mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
1111 lines
38 KiB
C++
1111 lines
38 KiB
C++
//===--- Projection.cpp ---------------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-projection"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Projection Static Asserts
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// These are just for performance and verification. If one needs to make
|
|
/// changes that cause the asserts the fire, please update them. The purpose is
|
|
/// to prevent these predicates from changing values by mistake.
|
|
static_assert(std::is_standard_layout<Projection>::value,
|
|
"Expected projection to be a standard layout type");
|
|
static_assert(sizeof(Projection) == (sizeof(uintptr_t) * 3),
|
|
"Projection size changed");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Projection
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if we are accessing different fields.
|
|
static bool areProjectionsToDifferentFields(const Projection &P1,
|
|
const Projection &P2) {
|
|
// If operands have the same type and we are accessing different fields,
|
|
// returns true. Operand's type is not saved in Projection. Instead we check
|
|
// Decl's context.
|
|
if (!P1.isNominalKind() || !P2.isNominalKind())
|
|
return false;
|
|
|
|
return P1.getDecl()->getDeclContext() == P2.getDecl()->getDeclContext() &&
|
|
P1 != P2;
|
|
}
|
|
|
|
bool Projection::matchesValueProjection(SILInstruction *I) const {
|
|
llvm::Optional<Projection> P = Projection::valueProjectionForInstruction(I);
|
|
if (!P)
|
|
return false;
|
|
return *this == P.getValue();
|
|
}
|
|
|
|
llvm::Optional<Projection>
|
|
Projection::valueProjectionForInstruction(SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
case ValueKind::StructExtractInst:
|
|
assert(isValueProjection(I) && "isValueProjection out of sync");
|
|
return Projection(cast<StructExtractInst>(I));
|
|
case ValueKind::TupleExtractInst:
|
|
assert(isValueProjection(I) && "isValueProjection out of sync");
|
|
return Projection(cast<TupleExtractInst>(I));
|
|
case ValueKind::UncheckedEnumDataInst:
|
|
assert(isValueProjection(I) && "isValueProjection out of sync");
|
|
return Projection(cast<UncheckedEnumDataInst>(I));
|
|
default:
|
|
assert(!isValueProjection(I) && "isValueProjection out of sync");
|
|
return llvm::NoneType::None;
|
|
}
|
|
}
|
|
|
|
llvm::Optional<Projection>
|
|
Projection::addressProjectionForInstruction(SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
case ValueKind::StructElementAddrInst:
|
|
assert(isAddrProjection(I) && "isAddrProjection out of sync");
|
|
return Projection(cast<StructElementAddrInst>(I));
|
|
case ValueKind::TupleElementAddrInst:
|
|
assert(isAddrProjection(I) && "isAddrProjection out of sync");
|
|
return Projection(cast<TupleElementAddrInst>(I));
|
|
case ValueKind::RefElementAddrInst:
|
|
assert(isAddrProjection(I) && "isAddrProjection out of sync");
|
|
return Projection(cast<RefElementAddrInst>(I));
|
|
case ValueKind::UncheckedTakeEnumDataAddrInst:
|
|
assert(isAddrProjection(I) && "isAddrProjection out of sync");
|
|
return Projection(cast<UncheckedTakeEnumDataAddrInst>(I));
|
|
default:
|
|
assert(!isAddrProjection(I) && "isAddrProjection out of sync");
|
|
return llvm::NoneType::None;
|
|
}
|
|
}
|
|
|
|
llvm::Optional<Projection>
|
|
Projection::projectionForInstruction(SILInstruction *I) {
|
|
if (auto P = addressProjectionForInstruction(I))
|
|
return P;
|
|
return valueProjectionForInstruction(I);
|
|
}
|
|
|
|
bool
|
|
Projection::operator==(const Projection &Other) const {
|
|
if (isNominalKind() && Other.isNominalKind()) {
|
|
return Other.getDecl() == Decl;
|
|
} else {
|
|
return !Other.isNominalKind() && Index == Other.getIndex();
|
|
}
|
|
}
|
|
|
|
bool
|
|
Projection::operator<(Projection Other) const {
|
|
// If we have a nominal kind...
|
|
if (isNominalKind()) {
|
|
// And Other is also nominal...
|
|
if (Other.isNominalKind()) {
|
|
// Just compare the value decl pointers.
|
|
return getDeclIndex() < Other.getDeclIndex();
|
|
}
|
|
|
|
// Otherwise if Other is not nominal, return true since we always sort
|
|
// decls before indices.
|
|
return true;
|
|
} else {
|
|
// If this is not a nominal kind and Other is nominal, return
|
|
// false. Nominal kinds are always sorted before non-nominal kinds.
|
|
if (Other.isNominalKind())
|
|
return false;
|
|
|
|
// Otherwise, we are both index projections. Compare the indices.
|
|
return getIndex() < Other.getIndex();
|
|
}
|
|
}
|
|
|
|
static unsigned getIndexForValueDecl(ValueDecl *Decl) {
|
|
NominalTypeDecl *D = cast<NominalTypeDecl>(Decl->getDeclContext());
|
|
|
|
unsigned i = 0;
|
|
for (auto *V : D->getStoredProperties()) {
|
|
if (V == Decl)
|
|
return i;
|
|
++i;
|
|
}
|
|
|
|
llvm_unreachable("Failed to find Decl in its decl context?!");
|
|
}
|
|
|
|
Projection::Projection(StructElementAddrInst *SEA)
|
|
: Type(SEA->getType()), Decl(SEA->getField()),
|
|
Index(getIndexForValueDecl(Decl)),
|
|
Kind(unsigned(ProjectionKind::Struct)) {}
|
|
|
|
Projection::Projection(TupleElementAddrInst *TEA)
|
|
: Type(TEA->getType()), Decl(nullptr), Index(TEA->getFieldNo()),
|
|
Kind(unsigned(ProjectionKind::Tuple)) {}
|
|
|
|
Projection::Projection(RefElementAddrInst *REA)
|
|
: Type(REA->getType()), Decl(REA->getField()),
|
|
Index(getIndexForValueDecl(Decl)), Kind(unsigned(ProjectionKind::Class)) {
|
|
}
|
|
|
|
/// UncheckedTakeEnumDataAddrInst always have an index of 0 since enums only
|
|
/// have one payload.
|
|
Projection::Projection(UncheckedTakeEnumDataAddrInst *UTEDAI)
|
|
: Type(UTEDAI->getType()), Decl(UTEDAI->getElement()), Index(0),
|
|
Kind(unsigned(ProjectionKind::Enum)) {}
|
|
|
|
Projection::Projection(StructExtractInst *SEI)
|
|
: Type(SEI->getType()), Decl(SEI->getField()),
|
|
Index(getIndexForValueDecl(Decl)),
|
|
Kind(unsigned(ProjectionKind::Struct)) {}
|
|
|
|
Projection::Projection(TupleExtractInst *TEI)
|
|
: Type(TEI->getType()), Decl(nullptr), Index(TEI->getFieldNo()),
|
|
Kind(unsigned(ProjectionKind::Tuple)) {}
|
|
|
|
/// UncheckedEnumData always have an index of 0 since enums only have one
|
|
/// payload.
|
|
Projection::Projection(UncheckedEnumDataInst *UEDAI)
|
|
: Type(UEDAI->getType()), Decl(UEDAI->getElement()), Index(0),
|
|
Kind(unsigned(ProjectionKind::Enum)) {}
|
|
|
|
NullablePtr<SILInstruction>
|
|
Projection::
|
|
createValueProjection(SILBuilder &B, SILLocation Loc, SILValue Base) const {
|
|
// Grab Base's type.
|
|
SILType BaseTy = Base.getType();
|
|
|
|
// If BaseTy is not an object type, bail.
|
|
if (!BaseTy.isObject())
|
|
return nullptr;
|
|
|
|
// If this projection is associated with an address type, convert its type to
|
|
// an object type.
|
|
//
|
|
// We explicitly do not convert Type to be an object if it is a local storage
|
|
// type since we want it to fail.
|
|
SILType Ty = Type.isAddress()? Type.getObjectType() : Type;
|
|
|
|
if (!Ty.isObject())
|
|
return nullptr;
|
|
|
|
// Ok, we now know that the type of Base and the type represented by the base
|
|
// of this projection match and that this projection can be represented as
|
|
// value. Create the instruction if we can. Otherwise, return nullptr.
|
|
switch (getKind()) {
|
|
case ProjectionKind::Struct:
|
|
return B.createStructExtract(Loc, Base, cast<VarDecl>(getDecl()));
|
|
case ProjectionKind::Tuple:
|
|
return B.createTupleExtract(Loc, Base, getIndex());
|
|
case ProjectionKind::Enum:
|
|
return B.createUncheckedEnumData(Loc, Base,
|
|
cast<EnumElementDecl>(getDecl()));
|
|
case ProjectionKind::Class:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
NullablePtr<SILInstruction>
|
|
Projection::
|
|
createAddrProjection(SILBuilder &B, SILLocation Loc, SILValue Base) const {
|
|
// Grab Base's type.
|
|
SILType BaseTy = Base.getType();
|
|
|
|
// If BaseTy is not an address type, bail.
|
|
if (!BaseTy.isAddress())
|
|
return nullptr;
|
|
|
|
// If this projection is associated with an object type, convert its type to
|
|
// an address type.
|
|
//
|
|
// *NOTE* We purposely do not handle local storage types here since we want to
|
|
// always fail in such a case. That is handled by checking that Ty is an
|
|
// address.
|
|
SILType Ty = Type.isObject()? Type.getAddressType() : Type;
|
|
|
|
if (!Ty.isAddress())
|
|
return nullptr;
|
|
|
|
// Ok, we now know that the type of Base and the type represented by the base
|
|
// of this projection match and that this projection can be represented as
|
|
// value. Create the instruction if we can. Otherwise, return nullptr.
|
|
switch (getKind()) {
|
|
case ProjectionKind::Struct:
|
|
return B.createStructElementAddr(Loc, Base, cast<VarDecl>(getDecl()));
|
|
case ProjectionKind::Tuple:
|
|
return B.createTupleElementAddr(Loc, Base, getIndex());
|
|
case ProjectionKind::Enum:
|
|
return B.createUncheckedTakeEnumDataAddr(Loc, Base,
|
|
cast<EnumElementDecl>(getDecl()));
|
|
case ProjectionKind::Class:
|
|
return B.createRefElementAddr(Loc, Base, cast<VarDecl>(getDecl()));
|
|
}
|
|
}
|
|
|
|
SILValue Projection::getOperandForAggregate(SILInstruction *I) const {
|
|
switch (getKind()) {
|
|
case ProjectionKind::Struct:
|
|
if (isa<StructInst>(I))
|
|
return I->getOperand(getDeclIndex());
|
|
break;
|
|
case ProjectionKind::Tuple:
|
|
if (isa<TupleInst>(I))
|
|
return I->getOperand(getIndex());
|
|
break;
|
|
case ProjectionKind::Enum:
|
|
if (EnumInst *EI = dyn_cast<EnumInst>(I)) {
|
|
if (EI->getElement() == Decl) {
|
|
assert(EI->hasOperand() && "expected data operand");
|
|
return EI->getOperand();
|
|
}
|
|
}
|
|
break;
|
|
case ProjectionKind::Class:
|
|
// There is no SIL instruction to create a class by aggregating values.
|
|
break;
|
|
}
|
|
return SILValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Projection Path
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Optional<ProjectionPath>
|
|
ProjectionPath::getAddrProjectionPath(SILValue Start, SILValue End,
|
|
bool IgnoreCasts) {
|
|
// Do not inspect the body of structs with unreferenced types such as
|
|
// bitfields and unions.
|
|
if (Start.getType().aggregateHasUnreferenceableStorage() ||
|
|
End.getType().aggregateHasUnreferenceableStorage()) {
|
|
return llvm::NoneType::None;
|
|
}
|
|
|
|
ProjectionPath P;
|
|
|
|
// If Start == End, there is a "trivial" address projection in between the
|
|
// two. This is represented by returning an empty ProjectionPath.
|
|
if (Start == End)
|
|
return std::move(P);
|
|
|
|
// Otherwise see if End can be projection extracted from Start. First see if
|
|
// End is a projection at all.
|
|
auto Iter = End;
|
|
if (IgnoreCasts)
|
|
Iter = Iter.stripCasts();
|
|
while (Projection::isAddrProjection(Iter) && Start != Iter) {
|
|
Projection AP = *Projection::addressProjectionForValue(Iter);
|
|
P.Path.push_back(AP);
|
|
|
|
Iter = cast<SILInstruction>(*Iter).getOperand(0);
|
|
if (IgnoreCasts)
|
|
Iter = Iter.stripCasts();
|
|
}
|
|
|
|
// Return None if we have an empty projection list or if Start == Iter.
|
|
if (P.empty() || Start != Iter)
|
|
return llvm::NoneType::None;
|
|
|
|
// Otherwise, return P.
|
|
return std::move(P);
|
|
}
|
|
|
|
/// Returns true if the two paths have a non-empty symmetric difference.
|
|
///
|
|
/// This means that the two objects have the same base but access different
|
|
/// fields of the base object.
|
|
bool
|
|
ProjectionPath::
|
|
hasNonEmptySymmetricDifference(const ProjectionPath &RHS) const {
|
|
// If either the LHS or RHS is empty, there is no common base class. Return
|
|
// false.
|
|
if (empty() || RHS.empty())
|
|
return false;
|
|
|
|
// We reverse the projection path to scan from the common object.
|
|
auto LHSReverseIter = Path.rbegin();
|
|
auto RHSReverseIter = RHS.Path.rbegin();
|
|
|
|
// For each index i until min path size...
|
|
for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i) {
|
|
// Grab the current projections.
|
|
const Projection &LHSProj = *LHSReverseIter;
|
|
const Projection &RHSProj = *RHSReverseIter;
|
|
|
|
// If we are accessing different fields of a common object, return
|
|
// false. The two projection paths must have a non-empty symmetric
|
|
// difference.
|
|
if (areProjectionsToDifferentFields(LHSProj, RHSProj)) {
|
|
DEBUG(llvm::dbgs() << " Path different at index: " << i << '\n');
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, if the two projections equal exactly, they have no symmetric
|
|
// difference.
|
|
if (LHSProj == RHSProj)
|
|
return false;
|
|
|
|
// Continue if we are accessing the same field.
|
|
LHSReverseIter++;
|
|
RHSReverseIter++;
|
|
}
|
|
|
|
// We checked
|
|
return false;
|
|
}
|
|
|
|
/// TODO: Integrate has empty non-symmetric difference into here.
|
|
SubSeqRelation_t
|
|
ProjectionPath::
|
|
computeSubSeqRelation(const ProjectionPath &RHS) const {
|
|
// If either path is empty, we can not prove anything, return Unrelated.
|
|
if (empty() || RHS.empty())
|
|
return SubSeqRelation_t::Unrelated;
|
|
|
|
// We reverse the projection path to scan from the common object.
|
|
auto LHSReverseIter = rbegin();
|
|
auto RHSReverseIter = RHS.rbegin();
|
|
|
|
unsigned MinPathSize = std::min(size(), RHS.size());
|
|
|
|
// For each index i until min path size...
|
|
for (unsigned i = 0; i != MinPathSize; ++i) {
|
|
// Grab the current projections.
|
|
const Projection &LHSProj = *LHSReverseIter;
|
|
const Projection &RHSProj = *RHSReverseIter;
|
|
|
|
// If the two projections do not equal exactly, return Unrelated.
|
|
//
|
|
// TODO: If Index equals zero, then we know that the two lists have nothing
|
|
// in common and should return unrelated. If Index is greater than zero,
|
|
// then we know that the two projection paths have a common base but a
|
|
// non-empty symmetric difference. For now we just return Unrelated since I
|
|
// can not remember why I had the special check in the
|
|
// hasNonEmptySymmetricDifference code.
|
|
if (LHSProj != RHSProj)
|
|
return SubSeqRelation_t::Unrelated;
|
|
|
|
// Otherwise increment reverse iterators.
|
|
LHSReverseIter++;
|
|
RHSReverseIter++;
|
|
}
|
|
|
|
// Ok, we now know that one of the paths is a subsequence of the other. If
|
|
// both size() and RHS.size() equal then we know that the entire sequences
|
|
// equal.
|
|
if (size() == RHS.size())
|
|
return SubSeqRelation_t::Equal;
|
|
|
|
// If MinPathSize == size(), then we know that LHS is a strict subsequence of
|
|
// RHS.
|
|
if (MinPathSize == size())
|
|
return SubSeqRelation_t::LHSStrictSubSeqOfRHS;
|
|
|
|
// Otherwise, we know that MinPathSize must be RHS.size() and RHS must be a
|
|
// strict subsequence of LHS. Assert to check this and return.
|
|
assert(MinPathSize == RHS.size() &&
|
|
"Since LHS and RHS don't equal and size() != MinPathSize, RHS.size() "
|
|
"must equal MinPathSize");
|
|
return SubSeqRelation_t::RHSStrictSubSeqOfLHS;
|
|
}
|
|
|
|
bool ProjectionPath::
|
|
findMatchingValueProjectionPaths(SILInstruction *I,
|
|
SmallVectorImpl<SILInstruction *> &T) const {
|
|
// We maintain the head of our worklist so we can use our worklist as a queue
|
|
// and work in breadth first order. This makes sense since we want to process
|
|
// in levels so we can maintain one tail list and delete the tail list when we
|
|
// move to the next level.
|
|
unsigned WorkListHead = 0;
|
|
llvm::SmallVector<SILInstruction *, 8> WorkList;
|
|
WorkList.push_back(I);
|
|
|
|
// Start at the root of the list.
|
|
for (auto PI = rbegin(), PE = rend(); PI != PE; ++PI) {
|
|
// When we start a new level, clear T.
|
|
T.clear();
|
|
|
|
// If we have an empty worklist, return false. We have been unable to
|
|
// complete the list.
|
|
unsigned WorkListSize = WorkList.size();
|
|
if (WorkListHead == WorkListSize)
|
|
return false;
|
|
|
|
// Otherwise, process each instruction in the worklist.
|
|
for (; WorkListHead != WorkListSize; WorkListHead++) {
|
|
SILInstruction *Ext = WorkList[WorkListHead];
|
|
|
|
// If the current projection does not match I, continue and process the
|
|
// next instruction.
|
|
if (!PI->matchesValueProjection(Ext)) {
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we know that Ext matched this projection path and we should
|
|
// visit all of its uses and add Ext itself to our tail list.
|
|
T.push_back(Ext);
|
|
for (auto *Op : Ext->getUses()) {
|
|
WorkList.push_back(Op->getUser());
|
|
}
|
|
}
|
|
|
|
// Reset the worklist size.
|
|
WorkListSize = WorkList.size();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Optional<ProjectionPath>
|
|
ProjectionPath::subtractPaths(const ProjectionPath &LHS, const ProjectionPath &RHS) {
|
|
// If RHS is greater than or equal to LHS in size, RHS can not be a prefix of
|
|
// LHS. Return None.
|
|
unsigned RHSSize = RHS.size();
|
|
unsigned LHSSize = LHS.size();
|
|
if (RHSSize >= LHSSize)
|
|
return llvm::NoneType::None;
|
|
|
|
// First make sure that the prefix matches.
|
|
Optional<ProjectionPath> P = ProjectionPath();
|
|
for (unsigned i = 0; i < RHSSize; i++) {
|
|
if (LHS.Path[i] != RHS.Path[i]) {
|
|
P.reset();
|
|
return P;
|
|
}
|
|
}
|
|
|
|
// Add the rest of LHS to P and return P.
|
|
for (unsigned i = RHSSize, e = LHSSize; i != e; ++i) {
|
|
P->Path.push_back(LHS.Path[i]);
|
|
}
|
|
|
|
return P;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ProjectionTreeNode
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ProjectionTreeNode *
|
|
ProjectionTreeNode::getChildForProjection(ProjectionTree &Tree,
|
|
const Projection &P) {
|
|
for (unsigned Index : ChildProjections) {
|
|
ProjectionTreeNode *N = Tree.getNode(Index);
|
|
if (N->Proj && N->Proj.getValue() == P) {
|
|
return N;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
ProjectionTreeNode *
|
|
ProjectionTreeNode::getParent(ProjectionTree &Tree) {
|
|
if (!Parent)
|
|
return nullptr;
|
|
return Tree.getNode(Parent.getValue());
|
|
}
|
|
|
|
const ProjectionTreeNode *
|
|
ProjectionTreeNode::getParent(const ProjectionTree &Tree) const {
|
|
if (!Parent)
|
|
return nullptr;
|
|
return Tree.getNode(Parent.getValue());
|
|
}
|
|
|
|
NullablePtr<SILInstruction>
|
|
ProjectionTreeNode::
|
|
createProjection(SILBuilder &B, SILLocation Loc, SILValue Arg) const {
|
|
if (!Proj)
|
|
return nullptr;
|
|
|
|
return Proj->createProjection(B, Loc, Arg);
|
|
}
|
|
|
|
|
|
void
|
|
ProjectionTreeNode::
|
|
processUsersOfValue(ProjectionTree &Tree,
|
|
llvm::SmallVectorImpl<ValueNodePair> &Worklist,
|
|
SILValue Value) {
|
|
DEBUG(llvm::dbgs() << " Looking at Users:\n");
|
|
|
|
// For all uses of V...
|
|
for (Operand *Op : Value.getUses()) {
|
|
// Grab the User of V.
|
|
SILInstruction *User = Op->getUser();
|
|
|
|
DEBUG(llvm::dbgs() << " " << *User);
|
|
|
|
// First try to create a Projection for User.
|
|
auto P = Projection::projectionForInstruction(User);
|
|
|
|
// If we fail to create a projection, add User as a user to this node and
|
|
// continue.
|
|
if (!P) {
|
|
DEBUG(llvm::dbgs() << " Failed to create projection. Adding "
|
|
"to non projection user!\n");
|
|
addNonProjectionUser(Op);
|
|
continue;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << " Created projection.\n");
|
|
|
|
assert(User->getNumTypes() == 1 && "Projections should only have one use");
|
|
|
|
// Look up the Node for this projection add add {User, ChildNode} to the
|
|
// worklist.
|
|
//
|
|
// *NOTE* This means that we will process ChildNode multiple times
|
|
// potentially with different projection users.
|
|
if (auto *ChildNode = getChildForProjection(Tree, *P)) {
|
|
DEBUG(llvm::dbgs() << " Found child for projection: "
|
|
<< ChildNode->getType() << "\n");
|
|
|
|
SILValue V = SILValue(User);
|
|
Worklist.push_back({V, ChildNode});
|
|
} else {
|
|
DEBUG(llvm::dbgs() << " Did not find a child for projection!. "
|
|
"Adding to non projection user!\b");
|
|
|
|
// The only projection which we do not currently handle are enums since we
|
|
// may not know the correct case. This can be xtended in the future.
|
|
addNonProjectionUser(Op);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
ProjectionTreeNode::
|
|
createChildrenForStruct(ProjectionTree &Tree,
|
|
llvm::SmallVectorImpl<ProjectionTreeNode *> &Worklist,
|
|
StructDecl *SD) {
|
|
SILModule &Mod = Tree.getModule();
|
|
unsigned ChildIndex = 0;
|
|
SILType Ty = getType();
|
|
for (VarDecl *VD : SD->getStoredProperties()) {
|
|
assert(Tree.getNode(Index) == this && "Node is not mapped to itself?");
|
|
SILType NodeTy = Ty.getFieldType(VD, Mod);
|
|
auto *Node = Tree.createChildForStruct(this, NodeTy, VD, ChildIndex++);
|
|
DEBUG(llvm::dbgs() << " Creating child for: " << NodeTy << "\n");
|
|
DEBUG(llvm::dbgs() << " Projection: " << Node->getProjection().getValue().getGeneralizedIndex() << "\n");
|
|
ChildProjections.push_back(Node->getIndex());
|
|
assert(getChildForProjection(Tree, Node->getProjection().getValue()) == Node &&
|
|
"Child not matched to its projection in parent!");
|
|
assert(Node->getParent(Tree) == this && "Parent of Child is not Parent?!");
|
|
Worklist.push_back(Node);
|
|
}
|
|
}
|
|
|
|
void
|
|
ProjectionTreeNode::
|
|
createChildrenForTuple(ProjectionTree &Tree,
|
|
llvm::SmallVectorImpl<ProjectionTreeNode *> &Worklist,
|
|
TupleType *TT) {
|
|
SILType Ty = getType();
|
|
for (unsigned i = 0, e = TT->getNumElements(); i != e; ++i) {
|
|
assert(Tree.getNode(Index) == this && "Node is not mapped to itself?");
|
|
SILType NodeTy = Ty.getTupleElementType(i);
|
|
auto *Node = Tree.createChildForTuple(this, NodeTy, i);
|
|
DEBUG(llvm::dbgs() << " Creating child for: " << NodeTy << "\n");
|
|
DEBUG(llvm::dbgs() << " Projection: " << Node->getProjection().getValue().getGeneralizedIndex() << "\n");
|
|
ChildProjections.push_back(Node->getIndex());
|
|
assert(getChildForProjection(Tree, Node->getProjection().getValue()) == Node &&
|
|
"Child not matched to its projection in parent!");
|
|
assert(Node->getParent(Tree) == this && "Parent of Child is not Parent?!");
|
|
Worklist.push_back(Node);
|
|
}
|
|
}
|
|
|
|
void
|
|
ProjectionTreeNode::
|
|
createChildren(ProjectionTree &Tree,
|
|
llvm::SmallVectorImpl<ProjectionTreeNode *> &Worklist) {
|
|
DEBUG(llvm::dbgs() << " Creating children for: " << getType() << "\n");
|
|
if (Initialized) {
|
|
DEBUG(llvm::dbgs() << " Already initialized! bailing!\n");
|
|
return;
|
|
}
|
|
|
|
Initialized = true;
|
|
|
|
SILType Ty = getType();
|
|
|
|
if (Ty.aggregateHasUnreferenceableStorage()) {
|
|
DEBUG(llvm::dbgs() << " Has unreferenced storage bailing!\n");
|
|
return;
|
|
}
|
|
|
|
if (auto *SD = Ty.getStructOrBoundGenericStruct()) {
|
|
DEBUG(llvm::dbgs() << " Found a struct!\n");
|
|
createChildrenForStruct(Tree, Worklist, SD);
|
|
return;
|
|
}
|
|
|
|
auto TT = Ty.getAs<TupleType>();
|
|
if (!TT) {
|
|
DEBUG(llvm::dbgs() << " Did not find a tuple or struct, "
|
|
"bailing!\n");
|
|
return;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << " Found a tuple.");
|
|
createChildrenForTuple(Tree, Worklist, TT);
|
|
}
|
|
|
|
SILInstruction *
|
|
ProjectionTreeNode::
|
|
createAggregate(SILBuilder &B, SILLocation Loc, ArrayRef<SILValue> Args) const {
|
|
assert(Initialized && "Node must be initialized to create aggregates");
|
|
|
|
SILType Ty = getType();
|
|
|
|
if (Ty.getStructOrBoundGenericStruct()) {
|
|
return B.createStruct(Loc, Ty, Args);
|
|
}
|
|
|
|
if (Ty.getAs<TupleType>()) {
|
|
return B.createTuple(Loc, Ty, Args);
|
|
}
|
|
|
|
llvm_unreachable("Unhandled type");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ProjectionTree
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ProjectionTree::ProjectionTree(SILModule &Mod, llvm::BumpPtrAllocator &BPA,
|
|
SILType BaseTy) : Mod(Mod), Allocator(BPA) {
|
|
DEBUG(llvm::dbgs() << "Constructing Projection Tree For : " << BaseTy);
|
|
|
|
// Create the root node of the tree with our base type.
|
|
createRoot(BaseTy);
|
|
|
|
// Initialize the worklist with the root node.
|
|
llvm::SmallVector<ProjectionTreeNode *, 8> Worklist;
|
|
Worklist.push_back(getRoot());
|
|
|
|
// Then until the worklist is empty...
|
|
while (!Worklist.empty()) {
|
|
DEBUG(llvm::dbgs() << "Current Worklist:\n");
|
|
DEBUG(for (auto *N : Worklist) {
|
|
llvm::dbgs() << " " << N->getType() << "\n";
|
|
});
|
|
|
|
// Pop off the top of the list.
|
|
ProjectionTreeNode *Node = Worklist.pop_back_val();
|
|
|
|
DEBUG(llvm::dbgs() << "Visiting: " << Node->getType() << "\n");
|
|
|
|
// Initialize the worklist and its children, adding them to the worklist as
|
|
// we create them.
|
|
Node->createChildren(*this, Worklist);
|
|
}
|
|
}
|
|
|
|
void
|
|
ProjectionTree::computeUsesAndLiveness(SILValue Base) {
|
|
// Propagate liveness and users through the tree.
|
|
llvm::SmallVector<ProjectionTreeNode::ValueNodePair, 32> UseWorklist;
|
|
UseWorklist.push_back({Base, getRoot()});
|
|
|
|
// Then until the worklist is empty...
|
|
while (!UseWorklist.empty()) {
|
|
DEBUG(llvm::dbgs() << "Current Worklist:\n");
|
|
DEBUG(for (auto &T : UseWorklist) {
|
|
llvm::dbgs() << " Type: " << T.second->getType() << "; Value: ";
|
|
if (T.first) {
|
|
llvm::dbgs() << T.first;
|
|
} else {
|
|
llvm::dbgs() << "<null>\n";
|
|
}
|
|
});
|
|
|
|
SILValue Value;
|
|
ProjectionTreeNode *Node;
|
|
|
|
// Pop off the top type, value, and node.
|
|
std::tie(Value, Node) = UseWorklist.pop_back_val();
|
|
|
|
DEBUG(llvm::dbgs() << "Visiting: " << Node->getType() << "\n");
|
|
|
|
// If Value is not null, collate all users of Value the appropriate child
|
|
// nodes and add such items to the worklist.
|
|
if (Value) {
|
|
Node->processUsersOfValue(*this, UseWorklist, Value);
|
|
}
|
|
|
|
// If this node is live due to a non projection user, propagate down its
|
|
// liveness to its children and its children with an empty value to the
|
|
// worklist so we propagate liveness down to any further descendents.
|
|
if (Node->IsLive) {
|
|
DEBUG(llvm::dbgs() << "Node Is Live. Marking Children Live!\n");
|
|
for (unsigned ChildIdx : Node->ChildProjections) {
|
|
ProjectionTreeNode *Child = getNode(ChildIdx);
|
|
Child->IsLive = true;
|
|
DEBUG(llvm::dbgs() << " Marking child live: " << Child->getType() << "\n");
|
|
UseWorklist.push_back({SILValue(), Child});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Then setup the leaf list by iterating through our Nodes looking for live
|
|
// leafs. We use a DFS order, always processing the left leafs first so that
|
|
// we match the order in which we will lay out arguments.
|
|
llvm::SmallVector<ProjectionTreeNode *, 8> Worklist;
|
|
Worklist.push_back(getRoot());
|
|
while (!Worklist.empty()) {
|
|
ProjectionTreeNode *Node = Worklist.pop_back_val();
|
|
|
|
// If node is not a leaf, add its children to the worklist and continue.
|
|
if (!Node->ChildProjections.empty()) {
|
|
for (unsigned ChildIdx : reversed(Node->ChildProjections)) {
|
|
Worklist.push_back(getNode(ChildIdx));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If the node is a leaf and is not a live, continue.
|
|
if (!Node->IsLive)
|
|
continue;
|
|
|
|
// Otherwise we have a live leaf, add its index to our LeafIndices list.
|
|
LeafIndices.push_back(Node->getIndex());
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
DEBUG(llvm::dbgs() << "Final Leafs: \n");
|
|
llvm::SmallVector<SILType, 8> LeafTypes;
|
|
getLeafTypes(LeafTypes);
|
|
for (SILType Leafs : LeafTypes) {
|
|
DEBUG(llvm::dbgs() << " " << Leafs << "\n");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
ProjectionTree::
|
|
createTreeFromValue(SILBuilder &B, SILLocation Loc, SILValue NewBase,
|
|
llvm::SmallVectorImpl<SILValue> &Leafs) const {
|
|
DEBUG(llvm::dbgs() << "Recreating tree from value: " << NewBase);
|
|
|
|
using WorklistEntry =
|
|
std::tuple<const ProjectionTreeNode *, SILValue>;
|
|
llvm::SmallVector<WorklistEntry, 32> Worklist;
|
|
|
|
// Start our worklist with NewBase and Root.
|
|
Worklist.push_back(std::make_tuple(getRoot(), NewBase));
|
|
|
|
// Then until our worklist is clear...
|
|
while (Worklist.size()) {
|
|
// Pop off the top of the list.
|
|
const ProjectionTreeNode *Node = std::get<0>(Worklist.back());
|
|
SILValue V = std::get<1>(Worklist.back());
|
|
Worklist.pop_back();
|
|
|
|
DEBUG(llvm::dbgs() << "Visiting: " << V.getType() << ": " << V);
|
|
|
|
// If we have any children...
|
|
unsigned NumChildren = Node->ChildProjections.size();
|
|
if (NumChildren) {
|
|
DEBUG(llvm::dbgs() << " Not Leaf! Adding children to list.\n");
|
|
|
|
// Create projections for each one of them and the child node and
|
|
// projection to the worklist for processing.
|
|
for (unsigned ChildIdx : reversed(Node->ChildProjections)) {
|
|
const ProjectionTreeNode *ChildNode = getNode(ChildIdx);
|
|
SILInstruction *I = ChildNode->createProjection(B, Loc, V).get();
|
|
DEBUG(llvm::dbgs() << " Adding Child: " << I->getType(0) << ": " << *I);
|
|
Worklist.push_back(std::make_tuple(ChildNode, SILValue(I)));
|
|
}
|
|
} else {
|
|
// Otherwise, we have a leaf node. If the leaf node is not alive, do not
|
|
// add it to our leaf list.
|
|
if (!Node->IsLive)
|
|
continue;
|
|
|
|
// Otherwise add it to our leaf list.
|
|
DEBUG(llvm::dbgs() << " Is a Leaf! Adding to leaf list\n");
|
|
Leafs.push_back(V);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
class ProjectionTreeNode::AggregateBuilder {
|
|
ProjectionTreeNode *Node;
|
|
SILBuilder &Builder;
|
|
SILLocation Loc;
|
|
llvm::SmallVector<SILValue, 8> Values;
|
|
|
|
// Did this aggregate already create an aggregate and thus is "invalidated".
|
|
bool Invalidated;
|
|
|
|
public:
|
|
AggregateBuilder(ProjectionTreeNode *N, SILBuilder &B, SILLocation L)
|
|
: Node(N), Builder(B), Loc(L), Values(), Invalidated(false) {
|
|
assert(N->Initialized && "N must be initialized since we are mapping Node "
|
|
"Children -> SILValues");
|
|
|
|
// Initialize the Values array with empty SILValues.
|
|
for (unsigned Child : N->ChildProjections) {
|
|
(void)Child;
|
|
Values.push_back(SILValue());
|
|
}
|
|
}
|
|
|
|
bool isInvalidated() const { return Invalidated; }
|
|
|
|
/// If all SILValues have been set, we are complete.
|
|
bool isComplete() const {
|
|
return std::all_of(Values.begin(), Values.end(), [](SILValue V) -> bool {
|
|
return V.getDef();
|
|
});
|
|
}
|
|
|
|
SILInstruction *createInstruction() const {
|
|
assert(isComplete() && "Can not create instruction until the aggregate is "
|
|
"complete");
|
|
assert(!Invalidated && "Must not be invalidated to create an instruction");
|
|
const_cast<AggregateBuilder *>(this)->Invalidated = true;
|
|
return Node->createAggregate(Builder, Loc, Values);
|
|
}
|
|
|
|
void setValueForChild(ProjectionTreeNode *Child, SILValue V) {
|
|
assert(!Invalidated && "Must not be invalidated to set value for child");
|
|
Values[Child->Proj.getValue().getGeneralizedIndex()] = V;
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
|
|
using AggregateBuilder = ProjectionTreeNode::AggregateBuilder;
|
|
|
|
/// A wrapper around a MapVector with generalized operations on the map.
|
|
///
|
|
/// TODO: Replace this with a simple RPOT and use GraphUtils. Since we do not
|
|
/// look through enums or classes, in the current type system it should not be
|
|
/// possible to have a cycle implying that a RPOT should be fine.
|
|
class AggregateBuilderMap {
|
|
SILBuilder &Builder;
|
|
SILLocation Loc;
|
|
llvm::MapVector<ProjectionTreeNode *, AggregateBuilder> NodeBuilderMap;
|
|
|
|
public:
|
|
|
|
AggregateBuilderMap(SILBuilder &B, SILLocation Loc)
|
|
: Builder(B), Loc(Loc), NodeBuilderMap() {}
|
|
|
|
/// Get the AggregateBuilder associated with Node or if none is created,
|
|
/// create one for Node.
|
|
AggregateBuilder &getBuilder(ProjectionTreeNode *Node) {
|
|
auto I = NodeBuilderMap.find(Node);
|
|
if (I != NodeBuilderMap.end()) {
|
|
return I->second;
|
|
} else {
|
|
auto AggIt = NodeBuilderMap.insert({Node, AggregateBuilder(Node, Builder,
|
|
Loc)});
|
|
return AggIt.first->second;
|
|
}
|
|
}
|
|
|
|
/// Get the AggregateBuilder associated with Node. Assert on failure.
|
|
AggregateBuilder &get(ProjectionTreeNode *Node) {
|
|
auto It = NodeBuilderMap.find(Node);
|
|
assert(It != NodeBuilderMap.end() && "Every item in the worklist should have "
|
|
"an AggregateBuilder associated with it");
|
|
return It->second;
|
|
}
|
|
|
|
bool isComplete(ProjectionTreeNode *Node) {
|
|
return get(Node).isComplete();
|
|
}
|
|
|
|
bool isInvalidated(ProjectionTreeNode *Node) {
|
|
return get(Node).isInvalidated();
|
|
}
|
|
|
|
ProjectionTreeNode *
|
|
getNextValidNode(llvm::SmallVectorImpl<ProjectionTreeNode *> &Worklist,
|
|
bool CheckForDeadLock=false);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
ProjectionTreeNode *
|
|
AggregateBuilderMap::
|
|
getNextValidNode(llvm::SmallVectorImpl<ProjectionTreeNode *> &Worklist,
|
|
bool CheckForDeadLock) {
|
|
if (Worklist.empty())
|
|
return nullptr;
|
|
|
|
ProjectionTreeNode *Node = Worklist.back();
|
|
|
|
// If the Node is not complete, then we have reached a dead lock. This should never happen.
|
|
//
|
|
// TODO: Prove this and put the proof here.
|
|
if (CheckForDeadLock && !isComplete(Node)) {
|
|
llvm_unreachable("Algorithm Dead Locked!");
|
|
}
|
|
|
|
// This block of code, performs the pop back and also if the Node has been
|
|
// invalidated, skips until we find a non invalidated value.
|
|
while (isInvalidated(Node)) {
|
|
assert(isComplete(Node) && "Invalidated values must be complete");
|
|
|
|
// Pop Node off the back of the worklist.
|
|
Worklist.pop_back();
|
|
|
|
if (Worklist.empty())
|
|
return nullptr;
|
|
|
|
Node = Worklist.back();
|
|
}
|
|
|
|
return Node;
|
|
}
|
|
|
|
void
|
|
ProjectionTree::
|
|
replaceValueUsesWithLeafUses(SILBuilder &Builder, SILLocation Loc,
|
|
llvm::SmallVectorImpl<SILValue> &Leafs) {
|
|
assert(Leafs.size() == LeafIndices.size() && "Leafs and leaf indices must "
|
|
"equal in size.");
|
|
|
|
AggregateBuilderMap AggBuilderMap(Builder, Loc);
|
|
llvm::SmallVector<ProjectionTreeNode *, 8> Worklist;
|
|
|
|
DEBUG(llvm::dbgs() << "Replacing all uses in callee with leafs!\n");
|
|
|
|
// For each Leaf we have as input...
|
|
for (unsigned i = 0, e = Leafs.size(); i != e; ++i) {
|
|
SILValue Leaf = Leafs[i];
|
|
ProjectionTreeNode *Node = getNode(LeafIndices[i]);
|
|
|
|
DEBUG(llvm::dbgs() << " Visiting leaf: " << Leaf);
|
|
|
|
// If the Leaf is dead, skip it.
|
|
if (!Node->IsLive) {
|
|
DEBUG(llvm::dbgs() << " Leaf is dead, skipping it...\n");
|
|
continue;
|
|
}
|
|
DEBUG(llvm::dbgs() << " Leaf is alive!\n");
|
|
|
|
// Otherwise replace all uses at this level of the tree with uses of the
|
|
// Leaf value.
|
|
DEBUG(llvm::dbgs() << " Replacing operands with leaf!\n");
|
|
for (auto *Op : Node->NonProjUsers) {
|
|
DEBUG(llvm::dbgs() << " User: " << *Op->getUser());
|
|
Op->set(Leaf);
|
|
}
|
|
|
|
// Grab the parent of this node.
|
|
ProjectionTreeNode *Parent = Node->getParent(*this);
|
|
DEBUG(llvm::dbgs() << " Visiting parent of leaf: " <<
|
|
Parent->getType() << "\n");
|
|
|
|
// If the parent is dead, continue.
|
|
if (!Parent->IsLive) {
|
|
DEBUG(llvm::dbgs() << " Parent is dead... continuing.\n");
|
|
continue;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << " Parent is alive! Adding to parent "
|
|
"builder\n");
|
|
|
|
// Otherwise either create an aggregate builder for the parent or reuse one
|
|
// that has already been created for it.
|
|
AggBuilderMap.getBuilder(Parent).setValueForChild(Node, Leaf);
|
|
|
|
DEBUG(llvm::dbgs() << " Is parent complete: "
|
|
<< (AggBuilderMap.isComplete(Parent)? "yes" : "no") << "\n");
|
|
|
|
// Finally add the parent to the worklist.
|
|
Worklist.push_back(Parent);
|
|
}
|
|
|
|
// A utility array to add new Nodes to the list so we maintain while
|
|
// processing the current worklist we maintain only completed items at the end
|
|
// of the list.
|
|
llvm::SmallVector<ProjectionTreeNode *, 8> NewNodes;
|
|
|
|
DEBUG(llvm::dbgs() << "Processing worklist!\n");
|
|
|
|
// Then until we have no work left...
|
|
while (!Worklist.empty()) {
|
|
// Sort the worklist so that complete items are first.
|
|
//
|
|
// TODO: Just change this into a partition method. Should be significantly
|
|
// faster.
|
|
std::sort(Worklist.begin(), Worklist.end(),
|
|
[&AggBuilderMap](ProjectionTreeNode *N1,
|
|
ProjectionTreeNode *N2) -> bool {
|
|
bool IsComplete1 = AggBuilderMap.isComplete(N1);
|
|
bool IsComplete2 = AggBuilderMap.isComplete(N2);
|
|
|
|
// Sort N1 after N2 if N1 is complete and N2 is not. This puts
|
|
// complete items at the end of our list.
|
|
return unsigned(IsComplete1) < unsigned(IsComplete2);
|
|
});
|
|
|
|
DEBUG(llvm::dbgs() << " Current Worklist:\n");
|
|
#ifndef NDEBUG
|
|
for (auto *_N : Worklist) {
|
|
DEBUG(llvm::dbgs() << " Type: " << _N->getType()
|
|
<< "; Complete: "
|
|
<< (AggBuilderMap.isComplete(_N)? "yes" : "no")
|
|
<< "; Invalidated: "
|
|
<< (AggBuilderMap.isInvalidated(_N)? "yes" : "no") << "\n");
|
|
}
|
|
#endif
|
|
|
|
// Find the first non invalidated node. If we have all invalidated nodes,
|
|
// this will return nullptr.
|
|
ProjectionTreeNode *Node = AggBuilderMap.getNextValidNode(Worklist, true);
|
|
|
|
// Then until we find a node that is not complete...
|
|
while (Node && AggBuilderMap.isComplete(Node)) {
|
|
// Create the aggregate for the current complete Node we are processing...
|
|
SILValue Agg = AggBuilderMap.get(Node).createInstruction();
|
|
|
|
// Replace all uses at this level of the tree with uses of the newly
|
|
// constructed aggregate.
|
|
for (auto *Op : Node->NonProjUsers) {
|
|
Op->set(Agg);
|
|
}
|
|
|
|
// If this node has a parent and that parent is alive...
|
|
ProjectionTreeNode *Parent = Node->getParentOrNull(*this);
|
|
if (Parent && Parent->IsLive) {
|
|
// Create or lookup the node builder for the parent and associate the
|
|
// newly created aggregate with this node.
|
|
AggBuilderMap.getBuilder(Parent).setValueForChild(Node, SILValue(Agg));
|
|
// Then add the parent to NewNodes to be added to our list.
|
|
NewNodes.push_back(Parent);
|
|
}
|
|
|
|
// Grab the next non-invalidated node for the next iteration. If we had
|
|
// all invalidated nodes, this will return nullptr.
|
|
Node = AggBuilderMap.getNextValidNode(Worklist);
|
|
}
|
|
|
|
// Copy NewNodes onto the back of our Worklist now that we have finished
|
|
// this iteration.
|
|
std::copy(NewNodes.begin(), NewNodes.end(), std::back_inserter(Worklist));
|
|
NewNodes.clear();
|
|
}
|
|
}
|