
Type ValueDecl::getInterfaceType() const {
if (InterfaceTy)
return InterfaceTy;
if (auto nominal = dyn_cast<NominalTypeDecl>(this))
return nominal->computeInterfaceType();
if (auto assocType = dyn_cast<AssociatedTypeDecl>(this)) {
auto proto = cast<ProtocolDecl>(getDeclContext());
(void)proto->getType(); // make sure we've computed the type.
auto selfTy = proto->getGenericParamTypes()[0];
auto &ctx = getASTContext();
InterfaceTy = DependentMemberType::get(
selfTy,
const_cast<AssociatedTypeDecl *>(assocType),
ctx);
InterfaceTy = MetatypeType::get(InterfaceTy, ctx);
return InterfaceTy;
}
if (!hasType())
return Type();
// If the type involves a type variable, don't cache it.
auto type = getType();
assert((type.isNull() || !type->is<PolymorphicFunctionType>())
&& "decl has polymorphic function type but no interface type");
if (type->hasTypeVariable())
return type;
InterfaceTy = type;
return InterfaceTy;
}
void ValueDecl::setInterfaceType(Type type) {
assert((type.isNull() || !type->hasTypeVariable()) &&
"Type variable in interface type");
assert((type.isNull() || !type->is<PolymorphicFunctionType>()) &&
"setting polymorphic function type as interface type");
InterfaceTy = type;
}
SourceLoc ValueDecl::getAttributeInsertionLoc(bool forModifier) const {
if (auto var = dyn_cast<VarDecl>(this)) {
if (auto pbd = var->getParentPatternBinding()) {
SourceLoc resultLoc = pbd->getAttrs().getStartLoc(forModifier);
return resultLoc.isValid() ? resultLoc : pbd->getStartLoc();
}
}
SourceLoc resultLoc = getAttrs().getStartLoc(forModifier);
return resultLoc.isValid() ? resultLoc : getStartLoc();
}
Type TypeDecl::getDeclaredType() const {
if (auto TAD = dyn_cast<TypeAliasDecl>(this)) {
if (isa<ErrorType>(TAD->getType()->getCanonicalType())) {
return TAD->getType();
}
return TAD->getAliasType();
}
if (auto typeParam = dyn_cast<AbstractTypeParamDecl>(this)) {
auto type = typeParam->getType();
if (type->is<ErrorType>())
return type;
return type->castTo<MetatypeType>()->getInstanceType();
}
return cast<NominalTypeDecl>(this)->getDeclaredType();
}
Type TypeDecl::getDeclaredInterfaceType() const {
Type interfaceType = getInterfaceType();
if (interfaceType->is<ErrorType>())
return interfaceType;
return interfaceType->castTo<MetatypeType>()->getInstanceType();
}
ArrayRef<ProtocolDecl *> TypeDecl::getProtocols() const {
return Protocols;
}
/// Provide the set of parameters to a generic type, or null if
/// this function is not generic.
void NominalTypeDecl::setGenericParams(GenericParamList *params) {
assert(!GenericParams && "Already has generic parameters");
GenericParams = params;
if (params)
for (auto Param : *params)
Param->setDeclContext(this);
}
bool NominalTypeDecl::derivesProtocolConformance(ProtocolDecl *protocol) const {
// Only known protocols can be derived.
auto knownProtocol = protocol->getKnownProtocolKind();
if (!knownProtocol)
return false;
if (auto *enumDecl = dyn_cast<EnumDecl>(this)) {
switch (*knownProtocol) {
// Enums with raw types can implicitly derive their RawRepresentable
// conformance.
case KnownProtocolKind::RawRepresentable:
return enumDecl->hasRawType();
// Enums without associated values can implicitly derive Equatable and
// Hashable conformance.
case KnownProtocolKind::Equatable:
case KnownProtocolKind::Hashable:
return enumDecl->hasOnlyCasesWithoutAssociatedValues();
// Enums can explicitly derive their ErrorType conformance.
case KnownProtocolKind::_ErrorType:
return true;
default:
return false;
}
}
return false;
}
GenericSignature::GenericSignature(ArrayRef<GenericTypeParamType *> params,
ArrayRef<Requirement> requirements)
: NumGenericParams(params.size()), NumRequirements(requirements.size()),
CanonicalSignatureOrASTContext()
{
bool isCanonical = true;
ASTContext *C = nullptr;
auto paramsBuffer = getGenericParamsBuffer();
for (unsigned i = 0; i < NumGenericParams; ++i) {
paramsBuffer[i] = params[i];
C = &params[i]->getASTContext();
isCanonical &= params[i]->isCanonical();
}
auto reqtsBuffer = getRequirementsBuffer();
for (unsigned i = 0; i < NumRequirements; ++i) {
reqtsBuffer[i] = requirements[i];
C = &requirements[i].getFirstType()->getASTContext();
isCanonical &= requirements[i].getFirstType()->isCanonical();
isCanonical &= !requirements[i].getSecondType()
|| requirements[i].getSecondType()->isCanonical();
}
if (isCanonical) {
CanonicalSignatureOrASTContext = C;
}
}
ArrayRef<GenericTypeParamType *>
GenericSignature::getInnermostGenericParams() const {
auto params = getGenericParams();
// Find the point at which the depth changes.
unsigned depth = params.back()->getDepth();
for (unsigned n = params.size(); n > 0; --n) {
if (params[n-1]->getDepth() != depth) {
return params.slice(n);
}
}
// All parameters are at the same depth.
return params;
}
void NominalTypeDecl::setGenericSignature(GenericSignature *sig) {
assert(!GenericSig && "Already have generic signature");
GenericSig = sig;
}
void NominalTypeDecl::computeType() {
assert(!hasType() && "Nominal type declaration already has a type");
// Compute the declared type.
Type parentTy = getDeclContext()->getDeclaredTypeInContext();
ASTContext &ctx = getASTContext();
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
if (!DeclaredTy)
DeclaredTy = ProtocolType::get(proto, ctx);
} else if (getGenericParams()) {
DeclaredTy = UnboundGenericType::get(this, parentTy, ctx);
} else {
DeclaredTy = NominalType::get(this, parentTy, ctx);
}
// Set the type.
setType(MetatypeType::get(DeclaredTy, ctx));
// A protocol has an implicit generic parameter list consisting of a single
// generic parameter, Self, that conforms to the protocol itself. This
// parameter is always implicitly bound.
//
// If this protocol has been deserialized, it already has generic parameters.
// Don't add them again.
if (!getGenericParams()) {
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
GenericParams = proto->createGenericParams(proto);
}
}
}
Type NominalTypeDecl::getDeclaredTypeInContext() const {
if (DeclaredTyInContext)
return DeclaredTyInContext;
Type Ty = getDeclaredType();
if (!Ty)
return Ty;
if (UnboundGenericType *UGT = Ty->getAs<UnboundGenericType>()) {
// If we have an unbound generic type, bind the type to the archetypes
// in the type's definition.
NominalTypeDecl *D = UGT->getDecl();
SmallVector<Type, 4> GenericArgs;
for (auto Param : *D->getGenericParams()) {
auto Archetype = Param->getArchetype();
if (!Archetype)
return ErrorType::get(getASTContext());
GenericArgs.push_back(Archetype);
}
Ty = BoundGenericType::get(D, getDeclContext()->getDeclaredTypeInContext(),
GenericArgs);
}
const_cast<NominalTypeDecl *>(this)->DeclaredTyInContext = Ty;
return DeclaredTyInContext;
}
Type NominalTypeDecl::computeInterfaceType() const {
if (InterfaceTy)
return InterfaceTy;
// Figure out the interface type of the parent.
Type parentType;
if (auto typeOfParentContext = getDeclContext()->getDeclaredTypeOfContext())
parentType = typeOfParentContext->getAnyNominal()
->getDeclaredInterfaceType();
Type type;
if (auto proto = dyn_cast<ProtocolDecl>(this)) {
type = ProtocolType::get(const_cast<ProtocolDecl *>(proto),getASTContext());
} else if (auto params = getGenericParams()) {
// If we have a generic type, bind the type to the archetypes
// in the type's definition.
SmallVector<Type, 4> genericArgs;
for (auto param : *params)
genericArgs.push_back(param->getDeclaredType());
type = BoundGenericType::get(const_cast<NominalTypeDecl *>(this),
parentType, genericArgs);
} else {
type = NominalType::get(const_cast<NominalTypeDecl *>(this), parentType,
getASTContext());
}
InterfaceTy = MetatypeType::get(type, getASTContext());
return InterfaceTy;
}
void NominalTypeDecl::prepareExtensions() {
auto &context = Decl::getASTContext();
// If our list of extensions is out of date, update it now.
if (context.getCurrentGeneration() > ExtensionGeneration) {
unsigned previousGeneration = ExtensionGeneration;
ExtensionGeneration = context.getCurrentGeneration();
context.loadExtensions(this, previousGeneration);
}
}
ExtensionRange NominalTypeDecl::getExtensions() {
prepareExtensions();
return ExtensionRange(ExtensionIterator(FirstExtension), ExtensionIterator());
}
void NominalTypeDecl::addExtension(ExtensionDecl *extension) {
assert(!extension->NextExtension.getInt() && "Already added extension");
extension->NextExtension.setInt(true);
// First extension; set both first and last.
if (!FirstExtension) {
FirstExtension = extension;
LastExtension = extension;
return;
}
// Add to the end of the list.
LastExtension->NextExtension.setPointer(extension);
LastExtension = extension;
}
OptionalTypeKind NominalTypeDecl::classifyAsOptionalType() const {
const ASTContext &ctx = getASTContext();
if (this == ctx.getOptionalDecl()) {
return OTK_Optional;
} else if (this == ctx.getImplicitlyUnwrappedOptionalDecl()) {
return OTK_ImplicitlyUnwrappedOptional;
} else {
return OTK_None;
}
}
TypeAliasDecl::TypeAliasDecl(SourceLoc TypeAliasLoc, Identifier Name,
SourceLoc NameLoc, TypeLoc UnderlyingTy,
DeclContext *DC)
: TypeDecl(DeclKind::TypeAlias, DC, Name, NameLoc, {}),
TypeAliasLoc(TypeAliasLoc),
UnderlyingTy(UnderlyingTy)
{
// Set the type of the TypeAlias to the right MetatypeType.
ASTContext &Ctx = getASTContext();
AliasTy = new (Ctx, AllocationArena::Permanent) NameAliasType(this);
setType(MetatypeType::get(AliasTy, Ctx));
}
SourceRange TypeAliasDecl::getSourceRange() const {
if (UnderlyingTy.hasLocation())
return { TypeAliasLoc, UnderlyingTy.getSourceRange().End };
// FIXME: Inherits clauses
return { TypeAliasLoc, getNameLoc() };
}
GenericTypeParamDecl::GenericTypeParamDecl(DeclContext *dc, Identifier name,
SourceLoc nameLoc,
unsigned depth, unsigned index)
: AbstractTypeParamDecl(DeclKind::GenericTypeParam, dc, name, nameLoc),
Depth(depth), Index(index)
{
auto &ctx = dc->getASTContext();
auto type = new (ctx, AllocationArena::Permanent) GenericTypeParamType(this);
setType(MetatypeType::get(type, ctx));
}
SourceRange GenericTypeParamDecl::getSourceRange() const {
SourceLoc endLoc = getNameLoc();
if (!getInherited().empty()) {
endLoc = getInherited().back().getSourceRange().End;
}
return SourceRange(getNameLoc(), endLoc);
}
AssociatedTypeDecl::AssociatedTypeDecl(DeclContext *dc, SourceLoc keywordLoc,
Identifier name, SourceLoc nameLoc,
TypeLoc defaultDefinition)
: AbstractTypeParamDecl(DeclKind::AssociatedType, dc, name, nameLoc),
KeywordLoc(keywordLoc), DefaultDefinition(defaultDefinition)
{
auto &ctx = dc->getASTContext();
auto type = new (ctx, AllocationArena::Permanent) AssociatedTypeType(this);
setType(MetatypeType::get(type, ctx));
}
AssociatedTypeDecl::AssociatedTypeDecl(DeclContext *dc, SourceLoc keywordLoc,
Identifier name, SourceLoc nameLoc,
LazyMemberLoader *definitionResolver,
uint64_t resolverData)
: AbstractTypeParamDecl(DeclKind::AssociatedType, dc, name, nameLoc),
KeywordLoc(keywordLoc), Resolver(definitionResolver),
ResolverContextData(resolverData)
{
assert(Resolver && "missing resolver");
auto &ctx = dc->getASTContext();
auto type = new (ctx, AllocationArena::Permanent) AssociatedTypeType(this);
setType(MetatypeType::get(type, ctx));
}
TypeLoc &AssociatedTypeDecl::getDefaultDefinitionLoc() {
if (Resolver) {
DefaultDefinition =
Resolver->loadAssociatedTypeDefault(this, ResolverContextData);
Resolver = nullptr;
}
return DefaultDefinition;
}
SourceRange AssociatedTypeDecl::getSourceRange() const {
SourceLoc endLoc = getNameLoc();
if (!getInherited().empty()) {
endLoc = getInherited().back().getSourceRange().End;
}
return SourceRange(KeywordLoc, endLoc);
}
EnumDecl::EnumDecl(SourceLoc EnumLoc,
Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Enum, Parent, Name, NameLoc, Inherited,
GenericParams),
EnumLoc(EnumLoc)
{
EnumDeclBits.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
}
StructDecl::StructDecl(SourceLoc StructLoc, Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Struct, Parent, Name, NameLoc, Inherited,
GenericParams),
StructLoc(StructLoc)
{
StructDeclBits.HasUnreferenceableStorage = false;
}
ClassDecl::ClassDecl(SourceLoc ClassLoc, Identifier Name, SourceLoc NameLoc,
MutableArrayRef<TypeLoc> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Class, Parent, Name, NameLoc, Inherited,
GenericParams),
ClassLoc(ClassLoc) {
ClassDeclBits.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
ClassDeclBits.RequiresStoredPropertyInits = 0;
ClassDeclBits.InheritsSuperclassInits
= static_cast<unsigned>(StoredInheritsSuperclassInits::Unchecked);
ClassDeclBits.Foreign = false;
ClassDeclBits.HasDestructorDecl = 0;
}
DestructorDecl *ClassDecl::getDestructor() {
auto name = getASTContext().Id_deinit;
auto results = lookupDirect(name);
assert(!results.empty() && "Class without destructor?");
assert(results.size() == 1 && "More than one destructor?");
return cast<DestructorDecl>(results.front());
}
bool ClassDecl::inheritsSuperclassInitializers(LazyResolver *resolver) {
// Check whether we already have a cached answer.
switch (static_cast<StoredInheritsSuperclassInits>(
ClassDeclBits.InheritsSuperclassInits)) {
case StoredInheritsSuperclassInits::Unchecked:
// Compute below.
break;
case StoredInheritsSuperclassInits::Inherited:
return true;
case StoredInheritsSuperclassInits::NotInherited:
return false;
}
// If there's no superclass, there's nothing to inherit.
ClassDecl *superclassDecl;
if (!getSuperclass() ||
!(superclassDecl = getSuperclass()->getClassOrBoundGenericClass())) {
ClassDeclBits.InheritsSuperclassInits
= static_cast<unsigned>(StoredInheritsSuperclassInits::NotInherited);
return false;
}
// Look at all of the initializers of the subclass to gather the initializers
// they override from the superclass.
auto &ctx = getASTContext();
llvm::SmallPtrSet<ConstructorDecl *, 4> overriddenInits;
if (resolver)
resolver->resolveImplicitConstructors(this);
for (auto member : lookupDirect(ctx.Id_init)) {
auto ctor = dyn_cast<ConstructorDecl>(member);
if (!ctor)
continue;
// Resolve this initializer, if needed.
if (!ctor->hasType())
resolver->resolveDeclSignature(ctor);
// Ignore any stub implementations.
if (ctor->hasStubImplementation())
continue;
if (auto overridden = ctor->getOverriddenDecl()) {
if (overridden->isDesignatedInit())
overriddenInits.insert(overridden);
}
}
// Check all of the designated initializers in the direct superclass.
for (auto member : superclassDecl->lookupDirect(ctx.Id_init)) {
if (AvailabilityAttr::isUnavailable(member))
continue;
// We only care about designated initializers.
auto ctor = dyn_cast<ConstructorDecl>(member);
if (!ctor || !ctor->isDesignatedInit() || ctor->hasStubImplementation())
continue;
// If this designated initializer wasn't overridden, we can't inherit.
if (overriddenInits.count(ctor) == 0) {
ClassDeclBits.InheritsSuperclassInits
= static_cast<unsigned>(StoredInheritsSuperclassInits::NotInherited);
return false;
}
}
// All of the direct superclass's designated initializers have been overridden
// by the sublcass. Initializers can be inherited.
ClassDeclBits.InheritsSuperclassInits
= static_cast<unsigned>(StoredInheritsSuperclassInits::Inherited);
return true;
}
/// Mangle the name of a protocol or class for use in the Objective-C
/// runtime.
static StringRef mangleObjCRuntimeName(const NominalTypeDecl *nominal,
llvm::SmallVectorImpl<char> &buffer) {
{
buffer.clear();
llvm::raw_svector_ostream os(buffer);
// We add the "_Tt" prefix to make this a reserved name that will
// not conflict with any valid Objective-C class or protocol name.
os << "_Tt";
// Mangle the type.
Mangle::Mangler mangler(os, false/*dwarf*/, false/*punycode*/);
NominalTypeDecl *NTD = const_cast<NominalTypeDecl*>(nominal);
if (isa<ClassDecl>(nominal)) {
mangler.mangleNominalType(NTD,
ResilienceExpansion::Minimal,
Mangle::Mangler::BindGenerics::None);
} else {
mangler.mangleProtocolDecl(cast<ProtocolDecl>(NTD));
}
}
return StringRef(buffer.data(), buffer.size());
}
StringRef ClassDecl::getObjCRuntimeName(
llvm::SmallVectorImpl<char> &buffer) const {
// If there is an 'objc' attribute with a name, use that name.
if (auto objc = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objc->getName())
return name->getString(buffer);
}
// Produce the mangled name for this class.
return mangleObjCRuntimeName(this, buffer);
}
ArtificialMainKind ClassDecl::getArtificialMainKind() const {
if (getAttrs().hasAttribute<UIApplicationMainAttr>())
return ArtificialMainKind::UIApplicationMain;
if (getAttrs().hasAttribute<NSApplicationMainAttr>())
return ArtificialMainKind::NSApplicationMain;
llvm_unreachable("class has no @ApplicationMain attr?!");
}
FuncDecl *ClassDecl::findOverridingDecl(const FuncDecl *Method) const {
auto Members = getMembers();
for (auto M : Members) {
FuncDecl *CurMethod = dyn_cast<FuncDecl>(M);
if (!CurMethod)
continue;
if (CurMethod->isOverridingDecl(Method)) {
return CurMethod;
}
}
return nullptr;
}
FuncDecl * ClassDecl::findImplementingMethod(const FuncDecl *Method) const {
const ClassDecl *C = this;
while (C) {
auto Members = C->getMembers();
for (auto M : Members) {
FuncDecl *CurMethod = dyn_cast<FuncDecl>(M);
if (!CurMethod)
continue;
if (Method == CurMethod)
return CurMethod;
if (CurMethod->isOverridingDecl(Method)) {
// This class implements a method
return CurMethod;
}
}
// Check the superclass
if (!C->hasSuperclass())
break;
C = C->getSuperclass()->getClassOrBoundGenericClass();
}
return nullptr;
}
EnumCaseDecl *EnumCaseDecl::create(SourceLoc CaseLoc,
ArrayRef<EnumElementDecl *> Elements,
DeclContext *DC) {
void *buf = DC->getASTContext()
.Allocate(sizeof(EnumCaseDecl) +
sizeof(EnumElementDecl*) * Elements.size(),
alignof(EnumCaseDecl));
return ::new (buf) EnumCaseDecl(CaseLoc, Elements, DC);
}
EnumElementDecl *EnumDecl::getElement(Identifier Name) const {
// FIXME: Linear search is not great for large enum decls.
for (EnumElementDecl *Elt : getAllElements())
if (Elt->getName() == Name)
return Elt;
return nullptr;
}
bool EnumDecl::hasOnlyCasesWithoutAssociatedValues() const {
// FIXME: Should probably cache this.
bool hasElements = false;
for (auto elt : getAllElements()) {
hasElements = true;
if (!elt->getArgumentTypeLoc().isNull())
return false;
}
return hasElements;
}
ProtocolDecl::ProtocolDecl(DeclContext *DC, SourceLoc ProtocolLoc,
SourceLoc NameLoc, Identifier Name,
MutableArrayRef<TypeLoc> Inherited)
: NominalTypeDecl(DeclKind::Protocol, DC, Name, NameLoc, Inherited,
nullptr),
ProtocolLoc(ProtocolLoc)
{
ProtocolDeclBits.RequiresClassValid = false;
ProtocolDeclBits.RequiresClass = false;
ProtocolDeclBits.ExistentialConformsToSelfValid = false;
ProtocolDeclBits.ExistentialConformsToSelf = false;
ProtocolDeclBits.KnownProtocol = 0;
ProtocolDeclBits.Circularity
= static_cast<unsigned>(CircularityCheck::Unchecked);
ProtocolDeclBits.HasMissingRequirements = false;
ProtocolDeclBits.InheritedProtocolsWereDeserialized = false;
}
bool ProtocolDecl::inheritsFrom(const ProtocolDecl *super) const {
if (this == super)
return false;
auto allProtocols = getLocalProtocols();
return std::find(allProtocols.begin(), allProtocols.end(), super)
!= allProtocols.end();
}
bool ProtocolDecl::requiresClassSlow() {
ProtocolDeclBits.RequiresClass = false;
// Ensure that the result can not change in future.
assert(isProtocolsValid());
if (getAttrs().hasAttribute<ObjCAttr>() || isObjC()) {
ProtocolDeclBits.RequiresClass = true;
return true;
}
// Check inherited protocols for class-ness.
for (auto *proto : getInheritedProtocols(nullptr)) {
if (proto->requiresClass()) {
ProtocolDeclBits.RequiresClass = true;
return true;
}
}
return false;
}
bool ProtocolDecl::existentialConformsToSelfSlow(LazyResolver *resolver) {
// Assume for now that the existential conforms to itself; this
// prevents circularity issues.
ProtocolDeclBits.ExistentialConformsToSelfValid = true;
ProtocolDeclBits.ExistentialConformsToSelf = true;
// Resolve the protocol's type.
if (resolver && !hasType())
resolver->resolveDeclSignature(this);
// Check whether this protocol conforms to itself.
auto selfType = getProtocolSelf()->getArchetype();
for (auto member : getMembers()) {
if (auto vd = dyn_cast<ValueDecl>(member)) {
if (resolver && !vd->hasType())
resolver->resolveDeclSignature(vd);
}
if (member->isInvalid())
continue;
// Check for associated types.
if (isa<AssociatedTypeDecl>(member)) {
// A protocol cannot conform to itself if it has an associated type.
ProtocolDeclBits.ExistentialConformsToSelf = false;
return false;
}
// For value members, look at their type signatures.
auto valueMember = dyn_cast<ValueDecl>(member);
if (!valueMember || !valueMember->hasType())
continue;
// Extract the type of the member, ignoring the 'self' parameter and return
// type of functions.
auto memberTy = valueMember->getType();
if (memberTy->is<ErrorType>())
continue;
if (isa<AbstractFunctionDecl>(valueMember)) {
// Drop the 'Self' parameter.
memberTy = memberTy->castTo<AnyFunctionType>()->getResult();
// Drop the return type. Methods are allowed to return Self.
memberTy = memberTy->castTo<AnyFunctionType>()->getInput();
}
// If we find 'Self' anywhere in the member's type, the protocol
// does not conform to itself.
if (memberTy.findIf([&](Type type) -> bool {
// If we found our archetype, return null.
if (auto archetype = type->getAs<ArchetypeType>()) {
return archetype == selfType;
}
return false;
})) {
ProtocolDeclBits.ExistentialConformsToSelf = false;
return false;
}
}
// Check whether any of the inherited protocols fail to conform to
// themselves.
for (auto proto : getInheritedProtocols(resolver)) {
if (!proto->existentialConformsToSelf(resolver)) {
ProtocolDeclBits.ExistentialConformsToSelf = false;
return false;
}
}
return true;
}
StringRef ProtocolDecl::getObjCRuntimeName(
llvm::SmallVectorImpl<char> &buffer) const {
// If there is an 'objc' attribute with a name, use that name.
if (auto objc = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objc->getName())
return name->getString(buffer);
}
// Produce the mangled name for this protocol.
return mangleObjCRuntimeName(this, buffer);
}
GenericParamList *ProtocolDecl::createGenericParams(DeclContext *dc) {
SourceLoc loc;
if (auto ext = dyn_cast<ExtensionDecl>(dc))
loc = ext->getLoc();
else
loc = getLoc();
// The generic parameter 'Self'.
auto &ctx = getASTContext();
auto selfId = ctx.Id_Self;
auto selfDecl = new (ctx) GenericTypeParamDecl(dc, selfId, loc, 0, 0);
auto protoRef = new (ctx) SimpleIdentTypeRepr(loc, getName());
protoRef->setValue(this);
TypeLoc selfInherited[1] = { TypeLoc(protoRef) };
selfInherited[0].setType(ProtocolType::get(this, ctx));
selfDecl->setInherited(ctx.AllocateCopy(selfInherited));
selfDecl->setImplicit();
// The generic parameter list itself.
return GenericParamList::create(ctx, SourceLoc(), selfDecl, SourceLoc());
}
FuncDecl *AbstractStorageDecl::getAccessorFunction(AccessorKind kind) const {
switch (kind) {
case AccessorKind::IsGetter: return getGetter();
case AccessorKind::IsSetter: return getSetter();
case AccessorKind::IsMaterializeForSet: return getMaterializeForSetFunc();
case AccessorKind::IsAddressor: return getAddressor();
case AccessorKind::IsMutableAddressor: return getMutableAddressor();
case AccessorKind::IsDidSet: return getDidSetFunc();
case AccessorKind::IsWillSet: return getWillSetFunc();
case AccessorKind::NotAccessor: llvm_unreachable("called with NotAccessor");
}
llvm_unreachable("bad accessor kind!");
}
void AbstractStorageDecl::configureGetSetRecord(GetSetRecord *getSetInfo,
FuncDecl *getter,
FuncDecl *setter,
FuncDecl *materializeForSet) {
getSetInfo->Get = getter;
if (getter) {
getter->makeAccessor(this, AccessorKind::IsGetter);
}
configureSetRecord(getSetInfo, setter, materializeForSet);
}
void AbstractStorageDecl::configureSetRecord(GetSetRecord *getSetInfo,
FuncDecl *setter,
FuncDecl *materializeForSet) {
getSetInfo->Set = setter;
getSetInfo->MaterializeForSet = materializeForSet;
auto setSetterAccess = [&](FuncDecl *fn) {
if (auto setterAccess = GetSetInfo.getInt()) {
assert(!fn->hasAccessibility() ||
fn->getFormalAccess() == setterAccess.getValue());
fn->overwriteAccessibility(setterAccess.getValue());
}
};
if (setter) {
setter->makeAccessor(this, AccessorKind::IsSetter);
setSetterAccess(setter);
}
if (materializeForSet) {
materializeForSet->makeAccessor(this, AccessorKind::IsMaterializeForSet);
setSetterAccess(materializeForSet);
}
}
void AbstractStorageDecl::configureAddressorRecord(AddressorRecord *record,
FuncDecl *addressor,
FuncDecl *mutableAddressor) {
record->Address = addressor;
record->MutableAddress = mutableAddressor;
if (addressor) {
addressor->makeAccessor(this, AccessorKind::IsAddressor);
}
if (mutableAddressor) {
mutableAddressor->makeAccessor(this, AccessorKind::IsMutableAddressor);
}
}
void AbstractStorageDecl::configureObservingRecord(ObservingRecord *record,
FuncDecl *willSet,
FuncDecl *didSet) {
record->WillSet = willSet;
record->DidSet = didSet;
if (willSet) {
willSet->makeAccessor(this, AccessorKind::IsWillSet);
}
if (didSet) {
didSet->makeAccessor(this, AccessorKind::IsDidSet);
}
}
void AbstractStorageDecl::makeComputed(SourceLoc LBraceLoc,
FuncDecl *Get, FuncDecl *Set,
FuncDecl *MaterializeForSet,
SourceLoc RBraceLoc) {
assert(getStorageKind() == Stored && "StorageKind already set");
auto &Context = getASTContext();
void *Mem = Context.Allocate(sizeof(GetSetRecord), alignof(GetSetRecord));
auto *getSetInfo = new (Mem) GetSetRecord();
getSetInfo->Braces = SourceRange(LBraceLoc, RBraceLoc);
GetSetInfo.setPointer(getSetInfo);
configureGetSetRecord(getSetInfo, Get, Set, MaterializeForSet);
// Mark that this is a computed property.
setStorageKind(Computed);
}
void AbstractStorageDecl::setComputedSetter(FuncDecl *Set) {
assert(getStorageKind() == Computed && "Not a computed variable");
assert(getGetter() && "sanity check: missing getter");
assert(!getSetter() && "already has a setter");
assert(hasClangNode() && "should only be used for ObjC properties");
assert(Set && "should not be called for readonly properties");
GetSetInfo.getPointer()->Set = Set;
Set->makeAccessor(this, AccessorKind::IsSetter);
if (auto setterAccess = GetSetInfo.getInt()) {
assert(!Set->hasAccessibility() ||
Set->getFormalAccess() == setterAccess.getValue());
Set->overwriteAccessibility(setterAccess.getValue());
}
}
void AbstractStorageDecl::makeComputedWithMutableAddress(SourceLoc lbraceLoc,
FuncDecl *get, FuncDecl *set,
FuncDecl *materializeForSet,
FuncDecl *mutableAddressor,
SourceLoc rbraceLoc) {
assert(getStorageKind() == Stored && "StorageKind already set");
assert(get);
assert(mutableAddressor);
auto &ctx = getASTContext();
void *mem = ctx.Allocate(sizeof(GetSetRecordWithAddressors),
alignof(GetSetRecordWithAddressors));
auto info = new (mem) GetSetRecordWithAddressors();
info->Braces = SourceRange(lbraceLoc, rbraceLoc);
GetSetInfo.setPointer(info);
setStorageKind(ComputedWithMutableAddress);
configureAddressorRecord(info, nullptr, mutableAddressor);
configureGetSetRecord(info, get, set, materializeForSet);
}
void AbstractStorageDecl::setMaterializeForSetFunc(FuncDecl *accessor) {
assert(hasAccessorFunctions() && "No accessors for declaration!");
assert(getSetter() && "declaration is not settable");
assert(!getMaterializeForSetFunc() && "already has a materializeForSet");
GetSetInfo.getPointer()->MaterializeForSet = accessor;
accessor->makeAccessor(this, AccessorKind::IsMaterializeForSet);
if (auto setterAccess = GetSetInfo.getInt()) {
assert(!accessor->hasAccessibility() ||
accessor->getFormalAccess() == setterAccess.getValue());
accessor->overwriteAccessibility(setterAccess.getValue());
}
}
/// \brief Turn this into a StoredWithTrivialAccessors var, specifying the
/// accessors (getter and setter) that go with it.
void AbstractStorageDecl::addTrivialAccessors(FuncDecl *Get,
FuncDecl *Set, FuncDecl *MaterializeForSet) {
assert((getStorageKind() == Stored ||
getStorageKind() == Addressed) && "StorageKind already set");
assert(Get);
auto &ctx = getASTContext();
GetSetRecord *getSetInfo;
if (getStorageKind() == Addressed) {
getSetInfo = GetSetInfo.getPointer();
setStorageKind(AddressedWithTrivialAccessors);
} else {
void *mem = ctx.Allocate(sizeof(GetSetRecord), alignof(GetSetRecord));
getSetInfo = new (mem) GetSetRecord();
getSetInfo->Braces = SourceRange();
GetSetInfo.setPointer(getSetInfo);
setStorageKind(StoredWithTrivialAccessors);
}
configureGetSetRecord(getSetInfo, Get, Set, MaterializeForSet);
}
void AbstractStorageDecl::makeAddressed(SourceLoc lbraceLoc, FuncDecl *addressor,
FuncDecl *mutableAddressor,
SourceLoc rbraceLoc) {
assert(getStorageKind() == Stored && "StorageKind already set");
assert(addressor && "addressed mode, but no addressor function?");
auto &ctx = getASTContext();
void *mem = ctx.Allocate(sizeof(GetSetRecordWithAddressors),
alignof(GetSetRecordWithAddressors));
auto info = new (mem) GetSetRecordWithAddressors();
info->Braces = SourceRange(lbraceLoc, rbraceLoc);
GetSetInfo.setPointer(info);
setStorageKind(Addressed);
configureAddressorRecord(info, addressor, mutableAddressor);
}
void AbstractStorageDecl::makeStoredWithObservers(SourceLoc LBraceLoc,
FuncDecl *WillSet,
FuncDecl *DidSet,
SourceLoc RBraceLoc) {
assert(getStorageKind() == Stored && "VarDecl StorageKind already set");
assert((WillSet || DidSet) &&
"Can't be Observing without one or the other");
auto &Context = getASTContext();
void *Mem = Context.Allocate(sizeof(ObservingRecord),
alignof(ObservingRecord));
auto *observingInfo = new (Mem) ObservingRecord;
observingInfo->Braces = SourceRange(LBraceLoc, RBraceLoc);
GetSetInfo.setPointer(observingInfo);
// Mark that this is an observing property.
setStorageKind(StoredWithObservers);
configureObservingRecord(observingInfo, WillSet, DidSet);
}
void AbstractStorageDecl::makeInheritedWithObservers(SourceLoc lbraceLoc,
FuncDecl *willSet,
FuncDecl *didSet,
SourceLoc rbraceLoc) {
assert(getStorageKind() == Stored && "StorageKind already set");
assert((willSet || didSet) &&
"Can't be Observing without one or the other");
auto &ctx = getASTContext();
void *mem = ctx.Allocate(sizeof(ObservingRecord), alignof(ObservingRecord));
auto *observingInfo = new (mem) ObservingRecord;
observingInfo->Braces = SourceRange(lbraceLoc, rbraceLoc);
GetSetInfo.setPointer(observingInfo);
// Mark that this is an observing property.
setStorageKind(InheritedWithObservers);
configureObservingRecord(observingInfo, willSet, didSet);
}
void AbstractStorageDecl::makeAddressedWithObservers(SourceLoc lbraceLoc,
FuncDecl *addressor,
FuncDecl *mutableAddressor,
FuncDecl *willSet,
FuncDecl *didSet,
SourceLoc rbraceLoc) {
assert(getStorageKind() == Stored && "VarDecl StorageKind already set");
assert(addressor);
assert(mutableAddressor && "observing but immutable?");
assert((willSet || didSet) &&
"Can't be Observing without one or the other");
auto &ctx = getASTContext();
void *mem = ctx.Allocate(sizeof(ObservingRecordWithAddressors),
alignof(ObservingRecordWithAddressors));
auto info = new (mem) ObservingRecordWithAddressors();
info->Braces = SourceRange(lbraceLoc, rbraceLoc);
GetSetInfo.setPointer(info);
setStorageKind(AddressedWithObservers);
configureAddressorRecord(info, addressor, mutableAddressor);
configureObservingRecord(info, willSet, didSet);
}
/// \brief Specify the synthesized get/set functions for a Observing var.
/// This is used by Sema.
void AbstractStorageDecl::setObservingAccessors(FuncDecl *Get,
FuncDecl *Set,
FuncDecl *MaterializeForSet) {
assert(hasObservers() && "VarDecl is wrong type");
assert(!getGetter() && !getSetter() && "getter and setter already set");
assert(Get && Set && "Must specify getter and setter");
configureGetSetRecord(GetSetInfo.getPointer(), Get, Set, MaterializeForSet);
}
void AbstractStorageDecl::setInvalidBracesRange(SourceRange BracesRange) {
assert(!GetSetInfo.getPointer() && "Braces range has already been set");
auto &Context = getASTContext();
void *Mem = Context.Allocate(sizeof(GetSetRecord), alignof(GetSetRecord));
auto *getSetInfo = new (Mem) GetSetRecord();
getSetInfo->Braces = BracesRange;
getSetInfo->Get = nullptr;
getSetInfo->Set = nullptr;
getSetInfo->MaterializeForSet = nullptr;
GetSetInfo.setPointer(getSetInfo);
}
ObjCSelector AbstractStorageDecl::getObjCGetterSelector(
LazyResolver *resolver) const {
// If the getter has an @objc attribute with a name, use that.
if (auto getter = getGetter()) {
if (auto objcAttr = getter->getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objcAttr->getName())
return *name;
}
}
// Subscripts use a specific selector.
auto &ctx = getASTContext();
if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
switch (SD->getObjCSubscriptKind(resolver)) {
case ObjCSubscriptKind::None:
llvm_unreachable("Not an Objective-C subscript");
case ObjCSubscriptKind::Indexed:
return ObjCSelector(ctx, 1, ctx.Id_objectAtIndexedSubscript);
case ObjCSubscriptKind::Keyed:
return ObjCSelector(ctx, 1, ctx.Id_objectForKeyedSubscript);
}
}
// The getter selector is the property name itself.
auto var = cast<VarDecl>(this);
return ObjCSelector(ctx, 0, var->getObjCPropertyName());
}
ObjCSelector AbstractStorageDecl::getObjCSetterSelector(
LazyResolver *resolver) const {
// If the setter has an @objc attribute with a name, use that.
auto setter = getSetter();
auto objcAttr = setter ? setter->getAttrs().getAttribute<ObjCAttr>()
: nullptr;
if (objcAttr) {
if (auto name = objcAttr->getName())
return *name;
}
// Subscripts use a specific selector.
auto &ctx = getASTContext();
if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
switch (SD->getObjCSubscriptKind(resolver)) {
case ObjCSubscriptKind::None:
llvm_unreachable("Not an Objective-C subscript");
case ObjCSubscriptKind::Indexed:
return ObjCSelector(ctx, 2,
{ ctx.Id_setObject, ctx.Id_atIndexedSubscript });
case ObjCSubscriptKind::Keyed:
return ObjCSelector(ctx, 2,
{ ctx.Id_setObject, ctx.Id_forKeyedSubscript });
}
}
// The setter selector for, e.g., 'fooBar' is 'setFooBar:', with the
// property name capitalized and preceded by 'set'.
auto var = cast<VarDecl>(this);
llvm::SmallString<16> scratch;
scratch += "set";
camel_case::appendSentenceCase(scratch, var->getObjCPropertyName().str());
auto result = ObjCSelector(ctx, 1, ctx.getIdentifier(scratch));
// Cache the result, so we don't perform string manipulation again.
if (objcAttr)
const_cast<ObjCAttr *>(objcAttr)->setName(result, /*implicit=*/true);
return result;
}
SourceLoc AbstractStorageDecl::getOverrideLoc() const {
if (auto *Override = getAttrs().getAttribute<OverrideAttr>())
return Override->getLocation();
return SourceLoc();
}
static bool isSettable(const AbstractStorageDecl *decl) {
switch (decl->getStorageKind()) {
case AbstractStorageDecl::Stored:
return true;
case AbstractStorageDecl::StoredWithTrivialAccessors:
return decl->getSetter() != nullptr;
case AbstractStorageDecl::Addressed:
case AbstractStorageDecl::AddressedWithTrivialAccessors:
return decl->getMutableAddressor() != nullptr;
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
case AbstractStorageDecl::AddressedWithObservers:
case AbstractStorageDecl::ComputedWithMutableAddress:
return true;
case AbstractStorageDecl::Computed:
return decl->getSetter() != nullptr;
}
llvm_unreachable("bad storage kind");
}
/// \brief Returns whether the var is settable in the specified context: this
/// is either because it is a stored var, because it has a custom setter, or
/// is a let member in an initializer.
bool VarDecl::isSettable(DeclContext *UseDC) const {
// 'let' properties are immutable, but enforcement of this is enforced by
// SIL level passes. If the 'let' property has an initializer, it can never
// be reassigned, so we model it as not settable here.
if (isLet()) {
// If the decl has a value bound to it but has no PBD, then it is
// initialized.
if (hasNonPatternBindingInit())
return false;
// 'let' parameters are never settable.
if (isa<ParamDecl>(this))
return false;
// Properties in structs/classes are only ever mutable in their designated
// initializer(s).
if (getDeclContext()->isTypeContext()) {
auto *CD = dyn_cast_or_null<ConstructorDecl>(UseDC);
if (!CD) return false;
auto *CDC = CD->getDeclContext();
// If this init is defined inside of the same type (or in an extension
// thereof) as the let property, then it is mutable.
if (CDC->isTypeContext() &&
CDC->getDeclaredTypeInContext()->getAnyNominal() ==
getDeclContext()->getDeclaredTypeInContext()->getAnyNominal()) {
// If this is a convenience initializer (i.e. one that calls
// self.init), then let properties are never mutable in it. They are
// only mutable in designated initializers.
if (CD->getDelegatingOrChainedInitKind(nullptr) ==
ConstructorDecl::BodyInitKind::Delegating)
return false;
return true;
}
} else {
// Normal variables (e.g. globals) are only mutable in the context of the
// declaration. To handle top-level code properly, we look through
// the TopLevelCode decl on the use (if present) since the vardecl will be
// one level up.
if (UseDC && isa<TopLevelCodeDecl>(UseDC))
UseDC = UseDC->getParent();
if (getDeclContext() != UseDC)
return false;
}
// If the decl has an explicitly written initializer with a pattern binding,
// then it isn't settable.
if (getParentInitializer() != nullptr)
return false;
}
return ::isSettable(this);
}
bool SubscriptDecl::isSettable() const {
return ::isSettable(this);
}
SourceRange VarDecl::getSourceRange() const {
if (auto Param = dyn_cast<ParamDecl>(this))
return Param->getSourceRange();
return getNameLoc();
}
SourceRange VarDecl::getTypeSourceRangeForDiagnostics() const {
Pattern *Pat = nullptr;
if (ParentPattern.is<PatternBindingDecl *>())
Pat = getParentPattern();
else
Pat = ParentPattern.dyn_cast<Pattern *>();
if (!Pat || Pat->isImplicit())
return getSourceRange();
if (auto *VP = dyn_cast<VarPattern>(Pat))
Pat = VP->getSubPattern();
if (auto *TP = dyn_cast<TypedPattern>(Pat))
return TP->getTypeLoc().getTypeRepr()->getSourceRange();
return getSourceRange();
}
/// Return true if this stored property needs to be accessed with getters and
/// setters for Objective-C.
bool AbstractStorageDecl::hasObjCGetterAndSetter() const {
// We don't export generic methods or subclasses to IRGen yet.
auto *DC = getDeclContext();
if (DC->getDeclaredTypeInContext() &&
DC->getDeclaredTypeInContext()->is<BoundGenericType>() &&
!isa<ProtocolDecl>(DC))
return false;
if (auto override = getOverriddenDecl())
return override->hasObjCGetterAndSetter();
if (!isObjC())
return false;
return true;
}
bool AbstractStorageDecl::requiresObjCGetterAndSetter() const {
if (isFinal())
return false;
if (!hasObjCGetterAndSetter())
return false;
// Imported accessors are foreign and only have objc entry points.
if (hasClangNode())
return true;
// Otherwise, we only dispatch by @objc if the declaration is dynamic or
// NSManaged.
return getAttrs().hasAttribute<DynamicAttr>() ||
getAttrs().hasAttribute<NSManagedAttr>();
}
bool VarDecl::isAnonClosureParam() const {
auto name = getName();
if (name.empty())
return false;
auto nameStr = name.str();
if (nameStr.empty())
return false;
return nameStr[0] == '$';
}
StaticSpellingKind VarDecl::getCorrectStaticSpelling() const {
if (!isStatic())
return StaticSpellingKind::None;
return getCorrectStaticSpellingForDecl(this);
}
Identifier VarDecl::getObjCPropertyName() const {
if (auto attr = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = attr->getName())
return name->getSelectorPieces()[0];
}
return getName();
}
/// If this is a simple 'let' constant, emit a note with a fixit indicating
/// that it can be rewritten to a 'var'. This is used in situations where the
/// compiler detects obvious attempts to mutate a constant.
void VarDecl::emitLetToVarNoteIfSimple() const {
// If it isn't a 'let', don't touch it.
if (!isLet()) return;
// If it is a multi variable binding, like "let (a,b) = " then don't touch it.
auto *PBD = getParentPatternBinding();
if (!PBD || PBD->getSingleVar() != this) return;
// Don't touch generated code.
if (PBD->getLoc().isInvalid() || PBD->isImplicit())
return;
getASTContext().Diags.diagnose(PBD->getLoc(), diag::convert_let_to_var)
.fixItReplace(PBD->getLoc(), "var");
}
/// Determine whether the given Swift type is an integral type, i.e.,
/// a type that wraps a builtin integer.
static bool isIntegralType(Type type) {
// Consider structs in the standard library module that wrap a builtin
// integer type to be integral types.
if (auto structTy = type->getAs<StructType>()) {
auto structDecl = structTy->getDecl();
const DeclContext *DC = structDecl->getDeclContext();
if (!DC->isModuleScopeContext() || !DC->getParentModule()->isStdlibModule())
return false;
// Find the single ivar.
VarDecl *singleVar = nullptr;
for (auto member : structDecl->getStoredProperties()) {
if (singleVar)
return false;
singleVar = member;
}
if (!singleVar)
return false;
// Check whether it has integer type.
return singleVar->getType()->is<BuiltinIntegerType>();
}
return false;
}
void SubscriptDecl::setIndices(Pattern *p) {
Indices = p;
// FIXME: What context should the indices patterns be in?
}
Type SubscriptDecl::getIndicesType() const {
return getType()->castTo<AnyFunctionType>()->getInput();
}
Type SubscriptDecl::getIndicesInterfaceType() const {
// FIXME: Unfortunate that we can't really capture the generic parameters
// here.
return getInterfaceType()->castTo<AnyFunctionType>()->getInput();
}
ObjCSubscriptKind SubscriptDecl::getObjCSubscriptKind(
LazyResolver *resolver) const {
auto indexTy = getIndicesType();
// Look through a named 1-tuple.
if (auto tupleTy = indexTy->getAs<TupleType>()) {
if (tupleTy->getNumElements() == 1 &&
!tupleTy->getElement(0).isVararg()) {
indexTy = tupleTy->getElementType(0);
}
}
// If the index type is an integral type, we have an indexed
// subscript.
if (isIntegralType(indexTy))
return ObjCSubscriptKind::Indexed;
// If the index type is an object type in Objective-C, we have a
// keyed subscript.
if (Type objectTy = indexTy->getAnyOptionalObjectType())
indexTy = objectTy;
if (getASTContext().getBridgedToObjC(getDeclContext(), false, indexTy,
resolver))
return ObjCSubscriptKind::Keyed;
return ObjCSubscriptKind::None;
}
SourceRange SubscriptDecl::getSourceRange() const {
if (getBracesRange().isValid())
return { getSubscriptLoc(), getBracesRange().End };
return { getSubscriptLoc(), ElementTy.getSourceRange().End };
}
static Type getSelfTypeForContainer(AbstractFunctionDecl *theMethod,
bool isInitializingCtor,
bool wantInterfaceType,
GenericParamList **outerGenericParams) {
auto *dc = theMethod->getDeclContext();
// Determine the type of the container.
Type containerTy = wantInterfaceType ? dc->getDeclaredInterfaceType()
: dc->getDeclaredTypeInContext();
assert(containerTy && "stand alone functions don't have 'self'");
if (!containerTy) return Type();
bool isStatic = false;
bool isMutating = false;
Type selfTypeOverride;
if (auto *FD = dyn_cast<FuncDecl>(theMethod)) {
isStatic = FD->isStatic();
isMutating = FD->isMutating();
// The non-interface type of a method that returns DynamicSelf
// uses DynamicSelf for the type of 'self', which is important
// when type checking the body of the function.
if (!wantInterfaceType)
selfTypeOverride = FD->getDynamicSelf();
} else if (isa<ConstructorDecl>(theMethod)) {
if (isInitializingCtor) {
// initializing constructors of value types always have an implicitly
// inout self.
isMutating = true;
} else {
// allocating constructors have metatype 'self'.
isStatic = true;
}
} else if (isa<DestructorDecl>(theMethod)) {
// destructors of value types always have an implicitly inout self.
isMutating = true;
}
if (outerGenericParams)
*outerGenericParams = nullptr;
Type selfTy = selfTypeOverride;
if (!selfTy) {
// For a protocol, the type of 'self' is the parameter type 'Self', not
// the protocol itself.
selfTy = containerTy;
if (containerTy->is<ProtocolType>()) {
auto self = dc->getProtocolSelf();
assert(self && "Missing 'Self' type in protocol");
if (wantInterfaceType)
selfTy = self->getDeclaredType();
else
selfTy = self->getArchetype();
}
}
// If the self type couldn't be computed, or is the result of an
// upstream error, return an error type.
if (!selfTy || selfTy->is<ErrorType>())
return ErrorType::get(dc->getASTContext());
// Capture the generic parameters, if requested.
if (outerGenericParams)
*outerGenericParams = dc->getGenericParamsOfContext();
// 'static' functions have 'self' of type metatype<T>.
if (isStatic)
return MetatypeType::get(selfTy, dc->getASTContext());
// Reference types have 'self' of type T.
if (containerTy->hasReferenceSemantics())
return selfTy;
// Mutating methods are always passed inout so we can receive the side
// effect.
if (isMutating)
return InOutType::get(selfTy);
// Nonmutating methods on structs and enums pass the receiver by value.
return selfTy;
}
DeclName AbstractFunctionDecl::getEffectiveFullName() const {
if (getFullName())
return getFullName();
if (auto func = dyn_cast<FuncDecl>(this)) {
if (auto afd = func->getAccessorStorageDecl()) {
auto &ctx = getASTContext();
auto subscript = dyn_cast<SubscriptDecl>(afd);
switch (auto accessorKind = func->getAccessorKind()) {
case AccessorKind::NotAccessor:
break;
// These don't have any extra implicit parameters.
case AccessorKind::IsAddressor:
case AccessorKind::IsMutableAddressor:
case AccessorKind::IsGetter:
return subscript ? subscript->getFullName()
: DeclName(ctx, afd->getName(), { });
case AccessorKind::IsSetter:
case AccessorKind::IsMaterializeForSet:
case AccessorKind::IsDidSet:
case AccessorKind::IsWillSet: {
SmallVector<Identifier, 4> argNames;
// The implicit value/buffer parameter.
argNames.push_back(Identifier());
// The callback storage parameter on materializeForSet.
if (accessorKind == AccessorKind::IsMaterializeForSet)
argNames.push_back(Identifier());
// The subscript index parameters.
if (subscript) {
argNames.append(subscript->getFullName().getArgumentNames().begin(),
subscript->getFullName().getArgumentNames().end());
}
return DeclName(ctx, afd->getName(), argNames);
}
}
}
}
return DeclName();
}
void AbstractFunctionDecl::setGenericParams(GenericParamList *GP) {
// Set the specified generic parameters onto this abstract function, setting
// the parameters' context to the function along the way.
GenericParams = GP;
if (GP)
for (auto Param : *GP)
Param->setDeclContext(this);
}
Type AbstractFunctionDecl::
computeSelfType(GenericParamList **outerGenericParams) {
return getSelfTypeForContainer(this, true, false, outerGenericParams);
}
Type AbstractFunctionDecl::computeInterfaceSelfType(bool isInitializingCtor) {
return getSelfTypeForContainer(this, isInitializingCtor, true, nullptr);
}
/// \brief This method returns the implicit 'self' decl.
///
/// Note that some functions don't have an implicit 'self' decl, for example,
/// free functions. In this case nullptr is returned.
VarDecl *AbstractFunctionDecl::getImplicitSelfDecl() const {
ArrayRef<const Pattern *> ParamPatterns = getBodyParamPatterns();
if (ParamPatterns.empty())
return nullptr;
// "self" is represented as (typed_pattern (named_pattern (var_decl 'self')).
const Pattern *P = ParamPatterns[0]->getSemanticsProvidingPattern();
// The decl should be named 'self' and be implicit.
auto NP = dyn_cast<NamedPattern>(P);
if (NP && NP->isImplicit() &&
NP->getDecl()->getName() == getASTContext().Id_self)
return NP->getDecl();
return nullptr;
}
Type AbstractFunctionDecl::getExtensionType() const {
return getDeclContext()->getDeclaredTypeInContext();
}
std::pair<DefaultArgumentKind, Type>
AbstractFunctionDecl::getDefaultArg(unsigned Index) const {
ArrayRef<const Pattern *> Patterns = getBodyParamPatterns();
if (getImplicitSelfDecl()) {
// Skip the 'self' parameter; it is not counted.
Patterns = Patterns.slice(1);
}
// Find the (sub-)pattern for this index.
// FIXME: This is O(n), which is lame. We should fix the FuncDecl
// representation.
const TuplePatternElt *Found = nullptr;
for (auto OrigPattern : Patterns) {
auto Params =
dyn_cast<TuplePattern>(OrigPattern->getSemanticsProvidingPattern());
if (!Params) {
if (Index == 0) {
return { DefaultArgumentKind::None, Type() };
}
--Index;
continue;
}
for (auto &Elt : Params->getElements()) {
if (Index == 0) {
Found = &Elt;
break;
}
--Index;
}
if (Found)
break;
}
assert(Found && "No argument with this index");
return { Found->getDefaultArgKind(), Found->getPattern()->getType() };
}
bool AbstractFunctionDecl::argumentNameIsAPIByDefault(unsigned i) const {
// Initializers have argument labels.
if (isa<ConstructorDecl>(this))
return true;
if (auto func = dyn_cast<FuncDecl>(this)) {
// Operators do not have argument labels.
if (func->isOperator())
return false;
// Other functions have argument labels for every argument after the first.
return i > 0;
}
assert(isa<DestructorDecl>(this));
return false;
}
SourceRange AbstractFunctionDecl::getBodySourceRange() const {
switch (getBodyKind()) {
case BodyKind::None:
case BodyKind::MemberwiseInitializer:
return SourceRange();
case BodyKind::Parsed:
case BodyKind::Synthesize:
case BodyKind::TypeChecked:
if (auto body = getBody())
return body->getSourceRange();
return SourceRange();
case BodyKind::Skipped:
case BodyKind::Unparsed:
return BodyRange;
}
llvm_unreachable("bad BodyKind");
}
SourceRange AbstractFunctionDecl::getSignatureSourceRange() const {
if (isImplicit())
return SourceRange();
auto Pats = getBodyParamPatterns();
if (Pats.empty())
return getNameLoc();
for (int I = Pats.size() - 1; I >= 0; I--) {
auto endLoc = Pats[I]->getEndLoc();
if (endLoc.isValid()) {
return SourceRange(getNameLoc(), endLoc);
}
}
return getNameLoc();
}
ObjCSelector AbstractFunctionDecl::getObjCSelector(
LazyResolver *resolver) const {
// If there is an @objc attribute with a name, use that name.
auto objc = getAttrs().getAttribute<ObjCAttr>();
if (objc) {
if (auto name = objc->getName())
return *name;
}
auto &ctx = getASTContext();
auto argNames = getFullName().getArgumentNames();
auto func = dyn_cast<FuncDecl>(this);
if (func) {
// For a getter or setter, go through the variable or subscript decl.
if (func->isGetterOrSetter()) {
auto asd = cast<AbstractStorageDecl>(func->getAccessorStorageDecl());
return func->isGetter() ? asd->getObjCGetterSelector(resolver)
: asd->getObjCSetterSelector(resolver);
}
}
// Deinitializers are always called "dealloc".
if (isa<DestructorDecl>(this)) {
return ObjCSelector(ctx, 0, ctx.Id_dealloc);
}
// If this is a zero-parameter initializer with a long selector
// name, form that selector.
auto ctor = dyn_cast<ConstructorDecl>(this);
if (ctor && ctor->isObjCZeroParameterWithLongSelector()) {
Identifier firstName = argNames[0];
llvm::SmallString<16> scratch;
scratch += "init";
// If the first argument name doesn't start with a preposition, add "with".
if (getPrepositionKind(camel_case::getFirstWord(firstName.str()))
== PK_None) {
camel_case::appendSentenceCase(scratch, "With");
}
camel_case::appendSentenceCase(scratch, firstName.str());
return ObjCSelector(ctx, 0, ctx.getIdentifier(scratch));
}
// The number of selector pieces we'll have.
Optional<ForeignErrorConvention> errorConvention
= getForeignErrorConvention();
unsigned numSelectorPieces
= argNames.size() + (errorConvention.hasValue() ? 1 : 0);
// If we have no arguments, it's a nullary selector.
if (numSelectorPieces == 0) {
return ObjCSelector(ctx, 0, getName());
}
// If it's a unary selector with no name for the first argument, we're done.
if (numSelectorPieces == 1 && argNames.size() == 1 && argNames[0].empty()) {
return ObjCSelector(ctx, 1, getName());
}
/// Collect the selector pieces.
SmallVector<Identifier, 4> selectorPieces;
selectorPieces.reserve(numSelectorPieces);
bool didStringManipulation = false;
unsigned argIndex = 0;
for (unsigned piece = 0; piece != numSelectorPieces; ++piece) {
if (piece > 0) {
// If we have an error convention that inserts an error parameter
// here, add "error".
if (errorConvention &&
piece == errorConvention->getErrorParameterIndex()) {
selectorPieces.push_back(ctx.Id_error);
continue;
}
// Selector pieces beyond the first are simple.
selectorPieces.push_back(argNames[argIndex++]);
continue;
}
// For the first selector piece, attach either the first parameter
// or "WithError" to the base name, if appropriate.
auto firstPiece = getName();
llvm::SmallString<32> scratch;
scratch += firstPiece.str();
if (errorConvention && piece == errorConvention->getErrorParameterIndex()) {
// The error is first; append "WithError".
camel_case::appendSentenceCase(scratch, "WithError");
firstPiece = ctx.getIdentifier(scratch);
didStringManipulation = true;
} else if (!argNames[argIndex].empty()) {
// If the first argument name doesn't start with a preposition, and the
// method name doesn't end with a preposition, add "with".
auto firstName = argNames[argIndex++];
if (getPrepositionKind(camel_case::getFirstWord(firstName.str()))
== PK_None &&
getPrepositionKind(camel_case::getLastWord(firstPiece.str()))
== PK_None) {
camel_case::appendSentenceCase(scratch, "With");
}
camel_case::appendSentenceCase(scratch, firstName.str());
firstPiece = ctx.getIdentifier(scratch);
didStringManipulation = true;
} else {
++argIndex;
}
selectorPieces.push_back(firstPiece);
}
assert(argIndex == argNames.size());
// Form the result.
auto result = ObjCSelector(ctx, selectorPieces.size(), selectorPieces);
// If we did any string manipulation, cache the result. We don't want to
// do that again.
if (didStringManipulation && objc)
const_cast<ObjCAttr *>(objc)->setName(result, /*implicit=*/true);
return result;
}
bool AbstractFunctionDecl::isObjCInstanceMethod() const {
return isInstanceMember() || isa<ConstructorDecl>(this);
}
AbstractFunctionDecl *AbstractFunctionDecl::getOverriddenDecl() const {
if (auto func = dyn_cast<FuncDecl>(this))
return func->getOverriddenDecl();
if (auto ctor = dyn_cast<ConstructorDecl>(this))
return ctor->getOverriddenDecl();
return nullptr;
}
/// Set the DeclContext of any VarDecls in P to the specified DeclContext.
static void setDeclContextOfPatternVars(Pattern *P, DeclContext *DC) {
if (!P) return;
P->forEachVariable([&](VarDecl *VD) {
assert(isa<ParamDecl>(VD) && "Pattern variable is not a parameter?");
VD->setDeclContext(DC);
});
}
FuncDecl *FuncDecl::createImpl(ASTContext &Context,
SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc FuncLoc,
DeclName Name, SourceLoc NameLoc,
SourceLoc ThrowsLoc,
GenericParamList *GenericParams,
Type Ty, unsigned NumParamPatterns,
DeclContext *Parent,
ClangNode ClangN) {
assert(NumParamPatterns > 0);
size_t Size = sizeof(FuncDecl) + NumParamPatterns * sizeof(Pattern *);
void *DeclPtr = allocateMemoryForDecl<FuncDecl>(Context, Size,
!ClangN.isNull());
auto D = ::new (DeclPtr)
FuncDecl(StaticLoc, StaticSpelling, FuncLoc, Name, NameLoc, ThrowsLoc,
NumParamPatterns, GenericParams, Ty, Parent);
if (ClangN)
D->setClangNode(ClangN);
return D;
}
FuncDecl *FuncDecl::createDeserialized(ASTContext &Context,
SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc FuncLoc,
DeclName Name, SourceLoc NameLoc,
SourceLoc ThrowsLoc,
GenericParamList *GenericParams,
Type Ty, unsigned NumParamPatterns,
DeclContext *Parent) {
return createImpl(Context, StaticLoc, StaticSpelling, FuncLoc, Name, NameLoc,
ThrowsLoc, GenericParams, Ty, NumParamPatterns, Parent,
ClangNode());
}
FuncDecl *FuncDecl::create(ASTContext &Context, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc FuncLoc, DeclName Name,
SourceLoc NameLoc, SourceLoc ThrowsLoc,
GenericParamList *GenericParams,
Type Ty, ArrayRef<Pattern *> BodyParams,
TypeLoc FnRetType, DeclContext *Parent,
ClangNode ClangN) {
const unsigned NumParamPatterns = BodyParams.size();
auto *FD = FuncDecl::createImpl(
Context, StaticLoc, StaticSpelling, FuncLoc, Name, NameLoc, ThrowsLoc,
GenericParams, Ty, NumParamPatterns, Parent, ClangN);
FD->setDeserializedSignature(BodyParams, FnRetType);
return FD;
}
StaticSpellingKind FuncDecl::getCorrectStaticSpelling() const {
assert(getDeclContext()->isTypeContext());
if (!isStatic())
return StaticSpellingKind::None;
return getCorrectStaticSpellingForDecl(this);
}
bool FuncDecl::isExplicitNonMutating() const {
return !isMutating() &&
isAccessor() && !isGetter() &&
isInstanceMember() &&
!getDeclContext()->getDeclaredTypeInContext()->hasReferenceSemantics();
}
void FuncDecl::setDeserializedSignature(ArrayRef<Pattern *> BodyParams,
TypeLoc FnRetType) {
MutableArrayRef<Pattern *> BodyParamsRef = getBodyParamPatterns();
unsigned NumParamPatterns = BodyParamsRef.size();
#ifndef NDEBUG
unsigned NumParams = getDeclContext()->isTypeContext()
? BodyParams[1]->numTopLevelVariables()
: BodyParams[0]->numTopLevelVariables();
auto Name = getFullName();
assert((!Name || !Name.isSimpleName()) && "Must have a simple name");
assert(!Name || (Name.getArgumentNames().size() == NumParams));
#endif
for (unsigned i = 0; i != NumParamPatterns; ++i)
BodyParamsRef[i] = BodyParams[i];
// Set the decl context of any vardecls to this FuncDecl.
for (auto P : BodyParams)
setDeclContextOfPatternVars(P, this);
this->FnRetType = FnRetType;
}
Type FuncDecl::getResultType() const {
if (!hasType())
return nullptr;
Type resultTy = getType();
if (resultTy->is<ErrorType>())
return resultTy;
for (unsigned i = 0, e = getNaturalArgumentCount(); i != e; ++i)
resultTy = resultTy->castTo<AnyFunctionType>()->getResult();
if (!resultTy)
resultTy = TupleType::getEmpty(getASTContext());
return resultTy;
}
bool AbstractFunctionDecl::isBodyThrowing() const {
if (!hasType())
return false;
Type type = getType();
if (type->is<ErrorType>())
return false;
auto fnTy = type->castTo<AnyFunctionType>();
for (unsigned i = 1, e = getNaturalArgumentCount(); i != e; ++i)
fnTy = fnTy->getResult()->castTo<AnyFunctionType>();
return fnTy->getExtInfo().throws();
}
bool FuncDecl::isUnaryOperator() const {
if (!isOperator())
return false;
unsigned opArgIndex
= getDeclContext()->isProtocolOrProtocolExtensionContext() ? 1 : 0;
auto *argTuple = dyn_cast<TuplePattern>(getBodyParamPatterns()[opArgIndex]);
if (!argTuple)
return true;
return argTuple->getNumElements() == 1 && !argTuple->hasVararg();
}
bool FuncDecl::isBinaryOperator() const {
if (!isOperator())
return false;
unsigned opArgIndex
= getDeclContext()->isProtocolOrProtocolExtensionContext() ? 1 : 0;
auto *argTuple = dyn_cast<TuplePattern>(getBodyParamPatterns()[opArgIndex]);
if (!argTuple)
return false;
return argTuple->getNumElements() == 2
|| (argTuple->getNumElements() == 1 && argTuple->hasVararg());
}
bool FuncDecl::isOverridingDecl(const FuncDecl *Method) const {
const FuncDecl *CurMethod = this;
while (CurMethod) {
if (CurMethod == Method)
return true;
CurMethod = CurMethod->getOverriddenDecl();
}
return false;
}
ConstructorDecl::ConstructorDecl(DeclName Name, SourceLoc ConstructorLoc,
OptionalTypeKind Failability,
SourceLoc FailabilityLoc,
Pattern *SelfBodyParam, Pattern *BodyParams,
GenericParamList *GenericParams,
SourceLoc throwsLoc,
DeclContext *Parent)
: AbstractFunctionDecl(DeclKind::Constructor, Parent, Name,
ConstructorLoc, 2, GenericParams),
FailabilityLoc(FailabilityLoc), ThrowsLoc(throwsLoc)
{
setBodyParams(SelfBodyParam, BodyParams);
ConstructorDeclBits.ComputedBodyInitKind = 0;
ConstructorDeclBits.InitKind
= static_cast<unsigned>(CtorInitializerKind::Designated);
ConstructorDeclBits.HasStubImplementation = 0;
this->Failability = static_cast<unsigned>(Failability);
}
void ConstructorDecl::setBodyParams(Pattern *selfPattern, Pattern *bodyParams) {
BodyParams[0] = selfPattern;
BodyParams[1] = bodyParams;
setDeclContextOfPatternVars(selfPattern, this);
setDeclContextOfPatternVars(bodyParams, this);
assert(!getFullName().isSimpleName() && "Constructor name must be compound");
assert(!bodyParams ||
(getFullName().getArgumentNames().size()
== bodyParams->numTopLevelVariables()));
}
bool ConstructorDecl::isObjCZeroParameterWithLongSelector() const {
// The initializer must have a single, non-empty argument name.
if (getFullName().getArgumentNames().size() != 1 ||
getFullName().getArgumentNames()[0].empty())
return false;
const Pattern *paramPattern = getBodyParamPatterns()[1];
Type paramType;
if (auto tuplePattern = dyn_cast<TuplePattern>(paramPattern)) {
if (tuplePattern->getNumElements() != 1 || tuplePattern->hasVararg())
return false;
paramType = tuplePattern->getElement(0).getPattern()->getType();
} else {
paramType = paramPattern->getType();
}
return paramType->isVoid();
}
DestructorDecl::DestructorDecl(Identifier NameHack, SourceLoc DestructorLoc,
Pattern *SelfPattern, DeclContext *Parent)
: AbstractFunctionDecl(DeclKind::Destructor, Parent, NameHack,
DestructorLoc, 1, nullptr) {
setSelfPattern(SelfPattern);
}
void DestructorDecl::setSelfPattern(Pattern *selfPattern) {
SelfPattern = selfPattern;
setDeclContextOfPatternVars(SelfPattern, this);
}
DynamicSelfType *FuncDecl::getDynamicSelf() const {
if (!hasDynamicSelf())
return nullptr;
auto extType = getExtensionType();
if (extType->is<ProtocolType>())
return DynamicSelfType::get(getDeclContext()->getProtocolSelf()
->getArchetype(),
getASTContext());
return DynamicSelfType::get(extType, getASTContext());
}
DynamicSelfType *FuncDecl::getDynamicSelfInterface() const {
if (!hasDynamicSelf())
return nullptr;
auto extType = getDeclContext()->getDeclaredInterfaceType();
if (extType->is<ProtocolType>())
return DynamicSelfType::get(getDeclContext()->getProtocolSelf()
->getDeclaredType(),
getASTContext());
return DynamicSelfType::get(extType, getASTContext());
}
SourceRange FuncDecl::getSourceRange() const {
SourceLoc StartLoc = getStartLoc();
if (StartLoc.isInvalid()) return SourceRange();
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { StartLoc, BodyRange.End };
if (auto *B = getBody())
return { StartLoc, B->getEndLoc() };
if (getBodyResultTypeLoc().hasLocation() &&
getBodyResultTypeLoc().getSourceRange().End.isValid() &&
!this->isAccessor())
return { StartLoc, getBodyResultTypeLoc().getSourceRange().End };
const Pattern *LastPat = getBodyParamPatterns().back();
if (!LastPat->isImplicit())
return { StartLoc, LastPat->getEndLoc() };
return StartLoc;
}
SourceRange EnumElementDecl::getSourceRange() const {
if (RawValueExpr && !RawValueExpr->isImplicit())
return {getStartLoc(), RawValueExpr->getEndLoc()};
if (ArgumentType.hasLocation())
return {getStartLoc(), ArgumentType.getSourceRange().End};
return {getStartLoc(), getNameLoc()};
}
Type EnumElementDecl::getArgumentInterfaceType() const {
if (!hasArgumentType())
return nullptr;
auto interfaceType = getInterfaceType();
if (interfaceType->is<ErrorType>()) {
return interfaceType;
}
auto funcTy = interfaceType->castTo<AnyFunctionType>();
funcTy = funcTy->getResult()->castTo<AnyFunctionType>();
return funcTy->getInput();
}
EnumCaseDecl *EnumElementDecl::getParentCase() const {
for (EnumCaseDecl *EC : getParentEnum()->getAllCases()) {
ArrayRef<EnumElementDecl *> CaseElements = EC->getElements();
if (std::find(CaseElements.begin(), CaseElements.end(), this) !=
CaseElements.end()) {
return EC;
}
}
llvm_unreachable("enum element not in case of parent enum");
}
SourceRange ConstructorDecl::getSourceRange() const {
if (isImplicit())
return getConstructorLoc();
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { getConstructorLoc(), BodyRange.End };
SourceLoc End;
if (auto body = getBody())
End = body->getEndLoc();
if (End.isInvalid())
End = getSignatureSourceRange().End;
return { getConstructorLoc(), End };
}
Type ConstructorDecl::getArgumentType() const {
Type ArgTy = getType();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getInput();
return ArgTy;
}
Type ConstructorDecl::getResultType() const {
Type ArgTy = getType();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
ArgTy = ArgTy->castTo<AnyFunctionType>()->getResult();
return ArgTy;
}
Type ConstructorDecl::getInitializerInterfaceType() {
if (!InitializerInterfaceType) {
assert((!InitializerType || !InitializerType->is<PolymorphicFunctionType>())
&& "polymorphic function type is invalid interface type");
// Don't cache type variable types.
if (InitializerType->hasTypeVariable())
return InitializerType;
InitializerInterfaceType = InitializerType;
}
return InitializerInterfaceType;
}
void ConstructorDecl::setInitializerInterfaceType(Type t) {
assert(!t->is<PolymorphicFunctionType>()
&& "polymorphic function type is invalid interface type");
InitializerInterfaceType = t;
}
ConstructorDecl::BodyInitKind
ConstructorDecl::getDelegatingOrChainedInitKind(DiagnosticEngine *diags,
ApplyExpr **init) {
assert(hasBody() && "Constructor does not have a definition");
if (init)
*init = nullptr;
// If we already computed the result, return it.
if (ConstructorDeclBits.ComputedBodyInitKind) {
return static_cast<BodyInitKind>(
ConstructorDeclBits.ComputedBodyInitKind - 1);
}
struct FindReferenceToInitializer : ASTWalker {
BodyInitKind Kind = BodyInitKind::None;
ApplyExpr *InitExpr = nullptr;
DiagnosticEngine *Diags;
FindReferenceToInitializer(DiagnosticEngine *diags) : Diags(diags) { }
std::pair<bool, Expr*> walkToExprPre(Expr *E) override {
// Don't walk into closures.
if (isa<ClosureExpr>(E))
return { false, E };
// Look for calls of a constructor.
auto apply = dyn_cast<ApplyExpr>(E);
if (!apply)
return { true, E };
auto Callee = apply->getFn()->getSemanticsProvidingExpr();
BodyInitKind myKind;
if (isa<OtherConstructorDeclRefExpr>(Callee)) {
if (apply->getArg()->isSuperExpr())
myKind = BodyInitKind::Chained;
else
myKind = BodyInitKind::Delegating;
} else if (auto *UCE = dyn_cast<UnresolvedConstructorExpr>(Callee)) {
if (UCE->getSubExpr()->isSuperExpr())
myKind = BodyInitKind::Chained;
else
myKind = BodyInitKind::Delegating;
} else {
// Not a constructor call.
return { true, E };
}
if (Kind == BodyInitKind::None) {
Kind = myKind;
// If we're not emitting diagnostics, we're done.
if (!Diags)
return { false, nullptr };
InitExpr = apply;
return { true, E };
}
assert(Diags && "Failed to abort traversal early");
// If the kind changed, complain.
if (Kind != myKind) {
// The kind changed. Complain.
Diags->diagnose(E->getLoc(), diag::init_delegates_and_chains);
Diags->diagnose(InitExpr->getLoc(), diag::init_delegation_or_chain,
Kind == BodyInitKind::Chained);
}
return { true, E };
}
} finder(diags);
getBody()->walk(finder);
// get the kind out of the finder.
auto Kind = finder.Kind;
// If we didn't find any delegating or chained initializers, check whether
// the initializer was explicitly marked 'convenience'.
if (Kind == BodyInitKind::None && getAttrs().hasAttribute<ConvenienceAttr>())
Kind = BodyInitKind::Delegating;
// If wes till don't know, check whether we have a class with a superclass: it
// gets an implicit chained initializer.
if (Kind == BodyInitKind::None) {
if (auto classDecl = getDeclContext()->getDeclaredTypeInContext()
->getClassOrBoundGenericClass()) {
if (classDecl->getSuperclass())
Kind = BodyInitKind::ImplicitChained;
}
}
// Cache the result if it is trustworthy.
if (diags) {
ConstructorDeclBits.ComputedBodyInitKind = static_cast<unsigned>(Kind) + 1;
if (init)
*init = finder.InitExpr;
}
return Kind;
}
SourceRange DestructorDecl::getSourceRange() const {
if (getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Skipped)
return { getDestructorLoc(), BodyRange.End };
if (getBodyKind() == BodyKind::None)
return getDestructorLoc();
return { getDestructorLoc(), getBody()->getEndLoc() };
}
void InfixOperatorDecl::collectOperatorKeywordRanges(SmallVectorImpl
<CharSourceRange> &Ranges) {
auto AddToRange = [&] (SourceLoc Loc, StringRef Word) {
if (Loc.isValid())
Ranges.push_back(CharSourceRange(Loc, strlen(Word.data())));
};
AddToRange(AssociativityLoc, "associativity");
AddToRange(AssignmentLoc, "assignment");
AddToRange(PrecedenceLoc, "precedence");
}