mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
If a function has an error result slot, emit debug info for an artificial function argument "$error" with indirect storage that holds a pointer to the error object address. <rdar://problem/20736999> lldb needs to be able to locate the error return location when stepping out of a function Swift SVN r28229
4203 lines
154 KiB
C++
4203 lines
154 KiB
C++
//===--- IRGenSIL.cpp - Swift Per-Function IR Generation ------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements basic setup and teardown for the class which
|
|
// performs IR generation for function bodies.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "irgensil"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/Basic/Range.h"
|
|
#include "swift/Basic/STLExtras.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/IRGenOptions.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/SIL/PrettyStackTrace.h"
|
|
#include "swift/SIL/SILDebugScope.h"
|
|
#include "swift/SIL/SILDeclRef.h"
|
|
#include "swift/SIL/SILLinkage.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILType.h"
|
|
#include "swift/SIL/SILVisitor.h"
|
|
#include "clang/CodeGen/CodeGenABITypes.h"
|
|
|
|
#include "CallEmission.h"
|
|
#include "Explosion.h"
|
|
#include "GenCast.h"
|
|
#include "GenClass.h"
|
|
#include "GenFunc.h"
|
|
#include "GenHeap.h"
|
|
#include "GenMeta.h"
|
|
#include "GenObjC.h"
|
|
#include "GenPoly.h"
|
|
#include "GenProto.h"
|
|
#include "GenStruct.h"
|
|
#include "GenTuple.h"
|
|
#include "GenEnum.h"
|
|
#include "IRGenDebugInfo.h"
|
|
#include "IRGenModule.h"
|
|
#include "ReferenceTypeInfo.h"
|
|
#include "GenType.h"
|
|
#include "WeakTypeInfo.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
namespace {
|
|
|
|
class LoweredValue;
|
|
|
|
/// Represents a statically-known function as a SIL thin function value.
|
|
class StaticFunction {
|
|
/// The function reference.
|
|
llvm::Function *function;
|
|
/// The function's native representation.
|
|
SILFunctionTypeRepresentation rep;
|
|
|
|
public:
|
|
StaticFunction(llvm::Function *function, SILFunctionTypeRepresentation rep)
|
|
: function(function), rep(rep)
|
|
{}
|
|
|
|
llvm::Function *getFunction() const { return function; }
|
|
SILFunctionTypeRepresentation getRepresentation() const { return rep; }
|
|
|
|
llvm::Value *getExplosionValue(IRGenFunction &IGF) const;
|
|
};
|
|
|
|
/// Represents an ObjC method reference that will be invoked by a form of
|
|
/// objc_msgSend.
|
|
class ObjCMethod {
|
|
/// The SILDeclRef declaring the method.
|
|
SILDeclRef method;
|
|
/// For a bounded call, the static type that provides the lower bound for
|
|
/// the search. Null for unbounded calls that will look for the method in
|
|
/// the dynamic type of the object.
|
|
llvm::PointerIntPair<SILType, 1, bool> searchTypeAndSuper;
|
|
|
|
public:
|
|
ObjCMethod(SILDeclRef method, SILType searchType, bool startAtSuper)
|
|
: method(method), searchTypeAndSuper(searchType, startAtSuper)
|
|
{}
|
|
|
|
SILDeclRef getMethod() const { return method; }
|
|
SILType getSearchType() const { return searchTypeAndSuper.getPointer(); }
|
|
bool shouldStartAtSuper() const { return searchTypeAndSuper.getInt(); }
|
|
|
|
/// FIXME: Thunk down to a Swift function value?
|
|
llvm::Value *getExplosionValue(IRGenFunction &IGF) const {
|
|
llvm_unreachable("thunking unapplied objc method to swift function "
|
|
"not yet implemented");
|
|
}
|
|
};
|
|
|
|
/// Represents a SIL value lowered to IR, in one of these forms:
|
|
/// - an Address, corresponding to a SIL address value;
|
|
/// - an Explosion of (unmanaged) Values, corresponding to a SIL "register"; or
|
|
/// - a CallEmission for a partially-applied curried function or method.
|
|
class LoweredValue {
|
|
public:
|
|
enum class Kind {
|
|
/// This LoweredValue corresponds to a SIL address value.
|
|
Address,
|
|
|
|
/// The following kinds correspond to SIL non-address values.
|
|
Value_First,
|
|
/// A normal value, represented as an exploded array of llvm Values.
|
|
Explosion = Value_First,
|
|
|
|
/// A value that represents a statically-known function symbol that
|
|
/// can be called directly, represented as a StaticFunction.
|
|
StaticFunction,
|
|
|
|
/// A value that represents an Objective-C method that must be called with
|
|
/// a form of objc_msgSend.
|
|
ObjCMethod,
|
|
Value_Last = ObjCMethod,
|
|
};
|
|
|
|
Kind kind;
|
|
|
|
private:
|
|
using ExplosionVector = SmallVector<llvm::Value *, 4>;
|
|
|
|
union {
|
|
Address address;
|
|
struct {
|
|
ExplosionVector values;
|
|
} explosion;
|
|
StaticFunction staticFunction;
|
|
ObjCMethod objcMethod;
|
|
};
|
|
|
|
public:
|
|
LoweredValue(const Address &address)
|
|
: kind(Kind::Address), address(address)
|
|
{}
|
|
|
|
LoweredValue(StaticFunction &&staticFunction)
|
|
: kind(Kind::StaticFunction), staticFunction(std::move(staticFunction))
|
|
{}
|
|
|
|
LoweredValue(ObjCMethod &&objcMethod)
|
|
: kind(Kind::ObjCMethod), objcMethod(std::move(objcMethod))
|
|
{}
|
|
|
|
LoweredValue(Explosion &e)
|
|
: kind(Kind::Explosion), explosion{{}} {
|
|
auto Elts = e.claimAll();
|
|
explosion.values.append(Elts.begin(), Elts.end());
|
|
}
|
|
|
|
LoweredValue(LoweredValue &&lv)
|
|
: kind(lv.kind)
|
|
{
|
|
switch (kind) {
|
|
case Kind::Address:
|
|
::new (&address) Address(std::move(lv.address));
|
|
break;
|
|
case Kind::Explosion:
|
|
::new (&explosion.values) ExplosionVector(std::move(lv.explosion.values));
|
|
break;
|
|
case Kind::StaticFunction:
|
|
::new (&staticFunction) StaticFunction(std::move(lv.staticFunction));
|
|
break;
|
|
case Kind::ObjCMethod:
|
|
::new (&objcMethod) ObjCMethod(std::move(lv.objcMethod));
|
|
break;
|
|
}
|
|
}
|
|
|
|
LoweredValue &operator=(LoweredValue &&lv) {
|
|
assert(this != &lv);
|
|
this->~LoweredValue();
|
|
::new (this) LoweredValue(std::move(lv));
|
|
return *this;
|
|
}
|
|
|
|
bool isAddress() const { return kind == Kind::Address; }
|
|
bool isValue() const {
|
|
return kind >= Kind::Value_First && kind <= Kind::Value_Last;
|
|
}
|
|
|
|
Address getAddress() const {
|
|
assert(kind == Kind::Address && "not an address");
|
|
return address;
|
|
}
|
|
|
|
void getExplosion(IRGenFunction &IGF, Explosion &ex) const;
|
|
|
|
Explosion getExplosion(IRGenFunction &IGF) const {
|
|
Explosion e;
|
|
getExplosion(IGF, e);
|
|
return e;
|
|
}
|
|
|
|
llvm::Value *getSingletonExplosion(IRGenFunction &IGF) const;
|
|
|
|
const StaticFunction &getStaticFunction() const {
|
|
assert(kind == Kind::StaticFunction && "not a static function");
|
|
return staticFunction;
|
|
}
|
|
|
|
const ObjCMethod &getObjCMethod() const {
|
|
assert(kind == Kind::ObjCMethod && "not an objc method");
|
|
return objcMethod;
|
|
}
|
|
|
|
~LoweredValue() {
|
|
switch (kind) {
|
|
case Kind::Address:
|
|
address.~Address();
|
|
break;
|
|
case Kind::Explosion:
|
|
explosion.values.~ExplosionVector();
|
|
break;
|
|
case Kind::StaticFunction:
|
|
staticFunction.~StaticFunction();
|
|
break;
|
|
case Kind::ObjCMethod:
|
|
objcMethod.~ObjCMethod();
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
|
|
using PHINodeVector = llvm::TinyPtrVector<llvm::PHINode*>;
|
|
|
|
/// Represents a lowered SIL basic block. This keeps track
|
|
/// of SIL branch arguments so that they can be lowered to LLVM phi nodes.
|
|
struct LoweredBB {
|
|
llvm::BasicBlock *bb;
|
|
PHINodeVector phis;
|
|
|
|
LoweredBB() = default;
|
|
explicit LoweredBB(llvm::BasicBlock *bb, PHINodeVector &&phis)
|
|
: bb(bb), phis(std::move(phis))
|
|
{}
|
|
};
|
|
|
|
/// Visits a SIL Function and generates LLVM IR.
|
|
class IRGenSILFunction :
|
|
public IRGenFunction, public SILInstructionVisitor<IRGenSILFunction>
|
|
{
|
|
public:
|
|
llvm::DenseMap<SILValue, LoweredValue> LoweredValues;
|
|
llvm::DenseMap<SILType, LoweredValue> LoweredUndefs;
|
|
llvm::MapVector<SILBasicBlock *, LoweredBB> LoweredBBs;
|
|
llvm::SmallDenseMap<const VarDecl *, unsigned, 8> ArgNo;
|
|
llvm::SmallBitVector DidEmitDebugInfoForArg;
|
|
|
|
// Destination basic blocks for condfail traps.
|
|
llvm::SmallVector<llvm::BasicBlock *, 8> FailBBs;
|
|
|
|
SILFunction *CurSILFn;
|
|
Address IndirectReturn;
|
|
|
|
IRGenSILFunction(IRGenModule &IGM, SILFunction *f);
|
|
~IRGenSILFunction();
|
|
|
|
/// Generate IR for the SIL Function.
|
|
void emitSILFunction();
|
|
|
|
void setLoweredValue(SILValue v, LoweredValue &&lv) {
|
|
auto inserted = LoweredValues.insert({v, std::move(lv)});
|
|
assert(inserted.second && "already had lowered value for sil value?!");
|
|
(void)inserted;
|
|
}
|
|
|
|
/// Create a new Address corresponding to the given SIL address value.
|
|
void setLoweredAddress(SILValue v, const Address &address) {
|
|
assert((v.getType().isAddress() || v.getType().isLocalStorage()) &&
|
|
"address for non-address value?!");
|
|
setLoweredValue(v, address);
|
|
}
|
|
|
|
/// Create a new Explosion corresponding to the given SIL value.
|
|
void setLoweredExplosion(SILValue v, Explosion &e) {
|
|
assert(v.getType().isObject() && "explosion for address value?!");
|
|
setLoweredValue(v, LoweredValue(e));
|
|
}
|
|
|
|
void overwriteLoweredExplosion(SILValue v, Explosion &e) {
|
|
assert(v.getType().isObject() && "explosion for address value?!");
|
|
auto it = LoweredValues.find(v);
|
|
assert(it != LoweredValues.end() && "no existing entry for overwrite?");
|
|
it->second = LoweredValue(e);
|
|
}
|
|
|
|
void setLoweredSingleValue(SILValue v, llvm::Value *scalar) {
|
|
Explosion e;
|
|
e.add(scalar);
|
|
setLoweredExplosion(v, e);
|
|
}
|
|
|
|
/// Create a new StaticFunction corresponding to the given SIL value.
|
|
void setLoweredStaticFunction(SILValue v,
|
|
llvm::Function *f,
|
|
SILFunctionTypeRepresentation rep) {
|
|
assert(v.getType().isObject() && "function for address value?!");
|
|
assert(v.getType().is<SILFunctionType>() &&
|
|
"function for non-function value?!");
|
|
setLoweredValue(v, StaticFunction{f, rep});
|
|
}
|
|
|
|
/// Create a new Objective-C method corresponding to the given SIL value.
|
|
void setLoweredObjCMethod(SILValue v, SILDeclRef method) {
|
|
assert(v.getType().isObject() && "function for address value?!");
|
|
assert(v.getType().is<SILFunctionType>() &&
|
|
"function for non-function value?!");
|
|
setLoweredValue(v, ObjCMethod{method, SILType(), false});
|
|
}
|
|
|
|
/// Create a new Objective-C method corresponding to the given SIL value that
|
|
/// starts its search from the given search type.
|
|
///
|
|
/// Unlike \c setLoweredObjCMethod, which finds the method in the actual
|
|
/// runtime type of the object, this routine starts at the static type of the
|
|
/// object and searches up the the class hierarchy (toward superclasses).
|
|
///
|
|
/// \param searchType The class from which the Objective-C runtime will start
|
|
/// its search for a method.
|
|
///
|
|
/// \param startAtSuper Whether we want to start at the superclass of the
|
|
/// static type (vs. the static type itself).
|
|
void setLoweredObjCMethodBounded(SILValue v, SILDeclRef method,
|
|
SILType searchType, bool startAtSuper) {
|
|
assert(v.getType().isObject() && "function for address value?!");
|
|
assert(v.getType().is<SILFunctionType>() &&
|
|
"function for non-function value?!");
|
|
setLoweredValue(v, ObjCMethod{method, searchType, startAtSuper});
|
|
}
|
|
|
|
LoweredValue &getUndefLoweredValue(SILType t) {
|
|
auto found = LoweredUndefs.find(t);
|
|
if (found != LoweredUndefs.end())
|
|
return found->second;
|
|
|
|
auto &ti = getTypeInfo(t);
|
|
switch (t.getCategory()) {
|
|
case SILValueCategory::Address:
|
|
case SILValueCategory::LocalStorage: {
|
|
Address undefAddr = ti.getAddressForPointer(
|
|
llvm::UndefValue::get(ti.getStorageType()->getPointerTo()));
|
|
LoweredUndefs.insert({t, LoweredValue(undefAddr)});
|
|
break;
|
|
}
|
|
|
|
case SILValueCategory::Object: {
|
|
auto schema = ti.getSchema();
|
|
Explosion e;
|
|
for (auto &elt : schema) {
|
|
assert(!elt.isAggregate()
|
|
&& "non-scalar element in loadable type schema?!");
|
|
e.add(llvm::UndefValue::get(elt.getScalarType()));
|
|
}
|
|
LoweredUndefs.insert({t, LoweredValue(e)});
|
|
break;
|
|
}
|
|
}
|
|
|
|
found = LoweredUndefs.find(t);
|
|
assert(found != LoweredUndefs.end());
|
|
return found->second;
|
|
}
|
|
|
|
/// Get the LoweredValue corresponding to the given SIL value, which must
|
|
/// have been lowered.
|
|
LoweredValue &getLoweredValue(SILValue v) {
|
|
if (isa<SILUndef>(v))
|
|
return getUndefLoweredValue(v.getType());
|
|
|
|
auto foundValue = LoweredValues.find(v);
|
|
assert(foundValue != LoweredValues.end() &&
|
|
"no lowered explosion for sil value!");
|
|
return foundValue->second;
|
|
}
|
|
|
|
/// Get the Address of a SIL value of address type, which must have been
|
|
/// lowered.
|
|
Address getLoweredAddress(SILValue v) {
|
|
return getLoweredValue(v).getAddress();
|
|
}
|
|
/// Add the unmanaged LLVM values lowered from a SIL value to an explosion.
|
|
void getLoweredExplosion(SILValue v, Explosion &e) {
|
|
getLoweredValue(v).getExplosion(*this, e);
|
|
}
|
|
/// Create an Explosion containing the unmanaged LLVM values lowered from a
|
|
/// SIL value.
|
|
Explosion getLoweredExplosion(SILValue v) {
|
|
return getLoweredValue(v).getExplosion(*this);
|
|
}
|
|
|
|
/// Return the single member of the lowered explosion for the
|
|
/// given SIL value.
|
|
llvm::Value *getLoweredSingletonExplosion(SILValue v) {
|
|
return getLoweredValue(v).getSingletonExplosion(*this);
|
|
}
|
|
|
|
LoweredBB &getLoweredBB(SILBasicBlock *bb) {
|
|
auto foundBB = LoweredBBs.find(bb);
|
|
assert(foundBB != LoweredBBs.end() && "no llvm bb for sil bb?!");
|
|
return foundBB->second;
|
|
}
|
|
|
|
/// At -O0, emit a shadow copy of an Address in an alloca, so the
|
|
/// register allocator doesn't elide the dbg.value intrinsic when
|
|
/// register pressure is high. There is a trade-off to this: With
|
|
/// shadow copies, we loose the precise lifetime.
|
|
llvm::Value *emitShadowCopy(llvm::Value *Storage,
|
|
StringRef Name,
|
|
Alignment Align = Alignment(0)) {
|
|
auto Ty = Storage->getType();
|
|
if (IGM.Opts.Optimize ||
|
|
isa<llvm::AllocaInst>(Storage) ||
|
|
isa<llvm::UndefValue>(Storage) ||
|
|
Ty == IGM.RefCountedPtrTy) // No debug info is emitted for refcounts.
|
|
return Storage;
|
|
|
|
if (Align.isZero())
|
|
Align = IGM.getPointerAlignment();
|
|
|
|
auto Alloca = createAlloca(Ty, Align, Name+".addr");
|
|
Builder.CreateAlignedStore(Storage, Alloca.getAddress(), Align.getValue());
|
|
return Alloca.getAddress();
|
|
}
|
|
|
|
llvm::Value *emitShadowCopy(const Address &Storage, StringRef Name) {
|
|
return emitShadowCopy(Storage.getAddress(), Name, Storage.getAlignment());
|
|
}
|
|
|
|
void emitShadowCopy(ArrayRef<llvm::Value *> Vals, StringRef Name,
|
|
llvm::SmallVectorImpl<llvm::Value *> &Copy) {
|
|
// Only do this at -O0.
|
|
if (IGM.Opts.Optimize) {
|
|
for (auto val : Vals)
|
|
Copy.push_back(val);
|
|
return;
|
|
}
|
|
|
|
// Single or empty values.
|
|
if (Vals.size() <= 1) {
|
|
for (auto val : Vals)
|
|
Copy.push_back(emitShadowCopy(val, Name));
|
|
return;
|
|
}
|
|
|
|
// Create a single aggregate alloca for explosions.
|
|
SmallVector<llvm::Type *, 8> Eltypes;
|
|
for (auto val : Vals)
|
|
Eltypes.push_back(val->getType());
|
|
auto AggregateType = llvm::StructType::get(Builder.getContext(), Eltypes);
|
|
auto Align = IGM.getPointerAlignment();
|
|
auto Alloca = createAlloca(AggregateType, Align, Name+".coerce");
|
|
unsigned i = 0;
|
|
for (auto val : Vals) {
|
|
auto addr = Builder.CreateConstGEP2_32(Alloca.getAddress(), 0, i++);
|
|
Builder.CreateStore(val, addr);
|
|
}
|
|
Copy.push_back(Alloca.getAddress());
|
|
}
|
|
|
|
/// Emit debug info for a function argument or a local variable.
|
|
template <typename StorageType>
|
|
void emitDebugVariableDeclaration(IRBuilder &Builder,
|
|
StorageType Storage,
|
|
DebugTypeInfo Ty,
|
|
SILDebugScope *DS,
|
|
StringRef Name) {
|
|
if (!IGM.DebugInfo) return;
|
|
auto N = ArgNo.find(cast<VarDecl>(Ty.getDecl()));
|
|
if (N != ArgNo.end()) {
|
|
if (DidEmitDebugInfoForArg[N->second])
|
|
return;
|
|
|
|
PrologueLocation AutoRestore(IGM.DebugInfo, Builder);
|
|
IGM.DebugInfo->
|
|
emitArgVariableDeclaration(Builder, Storage,
|
|
Ty, DS, Name, N->second, DirectValue);
|
|
DidEmitDebugInfoForArg.set(N->second);
|
|
} else
|
|
IGM.DebugInfo->
|
|
emitStackVariableDeclaration(Builder, Storage,
|
|
Ty, DS, Name, DirectValue);
|
|
}
|
|
|
|
|
|
void emitFailBB() {
|
|
if (!FailBBs.empty()) {
|
|
// Move the trap basic blocks to the end of the function.
|
|
for (auto *FailBB : FailBBs) {
|
|
auto &BlockList = CurFn->getBasicBlockList();
|
|
BlockList.splice(BlockList.end(), BlockList, FailBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// SIL instruction lowering
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void visitSILBasicBlock(SILBasicBlock *BB);
|
|
IndirectionKind getLoweredArgValue(llvm::SmallVectorImpl<llvm::Value *> &Vals,
|
|
SILArgument *Arg, StringRef Name);
|
|
|
|
void emitFunctionArgDebugInfo(SILBasicBlock *BB);
|
|
|
|
void visitAllocStackInst(AllocStackInst *i);
|
|
void visitAllocRefInst(AllocRefInst *i);
|
|
void visitAllocRefDynamicInst(AllocRefDynamicInst *i);
|
|
void visitAllocBoxInst(AllocBoxInst *i);
|
|
|
|
void visitApplyInst(ApplyInst *i);
|
|
void visitTryApplyInst(TryApplyInst *i);
|
|
void visitFullApplySite(FullApplySite i);
|
|
void visitPartialApplyInst(PartialApplyInst *i);
|
|
void visitBuiltinInst(BuiltinInst *i);
|
|
|
|
void visitFunctionRefInst(FunctionRefInst *i);
|
|
void visitGlobalAddrInst(GlobalAddrInst *i);
|
|
|
|
void visitIntegerLiteralInst(IntegerLiteralInst *i);
|
|
void visitFloatLiteralInst(FloatLiteralInst *i);
|
|
void visitStringLiteralInst(StringLiteralInst *i);
|
|
|
|
void visitLoadInst(LoadInst *i);
|
|
void visitStoreInst(StoreInst *i);
|
|
void visitAssignInst(AssignInst *i) {
|
|
llvm_unreachable("assign is not valid in canonical SIL");
|
|
}
|
|
void visitMarkUninitializedInst(MarkUninitializedInst *i) {
|
|
llvm_unreachable("mark_uninitialized is not valid in canonical SIL");
|
|
}
|
|
void visitMarkFunctionEscapeInst(MarkFunctionEscapeInst *i) {
|
|
llvm_unreachable("mark_function_escape is not valid in canonical SIL");
|
|
}
|
|
void visitDebugValueInst(DebugValueInst *i) {
|
|
if (!IGM.DebugInfo)
|
|
return;
|
|
|
|
VarDecl *Decl = i->getDecl();
|
|
if (!Decl)
|
|
return;
|
|
|
|
auto N = ArgNo.find(Decl);
|
|
if (N != ArgNo.end() && DidEmitDebugInfoForArg[N->second])
|
|
return;
|
|
|
|
StringRef Name = Decl->getNameStr();
|
|
auto SILVal = i->getOperand();
|
|
Explosion e = getLoweredExplosion(SILVal);
|
|
DebugTypeInfo DbgTy(Decl, Decl->getType(), getTypeInfo(SILVal.getType()));
|
|
// Emit an -O0 shadow copy for the explosion.
|
|
llvm::SmallVector<llvm::Value *, 8> Copy;
|
|
emitShadowCopy(e.claimAll(), Name, Copy);
|
|
emitDebugVariableDeclaration(Builder, Copy, DbgTy,
|
|
i->getDebugScope(), Name);
|
|
}
|
|
void visitDebugValueAddrInst(DebugValueAddrInst *i) {
|
|
if (!IGM.DebugInfo) return;
|
|
VarDecl *Decl = i->getDecl();
|
|
if (!Decl) return;
|
|
StringRef Name = Decl->getName().str();
|
|
auto SILVal = i->getOperand();
|
|
auto Val = getLoweredAddress(SILVal).getAddress();
|
|
emitDebugVariableDeclaration
|
|
(Builder, Val,
|
|
DebugTypeInfo(Decl, Decl->getType(), getTypeInfo(SILVal.getType())),
|
|
i->getDebugScope(), Name);
|
|
}
|
|
void visitLoadWeakInst(LoadWeakInst *i);
|
|
void visitStoreWeakInst(StoreWeakInst *i);
|
|
void visitRetainValueInst(RetainValueInst *i);
|
|
void visitReleaseValueInst(ReleaseValueInst *i);
|
|
void visitAutoreleaseValueInst(AutoreleaseValueInst *i);
|
|
void visitStructInst(StructInst *i);
|
|
void visitTupleInst(TupleInst *i);
|
|
void visitEnumInst(EnumInst *i);
|
|
void visitInitEnumDataAddrInst(InitEnumDataAddrInst *i);
|
|
void visitSelectEnumInst(SelectEnumInst *i);
|
|
void visitSelectEnumAddrInst(SelectEnumAddrInst *i);
|
|
void visitSelectValueInst(SelectValueInst *i);
|
|
void visitUncheckedEnumDataInst(UncheckedEnumDataInst *i);
|
|
void visitUncheckedTakeEnumDataAddrInst(UncheckedTakeEnumDataAddrInst *i);
|
|
void visitInjectEnumAddrInst(InjectEnumAddrInst *i);
|
|
void visitObjCProtocolInst(ObjCProtocolInst *i);
|
|
void visitMetatypeInst(MetatypeInst *i);
|
|
void visitValueMetatypeInst(ValueMetatypeInst *i);
|
|
void visitExistentialMetatypeInst(ExistentialMetatypeInst *i);
|
|
void visitTupleExtractInst(TupleExtractInst *i);
|
|
void visitTupleElementAddrInst(TupleElementAddrInst *i);
|
|
void visitStructExtractInst(StructExtractInst *i);
|
|
void visitStructElementAddrInst(StructElementAddrInst *i);
|
|
void visitRefElementAddrInst(RefElementAddrInst *i);
|
|
|
|
void visitClassMethodInst(ClassMethodInst *i);
|
|
void visitSuperMethodInst(SuperMethodInst *i);
|
|
void visitWitnessMethodInst(WitnessMethodInst *i);
|
|
void visitDynamicMethodInst(DynamicMethodInst *i);
|
|
|
|
void visitAllocValueBufferInst(AllocValueBufferInst *i);
|
|
void visitProjectValueBufferInst(ProjectValueBufferInst *i);
|
|
void visitDeallocValueBufferInst(DeallocValueBufferInst *i);
|
|
|
|
void visitOpenExistentialAddrInst(OpenExistentialAddrInst *i);
|
|
void visitOpenExistentialMetatypeInst(OpenExistentialMetatypeInst *i);
|
|
void visitOpenExistentialRefInst(OpenExistentialRefInst *i);
|
|
void visitInitExistentialAddrInst(InitExistentialAddrInst *i);
|
|
void visitInitExistentialMetatypeInst(InitExistentialMetatypeInst *i);
|
|
void visitInitExistentialRefInst(InitExistentialRefInst *i);
|
|
void visitDeinitExistentialAddrInst(DeinitExistentialAddrInst *i);
|
|
|
|
void visitAllocExistentialBoxInst(AllocExistentialBoxInst *i);
|
|
void visitOpenExistentialBoxInst(OpenExistentialBoxInst *i);
|
|
void visitDeallocExistentialBoxInst(DeallocExistentialBoxInst *i);
|
|
|
|
void visitProjectBlockStorageInst(ProjectBlockStorageInst *i);
|
|
void visitInitBlockStorageHeaderInst(InitBlockStorageHeaderInst *i);
|
|
|
|
void visitFixLifetimeInst(FixLifetimeInst *i);
|
|
void visitMarkDependenceInst(MarkDependenceInst *i);
|
|
void visitCopyBlockInst(CopyBlockInst *i);
|
|
void visitStrongPinInst(StrongPinInst *i);
|
|
void visitStrongUnpinInst(StrongUnpinInst *i);
|
|
void visitStrongRetainInst(StrongRetainInst *i);
|
|
void visitStrongReleaseInst(StrongReleaseInst *i);
|
|
void visitStrongRetainAutoreleasedInst(StrongRetainAutoreleasedInst *i);
|
|
void visitStrongRetainUnownedInst(StrongRetainUnownedInst *i);
|
|
void visitUnownedRetainInst(UnownedRetainInst *i);
|
|
void visitUnownedReleaseInst(UnownedReleaseInst *i);
|
|
void visitIsUniqueInst(IsUniqueInst *i);
|
|
void visitIsUniqueOrPinnedInst(IsUniqueOrPinnedInst *i);
|
|
void visitDeallocStackInst(DeallocStackInst *i);
|
|
void visitDeallocBoxInst(DeallocBoxInst *i);
|
|
void visitDeallocRefInst(DeallocRefInst *i);
|
|
|
|
void visitCopyAddrInst(CopyAddrInst *i);
|
|
void visitDestroyAddrInst(DestroyAddrInst *i);
|
|
|
|
void visitCondFailInst(CondFailInst *i);
|
|
|
|
void visitConvertFunctionInst(ConvertFunctionInst *i);
|
|
void visitThinFunctionToPointerInst(ThinFunctionToPointerInst *i);
|
|
void visitPointerToThinFunctionInst(PointerToThinFunctionInst *i);
|
|
void visitUpcastInst(UpcastInst *i);
|
|
void visitAddressToPointerInst(AddressToPointerInst *i);
|
|
void visitPointerToAddressInst(PointerToAddressInst *i);
|
|
void visitUncheckedRefCastInst(UncheckedRefCastInst *i);
|
|
void visitUncheckedAddrCastInst(UncheckedAddrCastInst *i);
|
|
void visitUncheckedRefBitCastInst(UncheckedRefBitCastInst *i);
|
|
void visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *i);
|
|
void visitRefToRawPointerInst(RefToRawPointerInst *i);
|
|
void visitRawPointerToRefInst(RawPointerToRefInst *i);
|
|
void visitRefToUnownedInst(RefToUnownedInst *i);
|
|
void visitUnownedToRefInst(UnownedToRefInst *i);
|
|
void visitRefToUnmanagedInst(RefToUnmanagedInst *i);
|
|
void visitUnmanagedToRefInst(UnmanagedToRefInst *i);
|
|
void visitThinToThickFunctionInst(ThinToThickFunctionInst *i);
|
|
void visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *i);
|
|
void visitObjCToThickMetatypeInst(ObjCToThickMetatypeInst *i);
|
|
void visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *i);
|
|
void visitUnconditionalCheckedCastAddrInst(UnconditionalCheckedCastAddrInst *i);
|
|
void visitObjCMetatypeToObjectInst(ObjCMetatypeToObjectInst *i);
|
|
void visitObjCExistentialMetatypeToObjectInst(
|
|
ObjCExistentialMetatypeToObjectInst *i);
|
|
void visitRefToBridgeObjectInst(RefToBridgeObjectInst *i);
|
|
void visitBridgeObjectToRefInst(BridgeObjectToRefInst *i);
|
|
void visitBridgeObjectToWordInst(BridgeObjectToWordInst *i);
|
|
|
|
void visitIsNonnullInst(IsNonnullInst *i);
|
|
void visitNullClassInst(NullClassInst *i);
|
|
|
|
void visitIndexAddrInst(IndexAddrInst *i);
|
|
void visitIndexRawPointerInst(IndexRawPointerInst *i);
|
|
|
|
void visitUnreachableInst(UnreachableInst *i);
|
|
void visitBranchInst(BranchInst *i);
|
|
void visitCondBranchInst(CondBranchInst *i);
|
|
void visitReturnInst(ReturnInst *i);
|
|
void visitAutoreleaseReturnInst(AutoreleaseReturnInst *i);
|
|
void visitThrowInst(ThrowInst *i);
|
|
void visitSwitchValueInst(SwitchValueInst *i);
|
|
void visitSwitchEnumInst(SwitchEnumInst *i);
|
|
void visitSwitchEnumAddrInst(SwitchEnumAddrInst *i);
|
|
void visitDynamicMethodBranchInst(DynamicMethodBranchInst *i);
|
|
void visitCheckedCastBranchInst(CheckedCastBranchInst *i);
|
|
void visitCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *i);
|
|
};
|
|
|
|
}
|
|
|
|
llvm::Value *StaticFunction::getExplosionValue(IRGenFunction &IGF) const {
|
|
return IGF.Builder.CreateBitCast(function, IGF.IGM.Int8PtrTy);
|
|
}
|
|
|
|
void LoweredValue::getExplosion(IRGenFunction &IGF, Explosion &ex) const {
|
|
switch (kind) {
|
|
case Kind::Address:
|
|
llvm_unreachable("not a value");
|
|
|
|
case Kind::Explosion:
|
|
for (auto *value : explosion.values)
|
|
ex.add(value);
|
|
break;
|
|
|
|
case Kind::StaticFunction:
|
|
ex.add(staticFunction.getExplosionValue(IGF));
|
|
break;
|
|
|
|
case Kind::ObjCMethod:
|
|
ex.add(objcMethod.getExplosionValue(IGF));
|
|
break;
|
|
}
|
|
}
|
|
|
|
llvm::Value *LoweredValue::getSingletonExplosion(IRGenFunction &IGF) const {
|
|
switch (kind) {
|
|
case Kind::Address:
|
|
llvm_unreachable("not a value");
|
|
|
|
case Kind::Explosion:
|
|
assert(explosion.values.size() == 1);
|
|
return explosion.values[0];
|
|
|
|
case Kind::StaticFunction:
|
|
return staticFunction.getExplosionValue(IGF);
|
|
|
|
case Kind::ObjCMethod:
|
|
return objcMethod.getExplosionValue(IGF);
|
|
}
|
|
llvm_unreachable("bad lowered value kind!");
|
|
}
|
|
|
|
IRGenSILFunction::IRGenSILFunction(IRGenModule &IGM,
|
|
SILFunction *f)
|
|
: IRGenFunction(IGM, IGM.getAddrOfSILFunction(f, ForDefinition),
|
|
f->getDebugScope(), f->getLocation()),
|
|
CurSILFn(f)
|
|
{}
|
|
|
|
IRGenSILFunction::~IRGenSILFunction() {
|
|
assert(Builder.hasPostTerminatorIP() && "did not terminate BB?!");
|
|
// Emit the fail BB if we have one.
|
|
if (!FailBBs.empty())
|
|
emitFailBB();
|
|
DEBUG(CurFn->print(llvm::dbgs()));
|
|
}
|
|
|
|
template<typename ValueVector>
|
|
static void emitPHINodesForType(IRGenSILFunction &IGF, SILType type,
|
|
const TypeInfo &ti, unsigned predecessors,
|
|
ValueVector &phis) {
|
|
if (type.isAddress()) {
|
|
phis.push_back(IGF.Builder.CreatePHI(ti.getStorageType()->getPointerTo(),
|
|
predecessors));
|
|
} else {
|
|
// PHIs are always emitted with maximal explosion.
|
|
ExplosionSchema schema = ti.getSchema();
|
|
for (auto &elt : schema) {
|
|
if (elt.isScalar())
|
|
phis.push_back(
|
|
IGF.Builder.CreatePHI(elt.getScalarType(), predecessors));
|
|
else
|
|
phis.push_back(
|
|
IGF.Builder.CreatePHI(elt.getAggregateType()->getPointerTo(),
|
|
predecessors));
|
|
}
|
|
}
|
|
}
|
|
|
|
static PHINodeVector
|
|
emitPHINodesForBBArgs(IRGenSILFunction &IGF,
|
|
SILBasicBlock *silBB,
|
|
llvm::BasicBlock *llBB) {
|
|
PHINodeVector phis;
|
|
unsigned predecessors = std::distance(silBB->pred_begin(), silBB->pred_end());
|
|
|
|
IGF.Builder.SetInsertPoint(llBB);
|
|
if (IGF.IGM.DebugInfo) {
|
|
// Use the location of the first instruction in the basic block
|
|
// for the φ-nodes.
|
|
if (!silBB->empty()) {
|
|
SILInstruction &I = *silBB->begin();
|
|
auto DS = I.getDebugScope();
|
|
// FIXME: This should be an assertion.
|
|
if (!DS || (DS->SILFn != IGF.CurSILFn && !DS->InlinedCallSite))
|
|
DS = IGF.CurSILFn->getDebugScope();
|
|
IGF.IGM.DebugInfo->setCurrentLoc(IGF.Builder, DS, I.getLoc());
|
|
}
|
|
}
|
|
|
|
for (SILArgument *arg : make_range(silBB->bbarg_begin(), silBB->bbarg_end())) {
|
|
size_t first = phis.size();
|
|
|
|
const TypeInfo &ti = IGF.getTypeInfo(arg->getType());
|
|
|
|
emitPHINodesForType(IGF, arg->getType(), ti, predecessors, phis);
|
|
if (arg->getType().isAddress()) {
|
|
IGF.setLoweredAddress(SILValue(arg,0),
|
|
ti.getAddressForPointer(phis.back()));
|
|
} else {
|
|
Explosion argValue;
|
|
for (llvm::PHINode *phi :
|
|
swift::make_range(phis.begin()+first, phis.end()))
|
|
argValue.add(phi);
|
|
IGF.setLoweredExplosion(SILValue(arg,0), argValue);
|
|
}
|
|
}
|
|
|
|
// Since we return to the entry of the function, reset the location.
|
|
if (IGF.IGM.DebugInfo)
|
|
IGF.IGM.DebugInfo->clearLoc(IGF.Builder);
|
|
|
|
return phis;
|
|
}
|
|
|
|
static void addIncomingExplosionToPHINodes(IRGenSILFunction &IGF,
|
|
LoweredBB &lbb,
|
|
unsigned &phiIndex,
|
|
Explosion &argValue);
|
|
|
|
static ArrayRef<SILArgument*> emitEntryPointIndirectReturn(
|
|
IRGenSILFunction &IGF,
|
|
SILBasicBlock *entry,
|
|
Explosion ¶ms,
|
|
CanSILFunctionType funcTy,
|
|
std::function<bool()> requiresIndirectResult) {
|
|
// Map the indirect return if present.
|
|
if (funcTy->hasIndirectResult()) {
|
|
SILArgument *ret = entry->bbarg_begin()[0];
|
|
SILValue retv(ret, 0);
|
|
auto &retTI = IGF.IGM.getTypeInfo(ret->getType());
|
|
|
|
IGF.setLoweredAddress(retv, retTI.getAddressForPointer(params.claimNext()));
|
|
return entry->getBBArgs().slice(1);
|
|
} else {
|
|
// Map an indirect return for a type SIL considers loadable but still
|
|
// requires an indirect return at the IR level.
|
|
if (requiresIndirectResult()) {
|
|
auto retTy = IGF.CurSILFn->mapTypeIntoContext(funcTy->getResult()
|
|
.getSILType());
|
|
auto &retTI = IGF.IGM.getTypeInfo(retTy);
|
|
IGF.IndirectReturn = retTI.getAddressForPointer(params.claimNext());
|
|
}
|
|
return entry->getBBArgs();
|
|
}
|
|
}
|
|
|
|
/// Emit a direct parameter that was passed under a native CC.
|
|
static void emitDirectExternalParameter(IRGenSILFunction &IGF,
|
|
Explosion &in,
|
|
llvm::Type *coercionTy,
|
|
Explosion &out,
|
|
SILType paramType,
|
|
const LoadableTypeInfo ¶mTI) {
|
|
// The ABI IR types for the entrypoint might differ from the
|
|
// Swift IR types for the body of the function.
|
|
|
|
ArrayRef<llvm::Type*> expandedTys;
|
|
if (auto expansionTy = dyn_cast<llvm::StructType>(coercionTy)) {
|
|
expandedTys = makeArrayRef(expansionTy->element_begin(),
|
|
expansionTy->getNumElements());
|
|
|
|
// Fast-path a really common case. This check assumes that either
|
|
// the storage type of a type is an llvm::StructType or it has a
|
|
// single-element explosion.
|
|
} else if (coercionTy == paramTI.StorageType) {
|
|
out.add(in.claimNext());
|
|
return;
|
|
} else {
|
|
expandedTys = coercionTy;
|
|
}
|
|
|
|
auto outputSchema = paramTI.getSchema();
|
|
|
|
// Check to see if we can pairwise-coerce Swift's exploded scalars
|
|
// to Clang's expanded elements.
|
|
if (canCoerceToSchema(IGF.IGM, expandedTys, outputSchema)) {
|
|
for (auto &outputElt : outputSchema) {
|
|
llvm::Value *param = in.claimNext();
|
|
llvm::Type *outputTy = outputElt.getScalarType();
|
|
if (param->getType() != outputTy)
|
|
param = IGF.coerceValue(param, outputTy, IGF.IGM.DataLayout);
|
|
out.add(param);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we need to traffic through memory.
|
|
assert((IGF.IGM.DataLayout.getTypeSizeInBits(coercionTy) ==
|
|
IGF.IGM.DataLayout.getTypeSizeInBits(paramTI.StorageType))
|
|
&& "Coerced types should not differ in size!");
|
|
|
|
// Create a temporary.
|
|
Address temporary = paramTI.allocateStack(IGF, paramType,
|
|
"coerced-param").getAddress();
|
|
|
|
// Write the input parameters into the temporary:
|
|
Address coercedAddr =
|
|
IGF.Builder.CreateBitCast(temporary, coercionTy->getPointerTo());
|
|
|
|
// Break down a struct expansion if necessary.
|
|
if (auto expansionTy = dyn_cast<llvm::StructType>(coercionTy)) {
|
|
auto layout = IGF.IGM.DataLayout.getStructLayout(expansionTy);
|
|
for (unsigned i = 0, e = expansionTy->getNumElements(); i != e; ++i) {
|
|
auto fieldOffset = Size(layout->getElementOffset(i));
|
|
auto fieldAddr = IGF.Builder.CreateStructGEP(coercedAddr, i, fieldOffset);
|
|
IGF.Builder.CreateStore(in.claimNext(), fieldAddr);
|
|
}
|
|
|
|
// Otherwise, store the single scalar.
|
|
} else {
|
|
IGF.Builder.CreateStore(in.claimNext(), coercedAddr);
|
|
}
|
|
|
|
// Pull out the elements.
|
|
paramTI.loadAsTake(IGF, temporary, out);
|
|
|
|
// Deallocate the temporary.
|
|
paramTI.deallocateStack(IGF, temporary, paramType);
|
|
}
|
|
|
|
static void bindParameter(IRGenSILFunction &IGF,
|
|
SILArgument *param,
|
|
Explosion &allParamValues) {
|
|
// Pull out the parameter value and its formal type.
|
|
auto ¶mTI = IGF.getTypeInfo(param->getType());
|
|
|
|
// If the SIL parameter isn't passed indirectly, we need to map it
|
|
// to an explosion. Fortunately, in this case we have a guarantee
|
|
// that it's passed directly in IR.
|
|
if (param->getType().isObject()) {
|
|
Explosion paramValues;
|
|
cast<LoadableTypeInfo>(paramTI).reexplode(IGF, allParamValues, paramValues);
|
|
IGF.setLoweredExplosion(SILValue(param, 0), paramValues);
|
|
return;
|
|
}
|
|
|
|
// Okay, the type is passed indirectly in SIL, so we need to map
|
|
// it to an address.
|
|
// FIXME: that doesn't mean we should physically pass it
|
|
// indirectly at this explosion level, but SIL currently gives us
|
|
// no ability to distinguish between an l-value and a byval argument.
|
|
Address paramAddr
|
|
= paramTI.getAddressForPointer(allParamValues.claimNext());
|
|
IGF.setLoweredAddress(SILValue(param, 0), paramAddr);
|
|
}
|
|
|
|
/// Emit entry point arguments for a SILFunction with the Swift calling
|
|
/// convention.
|
|
static void emitEntryPointArgumentsNativeCC(IRGenSILFunction &IGF,
|
|
SILBasicBlock *entry,
|
|
Explosion &allParamValues) {
|
|
auto funcTy = IGF.CurSILFn->getLoweredFunctionType();
|
|
|
|
// Map the indirect return if present.
|
|
ArrayRef<SILArgument*> params
|
|
= emitEntryPointIndirectReturn(IGF, entry, allParamValues, funcTy,
|
|
[&]() -> bool {
|
|
auto retType
|
|
= IGF.CurSILFn->mapTypeIntoContext(funcTy->getResult()
|
|
.getSILType());
|
|
return IGF.IGM.requiresIndirectResult(retType);
|
|
});
|
|
|
|
// The witness method CC passes Self as a final argument.
|
|
WitnessMetadata witnessMetadata;
|
|
if (funcTy->getRepresentation() == SILFunctionTypeRepresentation::WitnessMethod) {
|
|
collectTrailingWitnessMetadata(IGF, *IGF.CurSILFn, allParamValues,
|
|
witnessMetadata);
|
|
}
|
|
|
|
// Bind the error result by popping it off the parameter list.
|
|
if (funcTy->hasErrorResult()) {
|
|
IGF.setErrorResultSlot(allParamValues.takeLast());
|
|
}
|
|
|
|
// The 'self' argument might be in the context position, which is
|
|
// now the end of the parameter list. Bind it now.
|
|
if (funcTy->hasSelfParam() &&
|
|
isSelfContextParameter(funcTy->getSelfParameter())) {
|
|
SILArgument *selfParam = params.back();
|
|
params = params.drop_back();
|
|
|
|
Explosion selfTemp;
|
|
selfTemp.add(allParamValues.takeLast());
|
|
bindParameter(IGF, selfParam, selfTemp);
|
|
|
|
// Even if we don't have a 'self', if we have an error result, we
|
|
// should have a placeholder argument here.
|
|
} else if (funcTy->hasErrorResult() ||
|
|
funcTy->getRepresentation() == SILFunctionTypeRepresentation::Thick)
|
|
{
|
|
llvm::Value *contextPtr = allParamValues.takeLast(); (void) contextPtr;
|
|
assert(contextPtr->getType() == IGF.IGM.RefCountedPtrTy);
|
|
}
|
|
|
|
// Map the remaining SIL parameters to LLVM parameters.
|
|
for (SILArgument *param : params) {
|
|
bindParameter(IGF, param, allParamValues);
|
|
}
|
|
|
|
// Bind polymorphic arguments. This can only be done after binding
|
|
// all the value parameters.
|
|
if (hasPolymorphicParameters(funcTy)) {
|
|
emitPolymorphicParameters(IGF, *IGF.CurSILFn, allParamValues,
|
|
&witnessMetadata,
|
|
[&](unsigned paramIndex) -> llvm::Value* {
|
|
SILValue parameter = entry->getBBArgs()[paramIndex];
|
|
return IGF.getLoweredSingletonExplosion(parameter);
|
|
});
|
|
}
|
|
|
|
assert(allParamValues.empty() && "didn't claim all parameters!");
|
|
}
|
|
|
|
/// Emit entry point arguments for the parameters of a C function, or the
|
|
/// method parameters of an ObjC method.
|
|
static void emitEntryPointArgumentsCOrObjC(IRGenSILFunction &IGF,
|
|
SILBasicBlock *entry,
|
|
Explosion ¶ms,
|
|
CanSILFunctionType funcTy) {
|
|
// Map the indirect return if present.
|
|
ArrayRef<SILArgument*> args
|
|
= emitEntryPointIndirectReturn(IGF, entry, params, funcTy, [&] {
|
|
return requiresExternalIndirectResult(IGF.IGM, funcTy);
|
|
});
|
|
|
|
SmallVector<clang::CanQualType,4> argTys;
|
|
auto const &clangCtx = IGF.IGM.getClangASTContext();
|
|
|
|
const auto &resultInfo = funcTy->getResult();
|
|
auto clangResultTy = IGF.IGM.getClangType(resultInfo.getSILType());
|
|
unsigned nextArgTyIdx = 0;
|
|
|
|
if (IGF.CurSILFn->getRepresentation() ==
|
|
SILFunctionTypeRepresentation::ObjCMethod) {
|
|
// First include the self argument and _cmd arguments as types to
|
|
// be considered for ABI type selection purposes.
|
|
SILArgument *selfArg = args.back();
|
|
args = args.slice(0, args.size() - 1);
|
|
auto clangTy = IGF.IGM.getClangType(selfArg->getType());
|
|
argTys.push_back(clangTy);
|
|
argTys.push_back(clangCtx.VoidPtrTy);
|
|
|
|
// Now set the lowered explosion for the self argument and drop
|
|
// the explosion element for the _cmd argument.
|
|
auto &selfType = IGF.getTypeInfo(selfArg->getType());
|
|
auto &selfTI = cast<LoadableTypeInfo>(selfType);
|
|
auto selfSchema = selfTI.getSchema();
|
|
assert(selfSchema.size() == 1 && "Expected self to be a single element!");
|
|
|
|
auto *selfValue = params.claimNext();
|
|
auto *bodyType = selfSchema.begin()->getScalarType();
|
|
if (selfValue->getType() != bodyType)
|
|
selfValue = IGF.coerceValue(selfValue, bodyType, IGF.IGM.DataLayout);
|
|
|
|
Explosion self;
|
|
self.add(selfValue);
|
|
IGF.setLoweredExplosion(selfArg, self);
|
|
|
|
// Discard the implicit _cmd argument.
|
|
params.claimNext();
|
|
|
|
// We've handled the self and _cmd arguments, so when we deal with
|
|
// generating explosions for the remaining arguments we can skip
|
|
// these.
|
|
nextArgTyIdx = 2;
|
|
}
|
|
|
|
// Convert each argument to a Clang type.
|
|
for (SILArgument *arg : args) {
|
|
auto clangTy = IGF.IGM.getClangType(arg->getType());
|
|
argTys.push_back(clangTy);
|
|
}
|
|
|
|
// Generate the ABI types for this set of result type + argument types.
|
|
auto extInfo = clang::FunctionType::ExtInfo();
|
|
auto &FI = IGF.IGM.ABITypes->arrangeFreeFunctionCall(clangResultTy,
|
|
argTys, extInfo,
|
|
clang::CodeGen::RequiredArgs::All);
|
|
|
|
assert(FI.arg_size() == argTys.size() &&
|
|
"Expected one ArgInfo for each parameter type!");
|
|
assert(args.size() == (argTys.size() - nextArgTyIdx) &&
|
|
"Number of arguments not equal to number of argument types!");
|
|
|
|
// Generate lowered explosions for each explicit argument.
|
|
for (auto i : indices(args)) {
|
|
auto *arg = args[i];
|
|
auto argTyIdx = i + nextArgTyIdx;
|
|
auto &argTI = IGF.getTypeInfo(arg->getType());
|
|
|
|
// Bitcast indirect argument pointers to the right storage type.
|
|
if (arg->getType().isAddress()) {
|
|
llvm::Value *ptr = params.claimNext();
|
|
ptr = IGF.Builder.CreateBitCast(ptr,
|
|
argTI.getStorageType()->getPointerTo());
|
|
IGF.setLoweredAddress(arg, Address(ptr, argTI.getBestKnownAlignment()));
|
|
continue;
|
|
}
|
|
|
|
auto &loadableArgTI = cast<LoadableTypeInfo>(argTI);
|
|
Explosion argExplosion;
|
|
|
|
auto AI = FI.arg_begin()[argTyIdx].info;
|
|
|
|
// Drop padding arguments.
|
|
if (AI.getPaddingType())
|
|
params.claimNext();
|
|
|
|
switch (AI.getKind()) {
|
|
case clang::CodeGen::ABIArgInfo::Extend:
|
|
case clang::CodeGen::ABIArgInfo::Direct: {
|
|
emitDirectExternalParameter(IGF, params, AI.getCoerceToType(),
|
|
argExplosion, arg->getType(), loadableArgTI);
|
|
IGF.setLoweredExplosion(arg, argExplosion);
|
|
continue;
|
|
}
|
|
case clang::CodeGen::ABIArgInfo::Indirect: {
|
|
Address address = loadableArgTI.getAddressForPointer(params.claimNext());
|
|
loadableArgTI.loadAsTake(IGF, address, argExplosion);
|
|
IGF.setLoweredExplosion(arg, argExplosion);
|
|
continue;
|
|
}
|
|
case clang::CodeGen::ABIArgInfo::Expand: {
|
|
emitClangExpandedParameter(IGF, params, argExplosion, argTys[argTyIdx],
|
|
arg->getType(), loadableArgTI);
|
|
IGF.setLoweredExplosion(arg, argExplosion);
|
|
continue;
|
|
}
|
|
|
|
case clang::CodeGen::ABIArgInfo::Ignore:
|
|
case clang::CodeGen::ABIArgInfo::InAlloca:
|
|
llvm_unreachable("Need to handle InAlloca during signature expansion");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get metadata for the dynamic Self type if we have it.
|
|
static void emitLocalSelfMetadata(IRGenSILFunction &IGF) {
|
|
// Self is the final SIL argument, if any.
|
|
if (IGF.CurSILFn->begin()->bbarg_empty())
|
|
return;
|
|
|
|
SILArgument *selfArg = IGF.CurSILFn->begin()->getBBArgs().back();
|
|
|
|
// If the argument is a class or class metatype value, we can use it for Self's
|
|
// metadata.
|
|
auto selfSILTy = selfArg->getType();
|
|
if (!selfSILTy.isObject())
|
|
return;
|
|
CanType instanceTy = selfSILTy.getSwiftRValueType();
|
|
CanMetatypeType metaTy = dyn_cast<MetatypeType>(instanceTy);
|
|
if (metaTy)
|
|
instanceTy = metaTy.getInstanceType();
|
|
|
|
if (!instanceTy->getClassOrBoundGenericClass())
|
|
return;
|
|
|
|
IRGenFunction::LocalSelfKind selfKind;
|
|
if (!metaTy)
|
|
selfKind = IRGenFunction::ObjectReference;
|
|
else switch (metaTy->getRepresentation()) {
|
|
case MetatypeRepresentation::Thin:
|
|
llvm_unreachable("class metatypes are never thin");
|
|
case MetatypeRepresentation::Thick:
|
|
selfKind = IRGenFunction::SwiftMetatype;
|
|
break;
|
|
case MetatypeRepresentation::ObjC:
|
|
selfKind = IRGenFunction::ObjCMetatype;
|
|
break;
|
|
}
|
|
|
|
llvm::Value *value = IGF.getLoweredExplosion(selfArg).claimNext();
|
|
IGF.setLocalSelfMetadata(value, selfKind);
|
|
}
|
|
|
|
/// Emit the definition for the given SIL constant.
|
|
void IRGenModule::emitSILFunction(SILFunction *f) {
|
|
if (f->isExternalDeclaration())
|
|
return;
|
|
|
|
PrettyStackTraceSILFunction stackTrace("emitting IR", f);
|
|
IRGenSILFunction(*this, f).emitSILFunction();
|
|
}
|
|
|
|
void IRGenSILFunction::emitSILFunction() {
|
|
DEBUG(llvm::dbgs() << "emitting SIL function: ";
|
|
CurSILFn->printName(llvm::dbgs());
|
|
llvm::dbgs() << '\n';
|
|
CurSILFn->print(llvm::dbgs()));
|
|
|
|
assert(!CurSILFn->empty() && "function has no basic blocks?!");
|
|
|
|
// FIXME: Or if this is a witness. DebugInfo doesn't have an interface to
|
|
// correctly handle the generic parameters of a witness, which can come from
|
|
// both the requirement and witness contexts.
|
|
if (IGM.DebugInfo &&
|
|
CurSILFn->getRepresentation()
|
|
!= SILFunctionTypeRepresentation::WitnessMethod) {
|
|
IGM.DebugInfo->emitFunction(*CurSILFn, CurFn);
|
|
}
|
|
|
|
// Map the entry bb.
|
|
LoweredBBs[CurSILFn->begin()] = LoweredBB(CurFn->begin(), {});
|
|
// Create LLVM basic blocks for the other bbs.
|
|
for (SILBasicBlock *bb = CurSILFn->begin()->getNextNode();
|
|
bb != CurSILFn->end(); bb = bb->getNextNode()) {
|
|
// FIXME: Use the SIL basic block's name.
|
|
llvm::BasicBlock *llBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
|
|
auto phis = emitPHINodesForBBArgs(*this, bb, llBB);
|
|
CurFn->getBasicBlockList().push_back(llBB);
|
|
LoweredBBs[bb] = LoweredBB(llBB, std::move(phis));
|
|
}
|
|
|
|
auto entry = LoweredBBs.begin();
|
|
Builder.SetInsertPoint(entry->second.bb);
|
|
|
|
// Map the LLVM arguments to arguments on the entry point BB.
|
|
Explosion params = collectParameters();
|
|
auto funcTy = CurSILFn->getLoweredFunctionType();
|
|
|
|
switch (funcTy->getLanguage()) {
|
|
case SILFunctionLanguage::Swift:
|
|
emitEntryPointArgumentsNativeCC(*this, entry->first, params);
|
|
break;
|
|
case SILFunctionLanguage::C:
|
|
emitEntryPointArgumentsCOrObjC(*this, entry->first, params, funcTy);
|
|
break;
|
|
}
|
|
emitLocalSelfMetadata(*this);
|
|
|
|
assert(params.empty() && "did not map all llvm params to SIL params?!");
|
|
|
|
// It's really nice to be able to assume that we've already emitted
|
|
// all the values from dominating blocks --- it makes simple
|
|
// peepholing more powerful and allows us to avoid the need for
|
|
// nasty "forward-declared" values. We can do this by emitting
|
|
// blocks using a simple walk through the successor graph.
|
|
//
|
|
// We do want to preserve the original source order, but that's done
|
|
// by having previously added all the primary blocks to the LLVM
|
|
// function in their original order. As long as any secondary
|
|
// blocks are inserted after the current IP instead of at the end
|
|
// of the function, we're fine.
|
|
|
|
// Invariant: for every block in the work queue, we have visited all
|
|
// of its dominators.
|
|
llvm::SmallPtrSet<SILBasicBlock*, 8> visitedBlocks;
|
|
SmallVector<SILBasicBlock*, 8> workQueue; // really a stack
|
|
|
|
// Queue up the entry block, for which the invariant trivially holds.
|
|
visitedBlocks.insert(CurSILFn->begin());
|
|
workQueue.push_back(CurSILFn->begin());
|
|
|
|
while (!workQueue.empty()) {
|
|
auto bb = workQueue.pop_back_val();
|
|
|
|
// Emit the block.
|
|
visitSILBasicBlock(bb);
|
|
|
|
#ifndef NDEBUG
|
|
// Assert that the current IR IP (if valid) is immediately prior
|
|
// to the initial IR block for the next primary SIL block.
|
|
// It's not semantically necessary to preserve SIL block order,
|
|
// but we really should.
|
|
if (auto curBB = Builder.GetInsertBlock()) {
|
|
auto next = std::next(SILFunction::iterator(bb));
|
|
if (next != CurSILFn->end()) {
|
|
auto nextBB = LoweredBBs[&*next].bb;
|
|
assert(curBB->getNextNode() == nextBB &&
|
|
"lost source SIL order?");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// The immediate dominator of a successor of this block needn't be
|
|
// this block, but it has to be something which dominates this
|
|
// block. In either case, we've visited it.
|
|
//
|
|
// Therefore the invariant holds of all the successors, and we can
|
|
// queue them up if we haven't already visited them.
|
|
for (auto &succ : bb->getSuccessors()) {
|
|
auto succBB = succ.getBB();
|
|
if (visitedBlocks.insert(succBB).second)
|
|
workQueue.push_back(succBB);
|
|
}
|
|
}
|
|
|
|
// If there are dead blocks in the SIL function, we might have left
|
|
// invalid blocks in the IR. Do another pass and kill them off.
|
|
for (SILBasicBlock &bb : *CurSILFn)
|
|
if (!visitedBlocks.count(&bb))
|
|
LoweredBBs[&bb].bb->eraseFromParent();
|
|
}
|
|
|
|
/// Store the lowered IR representation of Arg in the array
|
|
/// Vals. Returns true if Arg is a byref argument.
|
|
IndirectionKind IRGenSILFunction::
|
|
getLoweredArgValue(llvm::SmallVectorImpl<llvm::Value *> &Vals,
|
|
SILArgument *Arg, StringRef Name) {
|
|
const LoweredValue &LoweredArg = getLoweredValue(Arg);
|
|
if (LoweredArg.isAddress()) {
|
|
Vals.push_back(LoweredArg.getAddress().getAddress());
|
|
return IndirectValue;
|
|
} else if (LoweredArg.kind == LoweredValue::Kind::Explosion) {
|
|
Explosion e = LoweredArg.getExplosion(*this);
|
|
for (auto val : e.claimAll())
|
|
Vals.push_back(val);
|
|
} else
|
|
llvm_unreachable("unhandled argument kind");
|
|
return DirectValue;
|
|
}
|
|
|
|
void IRGenSILFunction::emitFunctionArgDebugInfo(SILBasicBlock *BB) {
|
|
assert(BB->pred_empty());
|
|
if (!IGM.DebugInfo)
|
|
return;
|
|
|
|
// This is the prologue of a function. Emit debug info for all
|
|
// trivial arguments and any captured and promoted [inout]
|
|
// variables.
|
|
int N = 0;
|
|
for (auto I = BB->getBBArgs().begin(), E=BB->getBBArgs().end();
|
|
I != E; ++I) {
|
|
SILArgument *Arg = *I;
|
|
++N;
|
|
|
|
if (!Arg->getDecl() || DidEmitDebugInfoForArg[N])
|
|
continue;
|
|
|
|
// Generic and existential types were already handled in
|
|
// visitAllocStackInst.
|
|
if (Arg->getType().isExistentialType() ||
|
|
Arg->getType().getSwiftRValueType()->isDependentType() ||
|
|
Arg->getType().is<ArchetypeType>())
|
|
continue;
|
|
|
|
auto Name = Arg->getDecl()->getNameStr();
|
|
DebugTypeInfo DTI(const_cast<ValueDecl*>(Arg->getDecl()),
|
|
getTypeInfo(Arg->getType()));
|
|
|
|
llvm::SmallVector<llvm::Value *, 8> Vals, Copy;
|
|
bool Deref = getLoweredArgValue(Vals, Arg, Name);
|
|
// Don't bother emitting swift.refcounted* for now.
|
|
if (Vals.size() && Vals.back()->getType() == IGM.RefCountedPtrTy)
|
|
Vals.pop_back();
|
|
|
|
// Consolidate all pieces of an exploded multi-argument into one list.
|
|
for (auto Next = I+1; Next != E; ++Next, ++I) {
|
|
if ((*Next)->getDecl() != Arg->getDecl())
|
|
break;
|
|
|
|
Deref |= getLoweredArgValue(Vals, *Next, Name);
|
|
}
|
|
if (DTI.getType()->getKind() == TypeKind::InOut) {
|
|
if (!Deref) {
|
|
// If the value was promoted, unwrap the type.
|
|
DTI = DebugTypeInfo(DTI.getType()->castTo<InOutType>()->getObjectType(),
|
|
DTI.StorageType, DTI.size, DTI.align,
|
|
DTI.getDeclContext());
|
|
}
|
|
|
|
// In contrast to by-value captures, inout arguments are encoded
|
|
// as reference types, so there is no need to emit a deref
|
|
// operation.
|
|
Deref = DirectValue;
|
|
}
|
|
|
|
// Emit -O0 shadow copies for by-value parameters to ensure they
|
|
// are visible until the end of the function.
|
|
emitShadowCopy(Vals, Name, Copy);
|
|
IGM.DebugInfo->emitArgVariableDeclaration
|
|
(Builder, Copy, DTI, getDebugScope(), Name, N,
|
|
IndirectionKind(Deref), RealValue);
|
|
|
|
DidEmitDebugInfoForArg.set(N);
|
|
}
|
|
|
|
// Emit the artificial error result argument.
|
|
auto FnTy = CurSILFn->getLoweredFunctionType();
|
|
if (FnTy->hasErrorResult()) {
|
|
auto ErrorInfo = FnTy->getErrorResult();
|
|
auto ErrorResultSlot = getErrorResultSlot(ErrorInfo.getSILType());
|
|
DebugTypeInfo DTI(ErrorInfo.getType(),
|
|
ErrorResultSlot->getType(),
|
|
IGM.getPointerSize(),
|
|
IGM.getPointerAlignment(),
|
|
nullptr);
|
|
StringRef Name("$error");
|
|
IGM.DebugInfo->emitArgVariableDeclaration(
|
|
Builder, emitShadowCopy(ErrorResultSlot.getAddress(), Name), DTI,
|
|
getDebugScope(), Name, N+1, IndirectValue, ArtificialValue);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void IRGenSILFunction::visitSILBasicBlock(SILBasicBlock *BB) {
|
|
// Insert into the lowered basic block.
|
|
llvm::BasicBlock *llBB = getLoweredBB(BB).bb;
|
|
Builder.SetInsertPoint(llBB);
|
|
|
|
bool InEntryBlock = BB->pred_empty();
|
|
bool ArgsEmitted = false;
|
|
|
|
// The basic blocks are visited in a random order. Reset the debug location.
|
|
std::unique_ptr<AutoRestoreLocation> ScopedLoc;
|
|
if (InEntryBlock)
|
|
ScopedLoc = llvm::make_unique<PrologueLocation>(IGM.DebugInfo, Builder);
|
|
else
|
|
ScopedLoc = llvm::make_unique<ArtificialLocation>(
|
|
CurSILFn->getDebugScope(), IGM.DebugInfo, Builder);
|
|
|
|
if (InEntryBlock) {
|
|
// Establish a mapping from VarDecl -> ArgNo to be used by
|
|
// visitAllocStackInst().
|
|
unsigned N = 1;
|
|
for (auto Arg : BB->getBBArgs()) {
|
|
if (auto VD = dyn_cast_or_null<VarDecl>(Arg->getDecl()))
|
|
ArgNo.insert( {VD, N} );
|
|
++N;
|
|
}
|
|
DidEmitDebugInfoForArg.resize(N);
|
|
}
|
|
|
|
// Generate the body.
|
|
bool InCleanupBlock = false;
|
|
bool KeepCurrentLocation = false;
|
|
|
|
for (auto InsnIter = BB->begin(); InsnIter != BB->end(); ++InsnIter) {
|
|
auto &I = *InsnIter;
|
|
if (IGM.DebugInfo) {
|
|
// Set the debug info location for I, if applicable.
|
|
SILLocation ILoc = I.getLoc();
|
|
// Handle cleanup locations.
|
|
if (ILoc.getKind() == SILLocation::CleanupKind) {
|
|
// Cleanup locations point to the decl of the the value that
|
|
// is being destroyed (for diagnostic generation). As far as
|
|
// the linetable is concerned, cleanups at the end of a
|
|
// lexical scope should point to the cleanup location, which
|
|
// is the location of the last instruction in the basic block.
|
|
if (!InCleanupBlock) {
|
|
InCleanupBlock = true;
|
|
// Scan ahead to see if this is the final cleanup block in
|
|
// this basic block.
|
|
auto It = InsnIter;
|
|
do ++It; while (It != BB->end() &&
|
|
It->getLoc().getKind() == SILLocation::CleanupKind);
|
|
// We are still in the middle of a basic block?
|
|
if (It != BB->end() && !isa<TermInst>(It))
|
|
KeepCurrentLocation = true;
|
|
}
|
|
|
|
// Assign the cleanup location to this instruction.
|
|
if (!KeepCurrentLocation) {
|
|
assert(BB->getTerminator());
|
|
ILoc = BB->getTerminator()->getLoc();
|
|
}
|
|
} else if (InCleanupBlock) {
|
|
KeepCurrentLocation = false;
|
|
InCleanupBlock = false;
|
|
}
|
|
|
|
auto DS = I.getDebugScope();
|
|
assert((!DS || (DS->SILFn == CurSILFn || DS->InlinedCallSite)) &&
|
|
"insn was not inlined, but belongs to a different function");
|
|
|
|
// Until SILDebugScopes are properly serialized, bare functions
|
|
// are allowed to not have a scope.
|
|
if (!DS) {
|
|
if (CurSILFn->isBare())
|
|
DS = CurSILFn->getDebugScope();
|
|
else
|
|
assert(maybeScopeless(I) && "instruction has location, but no scope");
|
|
}
|
|
|
|
// Ignore scope-less instructions and have IRBuilder reuse the
|
|
// previous location and scope.
|
|
if (DS && !KeepCurrentLocation && !ILoc.isInPrologue())
|
|
IGM.DebugInfo->setCurrentLoc(Builder, DS, ILoc);
|
|
|
|
// Function argument handling.
|
|
if (InEntryBlock && !ArgsEmitted) {
|
|
if (!I.getLoc().isInPrologue()) {
|
|
if (I.getLoc().getSourceLoc().isValid()) {
|
|
// This is the first non-prologue instruction in the entry
|
|
// block. The function prologue is where the stack frame is
|
|
// set up and storage for local variables and function
|
|
// arguments is initialized. We need to emit the debug info
|
|
// for the function arguments after the function prologue,
|
|
// after the initialization.
|
|
if (!DS)
|
|
DS = CurSILFn->getDebugScope();
|
|
IGM.DebugInfo->clearLoc(Builder);
|
|
emitFunctionArgDebugInfo(BB);
|
|
IGM.DebugInfo->setCurrentLoc(Builder, DS, ILoc);
|
|
ArgsEmitted = true;
|
|
} else {
|
|
// There may be instructions without a valid location
|
|
// following the prologue. We need to associate them at
|
|
// least with the function scope or LLVM won't know were
|
|
// the prologue ends.
|
|
IGM.DebugInfo->setCurrentLoc(Builder, CurSILFn->getDebugScope());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
visit(&I);
|
|
}
|
|
|
|
assert(Builder.hasPostTerminatorIP() && "SIL bb did not terminate block?!");
|
|
}
|
|
|
|
void IRGenSILFunction::visitFunctionRefInst(FunctionRefInst *i) {
|
|
llvm::Function *fnptr =
|
|
IGM.getAddrOfSILFunction(i->getReferencedFunction(), NotForDefinition);
|
|
|
|
// Store the function constant and calling
|
|
// convention as a StaticFunction so we can avoid bitcasting or thunking if
|
|
// we don't need to.
|
|
setLoweredStaticFunction(SILValue(i, 0), fnptr,
|
|
i->getReferencedFunction()->getRepresentation());
|
|
}
|
|
|
|
void IRGenSILFunction::visitGlobalAddrInst(GlobalAddrInst *i) {
|
|
auto &ti = getTypeInfo(i->getType());
|
|
|
|
Address addr;
|
|
// If the variable is empty, don't actually emit it; just return undef.
|
|
if (ti.isKnownEmpty()) {
|
|
addr = ti.getUndefAddress();
|
|
} else {
|
|
addr = IGM.getAddrOfSILGlobalVariable(i->getReferencedGlobal(),
|
|
NotForDefinition);
|
|
}
|
|
|
|
setLoweredAddress(SILValue(i, 0), addr);
|
|
}
|
|
|
|
void IRGenSILFunction::visitMetatypeInst(swift::MetatypeInst *i) {
|
|
auto metaTy = i->getType().castTo<MetatypeType>();
|
|
Explosion e;
|
|
emitMetatypeRef(*this, metaTy, e);
|
|
setLoweredExplosion(SILValue(i, 0), e);
|
|
}
|
|
|
|
static llvm::Value *getClassBaseValue(IRGenSILFunction &IGF,
|
|
SILValue v) {
|
|
if (v.getType().isAddress()) {
|
|
auto addr = IGF.getLoweredAddress(v);
|
|
return IGF.Builder.CreateLoad(addr);
|
|
}
|
|
|
|
Explosion e = IGF.getLoweredExplosion(v);
|
|
return e.claimNext();
|
|
}
|
|
|
|
static llvm::Value *getClassMetatype(IRGenFunction &IGF,
|
|
llvm::Value *baseValue,
|
|
MetatypeRepresentation repr,
|
|
SILType instanceType) {
|
|
switch (repr) {
|
|
case MetatypeRepresentation::Thin:
|
|
llvm_unreachable("Class metatypes are never thin");
|
|
|
|
case MetatypeRepresentation::Thick:
|
|
return emitDynamicTypeOfHeapObject(IGF, baseValue, instanceType);
|
|
|
|
case MetatypeRepresentation::ObjC:
|
|
return emitHeapMetadataRefForHeapObject(IGF, baseValue, instanceType);
|
|
}
|
|
}
|
|
|
|
void IRGenSILFunction::visitValueMetatypeInst(swift::ValueMetatypeInst *i) {
|
|
SILType instanceTy = i->getOperand().getType();
|
|
auto metaTy = i->getType().castTo<MetatypeType>();
|
|
|
|
if (metaTy->getRepresentation() == MetatypeRepresentation::Thin) {
|
|
Explosion empty;
|
|
setLoweredExplosion(SILValue(i, 0), empty);
|
|
return;
|
|
}
|
|
|
|
Explosion e;
|
|
|
|
if (instanceTy.getClassOrBoundGenericClass()) {
|
|
e.add(getClassMetatype(*this,
|
|
getClassBaseValue(*this, i->getOperand()),
|
|
metaTy->getRepresentation(), instanceTy));
|
|
} else if (auto arch = instanceTy.getAs<ArchetypeType>()) {
|
|
if (arch->requiresClass()) {
|
|
e.add(getClassMetatype(*this,
|
|
getClassBaseValue(*this, i->getOperand()),
|
|
metaTy->getRepresentation(), instanceTy));
|
|
} else {
|
|
Address base = getLoweredAddress(i->getOperand());
|
|
e.add(emitDynamicTypeOfOpaqueArchetype(*this, base,
|
|
i->getOperand().getType()));
|
|
// FIXME: We need to convert this back to an ObjC class for an
|
|
// ObjC metatype representation.
|
|
if (metaTy->getRepresentation() == MetatypeRepresentation::ObjC)
|
|
unimplemented(i->getLoc().getSourceLoc(),
|
|
"objc metatype of non-class-bounded archetype");
|
|
}
|
|
} else {
|
|
emitMetatypeRef(*this, metaTy, e);
|
|
}
|
|
|
|
setLoweredExplosion(SILValue(i, 0), e);
|
|
}
|
|
|
|
void IRGenSILFunction::visitExistentialMetatypeInst(
|
|
swift::ExistentialMetatypeInst *i) {
|
|
Explosion result;
|
|
SILValue op = i->getOperand();
|
|
SILType opType = op.getType();
|
|
if (opType.isClassExistentialType()) {
|
|
Explosion existential = getLoweredExplosion(op);
|
|
emitMetatypeOfClassExistential(*this, existential, i->getType(),
|
|
opType, result);
|
|
} else if (opType.is<ExistentialMetatypeType>()) {
|
|
Explosion existential = getLoweredExplosion(op);
|
|
emitMetatypeOfMetatype(*this, existential, opType, result);
|
|
} else {
|
|
Address existential = getLoweredAddress(i->getOperand());
|
|
emitMetatypeOfOpaqueExistential(*this, existential, opType, result);
|
|
}
|
|
setLoweredExplosion(SILValue(i, 0), result);
|
|
}
|
|
|
|
static void emitApplyArgument(IRGenSILFunction &IGF,
|
|
SILValue arg,
|
|
SILParameterInfo param,
|
|
Explosion &out) {
|
|
bool isSubstituted = (arg.getType() != param.getSILType());
|
|
|
|
// For indirect arguments, we just need to pass a pointer.
|
|
if (param.isIndirect()) {
|
|
// This address is of the substituted type.
|
|
auto addr = IGF.getLoweredAddress(arg);
|
|
|
|
// If a substitution is in play, just bitcast the address.
|
|
if (isSubstituted) {
|
|
auto origType = IGF.IGM.getStoragePointerType(param.getSILType());
|
|
addr = IGF.Builder.CreateBitCast(addr, origType);
|
|
}
|
|
|
|
out.add(addr.getAddress());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, it's an explosion, which we may need to translate,
|
|
// both in terms of explosion level and substitution levels.
|
|
assert(arg.getType().isObject());
|
|
|
|
// Fast path: avoid an unnecessary temporary explosion.
|
|
if (!isSubstituted) {
|
|
IGF.getLoweredExplosion(arg, out);
|
|
return;
|
|
}
|
|
|
|
Explosion temp = IGF.getLoweredExplosion(arg);
|
|
reemitAsUnsubstituted(IGF, param.getSILType(), arg.getType(),
|
|
temp, out);
|
|
}
|
|
|
|
static llvm::Value *getObjCClassForValue(IRGenSILFunction &IGF,
|
|
llvm::Value *selfValue,
|
|
CanAnyMetatypeType selfType) {
|
|
// If we have a Swift metatype, map it to the heap metadata, which
|
|
// will be the Class for an ObjC type.
|
|
switch (selfType->getRepresentation()) {
|
|
case swift::MetatypeRepresentation::ObjC:
|
|
return selfValue;
|
|
|
|
case swift::MetatypeRepresentation::Thick:
|
|
// Convert thick metatype to Objective-C metatype.
|
|
return emitClassHeapMetadataRefForMetatype(IGF, selfValue,
|
|
selfType.getInstanceType());
|
|
|
|
case swift::MetatypeRepresentation::Thin:
|
|
llvm_unreachable("Cannot convert Thin metatype to ObjC metatype");
|
|
}
|
|
llvm_unreachable("bad metatype representation");
|
|
}
|
|
|
|
static CallEmission getCallEmissionForLoweredValue(IRGenSILFunction &IGF,
|
|
CanSILFunctionType origCalleeType,
|
|
CanSILFunctionType substCalleeType,
|
|
const LoweredValue &lv,
|
|
llvm::Value *selfValue,
|
|
Explosion &args,
|
|
ArrayRef<Substitution> substitutions) {
|
|
llvm::Value *calleeFn, *calleeData;
|
|
|
|
switch (lv.kind) {
|
|
case LoweredValue::Kind::StaticFunction:
|
|
calleeFn = lv.getStaticFunction().getFunction();
|
|
calleeData = selfValue;
|
|
break;
|
|
|
|
case LoweredValue::Kind::ObjCMethod: {
|
|
assert(selfValue);
|
|
auto &objcMethod = lv.getObjCMethod();
|
|
ObjCMessageKind kind = ObjCMessageKind::Normal;
|
|
if (objcMethod.getSearchType())
|
|
kind = objcMethod.shouldStartAtSuper()? ObjCMessageKind::Super
|
|
: ObjCMessageKind::Peer;
|
|
|
|
CallEmission emission =
|
|
prepareObjCMethodRootCall(IGF, objcMethod.getMethod(),
|
|
origCalleeType, substCalleeType,
|
|
substitutions, kind);
|
|
|
|
// Convert a metatype 'self' argument to the ObjC Class pointer.
|
|
// FIXME: Should be represented in SIL.
|
|
if (auto metatype = dyn_cast<AnyMetatypeType>(
|
|
origCalleeType->getSelfParameter().getType())) {
|
|
selfValue = getObjCClassForValue(IGF, selfValue, metatype);
|
|
}
|
|
|
|
addObjCMethodCallImplicitArguments(IGF, args, objcMethod.getMethod(),
|
|
selfValue,
|
|
objcMethod.getSearchType());
|
|
return emission;
|
|
}
|
|
|
|
case LoweredValue::Kind::Explosion: {
|
|
switch (origCalleeType->getRepresentation()) {
|
|
case SILFunctionType::Representation::Block: {
|
|
assert(!selfValue && "block function with self?");
|
|
|
|
// Grab the block pointer and make it the first physical argument.
|
|
llvm::Value *blockPtr = lv.getSingletonExplosion(IGF);
|
|
blockPtr = IGF.Builder.CreateBitCast(blockPtr, IGF.IGM.ObjCBlockPtrTy);
|
|
args.add(blockPtr);
|
|
|
|
// Extract the invocation pointer for blocks.
|
|
llvm::Value *invokeAddr = IGF.Builder.CreateStructGEP(blockPtr, 3);
|
|
calleeFn = IGF.Builder.CreateLoad(invokeAddr, IGF.IGM.getPointerAlignment());
|
|
calleeData = nullptr;
|
|
break;
|
|
}
|
|
|
|
case SILFunctionType::Representation::Thin:
|
|
case SILFunctionType::Representation::CFunctionPointer:
|
|
case SILFunctionType::Representation::Method:
|
|
case SILFunctionType::Representation::ObjCMethod:
|
|
case SILFunctionType::Representation::WitnessMethod:
|
|
case SILFunctionType::Representation::Thick: {
|
|
Explosion calleeValues = lv.getExplosion(IGF);
|
|
calleeFn = calleeValues.claimNext();
|
|
|
|
if (origCalleeType->getRepresentation()
|
|
== SILFunctionType::Representation::Thick) {
|
|
assert(!selfValue);
|
|
calleeData = calleeValues.claimNext();
|
|
} else {
|
|
calleeData = selfValue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Cast the callee pointer to the right function type.
|
|
llvm::AttributeSet attrs;
|
|
auto fnPtrTy =
|
|
IGF.IGM.getFunctionType(origCalleeType, attrs)->getPointerTo();
|
|
calleeFn = IGF.Builder.CreateBitCast(calleeFn, fnPtrTy);
|
|
break;
|
|
}
|
|
|
|
case LoweredValue::Kind::Address:
|
|
llvm_unreachable("sil address isn't a valid callee");
|
|
}
|
|
|
|
Callee callee = Callee::forKnownFunction(origCalleeType, substCalleeType,
|
|
substitutions, calleeFn, calleeData);
|
|
CallEmission callEmission(IGF, callee);
|
|
if (IGF.CurSILFn->isThunk())
|
|
callEmission.addAttribute(llvm::AttributeSet::FunctionIndex, llvm::Attribute::NoInline);
|
|
|
|
return callEmission;
|
|
}
|
|
|
|
void IRGenSILFunction::visitBuiltinInst(swift::BuiltinInst *i) {
|
|
auto argValues = i->getArguments();
|
|
Explosion args;
|
|
for (auto argValue : argValues) {
|
|
// Builtin arguments should never be substituted, so use the value's type
|
|
// as the parameter type.
|
|
emitApplyArgument(*this, argValue,
|
|
SILParameterInfo(argValue.getType().getSwiftRValueType(),
|
|
ParameterConvention::Direct_Unowned),
|
|
args);
|
|
}
|
|
|
|
Explosion result;
|
|
emitBuiltinCall(*this, i->getName(), i->getType(),
|
|
args, result, i->getSubstitutions());
|
|
|
|
setLoweredExplosion(SILValue(i,0), result);
|
|
}
|
|
|
|
void IRGenSILFunction::visitApplyInst(swift::ApplyInst *i) {
|
|
visitFullApplySite(i);
|
|
}
|
|
|
|
void IRGenSILFunction::visitTryApplyInst(swift::TryApplyInst *i) {
|
|
visitFullApplySite(i);
|
|
}
|
|
|
|
void IRGenSILFunction::visitFullApplySite(FullApplySite site) {
|
|
const LoweredValue &calleeLV = getLoweredValue(site.getCallee());
|
|
|
|
auto origCalleeType = site.getOrigCalleeType();
|
|
auto substCalleeType = site.getSubstCalleeType();
|
|
|
|
auto params = origCalleeType->getParametersWithoutIndirectResult();
|
|
auto args = site.getArgumentsWithoutIndirectResult();
|
|
assert(params.size() == args.size());
|
|
|
|
// Extract 'self' if it needs to be passed as the context parameter.
|
|
llvm::Value *selfValue = nullptr;
|
|
if (origCalleeType->hasSelfParam() &&
|
|
isSelfContextParameter(origCalleeType->getSelfParameter())) {
|
|
SILValue selfArg = args.back();
|
|
args = args.drop_back();
|
|
params = params.drop_back();
|
|
|
|
if (selfArg.getType().isObject()) {
|
|
selfValue = getLoweredSingletonExplosion(selfArg);
|
|
} else {
|
|
selfValue = getLoweredAddress(selfArg).getAddress();
|
|
}
|
|
}
|
|
|
|
Explosion llArgs;
|
|
CallEmission emission =
|
|
getCallEmissionForLoweredValue(*this, origCalleeType, substCalleeType,
|
|
calleeLV, selfValue, llArgs,
|
|
site.getSubstitutions());
|
|
|
|
// Lower the arguments and return value in the callee's generic context.
|
|
GenericContextScope scope(IGM, origCalleeType->getGenericSignature());
|
|
|
|
// Save off the indirect return argument, if any.
|
|
SILValue indirectResult;
|
|
if (site.hasIndirectResult()) {
|
|
indirectResult = site.getIndirectResult();
|
|
}
|
|
|
|
// Lower the SIL arguments to IR arguments.
|
|
|
|
// Turn the formal SIL parameters into IR-gen things.
|
|
for (auto index : indices(args)) {
|
|
emitApplyArgument(*this, args[index], params[index], llArgs);
|
|
}
|
|
|
|
// Pass the generic arguments.
|
|
WitnessMetadata witnessMetadata;
|
|
if (hasPolymorphicParameters(origCalleeType)) {
|
|
emitPolymorphicArguments(*this, origCalleeType, substCalleeType,
|
|
site.getSubstitutions(), &witnessMetadata, llArgs);
|
|
}
|
|
|
|
// Add all those arguments.
|
|
emission.setArgs(llArgs, &witnessMetadata);
|
|
|
|
SILInstruction *i = site.getInstruction();
|
|
|
|
// If the SIL function takes an indirect-result argument, emit into it.
|
|
Explosion result;
|
|
if (indirectResult) {
|
|
Address a = getLoweredAddress(indirectResult);
|
|
auto &retTI = getTypeInfo(indirectResult.getType());
|
|
emission.emitToMemory(a, retTI);
|
|
|
|
// Leave an empty explosion in 'result'.
|
|
} else {
|
|
// FIXME: handle the result value being an address?
|
|
// If the result is a non-address value, emit to an explosion.
|
|
emission.emitToExplosion(result);
|
|
}
|
|
|
|
if (isa<ApplyInst>(i)) {
|
|
setLoweredExplosion(SILValue(i, 0), result);
|
|
} else {
|
|
auto tryApplyInst = cast<TryApplyInst>(i);
|
|
|
|
// Load the error value.
|
|
SILType errorType = substCalleeType->getErrorResult().getSILType();
|
|
Address errorSlot = getErrorResultSlot(errorType);
|
|
auto errorValue = Builder.CreateLoad(errorSlot);
|
|
|
|
auto &normalDest = getLoweredBB(tryApplyInst->getNormalBB());
|
|
auto &errorDest = getLoweredBB(tryApplyInst->getErrorBB());
|
|
|
|
// Zero the error slot to maintain the invariant that it always
|
|
// contains null. This will frequently become a dead store.
|
|
auto nullError = llvm::Constant::getNullValue(errorValue->getType());
|
|
Builder.CreateStore(nullError, errorSlot);
|
|
|
|
// If the error value is non-null, branch to the error destination.
|
|
auto hasError = Builder.CreateICmpNE(errorValue, nullError);
|
|
Builder.CreateCondBr(hasError, errorDest.bb, normalDest.bb);
|
|
|
|
// Set up the PHI nodes on the normal edge.
|
|
unsigned firstIndex = 0;
|
|
addIncomingExplosionToPHINodes(*this, normalDest, firstIndex, result);
|
|
assert(firstIndex == normalDest.phis.size());
|
|
|
|
// Set up the PHI nodes on the error edge.
|
|
assert(errorDest.phis.size() == 1);
|
|
errorDest.phis[0]->addIncoming(errorValue, Builder.GetInsertBlock());
|
|
}
|
|
}
|
|
|
|
static std::tuple<llvm::Value*, llvm::Value*, CanSILFunctionType>
|
|
getPartialApplicationFunction(IRGenSILFunction &IGF,
|
|
SILValue v) {
|
|
LoweredValue &lv = IGF.getLoweredValue(v);
|
|
|
|
switch (lv.kind) {
|
|
case LoweredValue::Kind::Address:
|
|
llvm_unreachable("can't partially apply an address");
|
|
case LoweredValue::Kind::ObjCMethod:
|
|
llvm_unreachable("objc method partial application shouldn't get here");
|
|
|
|
case LoweredValue::Kind::StaticFunction:
|
|
switch (lv.getStaticFunction().getRepresentation()) {
|
|
case SILFunctionTypeRepresentation::CFunctionPointer:
|
|
case SILFunctionTypeRepresentation::Block:
|
|
case SILFunctionTypeRepresentation::ObjCMethod:
|
|
assert(false && "partial_apply of foreign functions not implemented");
|
|
break;
|
|
|
|
case SILFunctionTypeRepresentation::WitnessMethod:
|
|
assert(false && "partial_apply of witness functions not implemented");
|
|
break;
|
|
|
|
case SILFunctionTypeRepresentation::Thick:
|
|
case SILFunctionTypeRepresentation::Thin:
|
|
case SILFunctionTypeRepresentation::Method:
|
|
break;
|
|
}
|
|
return std::make_tuple(lv.getStaticFunction().getFunction(),
|
|
nullptr, v.getType().castTo<SILFunctionType>());
|
|
case LoweredValue::Kind::Explosion: {
|
|
Explosion ex = lv.getExplosion(IGF);
|
|
llvm::Value *fn = ex.claimNext();
|
|
llvm::Value *context = nullptr;
|
|
auto fnType = v.getType().castTo<SILFunctionType>();
|
|
|
|
switch (fnType->getRepresentation()) {
|
|
case SILFunctionType::Representation::Thin:
|
|
case SILFunctionType::Representation::Method:
|
|
case SILFunctionType::Representation::ObjCMethod:
|
|
case SILFunctionType::Representation::WitnessMethod:
|
|
case SILFunctionType::Representation::CFunctionPointer:
|
|
break;
|
|
case SILFunctionType::Representation::Thick:
|
|
context = ex.claimNext();
|
|
break;
|
|
case SILFunctionType::Representation::Block:
|
|
llvm_unreachable("partial application of block not implemented");
|
|
}
|
|
|
|
return std::make_tuple(fn, context, fnType);
|
|
}
|
|
}
|
|
}
|
|
|
|
void IRGenSILFunction::visitPartialApplyInst(swift::PartialApplyInst *i) {
|
|
SILValue v(i, 0);
|
|
|
|
// NB: We collect the arguments under the substituted type.
|
|
auto args = i->getArguments();
|
|
auto params = i->getSubstCalleeType()->getParameters();
|
|
params = params.slice(params.size() - args.size(), args.size());
|
|
|
|
Explosion llArgs;
|
|
|
|
{
|
|
// Lower the parameters in the callee's generic context.
|
|
GenericContextScope scope(IGM, i->getOrigCalleeType()->getGenericSignature());
|
|
for (auto index : indices(args)) {
|
|
assert(args[index].getType() == params[index].getSILType());
|
|
emitApplyArgument(*this, args[index], params[index], llArgs);
|
|
}
|
|
}
|
|
|
|
auto &lv = getLoweredValue(i->getCallee());
|
|
if (lv.kind == LoweredValue::Kind::ObjCMethod) {
|
|
// Objective-C partial applications require a different path. There's no
|
|
// actual function pointer to capture, and we semantically can't cache
|
|
// dispatch, so we need to perform the message send in the partial
|
|
// application thunk.
|
|
auto &objcMethod = lv.getObjCMethod();
|
|
assert(i->getArguments().size() == 1 &&
|
|
"only partial application of objc method to self implemented");
|
|
assert(llArgs.size() == 1 &&
|
|
"objc partial_apply argument is not a single retainable pointer?!");
|
|
llvm::Value *selfVal = llArgs.claimNext();
|
|
|
|
Explosion function;
|
|
emitObjCPartialApplication(*this,
|
|
objcMethod.getMethod(),
|
|
i->getOrigCalleeType(),
|
|
i->getType().castTo<SILFunctionType>(),
|
|
selfVal,
|
|
i->getArguments()[0].getType(),
|
|
function);
|
|
setLoweredExplosion(SILValue(i, 0), function);
|
|
return;
|
|
}
|
|
|
|
// Get the function value.
|
|
llvm::Value *calleeFn = nullptr;
|
|
llvm::Value *innerContext = nullptr;
|
|
CanSILFunctionType origCalleeTy;
|
|
|
|
std::tie(calleeFn, innerContext, origCalleeTy)
|
|
= getPartialApplicationFunction(*this, i->getCallee());
|
|
|
|
// Create the thunk and function value.
|
|
Explosion function;
|
|
emitFunctionPartialApplication(*this, calleeFn, innerContext, llArgs,
|
|
params, i->getSubstitutions(),
|
|
origCalleeTy, i->getSubstCalleeType(),
|
|
i->getType().castTo<SILFunctionType>(),
|
|
function);
|
|
setLoweredExplosion(v, function);
|
|
}
|
|
|
|
/// Construct a ConstantInt from an IntegerLiteralInst.
|
|
static llvm::Constant *getConstantInt(IRGenModule &IGM,
|
|
swift::IntegerLiteralInst *i) {
|
|
APInt value = i->getValue();
|
|
BuiltinIntegerWidth width
|
|
= i->getType().castTo<BuiltinIntegerType>()->getWidth();
|
|
|
|
// The value may need truncation if its type had an abstract size.
|
|
if (width.isFixedWidth()) {
|
|
// nothing to do
|
|
} else if (width.isPointerWidth()) {
|
|
unsigned pointerWidth = IGM.getPointerSize().getValueInBits();
|
|
assert(pointerWidth <= value.getBitWidth()
|
|
&& "lost precision at AST/SIL level?!");
|
|
if (pointerWidth < value.getBitWidth())
|
|
value = value.trunc(pointerWidth);
|
|
} else {
|
|
llvm_unreachable("impossible width value");
|
|
}
|
|
|
|
return llvm::ConstantInt::get(IGM.LLVMContext, value);
|
|
}
|
|
|
|
void IRGenSILFunction::visitIntegerLiteralInst(swift::IntegerLiteralInst *i) {
|
|
llvm::Value *constant = getConstantInt(IGM, i);
|
|
|
|
Explosion e;
|
|
e.add(constant);
|
|
setLoweredExplosion(SILValue(i, 0), e);
|
|
}
|
|
|
|
/// Construct a ConstantFP from a FloatLiteralInst.
|
|
static llvm::Constant *getConstantFP(IRGenModule &IGM,
|
|
swift::FloatLiteralInst *i) {
|
|
return llvm::ConstantFP::get(IGM.LLVMContext, i->getValue());
|
|
}
|
|
|
|
void IRGenSILFunction::visitFloatLiteralInst(swift::FloatLiteralInst *i) {
|
|
llvm::Value *constant = getConstantFP(IGM, i);
|
|
Explosion e;
|
|
e.add(constant);
|
|
setLoweredExplosion(SILValue(i, 0), e);
|
|
}
|
|
|
|
static llvm::Constant *getAddrOfString(IRGenModule &IGM, StringRef string,
|
|
StringLiteralInst::Encoding encoding) {
|
|
switch (encoding) {
|
|
case swift::StringLiteralInst::Encoding::UTF8:
|
|
return IGM.getAddrOfGlobalString(string);
|
|
|
|
case swift::StringLiteralInst::Encoding::UTF16:
|
|
// This is always a GEP of a GlobalVariable with a nul terminator.
|
|
auto addr = IGM.getAddrOfGlobalUTF16String(string);
|
|
|
|
// Cast to Builtin.RawPointer.
|
|
return llvm::ConstantExpr::getBitCast(addr, IGM.Int8PtrTy);
|
|
}
|
|
llvm_unreachable("bad string encoding");
|
|
}
|
|
|
|
void IRGenSILFunction::visitStringLiteralInst(swift::StringLiteralInst *i) {
|
|
auto addr = getAddrOfString(IGM, i->getValue(), i->getEncoding());
|
|
|
|
Explosion e;
|
|
e.add(addr);
|
|
setLoweredExplosion(SILValue(i, 0), e);
|
|
}
|
|
|
|
void IRGenSILFunction::visitUnreachableInst(swift::UnreachableInst *i) {
|
|
Builder.CreateUnreachable();
|
|
}
|
|
|
|
static void emitReturnInst(IRGenSILFunction &IGF,
|
|
SILType resultTy,
|
|
Explosion &result) {
|
|
// The invariant on the out-parameter is that it's always zeroed, so
|
|
// there's nothing to do here.
|
|
|
|
// Even if SIL has a direct return, the IR-level calling convention may
|
|
// require an indirect return.
|
|
if (IGF.IndirectReturn.isValid()) {
|
|
auto &retTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(resultTy));
|
|
retTI.initialize(IGF, result, IGF.IndirectReturn);
|
|
IGF.Builder.CreateRetVoid();
|
|
} else {
|
|
IGF.emitScalarReturn(resultTy, result);
|
|
}
|
|
}
|
|
|
|
void IRGenSILFunction::visitReturnInst(swift::ReturnInst *i) {
|
|
Explosion result = getLoweredExplosion(i->getOperand());
|
|
emitReturnInst(*this, i->getOperand().getType(), result);
|
|
}
|
|
|
|
void IRGenSILFunction::visitAutoreleaseReturnInst(AutoreleaseReturnInst *i) {
|
|
Explosion result = getLoweredExplosion(i->getOperand());
|
|
assert(result.size() == 1 &&
|
|
"should have one objc pointer value for autorelease_return");
|
|
Explosion temp;
|
|
temp.add(emitObjCAutoreleaseReturnValue(*this, result.claimNext()));
|
|
emitReturnInst(*this, i->getOperand().getType(), temp);
|
|
}
|
|
|
|
void IRGenSILFunction::visitThrowInst(swift::ThrowInst *i) {
|
|
// Store the exception to the error slot.
|
|
llvm::Value *exn = getLoweredSingletonExplosion(i->getOperand());
|
|
|
|
Builder.CreateStore(exn, getCallerErrorResultSlot());
|
|
|
|
// Create a normal return, but leaving the return value undefined.
|
|
auto fnTy = CurFn->getType()->getPointerElementType();
|
|
auto retTy = cast<llvm::FunctionType>(fnTy)->getReturnType();
|
|
if (retTy->isVoidTy()) {
|
|
Builder.CreateRetVoid();
|
|
} else {
|
|
Builder.CreateRet(llvm::UndefValue::get(retTy));
|
|
}
|
|
}
|
|
|
|
static llvm::BasicBlock *emitBBMapForSwitchValue(
|
|
IRGenSILFunction &IGF,
|
|
SmallVectorImpl<std::pair<SILValue, llvm::BasicBlock*>> &dests,
|
|
SwitchValueInst *inst) {
|
|
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
|
|
auto casePair = inst->getCase(i);
|
|
dests.push_back({casePair.first, IGF.getLoweredBB(casePair.second).bb});
|
|
}
|
|
|
|
llvm::BasicBlock *defaultDest = nullptr;
|
|
if (inst->hasDefault())
|
|
defaultDest = IGF.getLoweredBB(inst->getDefaultBB()).bb;
|
|
return defaultDest;
|
|
}
|
|
|
|
static llvm::ConstantInt *
|
|
getSwitchCaseValue(IRGenFunction &IGF, SILValue val) {
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(val)) {
|
|
return dyn_cast<llvm::ConstantInt>(getConstantInt(IGF.IGM, IL));
|
|
}
|
|
else {
|
|
llvm_unreachable("Switch value cases should be integers");
|
|
}
|
|
}
|
|
|
|
static void
|
|
emitSwitchValueDispatch(IRGenSILFunction &IGF,
|
|
SILType ty,
|
|
Explosion &value,
|
|
ArrayRef<std::pair<SILValue, llvm::BasicBlock*>> dests,
|
|
llvm::BasicBlock *defaultDest) {
|
|
// Create an unreachable block for the default if the original SIL
|
|
// instruction had none.
|
|
bool unreachableDefault = false;
|
|
if (!defaultDest) {
|
|
unreachableDefault = true;
|
|
defaultDest = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
}
|
|
|
|
if (ty.getAs<BuiltinIntegerType>()) {
|
|
auto *discriminator = value.claimNext();
|
|
auto *i = IGF.Builder.CreateSwitch(discriminator, defaultDest,
|
|
dests.size());
|
|
for (auto &dest : dests)
|
|
i->addCase(getSwitchCaseValue(IGF, dest.first), dest.second);
|
|
} else {
|
|
// Get the value we're testing, which is a function.
|
|
llvm::Value *val;
|
|
llvm::BasicBlock *nextTest = nullptr;
|
|
if (ty.getSwiftType()->is<SILFunctionType>()) {
|
|
val = value.claimNext(); // Function pointer.
|
|
//values.claimNext(); // Ignore the data pointer.
|
|
} else {
|
|
llvm_unreachable("switch_value operand has an unknown type");
|
|
}
|
|
|
|
for (int i = 0, e = dests.size(); i < e; ++i) {
|
|
auto casePair = dests[i];
|
|
llvm::Value *caseval;
|
|
auto casevalue = IGF.getLoweredExplosion(casePair.first);
|
|
if (casePair.first.getType().getSwiftType()->is<SILFunctionType>()) {
|
|
caseval = casevalue.claimNext(); // Function pointer.
|
|
//values.claimNext(); // Ignore the data pointer.
|
|
} else {
|
|
llvm_unreachable("switch_value operand has an unknown type");
|
|
}
|
|
|
|
// Compare operand with a case tag value.
|
|
llvm::Value *cond = IGF.Builder.CreateICmp(llvm::CmpInst::ICMP_EQ,
|
|
val, caseval);
|
|
|
|
if (i == e -1 && !unreachableDefault) {
|
|
nextTest = nullptr;
|
|
IGF.Builder.CreateCondBr(cond, casePair.second, defaultDest);
|
|
} else {
|
|
nextTest = IGF.createBasicBlock("next-test");
|
|
IGF.Builder.CreateCondBr(cond, casePair.second, nextTest);
|
|
IGF.Builder.emitBlock(nextTest);
|
|
IGF.Builder.SetInsertPoint(nextTest);
|
|
}
|
|
}
|
|
|
|
if (nextTest) {
|
|
IGF.Builder.CreateBr(defaultDest);
|
|
}
|
|
}
|
|
|
|
if (unreachableDefault) {
|
|
IGF.Builder.emitBlock(defaultDest);
|
|
IGF.Builder.CreateUnreachable();
|
|
}
|
|
}
|
|
|
|
void IRGenSILFunction::visitSwitchValueInst(SwitchValueInst *inst) {
|
|
Explosion value = getLoweredExplosion(inst->getOperand());
|
|
|
|
// Map the SIL dest bbs to their LLVM bbs.
|
|
SmallVector<std::pair<SILValue, llvm::BasicBlock*>, 4> dests;
|
|
auto *defaultDest = emitBBMapForSwitchValue(*this, dests, inst);
|
|
|
|
emitSwitchValueDispatch(*this, inst->getOperand().getType(),
|
|
value, dests, defaultDest);
|
|
}
|
|
|
|
// Bind an incoming explosion value to an explosion of LLVM phi node(s).
|
|
static void addIncomingExplosionToPHINodes(IRGenSILFunction &IGF,
|
|
ArrayRef<llvm::Value*> phis,
|
|
Explosion &argValue) {
|
|
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
|
|
unsigned phiIndex = 0;
|
|
while (!argValue.empty())
|
|
cast<llvm::PHINode>(phis[phiIndex++])
|
|
->addIncoming(argValue.claimNext(), curBB);
|
|
assert(phiIndex == phis.size() && "explosion doesn't match number of phis");
|
|
}
|
|
|
|
// Bind an incoming explosion value to a SILArgument's LLVM phi node(s).
|
|
static void addIncomingExplosionToPHINodes(IRGenSILFunction &IGF,
|
|
LoweredBB &lbb,
|
|
unsigned &phiIndex,
|
|
Explosion &argValue) {
|
|
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
|
|
while (!argValue.empty())
|
|
lbb.phis[phiIndex++]->addIncoming(argValue.claimNext(), curBB);
|
|
}
|
|
|
|
// Bind an incoming address value to a SILArgument's LLVM phi node(s).
|
|
static void addIncomingAddressToPHINodes(IRGenSILFunction &IGF,
|
|
ArrayRef<llvm::Value*> phis,
|
|
Address argValue) {
|
|
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
|
|
assert(phis.size() == 1 && "more than one phi for address?!");
|
|
cast<llvm::PHINode>(phis[0])->addIncoming(argValue.getAddress(), curBB);
|
|
}
|
|
|
|
// Bind an incoming address value to a SILArgument's LLVM phi node(s).
|
|
static void addIncomingAddressToPHINodes(IRGenSILFunction &IGF,
|
|
LoweredBB &lbb,
|
|
unsigned &phiIndex,
|
|
Address argValue) {
|
|
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
|
|
lbb.phis[phiIndex++]->addIncoming(argValue.getAddress(), curBB);
|
|
}
|
|
|
|
// Add branch arguments to destination phi nodes.
|
|
static void addIncomingSILArgumentsToPHINodes(IRGenSILFunction &IGF,
|
|
LoweredBB &lbb,
|
|
OperandValueArrayRef args) {
|
|
unsigned phiIndex = 0;
|
|
for (SILValue arg : args) {
|
|
const LoweredValue &lv = IGF.getLoweredValue(arg);
|
|
|
|
if (lv.isAddress()) {
|
|
addIncomingAddressToPHINodes(IGF, lbb, phiIndex, lv.getAddress());
|
|
continue;
|
|
}
|
|
|
|
Explosion argValue = lv.getExplosion(IGF);
|
|
addIncomingExplosionToPHINodes(IGF, lbb, phiIndex, argValue);
|
|
}
|
|
}
|
|
|
|
static llvm::BasicBlock *emitBBMapForSwitchEnum(
|
|
IRGenSILFunction &IGF,
|
|
SmallVectorImpl<std::pair<EnumElementDecl*, llvm::BasicBlock*>> &dests,
|
|
SwitchEnumInstBase *inst) {
|
|
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
|
|
auto casePair = inst->getCase(i);
|
|
|
|
// If the destination BB accepts the case argument, set up a waypoint BB so
|
|
// we can feed the values into the argument's PHI node(s).
|
|
//
|
|
// FIXME: This is cheesy when the destination BB has only the switch
|
|
// as a predecessor.
|
|
if (!casePair.second->bbarg_empty())
|
|
dests.push_back({casePair.first,
|
|
llvm::BasicBlock::Create(IGF.IGM.getLLVMContext())});
|
|
else
|
|
dests.push_back({casePair.first, IGF.getLoweredBB(casePair.second).bb});
|
|
}
|
|
|
|
llvm::BasicBlock *defaultDest = nullptr;
|
|
if (inst->hasDefault())
|
|
defaultDest = IGF.getLoweredBB(inst->getDefaultBB()).bb;
|
|
return defaultDest;
|
|
}
|
|
|
|
void IRGenSILFunction::visitSwitchEnumInst(SwitchEnumInst *inst) {
|
|
Explosion value = getLoweredExplosion(inst->getOperand());
|
|
|
|
// Map the SIL dest bbs to their LLVM bbs.
|
|
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
|
|
llvm::BasicBlock *defaultDest
|
|
= emitBBMapForSwitchEnum(*this, dests, inst);
|
|
|
|
// Emit the dispatch.
|
|
auto &EIS = getEnumImplStrategy(IGM, inst->getOperand().getType());
|
|
EIS.emitValueSwitch(*this, value, dests, defaultDest);
|
|
|
|
// Bind arguments for cases that want them.
|
|
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
|
|
auto casePair = inst->getCase(i);
|
|
|
|
if (!casePair.second->bbarg_empty()) {
|
|
auto waypointBB = dests[i].second;
|
|
auto &destLBB = getLoweredBB(casePair.second);
|
|
|
|
Builder.emitBlock(waypointBB);
|
|
|
|
Explosion inValue = getLoweredExplosion(inst->getOperand());
|
|
Explosion projected;
|
|
emitProjectLoadableEnum(*this, inst->getOperand().getType(),
|
|
inValue, casePair.first, projected);
|
|
|
|
unsigned phiIndex = 0;
|
|
addIncomingExplosionToPHINodes(*this, destLBB, phiIndex, projected);
|
|
|
|
Builder.CreateBr(destLBB.bb);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
IRGenSILFunction::visitSwitchEnumAddrInst(SwitchEnumAddrInst *inst) {
|
|
Address value = getLoweredAddress(inst->getOperand());
|
|
|
|
// Map the SIL dest bbs to their LLVM bbs.
|
|
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
|
|
llvm::BasicBlock *defaultDest
|
|
= emitBBMapForSwitchEnum(*this, dests, inst);
|
|
|
|
// Emit the dispatch.
|
|
emitSwitchAddressOnlyEnumDispatch(*this, inst->getOperand().getType(),
|
|
value, dests, defaultDest);
|
|
}
|
|
|
|
// FIXME: We could lower select_enum directly to LLVM select in a lot of cases.
|
|
// For now, just emit a switch and phi nodes, like a chump.
|
|
template<class C, class T>
|
|
static llvm::BasicBlock *
|
|
emitBBMapForSelect(IRGenSILFunction &IGF,
|
|
Explosion &resultPHI,
|
|
SmallVectorImpl<std::pair<T, llvm::BasicBlock*>> &BBs,
|
|
llvm::BasicBlock *&defaultBB,
|
|
SelectInstBase<C, T> *inst) {
|
|
|
|
auto origBB = IGF.Builder.GetInsertBlock();
|
|
|
|
// Set up a continuation BB and phi nodes to receive the result value.
|
|
llvm::BasicBlock *contBB = IGF.createBasicBlock("select_enum");
|
|
IGF.Builder.SetInsertPoint(contBB);
|
|
|
|
// Emit an explosion of phi node(s) to receive the value.
|
|
SmallVector<llvm::Value*, 4> phis;
|
|
auto &ti = IGF.getTypeInfo(inst->getType());
|
|
emitPHINodesForType(IGF, inst->getType(), ti,
|
|
inst->getNumCases() + inst->hasDefault(),
|
|
phis);
|
|
resultPHI.add(phis);
|
|
|
|
IGF.Builder.SetInsertPoint(origBB);
|
|
|
|
auto addIncoming = [&](SILValue value) {
|
|
if (value.getType().isAddress()) {
|
|
addIncomingAddressToPHINodes(IGF, resultPHI.getAll(),
|
|
IGF.getLoweredAddress(value));
|
|
} else {
|
|
Explosion ex = IGF.getLoweredExplosion(value);
|
|
addIncomingExplosionToPHINodes(IGF, resultPHI.getAll(), ex);
|
|
}
|
|
};
|
|
|
|
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
|
|
auto casePair = inst->getCase(i);
|
|
|
|
// Create a basic block destination for this case.
|
|
llvm::BasicBlock *destBB = IGF.createBasicBlock("");
|
|
IGF.Builder.emitBlock(destBB);
|
|
|
|
// Feed the corresponding result into the phi nodes.
|
|
addIncoming(casePair.second);
|
|
|
|
// Jump immediately to the continuation.
|
|
IGF.Builder.CreateBr(contBB);
|
|
BBs.push_back(std::make_pair(casePair.first, destBB));
|
|
}
|
|
|
|
if (inst->hasDefault()) {
|
|
defaultBB = IGF.createBasicBlock("");
|
|
IGF.Builder.emitBlock(defaultBB);
|
|
|
|
addIncoming(inst->getDefaultResult());
|
|
|
|
IGF.Builder.CreateBr(contBB);
|
|
} else {
|
|
defaultBB = nullptr;
|
|
}
|
|
|
|
IGF.Builder.emitBlock(contBB);
|
|
|
|
IGF.Builder.SetInsertPoint(origBB);
|
|
return contBB;
|
|
}
|
|
|
|
// Try to map the value of a select_enum directly to an int type with a simple
|
|
// cast from the tag value to the result type. Optionally also by adding a
|
|
// constant offset.
|
|
// This is useful, e.g. for rawValue or hashValue of C-like enums.
|
|
static llvm::Value *
|
|
mapTriviallyToInt(IRGenSILFunction &IGF, const EnumImplStrategy &EIS, SelectEnumInst *inst) {
|
|
|
|
// All cases must be covered
|
|
if (inst->hasDefault())
|
|
return nullptr;
|
|
|
|
auto &ti = IGF.getTypeInfo(inst->getType());
|
|
ExplosionSchema schema = ti.getSchema();
|
|
|
|
// Check if the select_enum's result is a single integer scalar.
|
|
if (schema.size() != 1)
|
|
return nullptr;
|
|
|
|
if (!schema[0].isScalar())
|
|
return nullptr;
|
|
|
|
llvm::Type *type = schema[0].getScalarType();
|
|
llvm::IntegerType *resultType = dyn_cast<llvm::IntegerType>(type);
|
|
if (!resultType)
|
|
return nullptr;
|
|
|
|
// Check if the case values directly map to the tag values, maybe with a
|
|
// constant offset.
|
|
APInt commonOffset;
|
|
bool offsetValid = false;
|
|
|
|
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
|
|
auto casePair = inst->getCase(i);
|
|
|
|
int64_t index = EIS.getDiscriminatorIndex(casePair.first);
|
|
if (index < 0)
|
|
return nullptr;
|
|
|
|
IntegerLiteralInst *intLit = dyn_cast<IntegerLiteralInst>(casePair.second.getDef());
|
|
if (!intLit)
|
|
return nullptr;
|
|
|
|
APInt caseValue = intLit->getValue();
|
|
APInt offset = caseValue - index;
|
|
if (offsetValid) {
|
|
if (offset != commonOffset)
|
|
return nullptr;
|
|
} else {
|
|
commonOffset = offset;
|
|
offsetValid = true;
|
|
}
|
|
}
|
|
|
|
// Ask the enum implementation strategy to extract the enum tag as an integer
|
|
// value.
|
|
Explosion enumValue = IGF.getLoweredExplosion(inst->getEnumOperand());
|
|
llvm::Value *result = EIS.emitExtractDiscriminator(IGF, enumValue);
|
|
if (!result) {
|
|
enumValue.claimAll();
|
|
return nullptr;
|
|
}
|
|
|
|
// Cast to the result type.
|
|
result = IGF.Builder.CreateIntCast(result, resultType, false);
|
|
if (commonOffset != 0) {
|
|
// The the offset, if any.
|
|
auto *offsetConst = llvm::ConstantInt::get(resultType, commonOffset);
|
|
result = IGF.Builder.CreateAdd(result, offsetConst);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <class C, class T>
|
|
static LoweredValue
|
|
getLoweredValueForSelect(IRGenSILFunction &IGF,
|
|
Explosion &result, SelectInstBase<C, T> *inst) {
|
|
if (inst->getType().isAddress())
|
|
// FIXME: Loses potentially better alignment info we might have.
|
|
return LoweredValue(Address(result.claimNext(),
|
|
IGF.getTypeInfo(inst->getType()).getBestKnownAlignment()));
|
|
return LoweredValue(result);
|
|
}
|
|
|
|
static void emitSingleEnumMemberSelectResult(IRGenSILFunction &IGF,
|
|
SelectEnumInstBase *inst,
|
|
llvm::Value *isTrue,
|
|
Explosion &result) {
|
|
assert((inst->getNumCases() == 1 && inst->hasDefault()) ||
|
|
(inst->getNumCases() == 2 && !inst->hasDefault()));
|
|
|
|
// Extract the true values.
|
|
auto trueValue = inst->getCase(0).second;
|
|
SmallVector<llvm::Value*, 4> TrueValues;
|
|
if (trueValue.getType().isAddress()) {
|
|
TrueValues.push_back(IGF.getLoweredAddress(trueValue).getAddress());
|
|
} else {
|
|
Explosion ex = IGF.getLoweredExplosion(trueValue);
|
|
while (!ex.empty())
|
|
TrueValues.push_back(ex.claimNext());
|
|
}
|
|
|
|
// Extract the false values.
|
|
auto falseValue =
|
|
inst->hasDefault() ? inst->getDefaultResult() : inst->getCase(1).second;
|
|
SmallVector<llvm::Value*, 4> FalseValues;
|
|
if (falseValue.getType().isAddress()) {
|
|
FalseValues.push_back(IGF.getLoweredAddress(falseValue).getAddress());
|
|
} else {
|
|
Explosion ex = IGF.getLoweredExplosion(falseValue);
|
|
while (!ex.empty())
|
|
FalseValues.push_back(ex.claimNext());
|
|
}
|
|
|
|
assert(TrueValues.size() == FalseValues.size() &&
|
|
"explosions didn't produce same element count?");
|
|
for (unsigned i = 0, e = FalseValues.size(); i != e; ++i) {
|
|
auto *TV = TrueValues[i], *FV = FalseValues[i];
|
|
// It is pretty common to select between zero and 1 as the result of the
|
|
// select. Instead of emitting an obviously dumb select, emit nothing or
|
|
// a zext.
|
|
if (auto *TC = dyn_cast<llvm::ConstantInt>(TV))
|
|
if (auto *FC = dyn_cast<llvm::ConstantInt>(FV))
|
|
if (TC->isOne() && FC->isZero()) {
|
|
result.add(IGF.Builder.CreateZExtOrBitCast(isTrue, TV->getType()));
|
|
continue;
|
|
}
|
|
|
|
result.add(IGF.Builder.CreateSelect(isTrue, TV, FalseValues[i]));
|
|
}
|
|
}
|
|
|
|
|
|
void IRGenSILFunction::visitSelectEnumInst(SelectEnumInst *inst) {
|
|
auto &EIS = getEnumImplStrategy(IGM, inst->getEnumOperand().getType());
|
|
Explosion result;
|
|
|
|
if (llvm::Value *R = mapTriviallyToInt(*this, EIS, inst)) {
|
|
result.add(R);
|
|
} else if ((inst->getNumCases() == 1 && inst->hasDefault()) ||
|
|
(inst->getNumCases() == 2 && !inst->hasDefault())) {
|
|
// If this is testing for one case, do simpler codegen. This is
|
|
// particularly common when testing optionals.
|
|
Explosion value = getLoweredExplosion(inst->getEnumOperand());
|
|
auto isTrue = EIS.emitValueCaseTest(*this, value, inst->getCase(0).first);
|
|
emitSingleEnumMemberSelectResult(*this, inst, isTrue, result);
|
|
} else {
|
|
Explosion value = getLoweredExplosion(inst->getEnumOperand());
|
|
|
|
// Map the SIL dest bbs to their LLVM bbs.
|
|
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
|
|
llvm::BasicBlock *defaultDest;
|
|
llvm::BasicBlock *contBB
|
|
= emitBBMapForSelect(*this, result, dests, defaultDest, inst);
|
|
|
|
// Emit the dispatch.
|
|
EIS.emitValueSwitch(*this, value, dests, defaultDest);
|
|
|
|
// emitBBMapForSelectEnum set up a continuation block and phi nodes to
|
|
// receive the result.
|
|
Builder.SetInsertPoint(contBB);
|
|
}
|
|
setLoweredValue(SILValue(inst, 0),
|
|
getLoweredValueForSelect(*this, result, inst));
|
|
}
|
|
|
|
void IRGenSILFunction::visitSelectEnumAddrInst(SelectEnumAddrInst *inst) {
|
|
Address value = getLoweredAddress(inst->getEnumOperand());
|
|
Explosion result;
|
|
|
|
if ((inst->getNumCases() == 1 && inst->hasDefault()) ||
|
|
(inst->getNumCases() == 2 && !inst->hasDefault())) {
|
|
auto &EIS = getEnumImplStrategy(IGM, inst->getEnumOperand().getType());
|
|
// If this is testing for one case, do simpler codegen. This is
|
|
// particularly common when testing optionals.
|
|
auto isTrue = EIS.emitIndirectCaseTest(*this,
|
|
inst->getEnumOperand().getType(),
|
|
value, inst->getCase(0).first);
|
|
emitSingleEnumMemberSelectResult(*this, inst, isTrue, result);
|
|
} else {
|
|
// Map the SIL dest bbs to their LLVM bbs.
|
|
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
|
|
llvm::BasicBlock *defaultDest;
|
|
llvm::BasicBlock *contBB
|
|
= emitBBMapForSelect(*this, result, dests, defaultDest, inst);
|
|
|
|
// Emit the dispatch.
|
|
emitSwitchAddressOnlyEnumDispatch(*this, inst->getEnumOperand().getType(),
|
|
value, dests, defaultDest);
|
|
|
|
// emitBBMapForSelectEnum set up a phi node to receive the result.
|
|
Builder.SetInsertPoint(contBB);
|
|
}
|
|
|
|
setLoweredValue(SILValue(inst, 0),
|
|
getLoweredValueForSelect(*this, result, inst));
|
|
}
|
|
|
|
void IRGenSILFunction::visitSelectValueInst(SelectValueInst *inst) {
|
|
Explosion value = getLoweredExplosion(inst->getOperand());
|
|
|
|
// Map the SIL dest bbs to their LLVM bbs.
|
|
SmallVector<std::pair<SILValue, llvm::BasicBlock*>, 4> dests;
|
|
llvm::BasicBlock *defaultDest;
|
|
Explosion result;
|
|
auto *contBB = emitBBMapForSelect(*this, result, dests, defaultDest, inst);
|
|
|
|
// Emit the dispatch.
|
|
emitSwitchValueDispatch(*this, inst->getOperand().getType(), value, dests,
|
|
defaultDest);
|
|
|
|
// emitBBMapForSelectEnum set up a continuation block and phi nodes to
|
|
// receive the result.
|
|
Builder.SetInsertPoint(contBB);
|
|
|
|
setLoweredValue(SILValue(inst, 0),
|
|
getLoweredValueForSelect(*this, result, inst));
|
|
}
|
|
|
|
void IRGenSILFunction::visitDynamicMethodBranchInst(DynamicMethodBranchInst *i){
|
|
LoweredBB &hasMethodBB = getLoweredBB(i->getHasMethodBB());
|
|
LoweredBB &noMethodBB = getLoweredBB(i->getNoMethodBB());
|
|
|
|
// Emit the swift_objcRespondsToSelector() call.
|
|
StringRef selector;
|
|
llvm::SmallString<64> selectorBuffer;
|
|
if (auto fnDecl = dyn_cast<FuncDecl>(i->getMember().getDecl()))
|
|
selector = fnDecl->getObjCSelector().getString(selectorBuffer);
|
|
else if (auto var = dyn_cast<AbstractStorageDecl>(i->getMember().getDecl()))
|
|
selector = var->getObjCGetterSelector().getString(selectorBuffer);
|
|
else
|
|
llvm_unreachable("Unhandled dynamic method branch query");
|
|
|
|
llvm::Value *object = getLoweredExplosion(i->getOperand()).claimNext();
|
|
if (object->getType() != IGM.ObjCPtrTy)
|
|
object = Builder.CreateBitCast(object, IGM.ObjCPtrTy);
|
|
llvm::Value *loadSel = emitObjCSelectorRefLoad(selector);
|
|
llvm::CallInst *call = Builder.CreateCall2(IGM.getObjCRespondsToSelectorFn(),
|
|
object, loadSel);
|
|
call->setDoesNotThrow();
|
|
|
|
// FIXME: Assume (probably safely) that the hasMethodBB has only us as a
|
|
// predecessor, and cannibalize its bb argument so we can represent is as an
|
|
// ObjCMethod lowered value. This is hella gross but saves us having to
|
|
// implement ObjCMethod-to-Explosion lowering and creating a thunk we don't
|
|
// want.
|
|
assert(std::next(i->getHasMethodBB()->pred_begin())
|
|
== i->getHasMethodBB()->pred_end()
|
|
&& "lowering dynamic_method_br with multiple preds for destination "
|
|
"not implemented");
|
|
// Kill the existing lowered value for the bb arg and its phi nodes.
|
|
SILValue methodArg = i->getHasMethodBB()->bbarg_begin()[0];
|
|
Explosion formerLLArg = getLoweredExplosion(methodArg);
|
|
for (llvm::Value *val : formerLLArg.claimAll()) {
|
|
auto phi = cast<llvm::PHINode>(val);
|
|
assert(phi->getNumIncomingValues() == 0 && "phi already used");
|
|
phi->removeFromParent();
|
|
delete phi;
|
|
}
|
|
LoweredValues.erase(methodArg);
|
|
|
|
// Replace the lowered value with an ObjCMethod lowering.
|
|
setLoweredObjCMethod(methodArg, i->getMember());
|
|
|
|
// Create the branch.
|
|
Builder.CreateCondBr(call, hasMethodBB.bb, noMethodBB.bb);
|
|
}
|
|
|
|
void IRGenSILFunction::visitBranchInst(swift::BranchInst *i) {
|
|
LoweredBB &lbb = getLoweredBB(i->getDestBB());
|
|
addIncomingSILArgumentsToPHINodes(*this, lbb, i->getArgs());
|
|
Builder.CreateBr(lbb.bb);
|
|
}
|
|
|
|
void IRGenSILFunction::visitCondBranchInst(swift::CondBranchInst *i) {
|
|
LoweredBB &trueBB = getLoweredBB(i->getTrueBB());
|
|
LoweredBB &falseBB = getLoweredBB(i->getFalseBB());
|
|
llvm::Value *condValue =
|
|
getLoweredExplosion(i->getCondition()).claimNext();
|
|
|
|
addIncomingSILArgumentsToPHINodes(*this, trueBB, i->getTrueArgs());
|
|
addIncomingSILArgumentsToPHINodes(*this, falseBB, i->getFalseArgs());
|
|
|
|
Builder.CreateCondBr(condValue, trueBB.bb, falseBB.bb);
|
|
}
|
|
|
|
void IRGenSILFunction::visitRetainValueInst(swift::RetainValueInst *i) {
|
|
Explosion in = getLoweredExplosion(i->getOperand());
|
|
Explosion out;
|
|
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand().getType()))
|
|
.copy(*this, in, out);
|
|
out.claimAll();
|
|
}
|
|
|
|
// TODO: Implement this more generally for arbitrary values. Currently the
|
|
// SIL verifier restricts it to single-refcounted-pointer types.
|
|
void IRGenSILFunction::visitAutoreleaseValueInst(swift::AutoreleaseValueInst *i)
|
|
{
|
|
Explosion in = getLoweredExplosion(i->getOperand());
|
|
auto val = in.claimNext();
|
|
|
|
emitObjCAutoreleaseCall(val);
|
|
}
|
|
|
|
void IRGenSILFunction::visitReleaseValueInst(swift::ReleaseValueInst *i) {
|
|
Explosion in = getLoweredExplosion(i->getOperand());
|
|
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand().getType()))
|
|
.consume(*this, in);
|
|
}
|
|
|
|
void IRGenSILFunction::visitStructInst(swift::StructInst *i) {
|
|
Explosion out;
|
|
for (SILValue elt : i->getElements())
|
|
out.add(getLoweredExplosion(elt).claimAll());
|
|
setLoweredExplosion(SILValue(i, 0), out);
|
|
}
|
|
|
|
void IRGenSILFunction::visitTupleInst(swift::TupleInst *i) {
|
|
Explosion out;
|
|
for (SILValue elt : i->getElements())
|
|
out.add(getLoweredExplosion(elt).claimAll());
|
|
setLoweredExplosion(SILValue(i, 0), out);
|
|
}
|
|
|
|
void IRGenSILFunction::visitEnumInst(swift::EnumInst *i) {
|
|
Explosion data = (i->hasOperand())
|
|
? getLoweredExplosion(i->getOperand())
|
|
: Explosion();
|
|
Explosion out;
|
|
emitInjectLoadableEnum(*this, i->getType(), i->getElement(), data, out);
|
|
setLoweredExplosion(SILValue(i, 0), out);
|
|
}
|
|
|
|
void IRGenSILFunction::visitInitEnumDataAddrInst(swift::InitEnumDataAddrInst *i) {
|
|
Address enumAddr = getLoweredAddress(i->getOperand());
|
|
Address dataAddr = emitProjectEnumAddressForStore(*this,
|
|
i->getOperand().getType(),
|
|
enumAddr,
|
|
i->getElement());
|
|
setLoweredAddress(SILValue(i, 0), dataAddr);
|
|
}
|
|
|
|
void IRGenSILFunction::visitUncheckedEnumDataInst(swift::UncheckedEnumDataInst *i) {
|
|
Explosion enumVal = getLoweredExplosion(i->getOperand());
|
|
Explosion data;
|
|
emitProjectLoadableEnum(*this, i->getOperand().getType(),
|
|
enumVal, i->getElement(), data);
|
|
setLoweredExplosion(SILValue(i, 0), data);
|
|
}
|
|
|
|
void IRGenSILFunction::visitUncheckedTakeEnumDataAddrInst(swift::UncheckedTakeEnumDataAddrInst *i) {
|
|
Address enumAddr = getLoweredAddress(i->getOperand());
|
|
Address dataAddr = emitDestructiveProjectEnumAddressForLoad(*this,
|
|
i->getOperand().getType(),
|
|
enumAddr,
|
|
i->getElement());
|
|
setLoweredAddress(SILValue(i, 0), dataAddr);
|
|
}
|
|
|
|
void IRGenSILFunction::visitInjectEnumAddrInst(swift::InjectEnumAddrInst *i) {
|
|
Address enumAddr = getLoweredAddress(i->getOperand());
|
|
emitStoreEnumTagToAddress(*this, i->getOperand().getType(),
|
|
enumAddr, i->getElement());
|
|
}
|
|
|
|
void IRGenSILFunction::visitTupleExtractInst(swift::TupleExtractInst *i) {
|
|
SILValue v(i, 0);
|
|
Explosion fullTuple = getLoweredExplosion(i->getOperand());
|
|
Explosion output;
|
|
SILType baseType = i->getOperand().getType();
|
|
|
|
projectTupleElementFromExplosion(*this,
|
|
baseType,
|
|
fullTuple,
|
|
i->getFieldNo(),
|
|
output);
|
|
fullTuple.claimAll();
|
|
setLoweredExplosion(v, output);
|
|
}
|
|
|
|
void IRGenSILFunction::visitTupleElementAddrInst(swift::TupleElementAddrInst *i)
|
|
{
|
|
Address base = getLoweredAddress(i->getOperand());
|
|
SILType baseType = i->getOperand().getType();
|
|
|
|
Address field = projectTupleElementAddress(*this, base, baseType,
|
|
i->getFieldNo());
|
|
setLoweredAddress(SILValue(i, 0), field);
|
|
}
|
|
|
|
void IRGenSILFunction::visitStructExtractInst(swift::StructExtractInst *i) {
|
|
SILValue v(i, 0);
|
|
Explosion operand = getLoweredExplosion(i->getOperand());
|
|
Explosion lowered;
|
|
SILType baseType = i->getOperand().getType();
|
|
|
|
projectPhysicalStructMemberFromExplosion(*this,
|
|
baseType,
|
|
operand,
|
|
i->getField(),
|
|
lowered);
|
|
|
|
operand.claimAll();
|
|
setLoweredExplosion(v, lowered);
|
|
}
|
|
|
|
void IRGenSILFunction::visitStructElementAddrInst(
|
|
swift::StructElementAddrInst *i) {
|
|
Address base = getLoweredAddress(i->getOperand());
|
|
SILType baseType = i->getOperand().getType();
|
|
|
|
Address field = projectPhysicalStructMemberAddress(*this, base, baseType,
|
|
i->getField());
|
|
setLoweredAddress(SILValue(i, 0), field);
|
|
}
|
|
|
|
void IRGenSILFunction::visitRefElementAddrInst(swift::RefElementAddrInst *i) {
|
|
Explosion base = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *value = base.claimNext();
|
|
|
|
SILType baseTy = i->getOperand().getType();
|
|
Address field = projectPhysicalClassMemberAddress(*this,
|
|
value,
|
|
baseTy,
|
|
i->getType(),
|
|
i->getField())
|
|
.getAddress();
|
|
setLoweredAddress(SILValue(i, 0), field);
|
|
}
|
|
|
|
void IRGenSILFunction::visitLoadInst(swift::LoadInst *i) {
|
|
Explosion lowered;
|
|
Address source = getLoweredAddress(i->getOperand());
|
|
const TypeInfo &type = getTypeInfo(i->getType().getObjectType());
|
|
cast<LoadableTypeInfo>(type).loadAsTake(*this, source, lowered);
|
|
setLoweredExplosion(SILValue(i, 0), lowered);
|
|
}
|
|
|
|
void IRGenSILFunction::visitStoreInst(swift::StoreInst *i) {
|
|
Explosion source = getLoweredExplosion(i->getSrc());
|
|
Address dest = getLoweredAddress(i->getDest());
|
|
auto &type = getTypeInfo(i->getSrc().getType().getObjectType());
|
|
cast<LoadableTypeInfo>(type).initialize(*this, source, dest);
|
|
}
|
|
|
|
|
|
void IRGenSILFunction::visitLoadWeakInst(swift::LoadWeakInst *i) {
|
|
Address source = getLoweredAddress(i->getOperand());
|
|
auto &weakTI = cast<WeakTypeInfo>(getTypeInfo(i->getOperand().getType()));
|
|
|
|
Explosion result;
|
|
if (i->isTake()) {
|
|
weakTI.weakTakeStrong(*this, source, result);
|
|
} else {
|
|
weakTI.weakLoadStrong(*this, source, result);
|
|
}
|
|
|
|
setLoweredExplosion(SILValue(i, 0), result);
|
|
}
|
|
|
|
void IRGenSILFunction::visitStoreWeakInst(swift::StoreWeakInst *i) {
|
|
Explosion source = getLoweredExplosion(i->getSrc());
|
|
Address dest = getLoweredAddress(i->getDest());
|
|
|
|
auto &weakTI = cast<WeakTypeInfo>(getTypeInfo(i->getDest().getType()));
|
|
if (i->isInitializationOfDest()) {
|
|
weakTI.weakInit(*this, source, dest);
|
|
} else {
|
|
weakTI.weakAssign(*this, source, dest);
|
|
}
|
|
}
|
|
|
|
void IRGenSILFunction::visitFixLifetimeInst(swift::FixLifetimeInst *i) {
|
|
if (i->getOperand().getType().isAddress()) {
|
|
// Just pass in the address to fix lifetime if we have one. We will not do
|
|
// anything to it so nothing bad should happen.
|
|
emitFixLifetime(getLoweredAddress(i->getOperand()).getAddress());
|
|
return;
|
|
}
|
|
|
|
// Handle objects.
|
|
Explosion in = getLoweredExplosion(i->getOperand());
|
|
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand().getType()))
|
|
.fixLifetime(*this, in);
|
|
}
|
|
|
|
void IRGenSILFunction::visitMarkDependenceInst(swift::MarkDependenceInst *i) {
|
|
// Dependency-marking is purely for SIL. Just forward the input as
|
|
// the result.
|
|
|
|
SILValue value = i->getValue();
|
|
if (value.getType().isAddress()) {
|
|
setLoweredAddress(i, getLoweredAddress(value));
|
|
} else {
|
|
Explosion temp = getLoweredExplosion(value);
|
|
setLoweredExplosion(i, temp);
|
|
}
|
|
}
|
|
|
|
void IRGenSILFunction::visitCopyBlockInst(CopyBlockInst *i) {
|
|
Explosion lowered = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *copied = emitBlockCopyCall(lowered.claimNext());
|
|
Explosion result;
|
|
result.add(copied);
|
|
setLoweredExplosion(SILValue(i, 0), result);
|
|
}
|
|
|
|
void IRGenSILFunction::visitStrongPinInst(swift::StrongPinInst *i) {
|
|
Explosion lowered = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *object = lowered.claimNext();
|
|
llvm::Value *pinHandle = emitTryPin(object);
|
|
|
|
Explosion result;
|
|
result.add(pinHandle);
|
|
setLoweredExplosion(i, result);
|
|
}
|
|
|
|
void IRGenSILFunction::visitStrongUnpinInst(swift::StrongUnpinInst *i) {
|
|
Explosion lowered = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *pinHandle = lowered.claimNext();
|
|
emitUnpin(pinHandle);
|
|
}
|
|
|
|
void IRGenSILFunction::visitStrongRetainInst(swift::StrongRetainInst *i) {
|
|
Explosion lowered = getLoweredExplosion(i->getOperand());
|
|
auto &ti = cast<ReferenceTypeInfo>(getTypeInfo(i->getOperand().getType()));
|
|
ti.retain(*this, lowered);
|
|
}
|
|
|
|
void IRGenSILFunction::visitStrongReleaseInst(swift::StrongReleaseInst *i) {
|
|
Explosion lowered = getLoweredExplosion(i->getOperand());
|
|
auto &ti = cast<ReferenceTypeInfo>(getTypeInfo(i->getOperand().getType()));
|
|
ti.release(*this, lowered);
|
|
}
|
|
|
|
void IRGenSILFunction::
|
|
visitStrongRetainAutoreleasedInst(swift::StrongRetainAutoreleasedInst *i) {
|
|
Explosion lowered = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *value = lowered.claimNext();
|
|
value = emitObjCRetainAutoreleasedReturnValue(*this, value);
|
|
|
|
// Overwrite the stored explosion value with the result of
|
|
// objc_retainAutoreleasedReturnValue. This is actually
|
|
// semantically important: if the call result is live across this
|
|
// call, the backend will have to emit instructions that interfere
|
|
// with the reclaim optimization.
|
|
//
|
|
// This is only sound if the retainAutoreleasedReturnValue
|
|
// immediately follows the call, but that should be reliably true.
|
|
//
|
|
// ...the reclaim here should really be implicit in the SIL calling
|
|
// convention.
|
|
|
|
Explosion out;
|
|
out.add(value);
|
|
overwriteLoweredExplosion(i->getOperand(), out);
|
|
}
|
|
|
|
/// Given a SILType which is a ReferenceStorageType, return the type
|
|
/// info for the underlying reference type.
|
|
static const ReferenceTypeInfo &getReferentTypeInfo(IRGenFunction &IGF,
|
|
SILType silType) {
|
|
assert(silType.isObject());
|
|
auto type = silType.castTo<ReferenceStorageType>().getReferentType();
|
|
return cast<ReferenceTypeInfo>(IGF.getTypeInfoForLowered(type));
|
|
}
|
|
|
|
void IRGenSILFunction::
|
|
visitStrongRetainUnownedInst(swift::StrongRetainUnownedInst *i) {
|
|
Explosion lowered = getLoweredExplosion(i->getOperand());
|
|
auto &ti = getReferentTypeInfo(*this, i->getOperand().getType());
|
|
ti.retainUnowned(*this, lowered);
|
|
}
|
|
|
|
void IRGenSILFunction::visitUnownedRetainInst(swift::UnownedRetainInst *i) {
|
|
Explosion lowered = getLoweredExplosion(i->getOperand());
|
|
auto &ti = getReferentTypeInfo(*this, i->getOperand().getType());
|
|
ti.unownedRetain(*this, lowered);
|
|
}
|
|
|
|
|
|
void IRGenSILFunction::visitUnownedReleaseInst(swift::UnownedReleaseInst *i) {
|
|
Explosion lowered = getLoweredExplosion(i->getOperand());
|
|
auto &ti = getReferentTypeInfo(*this, i->getOperand().getType());
|
|
ti.unownedRelease(*this, lowered);
|
|
}
|
|
|
|
static void requireRefCountedType(IRGenSILFunction &IGF,
|
|
SourceLoc loc,
|
|
SILType silType) {
|
|
auto operType = silType.getSwiftRValueType();
|
|
auto valueType = operType->getOptionalObjectType();
|
|
auto objType = valueType ? valueType : operType;
|
|
if (objType->mayHaveSuperclass()
|
|
|| objType->isClassExistentialType()
|
|
|| objType->is<BuiltinNativeObjectType>()
|
|
|| objType->is<BuiltinBridgeObjectType>()
|
|
|| objType->is<BuiltinUnknownObjectType>()) {
|
|
return;
|
|
}
|
|
IGF.IGM.error(loc, "isUnique operand type (" + Twine(operType.getString())
|
|
+ ") is not a refcounted class");
|
|
}
|
|
|
|
static llvm::Value *emitIsUnique(IRGenSILFunction &IGF, SILValue operand,
|
|
SourceLoc loc, bool checkPinned) {
|
|
requireRefCountedType(IGF, loc, operand.getType());
|
|
auto &operTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(operand.getType()));
|
|
LoadedRef ref =
|
|
operTI.loadRefcountedPtr(IGF, loc, IGF.getLoweredAddress(operand));
|
|
|
|
return
|
|
IGF.emitIsUniqueCall(ref.getValue(), loc, ref.isNonNull(), checkPinned);
|
|
}
|
|
|
|
void IRGenSILFunction::visitIsUniqueInst(swift::IsUniqueInst *i) {
|
|
llvm::Value *result = emitIsUnique(*this, i->getOperand(),
|
|
i->getLoc().getSourceLoc(), false);
|
|
Explosion out;
|
|
out.add(result);
|
|
setLoweredExplosion(SILValue(i, 0), out);
|
|
}
|
|
|
|
void IRGenSILFunction::
|
|
visitIsUniqueOrPinnedInst(swift::IsUniqueOrPinnedInst *i) {
|
|
llvm::Value *result = emitIsUnique(*this, i->getOperand(),
|
|
i->getLoc().getSourceLoc(), true);
|
|
Explosion out;
|
|
out.add(result);
|
|
setLoweredExplosion(SILValue(i, 0), out);
|
|
}
|
|
|
|
void IRGenSILFunction::visitAllocStackInst(swift::AllocStackInst *i) {
|
|
const TypeInfo &type = getTypeInfo(i->getElementType());
|
|
|
|
// Derive name from SIL location.
|
|
VarDecl *Decl = i->getDecl();
|
|
StringRef dbgname =
|
|
# ifndef NDEBUG
|
|
// If this is a DEBUG build, use pretty names for the LLVM IR.
|
|
Decl ? Decl->getNameStr() :
|
|
# endif
|
|
"";
|
|
|
|
auto addr = type.allocateStack(*this,
|
|
i->getElementType(),
|
|
dbgname);
|
|
if (IGM.DebugInfo && Decl) {
|
|
auto *Pattern = Decl->getParentPattern();
|
|
if (!Pattern || !Pattern->isImplicit()) {
|
|
// Discard any inout or lvalue qualifiers. Since the object itself
|
|
// is stored in the alloca, emitting it as a reference type would
|
|
// be wrong.
|
|
auto DbgTy = DebugTypeInfo(Decl,
|
|
Decl->getType()->getLValueOrInOutObjectType(),
|
|
type);
|
|
auto Name = Decl->getName().empty() ? "_" : Decl->getName().str();
|
|
auto DS = i->getDebugScope();
|
|
if (!DS) DS = CurSILFn->getDebugScope();
|
|
assert(DS->SILFn == CurSILFn || DS->InlinedCallSite);
|
|
emitDebugVariableDeclaration(Builder, addr.getAddress().getAddress(),
|
|
DbgTy, DS, Name);
|
|
}
|
|
}
|
|
|
|
setLoweredAddress(i->getContainerResult(), addr.getContainer());
|
|
setLoweredAddress(i->getAddressResult(), addr.getAddress());
|
|
}
|
|
|
|
void IRGenSILFunction::visitAllocRefInst(swift::AllocRefInst *i) {
|
|
llvm::Value *alloced = emitClassAllocation(*this, i->getType(), i->isObjC());
|
|
Explosion e;
|
|
e.add(alloced);
|
|
setLoweredExplosion(SILValue(i, 0), e);
|
|
}
|
|
|
|
void IRGenSILFunction::visitAllocRefDynamicInst(swift::AllocRefDynamicInst *i) {
|
|
Explosion metadata = getLoweredExplosion(i->getOperand());
|
|
auto metadataValue = metadata.claimNext();
|
|
llvm::Value *alloced = emitClassAllocationDynamic(*this, metadataValue,
|
|
i->getType(), i->isObjC());
|
|
Explosion e;
|
|
e.add(alloced);
|
|
setLoweredExplosion(SILValue(i, 0), e);
|
|
}
|
|
|
|
void IRGenSILFunction::visitDeallocStackInst(swift::DeallocStackInst *i) {
|
|
const TypeInfo &type = getTypeInfo(i->getOperand().getType());
|
|
Address addr = getLoweredAddress(i->getOperand());
|
|
type.deallocateStack(*this, addr,
|
|
i->getOperand().getType());
|
|
}
|
|
|
|
void IRGenSILFunction::visitDeallocRefInst(swift::DeallocRefInst *i) {
|
|
// Lower the operand.
|
|
Explosion self = getLoweredExplosion(i->getOperand());
|
|
auto selfValue = self.claimNext();
|
|
auto classType = i->getOperand()->getType(0);
|
|
emitClassDeallocation(*this, classType, selfValue);
|
|
}
|
|
|
|
void IRGenSILFunction::visitDeallocBoxInst(swift::DeallocBoxInst *i) {
|
|
const TypeInfo &type = getTypeInfo(i->getElementType());
|
|
Explosion owner = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *ownerPtr = owner.claimNext();
|
|
type.deallocateBox(*this, ownerPtr, i->getElementType());
|
|
}
|
|
|
|
void IRGenSILFunction::visitAllocBoxInst(swift::AllocBoxInst *i) {
|
|
const TypeInfo &type = getTypeInfo(i->getElementType());
|
|
|
|
// Derive name from SIL location.
|
|
VarDecl *Decl = i->getDecl();
|
|
StringRef Name = Decl ? Decl->getName().str() : "";
|
|
StringRef DbgName =
|
|
# ifndef NDEBUG
|
|
// If this is a DEBUG build, use pretty names for the LLVM IR.
|
|
Name;
|
|
# else
|
|
"";
|
|
# endif
|
|
OwnedAddress addr = type.allocateBox(*this,
|
|
i->getElementType(),
|
|
DbgName);
|
|
|
|
Explosion box;
|
|
box.add(addr.getOwner());
|
|
setLoweredExplosion(SILValue(i, 0), box);
|
|
setLoweredAddress(SILValue(i, 1), addr.getAddress());
|
|
|
|
if (IGM.DebugInfo && Decl) {
|
|
auto Indirection = IndirectValue;
|
|
// LValues are implicitly indirect because of their type.
|
|
if (Decl->getType()->getKind() == TypeKind::LValue)
|
|
Indirection = DirectValue;
|
|
// FIXME: inout arguments that are not promoted are emitted as
|
|
// arguments and also boxed and thus may show up twice. This may
|
|
// or may not be bad.
|
|
IGM.DebugInfo->emitStackVariableDeclaration
|
|
(Builder,
|
|
emitShadowCopy(addr.getAddress(), Name),
|
|
DebugTypeInfo(Decl, i->getElementType().getSwiftType(), type),
|
|
i->getDebugScope(), Name, Indirection);
|
|
}
|
|
}
|
|
|
|
void IRGenSILFunction::visitConvertFunctionInst(swift::ConvertFunctionInst *i) {
|
|
// This instruction is specified to be a no-op.
|
|
Explosion temp = getLoweredExplosion(i->getOperand());
|
|
setLoweredExplosion(SILValue(i, 0), temp);
|
|
}
|
|
|
|
void IRGenSILFunction::visitThinFunctionToPointerInst(
|
|
swift::ThinFunctionToPointerInst *i) {
|
|
Explosion in = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *fn = in.claimNext();
|
|
fn = Builder.CreateBitCast(fn, IGM.Int8PtrTy);
|
|
Explosion out;
|
|
out.add(fn);
|
|
setLoweredExplosion(i, out);
|
|
}
|
|
|
|
void IRGenSILFunction::visitPointerToThinFunctionInst(
|
|
swift::PointerToThinFunctionInst *i) {
|
|
Explosion in = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *fn = in.claimNext();
|
|
fn = Builder.CreateBitCast(fn, IGM.FunctionPtrTy);
|
|
Explosion out;
|
|
out.add(fn);
|
|
setLoweredExplosion(i, out);
|
|
}
|
|
|
|
void IRGenSILFunction::visitAddressToPointerInst(swift::AddressToPointerInst *i)
|
|
{
|
|
Explosion to;
|
|
llvm::Value *addrValue = getLoweredAddress(i->getOperand()).getAddress();
|
|
if (addrValue->getType() != IGM.Int8PtrTy)
|
|
addrValue = Builder.CreateBitCast(addrValue, IGM.Int8PtrTy);
|
|
to.add(addrValue);
|
|
setLoweredExplosion(SILValue(i, 0), to);
|
|
}
|
|
|
|
void IRGenSILFunction::visitPointerToAddressInst(swift::PointerToAddressInst *i)
|
|
{
|
|
Explosion from = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *ptrValue = from.claimNext();
|
|
|
|
auto &ti = getTypeInfo(i->getType());
|
|
|
|
llvm::Type *destType = ti.getStorageType()->getPointerTo();
|
|
ptrValue = Builder.CreateBitCast(ptrValue, destType);
|
|
|
|
setLoweredAddress(SILValue(i, 0),
|
|
ti.getAddressForPointer(ptrValue));
|
|
}
|
|
|
|
static void emitPointerCastInst(IRGenSILFunction &IGF,
|
|
SILValue src,
|
|
SILValue dest,
|
|
const TypeInfo &ti) {
|
|
Explosion from = IGF.getLoweredExplosion(src);
|
|
llvm::Value *ptrValue = from.claimNext();
|
|
|
|
auto schema = ti.getSchema();
|
|
assert(schema.size() == 1
|
|
&& schema[0].isScalar()
|
|
&& "pointer schema is not a single scalar?!");
|
|
auto castToType = schema[0].getScalarType();
|
|
|
|
ptrValue = IGF.Builder.CreateBitCast(ptrValue, castToType);
|
|
|
|
Explosion to;
|
|
to.add(ptrValue);
|
|
IGF.setLoweredExplosion(dest, to);
|
|
}
|
|
|
|
void IRGenSILFunction::visitUncheckedRefCastInst(
|
|
swift::UncheckedRefCastInst *i) {
|
|
auto &ti = getTypeInfo(i->getType());
|
|
emitPointerCastInst(*this, i->getOperand(), SILValue(i, 0), ti);
|
|
}
|
|
|
|
void IRGenSILFunction::visitUncheckedAddrCastInst(
|
|
swift::UncheckedAddrCastInst *i) {
|
|
auto addr = getLoweredAddress(i->getOperand());
|
|
auto &ti = getTypeInfo(i->getType());
|
|
auto result = Builder.CreateBitCast(addr,ti.getStorageType()->getPointerTo());
|
|
setLoweredAddress(SILValue(i, 0), result);
|
|
}
|
|
|
|
static bool isStructurallySame(const llvm::Type *T1, const llvm::Type *T2) {
|
|
if (T1 == T2) return true;
|
|
|
|
if (auto *S1 = dyn_cast<llvm::StructType>(T1))
|
|
if (auto *S2 = dyn_cast<llvm::StructType>(T2))
|
|
return S1->isLayoutIdentical(const_cast<llvm::StructType*>(S2));
|
|
return false;
|
|
}
|
|
|
|
static void emitValueBitCast(IRGenSILFunction &IGF,
|
|
SourceLoc loc,
|
|
Explosion &in,
|
|
const LoadableTypeInfo &inTI,
|
|
Explosion &out,
|
|
const LoadableTypeInfo &outTI) {
|
|
// Unfortunately, we can't check this invariant until we get to IRGen, since
|
|
// the AST and SIL don't know anything about type layout.
|
|
if (inTI.getFixedSize() != outTI.getFixedSize()) {
|
|
|
|
// We can hit this case in specialized functions even for correct user code.
|
|
// If the user dynamically checks for correct type sizes in the generic
|
|
// function, a specialized function can contain the (not executed) bitcast
|
|
// with mismatching fixed sizes.
|
|
// Usually llvm can eliminate this code again because the user's safety
|
|
// check should be constant foldable on llvm level.
|
|
llvm::BasicBlock *failBB =
|
|
llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
IGF.Builder.CreateBr(failBB);
|
|
IGF.FailBBs.push_back(failBB);
|
|
|
|
IGF.Builder.emitBlock(failBB);
|
|
llvm::Function *trapIntrinsic = llvm::Intrinsic::getDeclaration(
|
|
&IGF.IGM.Module, llvm::Intrinsic::ID::trap);
|
|
IGF.Builder.CreateCall(trapIntrinsic);
|
|
IGF.Builder.CreateUnreachable();
|
|
|
|
llvm::BasicBlock *contBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
|
|
IGF.Builder.emitBlock(contBB);
|
|
in.claimAll();
|
|
for (auto schema : outTI.getSchema())
|
|
out.add(llvm::UndefValue::get(schema.getScalarType()));
|
|
return;
|
|
}
|
|
|
|
// If the transfer is doable bitwise, and if the elements of the explosion are
|
|
// the same type, then just transfer the elements.
|
|
if (inTI.isBitwiseTakable(ResilienceScope::Component) &&
|
|
outTI.isBitwiseTakable(ResilienceScope::Component) &&
|
|
isStructurallySame(inTI.StorageType, outTI.StorageType)) {
|
|
in.transferInto(out, in.size());
|
|
return;
|
|
}
|
|
|
|
// TODO: We could do bitcasts entirely in the value domain in some cases, but
|
|
// for simplicity, let's just always go through the stack for now.
|
|
|
|
// Create the allocation.
|
|
auto inStorage = IGF.createAlloca(inTI.getStorageType(),
|
|
std::max(inTI.getFixedAlignment(),
|
|
outTI.getFixedAlignment()),
|
|
"bitcast");
|
|
|
|
// Store the 'in' value.
|
|
inTI.initialize(IGF, in, inStorage);
|
|
// Load the 'out' value as the destination type.
|
|
auto outStorage = IGF.Builder.CreateBitCast(inStorage,
|
|
outTI.getStorageType()->getPointerTo());
|
|
outTI.loadAsTake(IGF, outStorage, out);
|
|
return;
|
|
}
|
|
|
|
void IRGenSILFunction::visitUncheckedTrivialBitCastInst(
|
|
swift::UncheckedTrivialBitCastInst *i) {
|
|
Explosion in = getLoweredExplosion(i->getOperand());
|
|
Explosion out;
|
|
|
|
emitValueBitCast(*this, i->getLoc().getSourceLoc(),
|
|
in, cast<LoadableTypeInfo>(getTypeInfo(i->getOperand().getType())),
|
|
out, cast<LoadableTypeInfo>(getTypeInfo(i->getType())));
|
|
|
|
setLoweredExplosion(SILValue(i, 0), out);
|
|
}
|
|
|
|
void IRGenSILFunction::visitUncheckedRefBitCastInst(
|
|
swift::UncheckedRefBitCastInst *i) {
|
|
Explosion in = getLoweredExplosion(i->getOperand());
|
|
Explosion out;
|
|
|
|
emitValueBitCast(*this, i->getLoc().getSourceLoc(),
|
|
in, cast<LoadableTypeInfo>(getTypeInfo(i->getOperand().getType())),
|
|
out, cast<LoadableTypeInfo>(getTypeInfo(i->getType())));
|
|
|
|
setLoweredExplosion(SILValue(i, 0), out);
|
|
}
|
|
|
|
void IRGenSILFunction::visitRefToRawPointerInst(
|
|
swift::RefToRawPointerInst *i) {
|
|
Explosion from = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *ptrValue = from.claimNext();
|
|
// The input may have witness tables or other additional data, but the class
|
|
// reference is always first.
|
|
from.claimAll();
|
|
|
|
ptrValue = Builder.CreateBitCast(ptrValue, IGM.Int8PtrTy);
|
|
|
|
Explosion to;
|
|
to.add(ptrValue);
|
|
setLoweredExplosion(SILValue(i, 0), to);
|
|
}
|
|
|
|
void IRGenSILFunction::visitRawPointerToRefInst(swift::RawPointerToRefInst *i) {
|
|
auto &ti = getTypeInfo(i->getType());
|
|
emitPointerCastInst(*this, i->getOperand(), SILValue(i, 0), ti);
|
|
}
|
|
|
|
// SIL scalar conversions which never change the IR type.
|
|
// FIXME: Except for optionals, which get bit-packed into an integer.
|
|
static void trivialRefConversion(IRGenSILFunction &IGF,
|
|
SILValue input,
|
|
SILValue result) {
|
|
Explosion temp = IGF.getLoweredExplosion(input);
|
|
auto &inputTI = IGF.getTypeInfo(input.getType());
|
|
auto &resultTI = IGF.getTypeInfo(result.getType());
|
|
|
|
// If the types are the same, forward the existing value.
|
|
if (inputTI.getStorageType() == resultTI.getStorageType()) {
|
|
IGF.setLoweredExplosion(result, temp);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, do the conversion.
|
|
llvm::Value *value = temp.claimNext();
|
|
auto schema = resultTI.getSchema();
|
|
assert(schema.size() == 1 && "not a single scalar type");
|
|
auto resultTy = schema.begin()->getScalarType();
|
|
if (resultTy->isPointerTy())
|
|
value = IGF.Builder.CreateIntToPtr(value, resultTy);
|
|
else
|
|
value = IGF.Builder.CreatePtrToInt(value, resultTy);
|
|
|
|
Explosion out;
|
|
out.add(value);
|
|
IGF.setLoweredExplosion(result, out);
|
|
}
|
|
|
|
// SIL scalar conversions which never change the IR type.
|
|
// FIXME: Except for optionals, which get bit-packed into an integer.
|
|
#define NOOP_CONVERSION(KIND) \
|
|
void IRGenSILFunction::visit##KIND##Inst(swift::KIND##Inst *i) { \
|
|
::trivialRefConversion(*this, i->getOperand(), SILValue(i, 0)); \
|
|
}
|
|
NOOP_CONVERSION(UnownedToRef)
|
|
NOOP_CONVERSION(RefToUnowned)
|
|
NOOP_CONVERSION(UnmanagedToRef)
|
|
NOOP_CONVERSION(RefToUnmanaged)
|
|
#undef NOOP_CONVERSION
|
|
|
|
void IRGenSILFunction::visitThinToThickFunctionInst(
|
|
swift::ThinToThickFunctionInst *i) {
|
|
// Take the incoming function pointer and add a null context pointer to it.
|
|
Explosion from = getLoweredExplosion(i->getOperand());
|
|
Explosion to;
|
|
to.add(from.claimNext());
|
|
to.add(IGM.RefCountedNull);
|
|
setLoweredExplosion(SILValue(i, 0), to);
|
|
}
|
|
|
|
void IRGenSILFunction::visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *i){
|
|
Explosion from = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *swiftMeta = from.claimNext();
|
|
CanType instanceType(i->getType().castTo<AnyMetatypeType>().getInstanceType());
|
|
Explosion to;
|
|
llvm::Value *classPtr =
|
|
emitClassHeapMetadataRefForMetatype(*this, swiftMeta, instanceType);
|
|
to.add(Builder.CreateBitCast(classPtr, IGM.ObjCClassPtrTy));
|
|
setLoweredExplosion(SILValue(i, 0), to);
|
|
}
|
|
|
|
void IRGenSILFunction::visitObjCToThickMetatypeInst(
|
|
ObjCToThickMetatypeInst *i) {
|
|
Explosion from = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *classPtr = from.claimNext();
|
|
|
|
// Fetch the metadata for that class.
|
|
Explosion to;
|
|
auto metadata = emitObjCMetadataRefForMetadata(*this, classPtr);
|
|
to.add(metadata);
|
|
setLoweredExplosion(SILValue(i, 0), to);
|
|
}
|
|
|
|
/// Emit a checked cast sequence. Returns an Address; this may be either
|
|
/// a proper address or a class reference pointer, depending on the address-
|
|
/// or object-ness of the cast.
|
|
void emitValueCheckedCast(IRGenSILFunction &IGF,
|
|
SILValue operand,
|
|
SILType loweredTargetType,
|
|
CheckedCastMode mode,
|
|
Explosion &ex) {
|
|
CanType sourceType = operand.getType().getSwiftRValueType();
|
|
CanType targetType = loweredTargetType.getSwiftRValueType();
|
|
|
|
if (auto sourceMetaType = dyn_cast<AnyMetatypeType>(sourceType)) {
|
|
llvm::Value *metatypeVal = nullptr;
|
|
auto fromEx = IGF.getLoweredExplosion(operand);
|
|
if (sourceMetaType->getRepresentation() != MetatypeRepresentation::Thin)
|
|
metatypeVal = fromEx.claimNext();
|
|
// If the metatype is existential, there may be witness tables in the
|
|
// value, which we don't need.
|
|
// TODO: In existential-to-existential casts, we should carry over common
|
|
// witness tables from the source to the destination.
|
|
fromEx.claimAll();
|
|
|
|
SmallVector<ProtocolDecl*, 1> protocols;
|
|
|
|
if (auto existential = dyn_cast<ExistentialMetatypeType>(targetType))
|
|
emitScalarExistentialDowncast(IGF, metatypeVal,
|
|
operand.getType(), loweredTargetType,
|
|
mode,
|
|
existential->getRepresentation(),
|
|
ex);
|
|
else if (auto destMetaType = dyn_cast<MetatypeType>(targetType))
|
|
emitMetatypeDowncast(IGF, metatypeVal, destMetaType, mode, ex);
|
|
else if (targetType->isExistentialType(protocols)) {
|
|
assert(IGF.IGM.ObjCInterop
|
|
&& protocols.size() == 1
|
|
&& *protocols[0]->getKnownProtocolKind()
|
|
== KnownProtocolKind::AnyObject
|
|
&& "metatypes can only be cast to AnyObject, with ObjC interop");
|
|
emitMetatypeToObjectDowncast(IGF, metatypeVal, sourceMetaType, mode, ex);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ((isa<ArchetypeType>(sourceType) && !targetType.isExistentialType()) ||
|
|
(isa<ArchetypeType>(targetType) && !sourceType.isExistentialType())) {
|
|
Explosion archetype = IGF.getLoweredExplosion(operand);
|
|
llvm::Value *fromValue = archetype.claimNext();
|
|
llvm::Value *toValue =
|
|
emitClassDowncast(IGF, fromValue, loweredTargetType, mode);
|
|
ex.add(toValue);
|
|
return;
|
|
}
|
|
|
|
if (sourceType.isExistentialType()) {
|
|
Explosion existential = IGF.getLoweredExplosion(operand);
|
|
llvm::Value *instance
|
|
= emitClassExistentialProjection(IGF, existential,
|
|
operand.getType(),
|
|
CanArchetypeType());
|
|
|
|
llvm::Value *toValue;
|
|
if (loweredTargetType.isExistentialType()) {
|
|
emitScalarExistentialDowncast(IGF, instance,
|
|
operand.getType(),
|
|
loweredTargetType, mode,
|
|
None /*not a metatype*/,
|
|
ex);
|
|
} else {
|
|
toValue = emitClassDowncast(IGF, instance, loweredTargetType, mode);
|
|
ex.add(toValue);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (targetType.isExistentialType()) {
|
|
Explosion from = IGF.getLoweredExplosion(operand);
|
|
llvm::Value *fromValue = from.claimNext();
|
|
emitScalarExistentialDowncast(IGF, fromValue, operand.getType(),
|
|
loweredTargetType, mode,
|
|
None /*not a metatype*/,
|
|
ex);
|
|
return;
|
|
}
|
|
|
|
Explosion from = IGF.getLoweredExplosion(operand);
|
|
llvm::Value *fromValue = from.claimNext();
|
|
llvm::Value *cast
|
|
= emitClassDowncast(IGF, fromValue, loweredTargetType, mode);
|
|
ex.add(cast);
|
|
}
|
|
|
|
void IRGenSILFunction::visitUnconditionalCheckedCastInst(
|
|
swift::UnconditionalCheckedCastInst *i) {
|
|
Explosion ex;
|
|
emitValueCheckedCast(*this, i->getOperand(), i->getType(),
|
|
CheckedCastMode::Unconditional, ex);
|
|
setLoweredExplosion(SILValue(i,0), ex);
|
|
}
|
|
|
|
void IRGenSILFunction::visitObjCMetatypeToObjectInst(
|
|
ObjCMetatypeToObjectInst *i){
|
|
// Bitcast the @objc metatype reference, which is already an ObjC object, to
|
|
// the destination type.
|
|
Explosion from = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *value = from.claimNext();
|
|
value = Builder.CreateBitCast(value, IGM.UnknownRefCountedPtrTy);
|
|
Explosion to;
|
|
to.add(value);
|
|
setLoweredExplosion(SILValue(i,0), to);
|
|
}
|
|
|
|
void IRGenSILFunction::visitObjCExistentialMetatypeToObjectInst(
|
|
ObjCExistentialMetatypeToObjectInst *i){
|
|
// Bitcast the @objc metatype reference, which is already an ObjC object, to
|
|
// the destination type. The metatype may carry additional witness tables we
|
|
// can drop.
|
|
Explosion from = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *value = from.claimNext();
|
|
from.claimAll();
|
|
value = Builder.CreateBitCast(value, IGM.UnknownRefCountedPtrTy);
|
|
Explosion to;
|
|
to.add(value);
|
|
setLoweredExplosion(SILValue(i,0), to);
|
|
}
|
|
void IRGenSILFunction::visitObjCProtocolInst(ObjCProtocolInst *i) {
|
|
// Get the protocol reference.
|
|
llvm::Value *protoRef = emitReferenceToObjCProtocol(*this, i->getProtocol());
|
|
// Bitcast it to the class reference type.
|
|
protoRef = Builder.CreateBitCast(protoRef,
|
|
getTypeInfo(i->getType()).getStorageType());
|
|
Explosion ex;
|
|
ex.add(protoRef);
|
|
setLoweredExplosion(SILValue(i,0), ex);
|
|
}
|
|
|
|
void IRGenSILFunction::visitRefToBridgeObjectInst(
|
|
swift::RefToBridgeObjectInst *i) {
|
|
Explosion refEx = getLoweredExplosion(i->getConverted());
|
|
llvm::Value *ref = refEx.claimNext();
|
|
|
|
Explosion bitsEx = getLoweredExplosion(i->getBitsOperand());
|
|
llvm::Value *bits = bitsEx.claimNext();
|
|
|
|
// Mask the bits into the pointer representation.
|
|
llvm::Value *val = Builder.CreatePtrToInt(ref, IGM.SizeTy);
|
|
val = Builder.CreateOr(val, bits);
|
|
val = Builder.CreateIntToPtr(val, IGM.BridgeObjectPtrTy);
|
|
|
|
Explosion resultEx;
|
|
resultEx.add(val);
|
|
|
|
setLoweredExplosion(SILValue(i, 0), resultEx);
|
|
}
|
|
|
|
void IRGenSILFunction::visitBridgeObjectToRefInst(
|
|
swift::BridgeObjectToRefInst *i) {
|
|
Explosion boEx = getLoweredExplosion(i->getConverted());
|
|
llvm::Value *bo = boEx.claimNext();
|
|
Explosion resultEx;
|
|
|
|
auto &refTI = getTypeInfo(i->getType());
|
|
llvm::Type *refType = refTI.getSchema()[0].getScalarType();
|
|
|
|
// If the value is an ObjC tagged pointer, pass it through verbatim.
|
|
llvm::BasicBlock *taggedCont = nullptr,
|
|
*tagged = nullptr,
|
|
*notTagged = nullptr;
|
|
llvm::Value *taggedRef = nullptr;
|
|
llvm::Value *boBits = nullptr;
|
|
|
|
ClassDecl *Cl = i->getType().getClassOrBoundGenericClass();
|
|
if (IGM.TargetInfo.hasObjCTaggedPointers() &&
|
|
(!Cl || !isKnownNotTaggedPointer(IGM, Cl))) {
|
|
boBits = Builder.CreatePtrToInt(bo, IGM.SizeTy);
|
|
APInt maskValue = IGM.TargetInfo.ObjCPointerReservedBits.asAPInt();
|
|
llvm::Value *mask = llvm::ConstantInt::get(IGM.getLLVMContext(), maskValue);
|
|
llvm::Value *reserved = Builder.CreateAnd(boBits, mask);
|
|
llvm::Value *cond = Builder.CreateICmpEQ(reserved,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 0));
|
|
tagged = createBasicBlock("tagged-pointer"),
|
|
notTagged = createBasicBlock("not-tagged-pointer");
|
|
taggedCont = createBasicBlock("tagged-cont");
|
|
|
|
Builder.CreateCondBr(cond, notTagged, tagged);
|
|
|
|
Builder.emitBlock(tagged);
|
|
taggedRef = Builder.CreateBitCast(bo, refType);
|
|
Builder.CreateBr(taggedCont);
|
|
|
|
// If it's not a tagged pointer, mask off the spare bits.
|
|
Builder.emitBlock(notTagged);
|
|
}
|
|
|
|
// Mask off the spare bits (if they exist).
|
|
auto &spareBits = IGM.getHeapObjectSpareBits();
|
|
llvm::Value *result;
|
|
if (spareBits.any()) {
|
|
APInt maskValue = ~spareBits.asAPInt();
|
|
|
|
if (!boBits)
|
|
boBits = Builder.CreatePtrToInt(bo, IGM.SizeTy);
|
|
|
|
llvm::Value *mask = llvm::ConstantInt::get(IGM.getLLVMContext(), maskValue);
|
|
llvm::Value *masked = Builder.CreateAnd(boBits, mask);
|
|
result = Builder.CreateIntToPtr(masked, refType);
|
|
} else {
|
|
result = Builder.CreateBitCast(bo, refType);
|
|
}
|
|
|
|
if (taggedCont) {
|
|
Builder.CreateBr(taggedCont);
|
|
|
|
Builder.emitBlock(taggedCont);
|
|
|
|
auto phi = Builder.CreatePHI(refType, 2);
|
|
phi->addIncoming(taggedRef, tagged);
|
|
phi->addIncoming(result, notTagged);
|
|
|
|
result = phi;
|
|
}
|
|
|
|
resultEx.add(result);
|
|
setLoweredExplosion(SILValue(i,0), resultEx);
|
|
}
|
|
|
|
void IRGenSILFunction::visitBridgeObjectToWordInst(
|
|
swift::BridgeObjectToWordInst *i) {
|
|
Explosion boEx = getLoweredExplosion(i->getConverted());
|
|
llvm::Value *val = boEx.claimNext();
|
|
val = Builder.CreatePtrToInt(val, IGM.SizeTy);
|
|
Explosion wordEx;
|
|
wordEx.add(val);
|
|
setLoweredExplosion(SILValue(i, 0), wordEx);
|
|
}
|
|
|
|
void IRGenSILFunction::visitUnconditionalCheckedCastAddrInst(
|
|
swift::UnconditionalCheckedCastAddrInst *i) {
|
|
Address dest = getLoweredAddress(i->getDest());
|
|
Address src = getLoweredAddress(i->getSrc());
|
|
emitCheckedCast(*this, src, i->getSourceType(), dest, i->getTargetType(),
|
|
i->getConsumptionKind(), CheckedCastMode::Unconditional);
|
|
}
|
|
|
|
void IRGenSILFunction::visitCheckedCastBranchInst(
|
|
swift::CheckedCastBranchInst *i) {
|
|
Explosion ex;
|
|
SILType destTy = i->getCastType();
|
|
if (i->isExact()) {
|
|
auto operand = i->getOperand();
|
|
Explosion source = getLoweredExplosion(operand);
|
|
llvm::Value *result =
|
|
emitClassIdenticalCast(*this, source.claimNext(), operand.getType(),
|
|
destTy, CheckedCastMode::Conditional);
|
|
ex.add(result);
|
|
} else {
|
|
emitValueCheckedCast(*this, i->getOperand(), i->getCastType(),
|
|
CheckedCastMode::Conditional, ex);
|
|
}
|
|
|
|
// Branch on the success of the cast.
|
|
// All cast operations currently return null on failure.
|
|
auto val = ex.claimNext();
|
|
llvm::Value *isNonnull = Builder.CreateICmpNE(val,
|
|
llvm::ConstantPointerNull::get(cast<llvm::PointerType>(val->getType())));
|
|
|
|
auto &successBB = getLoweredBB(i->getSuccessBB());
|
|
llvm::Type *toTy = IGM.getTypeInfo(destTy).StorageType;
|
|
if (toTy->isPointerTy())
|
|
val = Builder.CreateBitCast(val, toTy);
|
|
|
|
Builder.CreateCondBr(isNonnull,
|
|
successBB.bb,
|
|
getLoweredBB(i->getFailureBB()).bb);
|
|
|
|
// Feed the cast result into the nonnull branch.
|
|
unsigned phiIndex = 0;
|
|
Explosion ex2;
|
|
ex2.add(val);
|
|
ex2.add(ex.claimAll());
|
|
addIncomingExplosionToPHINodes(*this, successBB, phiIndex, ex2);
|
|
}
|
|
|
|
void IRGenSILFunction::visitCheckedCastAddrBranchInst(
|
|
swift::CheckedCastAddrBranchInst *i) {
|
|
Address dest = getLoweredAddress(i->getDest());
|
|
Address src = getLoweredAddress(i->getSrc());
|
|
llvm::Value *castSucceeded =
|
|
emitCheckedCast(*this, src, i->getSourceType(), dest, i->getTargetType(),
|
|
i->getConsumptionKind(), CheckedCastMode::Conditional);
|
|
Builder.CreateCondBr(castSucceeded,
|
|
getLoweredBB(i->getSuccessBB()).bb,
|
|
getLoweredBB(i->getFailureBB()).bb);
|
|
}
|
|
|
|
void IRGenSILFunction::visitIsNonnullInst(swift::IsNonnullInst *i) {
|
|
// Get the value we're testing, which may be a function, an address or an
|
|
// instance pointer.
|
|
llvm::Value *val;
|
|
const LoweredValue &lv = getLoweredValue(i->getOperand());
|
|
|
|
if (i->getOperand().getType().getSwiftType()->is<SILFunctionType>()) {
|
|
Explosion values = lv.getExplosion(*this);
|
|
val = values.claimNext(); // Function pointer.
|
|
values.claimNext(); // Ignore the data pointer.
|
|
} else if (lv.isAddress()) {
|
|
val = lv.getAddress().getAddress();
|
|
} else {
|
|
Explosion values = lv.getExplosion(*this);
|
|
val = values.claimNext();
|
|
}
|
|
|
|
// Check that the result isn't null.
|
|
auto *valTy = cast<llvm::PointerType>(val->getType());
|
|
llvm::Value *result = Builder.CreateICmp(llvm::CmpInst::ICMP_NE,
|
|
val, llvm::ConstantPointerNull::get(valTy));
|
|
|
|
Explosion out;
|
|
out.add(result);
|
|
setLoweredExplosion(SILValue(i, 0), out);
|
|
}
|
|
|
|
void IRGenSILFunction::visitNullClassInst(swift::NullClassInst *i) {
|
|
auto resultTy = getTypeInfo(i->getType()).getStorageType();
|
|
auto *result =
|
|
llvm::ConstantPointerNull::get(cast<llvm::PointerType>(resultTy));
|
|
|
|
Explosion out;
|
|
out.add(result);
|
|
setLoweredExplosion(SILValue(i, 0), out);
|
|
}
|
|
|
|
|
|
void IRGenSILFunction::visitUpcastInst(swift::UpcastInst *i) {
|
|
auto toTy = getTypeInfo(i->getType()).getStorageType();
|
|
|
|
// If we have an address, just bitcast, don't explode.
|
|
if (i->getOperand().getType().isAddress()) {
|
|
Address fromAddr = getLoweredAddress(i->getOperand());
|
|
llvm::Value *toValue = Builder.CreateBitCast(
|
|
fromAddr.getAddress(), toTy->getPointerTo());
|
|
Address Addr(toValue, fromAddr.getAlignment());
|
|
setLoweredAddress(SILValue(i, 0), Addr);
|
|
return;
|
|
}
|
|
|
|
Explosion from = getLoweredExplosion(i->getOperand());
|
|
Explosion to;
|
|
assert(from.size() == 1 && "class should explode to single value");
|
|
llvm::Value *fromValue = from.claimNext();
|
|
to.add(Builder.CreateBitCast(fromValue, toTy));
|
|
setLoweredExplosion(SILValue(i, 0), to);
|
|
}
|
|
|
|
void IRGenSILFunction::visitIndexAddrInst(swift::IndexAddrInst *i) {
|
|
Address base = getLoweredAddress(i->getBase());
|
|
Explosion indexValues = getLoweredExplosion(i->getIndex());
|
|
llvm::Value *index = indexValues.claimNext();
|
|
|
|
auto baseTy = i->getBase().getType();
|
|
auto &ti = getTypeInfo(baseTy);
|
|
|
|
Address dest = ti.indexArray(*this, base, index, baseTy);
|
|
setLoweredAddress(SILValue(i, 0), dest);
|
|
}
|
|
|
|
void IRGenSILFunction::visitIndexRawPointerInst(swift::IndexRawPointerInst *i) {
|
|
Explosion baseValues = getLoweredExplosion(i->getBase());
|
|
llvm::Value *base = baseValues.claimNext();
|
|
|
|
Explosion indexValues = getLoweredExplosion(i->getIndex());
|
|
llvm::Value *index = indexValues.claimNext();
|
|
|
|
// We don't expose a non-inbounds GEP operation.
|
|
llvm::Value *destValue = Builder.CreateInBoundsGEP(base, index);
|
|
|
|
Explosion result;
|
|
result.add(destValue);
|
|
setLoweredExplosion(SILValue(i, 0), result);
|
|
}
|
|
|
|
void IRGenSILFunction::visitAllocValueBufferInst(
|
|
swift::AllocValueBufferInst *i) {
|
|
Address buffer = getLoweredAddress(i->getOperand());
|
|
Address value = emitAllocateBuffer(*this, i->getValueType(), buffer);
|
|
setLoweredAddress(SILValue(i, 0), value);
|
|
}
|
|
|
|
void IRGenSILFunction::visitProjectValueBufferInst(
|
|
swift::ProjectValueBufferInst *i) {
|
|
Address buffer = getLoweredAddress(i->getOperand());
|
|
Address value = emitProjectBuffer(*this, i->getValueType(), buffer);
|
|
setLoweredAddress(SILValue(i, 0), value);
|
|
}
|
|
|
|
void IRGenSILFunction::visitDeallocValueBufferInst(
|
|
swift::DeallocValueBufferInst *i) {
|
|
Address buffer = getLoweredAddress(i->getOperand());
|
|
emitDeallocateBuffer(*this, i->getValueType(), buffer);
|
|
}
|
|
|
|
void IRGenSILFunction::visitInitExistentialAddrInst(swift::InitExistentialAddrInst *i) {
|
|
Address container = getLoweredAddress(i->getOperand());
|
|
SILType destType = i->getOperand().getType();
|
|
Address buffer = emitOpaqueExistentialContainerInit(*this,
|
|
container,
|
|
destType,
|
|
i->getFormalConcreteType(),
|
|
i->getLoweredConcreteType(),
|
|
i->getConformances());
|
|
setLoweredAddress(SILValue(i, 0), buffer);
|
|
}
|
|
|
|
void IRGenSILFunction::visitInitExistentialMetatypeInst(
|
|
InitExistentialMetatypeInst *i) {
|
|
Explosion metatype = getLoweredExplosion(i->getOperand());
|
|
Explosion result;
|
|
emitExistentialMetatypeContainer(*this,
|
|
result, i->getType(),
|
|
metatype.claimNext(),
|
|
i->getOperand().getType(),
|
|
i->getConformances());
|
|
setLoweredExplosion(SILValue(i, 0), result);
|
|
}
|
|
|
|
void IRGenSILFunction::visitInitExistentialRefInst(InitExistentialRefInst *i) {
|
|
Explosion instance = getLoweredExplosion(i->getOperand());
|
|
Explosion result;
|
|
emitClassExistentialContainer(*this,
|
|
result, i->getType(),
|
|
instance.claimNext(),
|
|
i->getFormalConcreteType(),
|
|
i->getOperand().getType(),
|
|
i->getConformances());
|
|
setLoweredExplosion(SILValue(i, 0), result);
|
|
}
|
|
|
|
void IRGenSILFunction::visitDeinitExistentialAddrInst(
|
|
swift::DeinitExistentialAddrInst *i) {
|
|
Address container = getLoweredAddress(i->getOperand());
|
|
emitOpaqueExistentialContainerDeinit(*this, container,
|
|
i->getOperand().getType());
|
|
}
|
|
|
|
void IRGenSILFunction::visitOpenExistentialAddrInst(OpenExistentialAddrInst *i) {
|
|
SILType baseTy = i->getOperand().getType();
|
|
Address base = getLoweredAddress(i->getOperand());
|
|
|
|
auto openedArchetype = cast<ArchetypeType>(
|
|
i->getType().getSwiftRValueType());
|
|
Address object = emitOpaqueExistentialProjection(*this, base, baseTy,
|
|
openedArchetype);
|
|
|
|
setLoweredAddress(SILValue(i, 0), object);
|
|
}
|
|
|
|
void IRGenSILFunction::visitOpenExistentialRefInst(OpenExistentialRefInst *i) {
|
|
|
|
SILType baseTy = i->getOperand().getType();
|
|
Explosion base = getLoweredExplosion(i->getOperand());
|
|
auto openedArchetype = cast<ArchetypeType>(
|
|
i->getType().getSwiftRValueType());
|
|
|
|
Explosion result;
|
|
llvm::Value *instance
|
|
= emitClassExistentialProjection(*this, base, baseTy,
|
|
openedArchetype);
|
|
result.add(instance);
|
|
setLoweredExplosion(SILValue(i, 0), result);
|
|
}
|
|
|
|
void IRGenSILFunction::visitOpenExistentialMetatypeInst(
|
|
OpenExistentialMetatypeInst *i) {
|
|
SILType baseTy = i->getOperand().getType();
|
|
Explosion base = getLoweredExplosion(i->getOperand());
|
|
auto openedTy = i->getType().getSwiftRValueType();
|
|
|
|
llvm::Value *metatype =
|
|
emitExistentialMetatypeProjection(*this, base, baseTy, openedTy);
|
|
Explosion result;
|
|
result.add(metatype);
|
|
setLoweredExplosion(SILValue(i, 0), result);
|
|
}
|
|
|
|
void IRGenSILFunction::visitProjectBlockStorageInst(ProjectBlockStorageInst *i){
|
|
// TODO
|
|
Address block = getLoweredAddress(i->getOperand());
|
|
Address capture = projectBlockStorageCapture(*this, block,
|
|
i->getOperand().getType().castTo<SILBlockStorageType>());
|
|
|
|
setLoweredAddress(SILValue(i, 0), capture);
|
|
}
|
|
|
|
void IRGenSILFunction::visitInitBlockStorageHeaderInst(
|
|
InitBlockStorageHeaderInst *i) {
|
|
auto addr = getLoweredAddress(i->getBlockStorage());
|
|
|
|
// We currently only support static invoke functions.
|
|
auto &invokeVal = getLoweredValue(i->getInvokeFunction());
|
|
llvm::Function *invokeFn = nullptr;
|
|
if (invokeVal.kind != LoweredValue::Kind::StaticFunction) {
|
|
IGM.unimplemented(i->getLoc().getSourceLoc(),
|
|
"non-static block invoke function");
|
|
} else {
|
|
invokeFn = invokeVal.getStaticFunction().getFunction();
|
|
}
|
|
|
|
// Initialize the header.
|
|
emitBlockHeader(*this, addr,
|
|
i->getBlockStorage().getType().castTo<SILBlockStorageType>(),
|
|
invokeFn, i->getInvokeFunction().getType().castTo<SILFunctionType>());
|
|
|
|
// Cast the storage to the block type to produce the result value.
|
|
llvm::Value *asBlock = Builder.CreateBitCast(addr.getAddress(),
|
|
IGM.ObjCBlockPtrTy);
|
|
Explosion e;
|
|
e.add(asBlock);
|
|
setLoweredExplosion(SILValue(i, 0), e);
|
|
}
|
|
|
|
void IRGenSILFunction::visitAllocExistentialBoxInst(AllocExistentialBoxInst *i){
|
|
Explosion box;
|
|
auto projectionAddr =
|
|
emitBoxedExistentialContainerAllocation(*this, box, i->getExistentialType(),
|
|
i->getFormalConcreteType(),
|
|
i->getLoweredConcreteType(),
|
|
i->getConformances());
|
|
setLoweredExplosion(i->getExistentialResult(), box);
|
|
setLoweredAddress(i->getValueAddressResult(), projectionAddr);
|
|
}
|
|
|
|
void IRGenSILFunction::visitDeallocExistentialBoxInst(
|
|
DeallocExistentialBoxInst *i) {
|
|
Explosion box = getLoweredExplosion(i->getOperand());
|
|
emitBoxedExistentialContainerDeallocation(*this, box,
|
|
i->getOperand().getType(),
|
|
i->getConcreteType());
|
|
}
|
|
|
|
void IRGenSILFunction::visitOpenExistentialBoxInst(OpenExistentialBoxInst *i) {
|
|
Explosion box = getLoweredExplosion(i->getOperand());
|
|
auto openedArchetype = cast<ArchetypeType>(i->getType().getSwiftRValueType());
|
|
|
|
auto addr = emitBoxedExistentialProjection(*this, box,
|
|
i->getOperand().getType(),
|
|
openedArchetype);
|
|
setLoweredAddress(SILValue(i,0), addr);
|
|
}
|
|
|
|
void IRGenSILFunction::visitDynamicMethodInst(DynamicMethodInst *i) {
|
|
assert(i->getMember().isForeign && "dynamic_method requires [objc] method");
|
|
setLoweredObjCMethod(SILValue(i, 0), i->getMember());
|
|
return;
|
|
}
|
|
|
|
void IRGenSILFunction::visitWitnessMethodInst(swift::WitnessMethodInst *i) {
|
|
// For Objective-C classes we need to arrange for a msgSend
|
|
// to happen when the method is called.
|
|
if (i->getMember().isForeign) {
|
|
setLoweredObjCMethod(SILValue(i, 0), i->getMember());
|
|
return;
|
|
}
|
|
|
|
CanType baseTy = i->getLookupType();
|
|
ProtocolConformance *conformance = i->getConformance();
|
|
SILDeclRef member = i->getMember();
|
|
|
|
Explosion lowered;
|
|
emitWitnessMethodValue(*this, baseTy, member, conformance, lowered);
|
|
|
|
setLoweredExplosion(SILValue(i, 0), lowered);
|
|
}
|
|
|
|
void IRGenSILFunction::visitCopyAddrInst(swift::CopyAddrInst *i) {
|
|
SILType addrTy = i->getSrc().getType();
|
|
Address src = getLoweredAddress(i->getSrc());
|
|
Address dest = getLoweredAddress(i->getDest());
|
|
const TypeInfo &addrTI = getTypeInfo(addrTy);
|
|
|
|
unsigned takeAndOrInitialize =
|
|
(i->isTakeOfSrc() << 1U) | i->isInitializationOfDest();
|
|
static const unsigned COPY = 0, TAKE = 2, ASSIGN = 0, INITIALIZE = 1;
|
|
|
|
switch (takeAndOrInitialize) {
|
|
case ASSIGN | COPY:
|
|
addrTI.assignWithCopy(*this, dest, src, addrTy);
|
|
break;
|
|
case INITIALIZE | COPY:
|
|
addrTI.initializeWithCopy(*this, dest, src, addrTy);
|
|
break;
|
|
case ASSIGN | TAKE:
|
|
addrTI.assignWithTake(*this, dest, src, addrTy);
|
|
break;
|
|
case INITIALIZE | TAKE:
|
|
addrTI.initializeWithTake(*this, dest, src, addrTy);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected take/initialize attribute combination?!");
|
|
}
|
|
}
|
|
|
|
void IRGenSILFunction::visitDestroyAddrInst(swift::DestroyAddrInst *i) {
|
|
SILType addrTy = i->getOperand().getType();
|
|
Address base = getLoweredAddress(i->getOperand());
|
|
const TypeInfo &addrTI = getTypeInfo(addrTy);
|
|
addrTI.destroy(*this, base, addrTy);
|
|
}
|
|
|
|
void IRGenSILFunction::visitCondFailInst(swift::CondFailInst *i) {
|
|
Explosion e = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *cond = e.claimNext();
|
|
|
|
// Emit individual fail blocks so that we can map the failure back to a source
|
|
// line.
|
|
llvm::BasicBlock *failBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
|
|
llvm::BasicBlock *contBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
|
|
Builder.CreateCondBr(cond, failBB, contBB);
|
|
Builder.emitBlock(failBB);
|
|
llvm::Function *trapIntrinsic =
|
|
llvm::Intrinsic::getDeclaration(&IGM.Module, llvm::Intrinsic::ID::trap);
|
|
Builder.CreateCall(trapIntrinsic);
|
|
Builder.CreateUnreachable();
|
|
Builder.emitBlock(contBB);
|
|
FailBBs.push_back(failBB);
|
|
}
|
|
|
|
void IRGenSILFunction::visitSuperMethodInst(swift::SuperMethodInst *i) {
|
|
assert(i->getMember().isForeign && "super_method to non_objc callee");
|
|
setLoweredObjCMethodBounded(SILValue(i, 0), i->getMember(),
|
|
i->getOperand().getType(),
|
|
/*startAtSuper=*/true);
|
|
}
|
|
|
|
void IRGenSILFunction::visitClassMethodInst(swift::ClassMethodInst *i) {
|
|
// For Objective-C classes we need to arrange for a msgSend
|
|
// to happen when the method is called.
|
|
if (i->getMember().isForeign) {
|
|
setLoweredObjCMethod(SILValue(i, 0), i->getMember());
|
|
return;
|
|
}
|
|
|
|
Explosion base = getLoweredExplosion(i->getOperand());
|
|
llvm::Value *baseValue = base.claimNext();
|
|
|
|
SILDeclRef method = i->getMember();
|
|
auto methodType = i->getType().castTo<SILFunctionType>();
|
|
|
|
// For Swift classes, get the method implementation from the vtable.
|
|
// FIXME: better explosion kind, map as static.
|
|
llvm::Value *fnValue = emitVirtualMethodValue(*this, baseValue,
|
|
i->getOperand().getType(),
|
|
method, methodType);
|
|
fnValue = Builder.CreateBitCast(fnValue, IGM.Int8PtrTy);
|
|
Explosion e;
|
|
e.add(fnValue);
|
|
setLoweredExplosion(SILValue(i, 0), e);
|
|
}
|
|
|
|
/// Generate ConstantStruct for StructInst.
|
|
static llvm::Constant *getConstantValue(IRGenModule &IGM, llvm::StructType *STy,
|
|
StructInst *SI) {
|
|
SmallVector<llvm::Constant*, 32> Elts;
|
|
assert(SI->getNumOperands() == STy->getNumElements() &&
|
|
"mismatch StructInst with its lowered StructType!");
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
if (auto *Elem = dyn_cast<StructInst>(SI->getOperand(i)))
|
|
Elts.push_back(getConstantValue(IGM,
|
|
cast<llvm::StructType>(STy->getElementType(i)), Elem));
|
|
else if (auto *ILI = dyn_cast<IntegerLiteralInst>(SI->getOperand(i)))
|
|
Elts.push_back(getConstantInt(IGM, ILI));
|
|
else if (auto *FLI = dyn_cast<FloatLiteralInst>(SI->getOperand(i)))
|
|
Elts.push_back(getConstantFP(IGM, FLI));
|
|
else if (auto *SLI = dyn_cast<StringLiteralInst>(SI->getOperand(i)))
|
|
Elts.push_back(getAddrOfString(IGM, SLI->getValue(), SLI->getEncoding()));
|
|
else
|
|
llvm_unreachable("Unexpected SILInstruction in static initializer!");
|
|
}
|
|
return llvm::ConstantStruct::get(STy, Elts);
|
|
}
|
|
|
|
|
|
void IRGenModule::emitSILStaticInitializer() {
|
|
SmallVector<SILFunction*, 8> StaticInitializers;
|
|
for (SILGlobalVariable &v : SILMod->getSILGlobals()) {
|
|
auto *staticInit = v.getInitializer();
|
|
if (!staticInit)
|
|
continue;
|
|
|
|
auto *gvar = Module.getGlobalVariable(v.getName(),
|
|
/*allowInternal*/true);
|
|
|
|
// A check for multi-threaded compilation: Is this the llvm module where the
|
|
// global is defined and not only referenced (or not referenced at all).
|
|
if (!gvar || !gvar->hasInitializer())
|
|
continue;
|
|
|
|
auto *STy = dyn_cast<llvm::StructType>(gvar->getInitializer()->getType());
|
|
assert(STy && "We only handle StructType for now!");
|
|
|
|
// Get the StructInst that we write to the SILGlobalVariable.
|
|
auto *SI = cast<StructInst>(v.getValueOfStaticInitializer());
|
|
gvar->setInitializer(getConstantValue(*this, STy, SI));
|
|
}
|
|
}
|