Files
swift-mirror/lib/SILGen/SILGenExpr.cpp
John McCall 36c605f7dc Remove ScalarToTupleExpr in favor of a flag on TupleShuffleExpr.
Also, implement in-place initialization through tuple shuffles.

Swift SVN r28227
2015-05-06 23:44:26 +00:00

3681 lines
144 KiB
C++

//===--- SILGenExpr.cpp - Implements Lowering of ASTs -> SIL for Exprs ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGen.h"
#include "Condition.h"
#include "Scope.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Unicode.h"
#include "swift/Basic/type_traits.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/SIL/DynamicCasts.h"
#include "ExitableFullExpr.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "ArgumentSource.h"
#include "SILGenDynamicCast.h"
#include "Varargs.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/MemoryBuffer.h"
#include "swift/AST/DiagnosticsSIL.h"
using namespace swift;
using namespace Lowering;
SILGenFunction::OpaqueValueRAII::~OpaqueValueRAII() {
// Destroy the value, unless it was both uniquely referenced and consumed.
auto entry = Self.OpaqueValues.find(OpaqueValue);
if (Destroy &&
(!entry->second.isConsumable || !entry->second.hasBeenConsumed)) {
const SILValue &value = entry->second.value;
auto &lowering = Self.getTypeLowering(value.getType().getSwiftRValueType());
lowering.emitDestroyRValue(Self.B, OpaqueValue, value);
}
// Remove the opaque value.
Self.OpaqueValues.erase(entry);
}
ManagedValue SILGenFunction::emitManagedRetain(SILLocation loc,
SILValue v) {
auto &lowering = getTypeLowering(v.getType().getSwiftRValueType());
return emitManagedRetain(loc, v, lowering);
}
ManagedValue SILGenFunction::emitManagedRetain(SILLocation loc,
SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType() == v.getType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
assert(!lowering.isAddressOnly() && "cannot retain an unloadable type");
lowering.emitRetainValue(B, loc, v);
return emitManagedRValueWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedRValueWithCleanup(SILValue v) {
auto &lowering = getTypeLowering(v.getType());
return emitManagedRValueWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedRValueWithCleanup(SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType() == v.getType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
return ManagedValue(v, enterDestroyCleanup(v));
}
ManagedValue SILGenFunction::emitManagedBufferWithCleanup(SILValue v) {
auto &lowering = getTypeLowering(v.getType());
return emitManagedBufferWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedBufferWithCleanup(SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getAddressType() == v.getType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
return ManagedValue(v, enterDestroyCleanup(v));
}
void SILGenFunction::emitExprInto(Expr *E, Initialization *I) {
// Handle the special case of copying an lvalue.
if (auto load = dyn_cast<LoadExpr>(E)) {
WritebackScope writeback(*this);
auto lv = emitLValue(load->getSubExpr(), AccessKind::Read);
emitCopyLValueInto(E, std::move(lv), I);
return;
}
RValue result = emitRValue(E, SGFContext(I));
if (result)
std::move(result).forwardInto(*this, I, E);
}
namespace {
class RValueEmitter
: public Lowering::ExprVisitor<RValueEmitter, RValue, SGFContext>
{
typedef Lowering::ExprVisitor<RValueEmitter,RValue,SGFContext> super;
public:
SILGenFunction &SGF;
RValueEmitter(SILGenFunction &SGF) : SGF(SGF) {}
using super::visit;
RValue visit(Expr *E) {
assert(!E->getType()->is<LValueType>() &&
!E->getType()->is<InOutType>() &&
"RValueEmitter shouldn't be called on lvalues");
return visit(E, SGFContext());
}
// These always produce lvalues.
RValue visitInOutExpr(InOutExpr *E, SGFContext C) {
LValue lv = SGF.emitLValue(E->getSubExpr(), AccessKind::ReadWrite);
return RValue(SGF, E, SGF.emitAddressOfLValue(E->getSubExpr(),
std::move(lv),
AccessKind::ReadWrite));
}
RValue visitApplyExpr(ApplyExpr *E, SGFContext C);
RValue visitDiscardAssignmentExpr(DiscardAssignmentExpr *E, SGFContext C) {
llvm_unreachable("cannot appear in rvalue");
}
RValue visitDeclRefExpr(DeclRefExpr *E, SGFContext C);
RValue visitTypeExpr(TypeExpr *E, SGFContext C);
RValue visitSuperRefExpr(SuperRefExpr *E, SGFContext C);
RValue visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *E,
SGFContext C);
RValue visitThrowExpr(ThrowExpr *E, SGFContext C);
RValue visitForceTryExpr(ForceTryExpr *E, SGFContext C);
RValue visitNilLiteralExpr(NilLiteralExpr *E, SGFContext C);
RValue visitIntegerLiteralExpr(IntegerLiteralExpr *E, SGFContext C);
RValue visitFloatLiteralExpr(FloatLiteralExpr *E, SGFContext C);
RValue visitBooleanLiteralExpr(BooleanLiteralExpr *E, SGFContext C);
RValue visitCharacterLiteralExpr(CharacterLiteralExpr *E, SGFContext C);
RValue emitStringLiteral(Expr *E, StringRef Str, SGFContext C,
StringLiteralExpr::Encoding encoding);
RValue visitStringLiteralExpr(StringLiteralExpr *E, SGFContext C);
RValue visitLoadExpr(LoadExpr *E, SGFContext C);
RValue visitDerivedToBaseExpr(DerivedToBaseExpr *E, SGFContext C);
RValue visitMetatypeConversionExpr(MetatypeConversionExpr *E,
SGFContext C);
RValue visitCollectionUpcastConversionExpr(
CollectionUpcastConversionExpr *E,
SGFContext C);
RValue visitArchetypeToSuperExpr(ArchetypeToSuperExpr *E, SGFContext C);
RValue visitFunctionConversionExpr(FunctionConversionExpr *E,
SGFContext C);
RValue visitCovariantFunctionConversionExpr(
CovariantFunctionConversionExpr *E,
SGFContext C);
RValue visitCovariantReturnConversionExpr(
CovariantReturnConversionExpr *E,
SGFContext C);
RValue visitErasureExpr(ErasureExpr *E, SGFContext C);
RValue visitMetatypeErasureExpr(MetatypeErasureExpr *E, SGFContext C);
RValue visitForcedCheckedCastExpr(ForcedCheckedCastExpr *E,
SGFContext C);
RValue visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *E,
SGFContext C);
RValue visitIsExpr(IsExpr *E, SGFContext C);
RValue visitCoerceExpr(CoerceExpr *E, SGFContext C);
RValue visitTupleExpr(TupleExpr *E, SGFContext C);
RValue visitMemberRefExpr(MemberRefExpr *E, SGFContext C);
RValue visitDynamicMemberRefExpr(DynamicMemberRefExpr *E, SGFContext C);
RValue visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E,
SGFContext C);
RValue visitModuleExpr(ModuleExpr *E, SGFContext C);
RValue visitTupleElementExpr(TupleElementExpr *E, SGFContext C);
RValue visitSubscriptExpr(SubscriptExpr *E, SGFContext C);
RValue visitDynamicSubscriptExpr(DynamicSubscriptExpr *E,
SGFContext C);
RValue visitTupleShuffleExpr(TupleShuffleExpr *E, SGFContext C);
RValue visitDynamicTypeExpr(DynamicTypeExpr *E, SGFContext C);
RValue visitCaptureListExpr(CaptureListExpr *E, SGFContext C);
RValue visitAbstractClosureExpr(AbstractClosureExpr *E, SGFContext C);
RValue visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E,
SGFContext C);
RValue visitObjectLiteralExpr(ObjectLiteralExpr *E, SGFContext C);
RValue visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *E,
SGFContext C);
RValue visitCollectionExpr(CollectionExpr *E, SGFContext C);
RValue visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *E,
SGFContext C);
RValue visitInjectIntoOptionalExpr(InjectIntoOptionalExpr *E, SGFContext C);
RValue visitLValueToPointerExpr(LValueToPointerExpr *E, SGFContext C);
RValue visitClassMetatypeToObjectExpr(ClassMetatypeToObjectExpr *E,
SGFContext C);
RValue visitExistentialMetatypeToObjectExpr(ExistentialMetatypeToObjectExpr *E,
SGFContext C);
RValue visitProtocolMetatypeToObjectExpr(ProtocolMetatypeToObjectExpr *E,
SGFContext C);
RValue visitIfExpr(IfExpr *E, SGFContext C);
RValue visitDefaultValueExpr(DefaultValueExpr *E, SGFContext C);
RValue visitAssignExpr(AssignExpr *E, SGFContext C);
RValue visitBindOptionalExpr(BindOptionalExpr *E, SGFContext C);
RValue visitOptionalEvaluationExpr(OptionalEvaluationExpr *E,
SGFContext C);
RValue visitForceValueExpr(ForceValueExpr *E, SGFContext C);
RValue emitForceValue(SILLocation loc, Expr *E,
unsigned numOptionalEvaluations,
SGFContext C);
RValue visitOpenExistentialExpr(OpenExistentialExpr *E, SGFContext C);
RValue visitOpaqueValueExpr(OpaqueValueExpr *E, SGFContext C);
RValue visitInOutToPointerExpr(InOutToPointerExpr *E, SGFContext C);
RValue visitArrayToPointerExpr(ArrayToPointerExpr *E, SGFContext C);
RValue visitStringToPointerExpr(StringToPointerExpr *E, SGFContext C);
RValue visitPointerToPointerExpr(PointerToPointerExpr *E, SGFContext C);
RValue visitForeignObjectConversionExpr(ForeignObjectConversionExpr *E,
SGFContext C);
RValue visitAvailabilityQueryExpr(AvailabilityQueryExpr *E, SGFContext C);
RValue visitUnavailableToOptionalExpr(UnavailableToOptionalExpr *E,
SGFContext C);
};
}
RValue RValueEmitter::visitApplyExpr(ApplyExpr *E, SGFContext C) {
return SGF.emitApplyExpr(E, C);
}
SILValue SILGenFunction::emitEmptyTuple(SILLocation loc) {
return B.createTuple(loc,
getLoweredType(TupleType::getEmpty(SGM.M.getASTContext())), {});
}
/// Emit the specified declaration as an address if possible,
/// otherwise return null.
ManagedValue SILGenFunction::emitLValueForDecl(SILLocation loc, VarDecl *var,
CanType formalRValueType,
AccessKind accessKind,
AccessSemantics semantics) {
// For local decls, use the address we allocated or the value if we have it.
auto It = VarLocs.find(var);
if (It != VarLocs.end()) {
// If this has an address, return it. By-value let's have no address.
SILValue ptr = It->second.value;
if (ptr.getType().isAddress())
return ManagedValue::forLValue(ptr);
// Otherwise, it is an RValue let.
return ManagedValue();
}
switch (var->getAccessStrategy(semantics, accessKind)) {
case AccessStrategy::Storage:
// The only kind of stored variable that should make it to here is
// a global variable. Just invoke its accessor function to get its
// address.
return emitGlobalVariableRef(loc, var);
case AccessStrategy::Addressor: {
LValue lvalue =
emitLValueForAddressedNonMemberVarDecl(loc, var, formalRValueType,
accessKind, semantics);
return emitAddressOfLValue(loc, std::move(lvalue), accessKind);
}
case AccessStrategy::DirectToAccessor:
case AccessStrategy::DispatchToAccessor:
return ManagedValue();
}
llvm_unreachable("bad access strategy");
}
ManagedValue SILGenFunction::
emitRValueForDecl(SILLocation loc, ConcreteDeclRef declRef, Type ncRefType,
AccessSemantics semantics, SGFContext C) {
assert(!ncRefType->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
// Any writebacks for this access are tightly scoped.
WritebackScope scope(*this);
// If this is an decl that we have an lvalue for, produce and return it.
ValueDecl *decl = declRef.getDecl();
if (!ncRefType) ncRefType = decl->getType();
CanType refType = ncRefType->getCanonicalType();
// If this is a reference to a type, produce a metatype.
if (isa<TypeDecl>(decl)) {
assert(decl->getType()->is<MetatypeType>() &&
"type declref does not have metatype type?!");
return ManagedValue::forUnmanaged(B.createMetatype(loc,
getLoweredType(refType)));
}
// If this is a reference to a var, produce an address or value.
if (auto *var = dyn_cast<VarDecl>(decl)) {
assert(!declRef.isSpecialized() &&
"Cannot handle specialized variable references");
// If this VarDecl is represented as an address, emit it as an lvalue, then
// perform a load to get the rvalue.
if (auto Result = emitLValueForDecl(loc, var, refType,
AccessKind::Read, semantics)) {
IsTake_t takes;
// 'self' may need to be taken during an 'init' delegation.
if (var->getName() == getASTContext().Id_self) {
switch (SelfInitDelegationState) {
case NormalSelf:
// Don't consume self.
takes = IsNotTake;
break;
case WillConsumeSelf:
// Consume self, and remember we did so.
takes = IsTake;
SelfInitDelegationState = DidConsumeSelf;
break;
case DidConsumeSelf:
// We already consumed self. This shouldn't happen in valid code, because
// 'super.init(self)' is a DI violation, but we haven't run DI yet,
// so we can't actually crash here. At least emit
// somewhat balanced code.
takes = IsNotTake;
break;
}
} else {
takes = IsNotTake;
}
// We should only end up in this path for local and global variables,
// i.e. ones whose lifetime is assured for the duration of the evaluation.
// Therefore, if the variable is a constant, the value is guaranteed
// valid as well.
return emitLoad(loc, Result.getLValueAddress(), getTypeLowering(refType),
C, takes, /*guaranteed*/ var->isLet());
}
// For local decls, use the address we allocated or the value if we have it.
auto It = VarLocs.find(decl);
if (It != VarLocs.end()) {
// Mutable lvalue and address-only 'let's are LValues.
assert(!It->second.value.getType().isAddress() &&
"LValue cases should be handled above");
SILValue Scalar = It->second.value;
// For weak and unowned types, convert the reference to the right
// pointer.
if (Scalar.getType().is<ReferenceStorageType>()) {
Scalar = emitConversionToSemanticRValue(loc, Scalar,
getTypeLowering(refType));
// emitConversionToSemanticRValue always produces a +1 strong result.
return emitManagedRValueWithCleanup(Scalar);
}
auto Result = ManagedValue::forUnmanaged(Scalar);
// If the client can't handle a +0 result, retain it to get a +1.
// This is a 'let', so we can make guarantees.
return C.isGuaranteedPlusZeroOk()
? Result : Result.copyUnmanaged(*this, loc);
}
assert(var->hasAccessorFunctions() && "Unknown rvalue case");
bool isDirectAccessorUse = (semantics == AccessSemantics::DirectToAccessor);
SILDeclRef getter = getGetterDeclRef(var, isDirectAccessorUse);
ArgumentSource selfSource;
// Global properties have no base or subscript. Static properties
// use the metatype as their base.
// FIXME: This has to be dynamically looked up for classes, and
// dynamically instantiated for generics.
if (var->isStatic()) {
auto baseTy = cast<NominalTypeDecl>(var->getDeclContext())
->getDeclaredInterfaceType();
assert(!baseTy->is<BoundGenericType>() &&
"generic static stored properties not implemented");
assert((baseTy->getStructOrBoundGenericStruct() ||
baseTy->getEnumOrBoundGenericEnum()) &&
"static stored properties for classes/protocols not implemented");
auto baseMeta = MetatypeType::get(baseTy)->getCanonicalType();
auto metatype = B.createMetatype(loc,
getLoweredLoadableType(baseMeta));
auto metatypeMV = ManagedValue::forUnmanaged(metatype);
auto metatypeRV = RValue(*this, loc, baseMeta, metatypeMV);
selfSource = ArgumentSource(loc, std::move(metatypeRV));
}
return emitGetAccessor(loc, getter,
ArrayRef<Substitution>(), std::move(selfSource),
/*isSuper=*/false, isDirectAccessorUse,
RValue(), C);
}
// If the referenced decl isn't a VarDecl, it should be a constant of some
// sort.
// If the referenced decl is a local func with context, then the SILDeclRef
// uncurry level is one deeper (for the context vars).
bool hasLocalCaptures = false;
unsigned uncurryLevel = 0;
if (auto *fd = dyn_cast<FuncDecl>(decl)) {
hasLocalCaptures = fd->getCaptureInfo().hasLocalCaptures();
if (hasLocalCaptures)
++uncurryLevel;
}
auto silDeclRef = SILDeclRef(decl, ResilienceExpansion::Minimal, uncurryLevel);
auto constantInfo = getConstantInfo(silDeclRef);
ManagedValue result = emitFunctionRef(loc, silDeclRef, constantInfo);
// Get the lowered AST types:
// - the original type
auto origLoweredFormalType = AbstractionPattern(constantInfo.LoweredType);
if (hasLocalCaptures) {
auto formalTypeWithoutCaptures =
cast<AnyFunctionType>(constantInfo.FormalType.getResult());
origLoweredFormalType =
AbstractionPattern(
SGM.Types.getLoweredASTFunctionType(formalTypeWithoutCaptures,0,
silDeclRef));
}
// - the substituted type
auto substFormalType = cast<AnyFunctionType>(refType);
auto substLoweredFormalType =
SGM.Types.getLoweredASTFunctionType(substFormalType, 0, silDeclRef);
// If the declaration reference is specialized, create the partial
// application.
if (declRef.isSpecialized()) {
// Substitute the function type.
auto origFnType = result.getType().castTo<SILFunctionType>();
auto substFnType = origFnType->substGenericArgs(
SGM.M, SGM.SwiftModule,
declRef.getSubstitutions());
auto closureType = adjustFunctionType(substFnType,
SILFunctionType::Representation::Thick);
SILValue spec = B.createPartialApply(loc, result.forward(*this),
SILType::getPrimitiveObjectType(substFnType),
declRef.getSubstitutions(),
{ },
SILType::getPrimitiveObjectType(closureType));
result = emitManagedRValueWithCleanup(spec);
}
// Generalize if necessary.
return emitGeneralizedFunctionValue(loc, result, origLoweredFormalType,
substLoweredFormalType);
}
static AbstractionPattern
getOrigFormalRValueType(SILGenFunction &gen, VarDecl *field) {
auto origType = gen.SGM.Types.getAbstractionPattern(field);
return origType.getReferenceStorageReferentType();
}
static SILDeclRef getRValueAccessorDeclRef(SILGenFunction &SGF,
AbstractStorageDecl *storage,
AccessStrategy strategy) {
switch (strategy) {
case AccessStrategy::Storage:
llvm_unreachable("should already have been filtered out!");
case AccessStrategy::DirectToAccessor:
return SGF.getGetterDeclRef(storage, true);
case AccessStrategy::DispatchToAccessor:
return SGF.getGetterDeclRef(storage, false);
case AccessStrategy::Addressor:
return SGF.getAddressorDeclRef(storage, AccessKind::Read,
/*always direct for now*/ true);
}
llvm_unreachable("should already have been filtered out!");
}
static ManagedValue
emitRValueWithAccessor(SILGenFunction &SGF, SILLocation loc,
AbstractStorageDecl *storage,
ArrayRef<Substitution> substitutions,
ArgumentSource &&baseRV, RValue &&subscriptRV,
bool isSuper, AccessStrategy strategy,
SILDeclRef accessor,
AbstractionPattern origFormalType,
CanType substFormalType,
SGFContext C) {
bool isDirectUse = (strategy == AccessStrategy::DirectToAccessor);
switch (strategy) {
case AccessStrategy::Storage:
llvm_unreachable("should already have been filtered out!");
// The easy path here is if we don't need to use an addressor.
case AccessStrategy::DirectToAccessor:
case AccessStrategy::DispatchToAccessor: {
return SGF.emitGetAccessor(loc, accessor, substitutions,
std::move(baseRV), isSuper, isDirectUse,
std::move(subscriptRV), C);
}
case AccessStrategy::Addressor:
break;
}
auto &storageTL = SGF.getTypeLowering(origFormalType, substFormalType);
SILType storageType = storageTL.getLoweredType().getAddressType();
auto addressorResult =
SGF.emitAddressorAccessor(loc, accessor, substitutions,
std::move(baseRV), isSuper, isDirectUse,
std::move(subscriptRV), storageType);
SILValue address = addressorResult.first.getLValueAddress();
SILType loweredSubstType =
SGF.getLoweredType(substFormalType).getAddressType();
bool hasAbstraction = (loweredSubstType != storageType);
ManagedValue result =
SGF.emitLoad(loc, address, storageTL,
(hasAbstraction ? SGFContext() : C), IsNotTake);
if (hasAbstraction) {
result = SGF.emitOrigToSubstValue(loc, result, origFormalType,
substFormalType, C);
}
switch (cast<FuncDecl>(accessor.getDecl())->getAddressorKind()) {
case AddressorKind::NotAddressor: llvm_unreachable("inconsistent");
case AddressorKind::Unsafe:
// Nothing to do.
break;
case AddressorKind::Owning:
case AddressorKind::NativeOwning:
// Emit the release immediately.
SGF.B.emitStrongReleaseAndFold(loc, addressorResult.second.forward(SGF));
break;
case AddressorKind::NativePinning:
// Emit the unpin immediately.
SGF.B.createStrongUnpin(loc, addressorResult.second.forward(SGF));
break;
}
return result;
}
/// Produce a singular RValue for a load from the specified property. This
/// is designed to work with RValue ManagedValue bases that are either +0 or +1.
ManagedValue SILGenFunction::
emitRValueForPropertyLoad(SILLocation loc, ManagedValue base,
bool isSuper, VarDecl *field,
ArrayRef<Substitution> substitutions,
AccessSemantics semantics,
Type propTy, SGFContext C) {
AccessStrategy strategy =
field->getAccessStrategy(semantics, AccessKind::Read);
// If we should call an accessor of some kind, do so.
if (strategy != AccessStrategy::Storage) {
auto accessor = getRValueAccessorDeclRef(*this, field, strategy);
ArgumentSource baseRV = prepareAccessorBaseArg(loc, base, accessor);
AbstractionPattern origFormalType =
getOrigFormalRValueType(*this, field);
auto substFormalType = propTy->getCanonicalType();
return emitRValueWithAccessor(*this, loc, field, substitutions,
std::move(baseRV), RValue(),
isSuper, strategy, accessor,
origFormalType, substFormalType, C);
}
assert(field->hasStorage() &&
"Cannot directly access value without storage");
// For static variables, emit a reference to the global variable backing
// them.
// FIXME: This has to be dynamically looked up for classes, and
// dynamically instantiated for generics.
if (field->isStatic()) {
auto baseMeta = base.getType().castTo<MetatypeType>().getInstanceType();
(void)baseMeta;
assert(!baseMeta->is<BoundGenericType>() &&
"generic static stored properties not implemented");
if (field->getDeclContext()->isClassOrClassExtensionContext() &&
field->hasStorage())
// FIXME: don't need to check hasStorage, already done above
assert(field->isFinal() && "non-final class stored properties not implemented");
return emitRValueForDecl(loc, field, propTy, semantics, C);
}
// If the base is a reference type, just handle this as loading the lvalue.
if (base.getType().getSwiftRValueType()->hasReferenceSemantics()) {
LValue LV = emitPropertyLValue(loc, base, field, AccessKind::Read,
AccessSemantics::DirectToStorage);
return emitLoadOfLValue(loc, std::move(LV), C);
}
// rvalue MemberRefExprs are produced in two cases: when accessing a 'let'
// decl member, and when the base is a (non-lvalue) struct.
assert(base.getType().getSwiftRValueType()->getAnyNominal() &&
"The base of an rvalue MemberRefExpr should be an rvalue value");
// If the accessed field is stored, emit a StructExtract on the base.
auto substFormalType = propTy->getCanonicalType();
auto &lowering = getTypeLowering(substFormalType);
// Check for an abstraction difference.
AbstractionPattern origFormalType =
getOrigFormalRValueType(*this, field);
bool hasAbstractionChange = false;
if (!origFormalType.isExactType(substFormalType)) {
auto &abstractedTL = getTypeLowering(origFormalType, substFormalType);
hasAbstractionChange =
(abstractedTL.getLoweredType() != lowering.getLoweredType());
}
ManagedValue Result;
if (!base.getType().isAddress()) {
// For non-address-only structs, we emit a struct_extract sequence.
SILValue Scalar = B.createStructExtract(loc, base.getValue(), field);
Result = ManagedValue::forUnmanaged(Scalar);
if (Result.getType().is<ReferenceStorageType>()) {
// For weak and unowned types, convert the reference to the right
// pointer, producing a +1.
Scalar = emitConversionToSemanticRValue(loc, Scalar, lowering);
Result = emitManagedRValueWithCleanup(Scalar, lowering);
} else if (hasAbstractionChange || !C.isImmediatePlusZeroOk()) {
// If we have an abstraction change or if we have to produce a result at
// +1, then emit a RetainValue. Without further analysis, we
// can't prove that the base will stay alive, so we can only
// return +0 to an immediate consumer.
Result = Result.copyUnmanaged(*this, loc);
}
} else {
// For address-only sequences, the base is in memory. Emit a
// struct_element_addr to get to the field, and then load the element as an
// rvalue.
SILValue ElementPtr =
B.createStructElementAddr(loc, base.getValue(), field);
Result = emitLoad(loc, ElementPtr, lowering,
hasAbstractionChange ? SGFContext() : C, IsNotTake);
}
// If we're accessing this member with an abstraction change, perform that
// now.
if (hasAbstractionChange)
Result = emitOrigToSubstValue(loc, Result, origFormalType,
substFormalType, C);
return Result;
}
RValue RValueEmitter::visitDeclRefExpr(DeclRefExpr *E, SGFContext C) {
auto Val = SGF.emitRValueForDecl(E, E->getDeclRef(), E->getType(),
E->getAccessSemantics(), C);
return RValue(SGF, E, Val);
}
RValue RValueEmitter::visitTypeExpr(TypeExpr *E, SGFContext C) {
assert(E->getType()->is<AnyMetatypeType>() &&
"TypeExpr must have metatype type");
auto Val = SGF.B.createMetatype(E, SGF.getLoweredType(E->getType()));
return RValue(SGF, E, ManagedValue::forUnmanaged(Val));
}
RValue RValueEmitter::visitSuperRefExpr(SuperRefExpr *E, SGFContext C) {
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
auto Self = SGF.emitRValueForDecl(E, E->getSelf(),
E->getSelf()->getType(),
AccessSemantics::Ordinary);
// Perform an upcast to convert self to the indicated super type.
auto Result = SGF.B.createUpcast(E, Self.getValue(),
SGF.getLoweredType(E->getType()));
return RValue(SGF, E, ManagedValue(Result, Self.getCleanup()));
}
RValue RValueEmitter::visitOtherConstructorDeclRefExpr(
OtherConstructorDeclRefExpr *E, SGFContext C) {
// This should always be a child of an ApplyExpr and so will be emitted by
// SILGenApply.
llvm_unreachable("unapplied reference to constructor?!");
}
RValue RValueEmitter::visitNilLiteralExpr(NilLiteralExpr *E, SGFContext C) {
llvm_unreachable("NilLiteralExpr not lowered?");
}
RValue RValueEmitter::visitIntegerLiteralExpr(IntegerLiteralExpr *E,
SGFContext C) {
return RValue(SGF, E,
ManagedValue::forUnmanaged(SGF.B.createIntegerLiteral(E)));
}
RValue RValueEmitter::visitFloatLiteralExpr(FloatLiteralExpr *E,
SGFContext C) {
return RValue(SGF, E,
ManagedValue::forUnmanaged(SGF.B.createFloatLiteral(E)));
}
RValue RValueEmitter::visitBooleanLiteralExpr(BooleanLiteralExpr *E,
SGFContext C) {
auto i1Ty = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
SILValue boolValue = SGF.B.createIntegerLiteral(E, i1Ty, E->getValue());
return RValue(SGF, E, ManagedValue::forUnmanaged(boolValue));
}
RValue RValueEmitter::visitCharacterLiteralExpr(CharacterLiteralExpr *E,
SGFContext C) {
return RValue(SGF, E,
ManagedValue::forUnmanaged(SGF.B.createIntegerLiteral(E)));
}
RValue RValueEmitter::emitStringLiteral(Expr *E, StringRef Str,
SGFContext C,
StringLiteralExpr::Encoding encoding) {
uint64_t Length;
bool isASCII = true;
for (unsigned char c : Str) {
if (c > 127) {
isASCII = false;
break;
}
}
StringLiteralInst::Encoding instEncoding;
switch (encoding) {
case StringLiteralExpr::UTF8:
instEncoding = StringLiteralInst::Encoding::UTF8;
Length = Str.size();
break;
case StringLiteralExpr::UTF16: {
instEncoding = StringLiteralInst::Encoding::UTF16;
Length = unicode::getUTF16Length(Str);
break;
}
case StringLiteralExpr::OneUnicodeScalar: {
SILType Ty = SGF.getLoweredLoadableType(E->getType());
SILValue UnicodeScalarValue =
SGF.B.createIntegerLiteral(E, Ty,
unicode::extractFirstUnicodeScalar(Str));
return RValue(SGF, E, ManagedValue::forUnmanaged(UnicodeScalarValue));
}
}
// The string literal provides the data.
StringLiteralInst *string = SGF.B.createStringLiteral(E, Str, instEncoding);
CanType ty = E->getType()->getCanonicalType();
// The length is lowered as an integer_literal.
auto WordTy = SILType::getBuiltinWordType(SGF.getASTContext());
auto *lengthInst = SGF.B.createIntegerLiteral(E, WordTy, Length);
// The 'isascii' bit is lowered as an integer_literal.
auto Int1Ty = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
auto *isASCIIInst = SGF.B.createIntegerLiteral(E, Int1Ty, isASCII);
ManagedValue EltsArray[] = {
ManagedValue::forUnmanaged(string),
ManagedValue::forUnmanaged(lengthInst),
ManagedValue::forUnmanaged(isASCIIInst)
};
ArrayRef<ManagedValue> Elts;
switch (instEncoding) {
case StringLiteralInst::Encoding::UTF16:
Elts = llvm::makeArrayRef(EltsArray).slice(0, 2);
break;
case StringLiteralInst::Encoding::UTF8:
Elts = EltsArray;
break;
}
return RValue(Elts, ty);
}
RValue RValueEmitter::visitStringLiteralExpr(StringLiteralExpr *E,
SGFContext C) {
return emitStringLiteral(E, E->getValue(), C, E->getEncoding());
}
RValue RValueEmitter::visitLoadExpr(LoadExpr *E, SGFContext C) {
LValue lv = SGF.emitLValue(E->getSubExpr(), AccessKind::Read);
return RValue(SGF, E, SGF.emitLoadOfLValue(E, std::move(lv), C));
}
SILValue SILGenFunction::emitTemporaryAllocation(SILLocation loc,
SILType ty) {
ty = ty.getObjectType();
auto alloc = B.createAllocStack(loc, ty);
enterDeallocStackCleanup(alloc->getContainerResult());
return alloc->getAddressResult();
}
// Return an initialization address we can emit directly into.
static SILValue getAddressForInPlaceInitialization(const Initialization *I) {
return I ? I->getAddressForInPlaceInitialization() : SILValue();
}
SILValue SILGenFunction::
getBufferForExprResult(SILLocation loc, SILType ty, SGFContext C) {
// If you change this, change manageBufferForExprResult below as well.
// If we have a single-buffer "emit into" initialization, use that for the
// result.
if (SILValue address = getAddressForInPlaceInitialization(C.getEmitInto()))
return address;
// If we couldn't emit into the Initialization, emit into a temporary
// allocation.
return emitTemporaryAllocation(loc, ty.getObjectType());
}
ManagedValue SILGenFunction::
manageBufferForExprResult(SILValue buffer, const TypeLowering &bufferTL,
SGFContext C) {
// If we have a single-buffer "emit into" initialization, use that for the
// result.
if (getAddressForInPlaceInitialization(C.getEmitInto())) {
C.getEmitInto()->finishInitialization(*this);
return ManagedValue::forInContext();
}
// Add a cleanup for the temporary we allocated.
if (bufferTL.isTrivial())
return ManagedValue::forUnmanaged(buffer);
return ManagedValue(buffer, enterDestroyCleanup(buffer));
}
RValue RValueEmitter::visitForceTryExpr(ForceTryExpr *E, SGFContext C) {
SILGenFunction::ForceTryScope scope(SGF, E);
return visit(E->getSubExpr(), C);
}
SILGenFunction::ForceTryScope::ForceTryScope(SILGenFunction &gen,
SILLocation loc)
: SGF(gen), TryBB(gen.createBasicBlock(FunctionSection::Postmatter)),
Loc(loc), OldThrowDest(gen.ThrowDest) {
gen.ThrowDest = JumpDest(TryBB, gen.Cleanups.getCleanupsDepth(),
CleanupLocation::get(loc));
}
SILGenFunction::ForceTryScope::~ForceTryScope() {
// Restore the old throw dest.
SGF.ThrowDest = OldThrowDest;
// If there are no uses of the try block, just drop it.
if (TryBB->pred_empty()) {
SGF.eraseBasicBlock(TryBB);
return;
}
// Otherwise, we need to emit it.
SavedInsertionPoint scope(SGF, TryBB, FunctionSection::Postmatter);
ASTContext &ctx = SGF.getASTContext();
auto error = TryBB->createBBArg(SILType::getExceptionType(ctx));
SGF.B.createBuiltin(Loc, ctx.getIdentifier("unexpectedError"),
SGF.SGM.Types.getEmptyTupleType(), {}, {error});
SGF.B.createUnreachable(Loc);
}
RValue RValueEmitter::visitThrowExpr(ThrowExpr *E, SGFContext C) {
// Create a continuation block to return the result in.
// Expression emission isn't allowed to not have an insertion point.
auto contBB = SGF.createBasicBlock();
// If we have a valid throw destination, emit the exception and jump there.
if (SGF.ThrowDest.isValid()) {
ManagedValue exn = SGF.emitRValueAsSingleValue(E->getSubExpr());
SGF.emitThrow(E, exn, /* emit a call to willThrow */ true);
// Otherwise, diagnose.
} else {
SGF.SGM.diagnose(E, diag::unhandled_throw);
// The diagnostic above is an error, so we don't care about leaks,
// but we do need to not produce invalid SIL.
SGF.B.createUnreachable(E);
}
// Emit an empty tuple in the result.
SGF.B.emitBlock(contBB);
return SGF.emitEmptyTupleRValue(E, C);
}
RValue RValueEmitter::visitDerivedToBaseExpr(DerivedToBaseExpr *E,
SGFContext C) {
ManagedValue original = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Derived-to-base casts in the AST might not be reflected as such
// in the SIL type system, for example, a cast from DynamicSelf
// directly to its own Self type.
auto loweredResultTy = SGF.getLoweredType(E->getType());
if (original.getType() == loweredResultTy)
return RValue(SGF, E, original);
SILValue converted = SGF.B.createUpcast(E, original.getValue(),
loweredResultTy);
return RValue(SGF, E, ManagedValue(converted, original.getCleanup()));
}
RValue RValueEmitter::visitMetatypeConversionExpr(MetatypeConversionExpr *E,
SGFContext C) {
SILValue metaBase =
SGF.emitRValueAsSingleValue(E->getSubExpr()).getUnmanagedValue();
// Metatype conversion casts in the AST might not be reflected as
// such in the SIL type system, for example, a cast from DynamicSelf.Type
// directly to its own Self.Type.
auto loweredResultTy = SGF.getLoweredLoadableType(E->getType());
if (metaBase.getType() == loweredResultTy)
return RValue(SGF, E, ManagedValue::forUnmanaged(metaBase));
auto upcast = SGF.B.createUpcast(E, metaBase, loweredResultTy);
return RValue(SGF, E, ManagedValue::forUnmanaged(upcast));
}
RValue RValueEmitter::
visitCollectionUpcastConversionExpr(CollectionUpcastConversionExpr *E,
SGFContext C) {
SILLocation loc = RegularLocation(E);
// Get the sub expression argument as a managed value
auto mv = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Compute substitutions for the intrinsic call.
auto fromCollection = cast<BoundGenericStructType>(
E->getSubExpr()->getType()->getCanonicalType());
auto toCollection = cast<BoundGenericStructType>(
E->getType()->getCanonicalType());
// Get the intrinsic function.
auto &ctx = SGF.getASTContext();
FuncDecl *fn = nullptr;
if (fromCollection->getDecl() == ctx.getArrayDecl()) {
fn = ctx.getArrayForceCast(nullptr);
} else if (fromCollection->getDecl() == ctx.getDictionaryDecl()) {
fn = E->bridgesToObjC() ? ctx.getDictionaryBridgeToObjectiveC(nullptr)
: ctx.getDictionaryUpCast(nullptr);
} else if (fromCollection->getDecl() == ctx.getSetDecl()) {
fn = E->bridgesToObjC() ? ctx.getSetBridgeToObjectiveC(nullptr)
: ctx.getSetUpCast(nullptr);
} else {
llvm_unreachable("unsupported collection upcast kind");
}
auto fnArcheTypes = fn->getGenericParams()->getPrimaryArchetypes();
auto fromSubsts = fromCollection->getSubstitutions(SGF.SGM.SwiftModule,nullptr);
auto toSubsts = toCollection->getSubstitutions(SGF.SGM.SwiftModule,nullptr);
assert(fnArcheTypes.size() == fromSubsts.size() + toSubsts.size() &&
"wrong number of generic collection parameters");
// Form type parameter substitutions.
int aIdx = 0;
SmallVector<Substitution, 4> subs;
for (auto sub: fromSubsts){
subs.push_back(Substitution{fnArcheTypes[aIdx++], sub.getReplacement(),
sub.getConformances()});
}
for (auto sub: toSubsts){
subs.push_back(Substitution{fnArcheTypes[aIdx++], sub.getReplacement(),
sub.getConformances()});
}
auto emitApply = SGF.emitApplyOfLibraryIntrinsic(loc, fn, subs, {mv}, C);
return RValue(SGF, E, emitApply);
}
RValue RValueEmitter::visitArchetypeToSuperExpr(ArchetypeToSuperExpr *E,
SGFContext C) {
ManagedValue archetype = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Replace the cleanup with a new one on the superclass value so we always use
// concrete retain/release operations.
SILValue base = SGF.B.createUpcast(E,
archetype.forward(SGF),
SGF.getLoweredLoadableType(E->getType()));
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(base));
}
static RValue emitCFunctionPointer(SILGenFunction &gen,
FunctionConversionExpr *conversionExpr) {
auto expr = conversionExpr->getSubExpr();
// Look through base-ignored exprs to get to the function ref.
auto semanticExpr = expr->getSemanticsProvidingExpr();
while (auto ignoredBase = dyn_cast<DotSyntaxBaseIgnoredExpr>(semanticExpr)){
gen.emitIgnoredExpr(ignoredBase->getLHS());
semanticExpr = ignoredBase->getRHS()->getSemanticsProvidingExpr();
}
// Recover the decl reference.
SILDeclRef::Loc loc;
auto setLocFromConcreteDeclRef = [&](ConcreteDeclRef declRef) {
// TODO: Handle generic instantiations, where we need to eagerly specialize
// on the given generic parameters, and static methods, where we need to drop
// in the metatype.
assert(!declRef.getDecl()->getDeclContext()->isTypeContext()
&& "c pointers to static methods not implemented");
assert(declRef.getSubstitutions().empty()
&& "c pointers to generics not implemented");
loc = declRef.getDecl();
};
if (auto declRef = dyn_cast<DeclRefExpr>(semanticExpr)) {
setLocFromConcreteDeclRef(declRef->getDeclRef());
} else if (auto memberRef = dyn_cast<MemberRefExpr>(semanticExpr)) {
setLocFromConcreteDeclRef(memberRef->getMember());
} else if (auto closure = dyn_cast<AbstractClosureExpr>(semanticExpr)) {
loc = closure;
// Emit the closure body.
gen.SGM.emitClosure(closure);
} else {
llvm_unreachable("c function pointer converted from a non-concrete decl ref");
}
// Produce a reference to the C-compatible entry point for the function.
SILDeclRef cEntryPoint(loc, ResilienceExpansion::Minimal,
/*uncurryLevel*/ 0,
/*foreign*/ true);
SILValue cRef = gen.emitGlobalFunctionRef(expr, cEntryPoint);
return RValue(gen, conversionExpr, ManagedValue::forUnmanaged(cRef));
}
RValue RValueEmitter::visitFunctionConversionExpr(FunctionConversionExpr *e,
SGFContext C)
{
// A "conversion" to a C function pointer is done by referencing the thunk
// (or original C function) with the C calling convention.
if (e->getType()->castTo<AnyFunctionType>()->getRepresentation()
== AnyFunctionType::Representation::CFunctionPointer)
return emitCFunctionPointer(SGF, e);
ManagedValue original = SGF.emitRValueAsSingleValue(e->getSubExpr());
// Break the conversion into two stages:
// - changing the signature within the representation
// - changing the representation
// First, the signature:
auto srcTy = e->getSubExpr()->getType()->castTo<FunctionType>();
CanAnyFunctionType destRepTy
= cast<FunctionType>(e->getType()->getCanonicalType());
CanAnyFunctionType destTy = CanFunctionType::get(
destRepTy.getInput(), destRepTy.getResult(),
destRepTy->getExtInfo().withRepresentation(srcTy->getRepresentation()));
// Retain the thinness of the original function type.
auto origRep = original.getType().castTo<SILFunctionType>()->getRepresentation();
AnyFunctionType::Representation astRep;
switch (origRep) {
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::ObjCMethod:
astRep = AnyFunctionType::Representation::Thin;
break;
case SILFunctionType::Representation::Thick:
astRep = AnyFunctionType::Representation::Swift;
break;
case SILFunctionType::Representation::Block:
astRep = AnyFunctionType::Representation::Block;
break;
case SILFunctionType::Representation::CFunctionPointer:
astRep = AnyFunctionType::Representation::CFunctionPointer;
break;
}
if (astRep != destTy->getRepresentation()) {
destTy = adjustFunctionType(destTy, astRep);
}
SILType resultType = SGF.getLoweredType(destTy);
auto resultFTy = resultType.castTo<SILFunctionType>();
ManagedValue result;
if (resultType == original.getType()) {
// Don't make a conversion instruction if it's unnecessary.
result = original;
} else {
SILValue converted =
SGF.B.createConvertFunction(e, original.getValue(), resultType);
result = ManagedValue(converted, original.getCleanup());
}
// Now, the representation:
if (destRepTy != destTy) {
// The only currently possible representation changes are block -> thick and
// thick -> block.
switch (destRepTy->getRepresentation()) {
case AnyFunctionType::Representation::Block:
switch (resultFTy->getRepresentation()) {
case SILFunctionType::Representation::Thin: {
// Make thick first.
auto v = SGF.B.createThinToThickFunction(e, result.getValue(),
SILType::getPrimitiveObjectType(
adjustFunctionType(resultFTy, SILFunctionType::Representation::Thick)));
result = ManagedValue(v, result.getCleanup());
SWIFT_FALLTHROUGH;
}
case SILFunctionType::Representation::Thick:
// Convert to a block.
result = SGF.emitFuncToBlock(e, result,
SGF.getLoweredType(destRepTy).castTo<SILFunctionType>());
break;
case SILFunctionType::Representation::Block:
llvm_unreachable("should not try block-to-block repr change");
case SILFunctionType::Representation::CFunctionPointer:
llvm_unreachable("c function pointer conversion not handled here");
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::WitnessMethod:
llvm_unreachable("should not do function conversion to method rep");
}
break;
case AnyFunctionType::Representation::Swift: {
// FIXME: We'll need to fix up no-throw-to-throw function conversions.
assert(destRepTy->throws() ||
(resultFTy->getRepresentation()
== SILFunctionType::Representation::Block)
&& "only block-to-thick repr changes supported");
result = SGF.emitBlockToFunc(e, result,
SGF.getLoweredType(destRepTy).castTo<SILFunctionType>());
break;
}
case AnyFunctionType::Representation::Thin:
case AnyFunctionType::Representation::CFunctionPointer:
llvm_unreachable("not supported by sema");
}
}
return RValue(SGF, e, result);
}
RValue RValueEmitter::visitCovariantFunctionConversionExpr(
CovariantFunctionConversionExpr *e,
SGFContext C) {
ManagedValue original = SGF.emitRValueAsSingleValue(e->getSubExpr());
CanAnyFunctionType destTy
= cast<AnyFunctionType>(e->getType()->getCanonicalType());
SILType resultType = SGF.getLoweredType(destTy);
SILValue result = SGF.B.createConvertFunction(e,
original.forward(SGF),
resultType);
return RValue(SGF, e, SGF.emitManagedRValueWithCleanup(result));
}
static ManagedValue createUnsafeDowncast(SILGenFunction &gen,
SILLocation loc,
ManagedValue input,
SILType resultTy) {
SILValue result = gen.B.createUncheckedRefCast(loc,
input.forward(gen),
resultTy);
return gen.emitManagedRValueWithCleanup(result);
}
RValue RValueEmitter::visitCovariantReturnConversionExpr(
CovariantReturnConversionExpr *e,
SGFContext C) {
SILType resultType = SGF.getLoweredType(e->getType());
ManagedValue original = SGF.emitRValueAsSingleValue(e->getSubExpr());
ManagedValue result;
if (resultType.getSwiftRValueType().getAnyOptionalObjectType()) {
result = SGF.emitOptionalToOptional(e, original, resultType,
createUnsafeDowncast);
} else {
result = createUnsafeDowncast(SGF, e, original, resultType);
}
return RValue(SGF, e, result);
}
static RValue emitClassBoundedErasure(SILGenFunction &gen, ErasureExpr *E) {
ManagedValue sub = gen.emitRValueAsSingleValue(E->getSubExpr());
SILType resultTy = gen.getLoweredLoadableType(E->getType());
SILValue v;
Type subType = E->getSubExpr()->getType();
if (subType->isExistentialType()) {
// If the source value is already of protocol type, open the value so we can
// take it.
auto archetype = ArchetypeType::getOpened(E->getSubExpr()->getType());
subType = archetype;
auto openedTy = gen.getLoweredLoadableType(subType);
SILValue openedVal
= gen.B.createOpenExistentialRef(E, sub.forward(gen), openedTy);
gen.setArchetypeOpeningSite(archetype, openedVal);
sub = gen.emitManagedRValueWithCleanup(openedVal);
}
// Create a new existential container value around the class
// instance.
v = gen.B.createInitExistentialRef(E, resultTy,
subType->getCanonicalType(),
sub.getValue(), E->getConformances());
return RValue(gen, E, ManagedValue(v, sub.getCleanup()));
}
namespace {
/// A cleanup that deinitializes an opaque existential container
/// after its value is taken.
class TakeFromExistentialCleanup: public Cleanup {
SILValue existentialAddr;
public:
TakeFromExistentialCleanup(SILValue existentialAddr)
: existentialAddr(existentialAddr) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.createDeinitExistentialAddr(l, existentialAddr);
}
};
}
static std::pair<ManagedValue, CanArchetypeType>
emitOpenExistentialForErasure(SILGenFunction &gen,
SILLocation loc,
Expr *subExpr) {
Type subType = subExpr->getType();
assert(subType->isExistentialType());
// If the source value is already of a protocol type, open the existential
// container so we can steal its value.
// TODO: Have a way to represent this operation in-place. The supertype
// should be able to fit in the memory of the subtype existential.
ManagedValue subExistential = gen.emitRValueAsSingleValue(subExpr);
CanArchetypeType subFormalTy = ArchetypeType::getOpened(subType);
SILType subLoweredTy = gen.getLoweredType(subFormalTy);
bool isTake = subExistential.hasCleanup();
SILValue subPayload;
switch (subExistential.getType()
.getPreferredExistentialRepresentation(gen.SGM.M)) {
case ExistentialRepresentation::None:
llvm_unreachable("not existential");
case ExistentialRepresentation::Metatype:
llvm_unreachable("metatype-to-address-only erasure shouldn't happen");
case ExistentialRepresentation::Opaque:
subPayload = gen.B.createOpenExistentialAddr(loc,
subExistential.forward(gen),
subLoweredTy);
// If we're going to take the payload, we need to deinit the leftover
// existential shell.
if (isTake)
gen.Cleanups.pushCleanup<TakeFromExistentialCleanup>(
subExistential.getValue());
break;
case ExistentialRepresentation::Class:
subPayload = gen.B.createOpenExistentialRef(loc,
subExistential.forward(gen),
subLoweredTy);
break;
// We currently don't have any boxed protocol compositions or boxed
// protocols that inherit, so this should never occur yet. If that changes,
// we would need to open_existential_box here.
case ExistentialRepresentation::Boxed:
// Can never take from a box; the value might be shared.
isTake = false;
llvm_unreachable("boxed-to-unboxed existential erasure not implemented");
}
gen.setArchetypeOpeningSite(subFormalTy, subPayload);
ManagedValue subMV = isTake
? gen.emitManagedRValueWithCleanup(subPayload)
: ManagedValue::forUnmanaged(subPayload);
return {subMV, subFormalTy};
}
static RValue emitAddressOnlyErasure(SILGenFunction &gen, ErasureExpr *E,
SGFContext C) {
// FIXME: Need to stage cleanups here. If code fails between
// InitExistential and initializing the value, clean up using
// DeinitExistential.
// Allocate the existential.
auto &existentialTL = gen.getTypeLowering(E->getType());
SILValue existential =
gen.getBufferForExprResult(E, existentialTL.getLoweredType(), C);
Type subType = E->getSubExpr()->getType();
if (subType->isExistentialType()) {
FullExpr scope(gen.Cleanups, CleanupLocation(E));
ManagedValue subMV;
CanArchetypeType subFormalTy;
std::tie(subMV, subFormalTy)
= emitOpenExistentialForErasure(gen, E, E->getSubExpr());
// Set up the destination existential, and forward the payload into it.
SILValue destAddr = gen.B.createInitExistentialAddr(E, existential,
subFormalTy,
subMV.getType(),
E->getConformances());
subMV.forwardInto(gen, E, destAddr);
} else {
// Otherwise, we need to initialize a new existential container from
// scratch.
// Allocate the concrete value inside the container.
auto concreteFormalType = subType->getCanonicalType();
auto archetype = ArchetypeType::getOpened(E->getType());
AbstractionPattern abstractionPattern(archetype);
auto &concreteTL = gen.getTypeLowering(abstractionPattern,
concreteFormalType);
SILValue valueAddr = gen.B.createInitExistentialAddr(E, existential,
concreteFormalType,
concreteTL.getLoweredType(),
E->getConformances());
// Initialize the concrete value in-place.
InitializationPtr init(new KnownAddressInitialization(valueAddr));
ManagedValue mv = gen.emitRValueAsOrig(E->getSubExpr(), abstractionPattern,
concreteTL, SGFContext(init.get()));
if (!mv.isInContext()) {
mv.forwardInto(gen, E, init->getAddress());
init->finishInitialization(gen);
}
}
return RValue(gen, E,
gen.manageBufferForExprResult(existential, existentialTL, C));
}
static RValue emitBoxedErasure(SILGenFunction &gen, ErasureExpr *E) {
// FIXME: Need to stage cleanups here. If code fails between
// AllocExistentialBox and initializing the value, clean up using
// DeallocExistentialBox.
auto &existentialTL = gen.getTypeLowering(E->getType());
Type subType = E->getSubExpr()->getType();
SILValue existential;
if (subType->isExistentialType()) {
FullExpr scope(gen.Cleanups, CleanupLocation(E));
// Open the inner existential and steal its payload into a new box.
ManagedValue subMV;
CanArchetypeType subFormalTy;
std::tie(subMV, subFormalTy)
= emitOpenExistentialForErasure(gen, E, E->getSubExpr());
auto box = gen.B.createAllocExistentialBox(E,
existentialTL.getLoweredType(),
subFormalTy, subMV.getType(),
E->getConformances());
existential = box->getExistentialResult();
subMV.forwardInto(gen, E, box->getValueAddressResult());
} else {
// Allocate a box and evaluate the subexpression into it.
auto concreteFormalType = subType->getCanonicalType();
auto archetype = ArchetypeType::getOpened(E->getType());
AbstractionPattern abstractionPattern(archetype);
auto &concreteTL = gen.getTypeLowering(abstractionPattern,
concreteFormalType);
auto box = gen.B.createAllocExistentialBox(E,
existentialTL.getLoweredType(),
concreteFormalType,
concreteTL.getLoweredType(),
E->getConformances());
existential = box->getExistentialResult();
auto valueAddr = box->getValueAddressResult();
// Initialize the concrete value in-place.
InitializationPtr init(new KnownAddressInitialization(valueAddr));
ManagedValue mv = gen.emitRValueAsOrig(E->getSubExpr(), abstractionPattern,
concreteTL, SGFContext(init.get()));
if (!mv.isInContext()) {
mv.forwardInto(gen, E, init->getAddress());
init->finishInitialization(gen);
}
}
return RValue(gen, E, gen.emitManagedRValueWithCleanup(existential));
}
RValue RValueEmitter::visitErasureExpr(ErasureExpr *E, SGFContext C) {
switch (SILType::getPrimitiveObjectType(E->getType()->getCanonicalType())
.getPreferredExistentialRepresentation(SGF.SGM.M,
E->getSubExpr()->getType())){
case ExistentialRepresentation::None:
llvm_unreachable("not an existential type");
case ExistentialRepresentation::Metatype:
llvm_unreachable("metatype erasure should be represented by "
"MetatypeErasureExpr");
case ExistentialRepresentation::Class:
return emitClassBoundedErasure(SGF, E);
case ExistentialRepresentation::Boxed:
return emitBoxedErasure(SGF, E);
case ExistentialRepresentation::Opaque:
return emitAddressOnlyErasure(SGF, E, C);
}
}
/// Given an existential type or metatype, produce the type that
/// results from opening the underlying existential type.
static CanType getOpenedTypeForExistential(CanType type,
CanArchetypeType &openedArchetype) {
assert(type.isAnyExistentialType());
if (auto metatype = dyn_cast<ExistentialMetatypeType>(type)) {
auto instance = getOpenedTypeForExistential(metatype.getInstanceType(),
openedArchetype);
return CanMetatypeType::get(instance);
}
openedArchetype = ArchetypeType::getOpened(type);
return openedArchetype;
}
static SILType
getOpenedTypeForLoweredExistentialMetatype(SILType type,
CanArchetypeType &openedArchetype) {
auto metatype = type.castTo<ExistentialMetatypeType>();
auto instanceType = getOpenedTypeForExistential(metatype.getInstanceType(),
openedArchetype);
auto resultType =
CanMetatypeType::get(instanceType, metatype->getRepresentation());
return SILType::getPrimitiveObjectType(resultType);
}
static SILValue emitOpenExistentialMetatype(SILGenFunction &SGF,
SILLocation loc,
SILValue metatype) {
CanArchetypeType openedArchetype;
SILType resultType =
getOpenedTypeForLoweredExistentialMetatype(metatype.getType(),
openedArchetype);
auto openingSite =
SGF.B.createOpenExistentialMetatype(loc, metatype, resultType);
SGF.setArchetypeOpeningSite(openedArchetype, openingSite);
return openingSite;
}
RValue RValueEmitter::visitMetatypeErasureExpr(MetatypeErasureExpr *E,
SGFContext C) {
SILValue metatype =
SGF.emitRValueAsSingleValue(E->getSubExpr()).getUnmanagedValue();
// Thicken the metatype if necessary.
auto metatypeTy = metatype.getType().castTo<AnyMetatypeType>();
if (isa<MetatypeType>(metatypeTy)) {
if (metatypeTy->getRepresentation() == MetatypeRepresentation::Thin) {
auto thickMetatypeTy = CanMetatypeType::get(metatypeTy.getInstanceType(),
MetatypeRepresentation::Thick);
metatype = SGF.B.createMetatype(E,
SILType::getPrimitiveObjectType(thickMetatypeTy));
}
// If we're starting from an existential metatype, open it first.
} else {
assert(isa<ExistentialMetatypeType>(metatypeTy));
metatype = emitOpenExistentialMetatype(SGF, E, metatype);
}
assert(metatype.getType().castTo<AnyMetatypeType>()->getRepresentation()
== MetatypeRepresentation::Thick);
auto loweredResultTy = SGF.getLoweredLoadableType(E->getType());
auto upcast =
SGF.B.createInitExistentialMetatype(E, metatype, loweredResultTy,
E->getConformances());
return RValue(SGF, E, ManagedValue::forUnmanaged(upcast));
}
/// Treating this as a successful operation, turn a CMV into a +1 MV.
ManagedValue SILGenFunction::getManagedValue(SILLocation loc,
ConsumableManagedValue value) {
// If the consumption rules say that this is already +1 given a
// successful operation, just use the value.
if (value.isOwned())
return value.getFinalManagedValue();
SILType valueTy = value.getType();
auto &valueTL = getTypeLowering(valueTy);
// If the type is trivial, it's always +1.
if (valueTL.isTrivial())
return ManagedValue::forUnmanaged(value.getValue());
// If it's an object, retain and enter a release cleanup.
if (valueTy.isObject()) {
valueTL.emitRetainValue(B, loc, value.getValue());
return emitManagedRValueWithCleanup(value.getValue(), valueTL);
}
// Otherwise, produce a temporary and copy into that.
auto temporary = emitTemporary(loc, valueTL);
valueTL.emitCopyInto(B, loc, value.getValue(), temporary->getAddress(),
IsNotTake, IsInitialization);
temporary->finishInitialization(*this);
return temporary->getManagedAddress();
}
RValue RValueEmitter::visitForcedCheckedCastExpr(ForcedCheckedCastExpr *E,
SGFContext C) {
return emitUnconditionalCheckedCast(SGF, E, E->getSubExpr(), E->getType(),
E->getCastKind(), C);
}
RValue RValueEmitter::
visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *E,
SGFContext C) {
ManagedValue operand = SGF.emitRValueAsSingleValue(E->getSubExpr());
return emitConditionalCheckedCast(SGF, E, operand, E->getSubExpr()->getType(),
E->getType(), E->getCastKind(), C);
}
RValue RValueEmitter::visitIsExpr(IsExpr *E, SGFContext C) {
SILValue isa = emitIsa(SGF, E, E->getSubExpr(),
E->getCastTypeLoc().getType(), E->getCastKind());
// Call the _getBool library intrinsic.
ASTContext &ctx = SGF.SGM.M.getASTContext();
auto result =
SGF.emitApplyOfLibraryIntrinsic(E, ctx.getGetBoolDecl(nullptr), {},
ManagedValue::forUnmanaged(isa),
C);
return RValue(SGF, E, result);
}
RValue RValueEmitter::visitCoerceExpr(CoerceExpr *E, SGFContext C) {
return visit(E->getSubExpr(), C);
}
VarargsInfo Lowering::emitBeginVarargs(SILGenFunction &gen, SILLocation loc,
CanType baseTy, CanType arrayTy,
unsigned numElements) {
// Reabstract the base type against the array element type.
AbstractionPattern baseAbstraction(
arrayTy->getNominalOrBoundGenericNominal()
->getGenericParams()->getPrimaryArchetypes()[0]);
// Allocate the array.
SILValue numEltsVal = gen.B.createIntegerLiteral(loc,
SILType::getBuiltinWordType(gen.getASTContext()),
numElements);
// The first result is the array value.
ManagedValue array;
// The second result is a RawPointer to the base address of the array.
SILValue basePtr;
std::tie(array, basePtr)
= gen.emitUninitializedArrayAllocation(arrayTy, numEltsVal, loc);
auto &baseTL = gen.getTypeLowering(baseAbstraction, baseTy);
// Turn the pointer into an address.
basePtr = gen.B.createPointerToAddress(loc, basePtr,
baseTL.getLoweredType().getAddressType());
return VarargsInfo(array, basePtr, baseTL, baseAbstraction);
}
ManagedValue Lowering::emitEndVarargs(SILGenFunction &gen, SILLocation loc,
VarargsInfo &&varargs) {
// TODO: maybe do something to finalize the array value here?
return varargs.getArray();
}
static ManagedValue emitVarargs(SILGenFunction &gen,
SILLocation loc,
Type _baseTy,
ArrayRef<ManagedValue> elements,
Type _arrayTy) {
auto baseTy = _baseTy->getCanonicalType();
auto arrayTy = _arrayTy->getCanonicalType();
auto varargs = emitBeginVarargs(gen, loc, baseTy, arrayTy, elements.size());
AbstractionPattern baseAbstraction = varargs.getBaseAbstractionPattern();
SILValue basePtr = varargs.getBaseAddress();
// Initialize the members.
// TODO: If we need to cleanly unwind at this point, we would need to arrange
// for the partially-initialized array to be cleaned up somehow, maybe by
// poking its count to the actually-initialized size at the point of failure.
for (size_t i = 0, size = elements.size(); i < size; ++i) {
SILValue eltPtr = basePtr;
if (i != 0) {
SILValue index = gen.B.createIntegerLiteral(loc,
SILType::getBuiltinWordType(gen.F.getASTContext()), i);
eltPtr = gen.B.createIndexAddr(loc, basePtr, index);
}
ManagedValue v = elements[i];
v = gen.emitSubstToOrigValue(loc, v, baseAbstraction, baseTy);
v.forwardInto(gen, loc, eltPtr);
}
return emitEndVarargs(gen, loc, std::move(varargs));
}
RValue RValueEmitter::visitTupleExpr(TupleExpr *E, SGFContext C) {
auto type = cast<TupleType>(E->getType()->getCanonicalType());
// If we have an Initialization, emit the tuple elements into its elements.
if (Initialization *I = C.getEmitInto()) {
if (I->canSplitIntoSubelementAddresses()) {
SmallVector<InitializationPtr, 4> subInitializationBuf;
auto subInitializations =
I->getSubInitializationsForTuple(SGF, type, subInitializationBuf,
RegularLocation(E));
assert(subInitializations.size() == E->getElements().size() &&
"initialization for tuple has wrong number of elements");
for (unsigned i = 0, size = subInitializations.size(); i < size; ++i)
SGF.emitExprInto(E->getElement(i), subInitializations[i].get());
return RValue();
}
}
RValue result(type);
for (Expr *elt : E->getElements())
result.addElement(SGF.emitRValue(elt));
return result;
}
RValue RValueEmitter::visitMemberRefExpr(MemberRefExpr *E, SGFContext C) {
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
if (isa<TypeDecl>(E->getMember().getDecl())) {
// Emit the metatype for the associated type.
visit(E->getBase());
SILValue MT =
SGF.B.createMetatype(E, SGF.getLoweredLoadableType(E->getType()));
return RValue(SGF, E, ManagedValue::forUnmanaged(MT));
}
if (isa<AbstractFunctionDecl>(E->getMember().getDecl())) {
// Method references into generics are represented as member refs instead
// of apply exprs for some reason. Send this down the correct path to be
// treated as a curried method application.
return SGF.emitApplyExpr(E, C);
}
// Check to see if we should do this with a simple struct_extract.
auto field = cast<VarDecl>(E->getMember().getDecl());
if (E->getBase()->getType()->getStructOrBoundGenericStruct()) {
AccessStrategy strategy =
field->getAccessStrategy(E->getAccessSemantics(), AccessKind::Read);
if (strategy == AccessStrategy::Storage) {
ManagedValue base = SGF.emitRValueAsSingleValue(E->getBase(),
SGFContext::AllowImmediatePlusZero);
ManagedValue result =
SGF.emitRValueForPropertyLoad(E, base, E->isSuper(), field,
E->getMember().getSubstitutions(),
E->getAccessSemantics(),
E->getType(), C);
return RValue(SGF, E, result);
}
}
// Everything else should use the l-value logic.
// Any writebacks for this access are tightly scoped.
WritebackScope scope(SGF);
LValue lv = SGF.emitLValue(E, AccessKind::Read);
return RValue(SGF, E, SGF.emitLoadOfLValue(E, std::move(lv), C));
}
RValue RValueEmitter::visitDynamicMemberRefExpr(DynamicMemberRefExpr *E,
SGFContext C) {
return SGF.emitDynamicMemberRefExpr(E, C);
}
RValue RValueEmitter::
visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E, SGFContext C) {
visit(E->getLHS());
return visit(E->getRHS());
}
RValue RValueEmitter::visitSubscriptExpr(SubscriptExpr *E, SGFContext C) {
// Any writebacks for this access are tightly scoped.
WritebackScope scope(SGF);
LValue lv = SGF.emitLValue(E, AccessKind::Read);
return RValue(SGF, E, SGF.emitLoadOfLValue(E, std::move(lv), C));
}
RValue RValueEmitter::visitDynamicSubscriptExpr(
DynamicSubscriptExpr *E, SGFContext C) {
return SGF.emitDynamicSubscriptExpr(E, C);
}
RValue RValueEmitter::visitModuleExpr(ModuleExpr *E, SGFContext C) {
// Produce an undef value. The module value should never actually be used.
SILValue module = SILUndef::get(SGF.getLoweredLoadableType(E->getType()),
SGF.SGM.M);
return RValue(SGF, E, ManagedValue::forUnmanaged(module));
}
RValue RValueEmitter::visitTupleElementExpr(TupleElementExpr *E,
SGFContext C) {
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
// If our client is ok with a +0 result, then we can compute our base as +0
// and return its element that way. It would not be ok to reuse the Context's
// address buffer though, since our base value will a different type than the
// element.
SGFContext SubContext = C.withFollowingProjection();
return visit(E->getBase(), SubContext).extractElement(E->getFieldNumber());
}
ManagedValue
SILGenFunction::emitApplyOfDefaultArgGenerator(SILLocation loc,
ConcreteDeclRef defaultArgsOwner,
unsigned destIndex,
CanType resultType,
AbstractionPattern origResultType,
SGFContext C) {
SILDeclRef generator
= SILDeclRef::getDefaultArgGenerator(defaultArgsOwner.getDecl(),
destIndex);
// TODO: Should apply the default arg generator's captures, but Sema doesn't
// track them.
auto fnRef = ManagedValue::forUnmanaged(emitGlobalFunctionRef(loc,generator));
auto fnType = fnRef.getType().castTo<SILFunctionType>();
auto substFnType = fnType->substGenericArgs(SGM.M, SGM.M.getSwiftModule(),
defaultArgsOwner.getSubstitutions());
return emitApply(loc, fnRef, defaultArgsOwner.getSubstitutions(),
{}, substFnType,
origResultType, resultType,
generator.isTransparent(), None, None, C);
}
static void emitTupleShuffleExprInto(RValueEmitter &emitter,
TupleShuffleExpr *E,
Initialization *outerTupleInit) {
CanTupleType outerTuple = cast<TupleType>(E->getType()->getCanonicalType());
auto outerFields = outerTuple->getElements();
// Decompose the initialization.
SmallVector<InitializationPtr, 4> outerInitsBuffer;
auto outerInits =
outerTupleInit->getSubInitializationsForTuple(emitter.SGF, outerTuple,
outerInitsBuffer,
RegularLocation(E));
assert(outerInits.size() == outerFields.size() &&
"initialization size does not match tuple size?!");
// Map outer initializations into a tuple of inner initializations:
// - fill out the initialization elements with null
TupleInitialization innerTupleInit;
if (E->isSourceScalar()) {
innerTupleInit.SubInitializations.push_back(nullptr);
} else {
CanTupleType innerTuple =
cast<TupleType>(E->getSubExpr()->getType()->getCanonicalType());
innerTupleInit.SubInitializations.resize(innerTuple->getNumElements());
}
// Map all the outer initializations to their appropriate targets.
for (unsigned outerIndex = 0; outerIndex != outerInits.size(); outerIndex++) {
auto innerMapping = E->getElementMapping()[outerIndex];
assert(innerMapping >= 0 &&
"non-argument tuple shuffle with default arguments or variadics?");
innerTupleInit.SubInitializations[innerMapping] =
std::move(outerInits[outerIndex]);
}
#ifndef NDEBUG
for (auto &innerInit : innerTupleInit.SubInitializations) {
assert(innerInit != nullptr && "didn't map all inner elements");
}
#endif
// Emit the sub-expression into the tuple initialization we just built.
if (E->isSourceScalar()) {
emitter.SGF.emitExprInto(E->getSubExpr(),
innerTupleInit.SubInitializations[0].get());
} else {
emitter.SGF.emitExprInto(E->getSubExpr(), &innerTupleInit);
}
}
RValue RValueEmitter::visitTupleShuffleExpr(TupleShuffleExpr *E,
SGFContext C) {
// If we're emitting into an initialization, we can try shuffling the
// elements of the initialization.
if (Initialization *I = C.getEmitInto()) {
if (I->canSplitIntoSubelementAddresses()) {
emitTupleShuffleExprInto(*this, E, I);
return RValue();
}
}
// Emit the sub-expression tuple and destructure it into elements.
SmallVector<RValue, 4> elements;
if (E->isSourceScalar()) {
elements.push_back(visit(E->getSubExpr()));
} else {
visit(E->getSubExpr()).extractElements(elements);
}
// Prepare a new tuple to hold the shuffled result.
RValue result(E->getType()->getCanonicalType());
auto outerFields = E->getType()->castTo<TupleType>()->getElements();
auto shuffleIndexIterator = E->getElementMapping().begin();
auto shuffleIndexEnd = E->getElementMapping().end();
for (auto &field : outerFields) {
assert(shuffleIndexIterator != shuffleIndexEnd &&
"ran out of shuffle indexes before running out of fields?!");
int shuffleIndex = *shuffleIndexIterator++;
assert(shuffleIndex != TupleShuffleExpr::DefaultInitialize &&
shuffleIndex != TupleShuffleExpr::CallerDefaultInitialize &&
"Only argument tuples can have default initializers & varargs");
// If the shuffle index is FirstVariadic, it is the beginning of the list of
// varargs inputs. Save this case for last.
if (shuffleIndex != TupleShuffleExpr::FirstVariadic) {
// Map from a different tuple element.
result.addElement(std::move(elements[shuffleIndex]));
continue;
}
assert(field.isVararg() && "Cannot initialize nonvariadic element");
// Okay, we have a varargs tuple element. All the remaining elements feed
// into the varargs portion of this, which is then constructed into an Array
// through an informal protocol captured by the InjectionFn in the
// TupleShuffleExpr.
assert(E->getVarargsArrayTypeOrNull() &&
"no injection type for varargs tuple?!");
SmallVector<ManagedValue, 4> variadicValues;
while (shuffleIndexIterator != shuffleIndexEnd) {
unsigned sourceField = *shuffleIndexIterator++;
variadicValues.push_back(
std::move(elements[sourceField]).getAsSingleValue(SGF, E));
}
ManagedValue varargs = emitVarargs(SGF, E, field.getVarargBaseTy(),
variadicValues,
E->getVarargsArrayType());
result.addElement(RValue(SGF, E, field.getType()->getCanonicalType(),
varargs));
break;
}
return result;
}
SILValue SILGenFunction::emitMetatypeOfValue(SILLocation loc, Expr *baseExpr) {
Type formalBaseType = baseExpr->getType()->getLValueOrInOutObjectType();
CanType baseTy = formalBaseType->getCanonicalType();
// For class, archetype, and protocol types, look up the dynamic metatype.
if (baseTy.isAnyExistentialType()) {
SILType metaTy = getLoweredLoadableType(
CanExistentialMetatypeType::get(baseTy));
auto base = emitRValueAsSingleValue(baseExpr,
SGFContext::AllowImmediatePlusZero).getValue();
return B.createExistentialMetatype(loc, metaTy, base);
}
SILType metaTy = getLoweredLoadableType(CanMetatypeType::get(baseTy));
// If the lowered metatype has a thick representation, we need to derive it
// dynamically from the instance.
if (metaTy.castTo<MetatypeType>()->getRepresentation()
!= MetatypeRepresentation::Thin) {
auto base = emitRValueAsSingleValue(baseExpr,
SGFContext::AllowImmediatePlusZero).getValue();
return B.createValueMetatype(loc, metaTy, base);
}
// Otherwise, ignore the base and return the static thin metatype.
emitIgnoredExpr(baseExpr);
return B.createMetatype(loc, metaTy);
}
RValue RValueEmitter::visitDynamicTypeExpr(DynamicTypeExpr *E, SGFContext C) {
auto metatype = SGF.emitMetatypeOfValue(E, E->getBase());
return RValue(SGF, E, ManagedValue::forUnmanaged(metatype));
}
RValue RValueEmitter::visitCaptureListExpr(CaptureListExpr *E, SGFContext C) {
// ClosureExpr's evaluate their bound variables.
for (auto capture : E->getCaptureList()) {
SGF.visit(capture.Var);
SGF.visit(capture.Init);
}
// Then they evaluate to their body.
return visit(E->getClosureBody(), C);
}
RValue RValueEmitter::visitAbstractClosureExpr(AbstractClosureExpr *e,
SGFContext C) {
// Generate the closure function, if we haven't already.
// We may visit the same closure expr multiple times in some cases, for
// instance, when closures appear as in-line initializers of stored properties,
// in which case the closure will be emitted into every initializer of the
// containing type.
if (!SGF.SGM.hasFunction(SILDeclRef(e)))
SGF.SGM.emitClosure(e);
// Generate the closure value (if any) for the closure expr's function
// reference.
return RValue(SGF, e,
SGF.emitClosureValue(e, SILDeclRef(e),
SGF.getForwardingSubstitutions(), e));
}
RValue RValueEmitter::
visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E,
SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
RValue RValueEmitter::
visitObjectLiteralExpr(ObjectLiteralExpr *E, SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
static StringRef
getMagicFunctionString(SILGenFunction &gen) {
assert(gen.MagicFunctionName
&& "asking for __FUNCTION__ but we don't have a function name?!");
if (gen.MagicFunctionString.empty()) {
llvm::raw_string_ostream os(gen.MagicFunctionString);
gen.MagicFunctionName.printPretty(os);
}
return gen.MagicFunctionString;
}
RValue RValueEmitter::
visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *E, SGFContext C) {
ASTContext &Ctx = SGF.SGM.M.getASTContext();
SILType Ty = SGF.getLoweredLoadableType(E->getType());
SourceLoc Loc;
// If "overrideLocationForMagicIdentifiers" is set, then we use it as the
// location point for these magic identifiers.
if (SGF.overrideLocationForMagicIdentifiers)
Loc = SGF.overrideLocationForMagicIdentifiers.getValue();
else
Loc = E->getStartLoc();
switch (E->getKind()) {
case MagicIdentifierLiteralExpr::File: {
StringRef Value = "";
if (Loc.isValid()) {
unsigned BufferID = Ctx.SourceMgr.findBufferContainingLoc(Loc);
Value = Ctx.SourceMgr.getIdentifierForBuffer(BufferID);
}
return emitStringLiteral(E, Value, C, E->getStringEncoding());
}
case MagicIdentifierLiteralExpr::Function: {
StringRef Value = "";
if (Loc.isValid())
Value = getMagicFunctionString(SGF);
return emitStringLiteral(E, Value, C, E->getStringEncoding());
}
case MagicIdentifierLiteralExpr::Line: {
unsigned Value = 0;
if (Loc.isValid())
Value = Ctx.SourceMgr.getLineAndColumn(Loc).first;
SILValue V = SGF.B.createIntegerLiteral(E, Ty, Value);
return RValue(SGF, E, ManagedValue::forUnmanaged(V));
}
case MagicIdentifierLiteralExpr::Column: {
unsigned Value = 0;
if (Loc.isValid())
Value = Ctx.SourceMgr.getLineAndColumn(Loc).second;
SILValue V = SGF.B.createIntegerLiteral(E, Ty, Value);
return RValue(SGF, E, ManagedValue::forUnmanaged(V));
}
case MagicIdentifierLiteralExpr::DSOHandle: {
auto Val = SGF.emitRValueForDecl(E, SGF.SGM.SwiftModule->getDSOHandle(),
E->getType(),
AccessSemantics::Ordinary,
C);
return RValue(SGF, E, Val);
}
}
}
RValue RValueEmitter::visitCollectionExpr(CollectionExpr *E, SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
RValue RValueEmitter::visitRebindSelfInConstructorExpr(
RebindSelfInConstructorExpr *E, SGFContext C) {
auto selfDecl = E->getSelf();
auto ctorDecl = cast<ConstructorDecl>(selfDecl->getDeclContext());
auto selfTy = selfDecl->getType()->getInOutObjectType();
auto newSelfTy = E->getSubExpr()->getType();
OptionalTypeKind failability;
if (auto objTy = newSelfTy->getAnyOptionalObjectType(failability))
newSelfTy = objTy;
bool isSuper = !newSelfTy->isEqual(selfTy);
// The subexpression consumes the current 'self' binding.
assert(SGF.SelfInitDelegationState == SILGenFunction::NormalSelf
&& "already doing something funky with self?!");
SGF.SelfInitDelegationState = SILGenFunction::WillConsumeSelf;
// Emit the subexpression.
ManagedValue newSelf = SGF.emitRValueAsSingleValue(E->getSubExpr());
// We know that self is a box, so get its address.
SILValue selfAddr =
SGF.emitLValueForDecl(E, selfDecl, selfTy->getCanonicalType(),
AccessKind::Write).getLValueAddress();
// In a class self.init or super.init situation, the self value will 'take'
// the value out of the box, leaving it as an unowned reference in an
// otherwise valid box. We need to null it out so that a release of the box
// (e.g. on an error path of a failable init) will not do an extra release of
// the bit pattern in the box.
if (SGF.SelfInitDelegationState == SILGenFunction::DidConsumeSelf) {
auto Zero = SGF.B.createNullClass(E, selfAddr.getType().getObjectType());
SGF.B.createStore(E, Zero, selfAddr);
}
// If the delegated-to initializer can fail, check for the potential failure.
switch (failability) {
case OTK_None:
// Not failable.
break;
case OTK_Optional:
case OTK_ImplicitlyUnwrappedOptional: {
// If the current constructor is not failable, abort.
switch (ctorDecl->getFailability()) {
case OTK_Optional:
case OTK_ImplicitlyUnwrappedOptional: {
SILBasicBlock *someBB = SGF.createBasicBlock();
auto hasValue = SGF.emitDoesOptionalHaveValue(E, newSelf.getValue());
assert(SGF.FailDest.isValid() && "too big to fail");
// On the failure case, we don't need to clean up the 'self' returned
// by the call to the other constructor, since we know it is nil and
// therefore dynamically trivial.
SGF.Cleanups.setCleanupState(newSelf.getCleanup(), CleanupState::Dormant);
auto noneBB = SGF.Cleanups.emitBlockForCleanups(SGF.FailDest, E);
SGF.Cleanups.setCleanupState(newSelf.getCleanup(), CleanupState::Active);
SGF.B.createCondBranch(E, hasValue, someBB, noneBB);
// Otherwise, project out the value and carry on.
SGF.B.emitBlock(someBB);
// If the current constructor is not failable, force out the value.
newSelf = SGF.emitUncheckedGetOptionalValueFrom(E, newSelf,
SGF.getTypeLowering(newSelf.getType()),
SGFContext());
break;
}
case OTK_None: {
// Materialize the value so we can pass it to
// emitCheckedGetOptionalValueFrom, which requires it to be indirect.
auto mat = SGF.emitMaterialize(E, newSelf);
auto matMV = ManagedValue(mat.address, mat.valueCleanup);
// If the current constructor is not failable, force out the value.
newSelf = SGF.emitCheckedGetOptionalValueFrom(E, matMV,
SGF.getTypeLowering(newSelf.getType()),
SGFContext());
break;
}
}
break;
}
}
// If we called a superclass constructor, cast down to the subclass.
if (isSuper) {
assert(newSelf.getType().isObject() &&
newSelf.getType().hasReferenceSemantics() &&
"delegating ctor type mismatch for non-reference type?!");
CleanupHandle newSelfCleanup = newSelf.getCleanup();
SILValue newSelfValue;
auto destTy = SGF.getLoweredLoadableType(E->getSelf()->getType());
// Assume that the returned 'self' is the appropriate subclass
// type (or a derived class thereof). Only Objective-C classes can
// violate this assumption.
newSelfValue = SGF.B.createUncheckedRefCast(E, newSelf.getValue(),
destTy);
newSelf = ManagedValue(newSelfValue, newSelfCleanup);
}
// Forward or assign into the box depending on whether we actually consumed
// 'self'.
switch (SGF.SelfInitDelegationState) {
case SILGenFunction::NormalSelf:
llvm_unreachable("self isn't normal in a constructor delegation");
case SILGenFunction::WillConsumeSelf:
// We didn't consume, so reassign.
newSelf.assignInto(SGF, E, selfAddr);
break;
case SILGenFunction::DidConsumeSelf:
// We did consume, so reinitialize.
newSelf.forwardInto(SGF, E, selfAddr);
break;
}
SGF.SelfInitDelegationState = SILGenFunction::NormalSelf;
// If we are using Objective-C allocation, the caller can return
// nil. When this happens with an explicitly-written super.init or
// self.init invocation, return early if we did get nil.
//
// TODO: Remove this when failable initializers are fully implemented.
auto classDecl = selfTy->getClassOrBoundGenericClass();
if (classDecl && !E->getSubExpr()->isImplicit() &&
usesObjCAllocator(classDecl)) {
// Check whether the new self is null.
SILValue isNonnullSelf = SGF.B.createIsNonnull(E, newSelf.getValue());
Condition cond = SGF.emitCondition(isNonnullSelf, E,
/*hasFalseCode=*/false,
/*invertValue=*/true,
{ });
// If self is null, branch to the epilog.
cond.enterTrue(SGF);
SGF.Cleanups.emitBranchAndCleanups(SGF.ReturnDest, E, { });
cond.exitTrue(SGF);
cond.complete(SGF);
}
return SGF.emitEmptyTupleRValue(E, C);
}
/// Determine whether the given declaration returns a non-optional object that
/// might actually be nil.
///
/// This is an awful hack that makes it possible to work around several kinds
/// of problems:
/// - initializers currently cannot fail, so they always return non-optional.
/// - an Objective-C method might have been annotated to state (incorrectly)
/// that it returns a non-optional object
/// - an Objective-C property might be annotated to state (incorrectly) that
/// it is non-optional
static bool mayLieAboutNonOptionalReturn(ValueDecl *decl) {
// Any Objective-C initializer, because failure propagates from any
// initializer written in Objective-C (and there's no way to tell).
if (auto constructor = dyn_cast<ConstructorDecl>(decl)) {
return constructor->isObjC();
}
// Functions that return non-optional reference type and were imported from
// Objective-C.
if (auto func = dyn_cast<FuncDecl>(decl)) {
return func->hasClangNode() &&
func->getResultType()->hasReferenceSemantics();
}
// Properties of non-optional reference type that were imported from
// Objective-C.
if (auto var = dyn_cast<VarDecl>(decl)) {
return var->hasClangNode() &&
var->getType()->getReferenceStorageReferent()->hasReferenceSemantics();
}
// Subscripts of non-optional reference type that were imported from
// Objective-C.
if (auto subscript = dyn_cast<SubscriptDecl>(decl)) {
return subscript->hasClangNode() &&
subscript->getElementType()->hasReferenceSemantics();
}
return false;
}
/// Determine whether the given expression returns a non-optional object that
/// might actually be nil.
///
/// This is an awful hack that makes it possible to work around several kinds
/// of problems:
/// - initializers currently cannot fail, so they always return non-optional.
/// - an Objective-C method might have been annotated to state (incorrectly)
/// that it returns a non-optional object
/// - an Objective-C property might be annotated to state (incorrectly) that
/// it is non-optional
static bool mayLieAboutNonOptionalReturn(Expr *expr) {
expr = expr->getSemanticsProvidingExpr();
/// A reference to a declaration.
if (auto declRef = dyn_cast<DeclRefExpr>(expr)) {
return mayLieAboutNonOptionalReturn(declRef->getDecl());
}
// An application, which we look through to get the function we're calling.
if (auto apply = dyn_cast<ApplyExpr>(expr)) {
return mayLieAboutNonOptionalReturn(apply->getFn());
}
// A load.
if (auto load = dyn_cast<LoadExpr>(expr)) {
return mayLieAboutNonOptionalReturn(load->getSubExpr());
}
// A reference to a member.
if (auto member = dyn_cast<MemberRefExpr>(expr)) {
return mayLieAboutNonOptionalReturn(member->getMember().getDecl());
}
// A reference to a subscript.
if (auto subscript = dyn_cast<SubscriptExpr>(expr)) {
return mayLieAboutNonOptionalReturn(subscript->getDecl().getDecl());
}
// A reference to a member found via dynamic lookup.
if (auto member = dyn_cast<DynamicMemberRefExpr>(expr)) {
return mayLieAboutNonOptionalReturn(member->getMember().getDecl());
}
// A reference to a subscript found via dynamic lookup.
if (auto subscript = dyn_cast<DynamicSubscriptExpr>(expr)) {
return mayLieAboutNonOptionalReturn(subscript->getMember().getDecl());
}
return false;
}
RValue RValueEmitter::visitInjectIntoOptionalExpr(InjectIntoOptionalExpr *E,
SGFContext C) {
// This is an awful hack. When the source expression might produce a
// non-optional reference that could legitimated be nil, such as with an
// initializer, allow this workaround to capture that nil:
//
// let x: NSFoo? = NSFoo(potentiallyFailingInit: x)
//
// However, our optimizer is smart enough now to recognize that an initializer
// can "never" produce nil, and will optimize away any attempts to check the
// resulting optional for nil. As a special case, when we're injecting the
// result of an ObjC constructor into an optional, do it using an unchecked
// bitcast, which is opaque to the optimizer.
if (mayLieAboutNonOptionalReturn(E->getSubExpr())) {
auto result = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto optType = SGF.getLoweredLoadableType(E->getType());
SILValue bitcast = SGF.B.createUncheckedRefBitCast(E, result.getValue(),
optType);
ManagedValue bitcastMV = ManagedValue(bitcast, result.getCleanup());
return RValue(SGF, E, bitcastMV);
}
// Create a buffer for the result if this is an address-only optional.
auto &optTL = SGF.getTypeLowering(E->getType());
if (!optTL.isAddressOnly()) {
auto result = SGF.emitRValueAsSingleValue(E->getSubExpr());
result = SGF.getOptionalSomeValue(E, result, optTL);
return RValue(SGF, E, result);
}
SILValue optAddr = SGF.getBufferForExprResult(E, optTL.getLoweredType(), C);
SGF.emitInjectOptionalValueInto(E, E->getSubExpr(), optAddr, optTL);
ManagedValue result = SGF.manageBufferForExprResult(optAddr, optTL, C);
if (result.isInContext())
return RValue();
return RValue(SGF, E, result);
}
RValue RValueEmitter::visitLValueToPointerExpr(LValueToPointerExpr *E,
SGFContext C) {
LValue lv = SGF.emitLValue(E->getSubExpr(), AccessKind::ReadWrite);
SILValue address = SGF.emitAddressOfLValue(E->getSubExpr(),
std::move(lv),
AccessKind::ReadWrite)
.getUnmanagedValue();
// TODO: Reabstract the lvalue to match the abstraction level expected by
// the inout address conversion's InOutType. For now, just report cases where
// we would need a reabstraction as unsupported.
SILType abstractedTy
= SGF.getLoweredType(AbstractionPattern(E->getAbstractionPatternType()),
E->getSubExpr()->getType()->getLValueOrInOutObjectType());
if (address.getType().getObjectType() != abstractedTy)
SGF.SGM.diagnose(E, diag::not_implemented,
"abstraction difference in inout conversion");
SILValue ptr = SGF.B.createAddressToPointer(E, address,
SILType::getRawPointerType(SGF.getASTContext()));
return RValue(SGF, E, ManagedValue::forUnmanaged(ptr));
}
RValue RValueEmitter::visitClassMetatypeToObjectExpr(
ClassMetatypeToObjectExpr *E,
SGFContext C) {
SILValue value = SGF.emitRValueAsSingleValue(E->getSubExpr())
.getUnmanagedValue();
// Convert the metatype to objc representation.
auto metatypeTy = value.getType().castTo<MetatypeType>();
auto objcMetatypeTy = CanMetatypeType::get(metatypeTy.getInstanceType(),
MetatypeRepresentation::ObjC);
value = SGF.B.createThickToObjCMetatype(E, value,
SILType::getPrimitiveObjectType(objcMetatypeTy));
// Convert to an object reference.
value = SGF.B.createObjCMetatypeToObject(E, value,
SGF.getLoweredLoadableType(E->getType()));
return RValue(SGF, E, ManagedValue::forUnmanaged(value));
}
RValue RValueEmitter::visitExistentialMetatypeToObjectExpr(
ExistentialMetatypeToObjectExpr *E,
SGFContext C) {
SILValue value = SGF.emitRValueAsSingleValue(E->getSubExpr())
.getUnmanagedValue();
// Convert the metatype to objc representation.
auto metatypeTy = value.getType().castTo<ExistentialMetatypeType>();
auto objcMetatypeTy = CanExistentialMetatypeType::get(
metatypeTy.getInstanceType(),
MetatypeRepresentation::ObjC);
value = SGF.B.createThickToObjCMetatype(E, value,
SILType::getPrimitiveObjectType(objcMetatypeTy));
// Convert to an object reference.
value = SGF.B.createObjCExistentialMetatypeToObject(E, value,
SGF.getLoweredLoadableType(E->getType()));
return RValue(SGF, E, ManagedValue::forUnmanaged(value));
}
RValue RValueEmitter::visitProtocolMetatypeToObjectExpr(
ProtocolMetatypeToObjectExpr *E,
SGFContext C) {
SGF.emitIgnoredExpr(E->getSubExpr());
ProtocolDecl *protocol = E->getSubExpr()->getType()->castTo<MetatypeType>()
->getInstanceType()->castTo<ProtocolType>()->getDecl();
SILValue value = SGF.B.createObjCProtocol(E, protocol,
SGF.getLoweredLoadableType(E->getType()));
// Protocol objects, despite being global objects, inherit default reference
// counting semantics from NSObject, so we need to retain the protocol
// reference when we use it to prevent it being released and attempting to
// deallocate itself. It doesn't matter if we ever actually clean up that
// retain though.
SGF.B.createStrongRetain(E, value);
return RValue(SGF, E, ManagedValue::forUnmanaged(value));
}
RValue RValueEmitter::visitIfExpr(IfExpr *E, SGFContext C) {
auto &lowering = SGF.getTypeLowering(E->getType());
if (lowering.isLoadable()) {
// If the result is loadable, emit each branch and forward its result
// into the destination block argument.
// FIXME: We could avoid imploding and reexploding tuples here.
Condition cond = SGF.emitCondition(E->getCondExpr(),
/*hasFalse*/ true,
/*invertCondition*/ false,
SGF.getLoweredType(E->getType()));
cond.enterTrue(SGF);
SGF.emitProfilerIncrement(E);
SILValue trueValue;
{
auto TE = E->getThenExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));
trueValue = visit(TE).forwardAsSingleValue(SGF, TE);
}
cond.exitTrue(SGF, trueValue);
cond.enterFalse(SGF);
SILValue falseValue;
{
auto EE = E->getElseExpr();
FullExpr falseScope(SGF.Cleanups, CleanupLocation(EE));
falseValue = visit(EE).forwardAsSingleValue(SGF, EE);
}
cond.exitFalse(SGF, falseValue);
SILBasicBlock *cont = cond.complete(SGF);
assert(cont && "no continuation block for if expr?!");
SILValue result = cont->bbarg_begin()[0];
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(result));
} else {
// If the result is address-only, emit the result into a common stack buffer
// that dominates both branches.
SILValue resultAddr = SGF.getBufferForExprResult(
E, lowering.getLoweredType(), C);
Condition cond = SGF.emitCondition(E->getCondExpr(),
/*hasFalse*/ true,
/*invertCondition*/ false);
cond.enterTrue(SGF);
SGF.emitProfilerIncrement(E);
{
auto TE = E->getThenExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));
KnownAddressInitialization init(resultAddr);
SGF.emitExprInto(TE, &init);
}
cond.exitTrue(SGF);
cond.enterFalse(SGF);
{
auto EE = E->getElseExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(EE));
KnownAddressInitialization init(resultAddr);
SGF.emitExprInto(EE, &init);
}
cond.exitFalse(SGF);
cond.complete(SGF);
return RValue(SGF, E,
SGF.manageBufferForExprResult(resultAddr, lowering, C));
}
}
RValue RValueEmitter::visitDefaultValueExpr(DefaultValueExpr *E, SGFContext C) {
return visit(E->getSubExpr(), C);
}
/// Emit an optional-to-optional transformation.
ManagedValue
SILGenFunction::emitOptionalToOptional(SILLocation loc,
ManagedValue input,
SILType resultTy,
const ValueTransform &transformValue) {
auto contBB = createBasicBlock();
auto isNotPresentBB = createBasicBlock();
auto isPresentBB = createBasicBlock();
// Create a temporary for the output optional.
auto &resultTL = getTypeLowering(resultTy);
// If the result is address-only, we need to return something in memory,
// otherwise the result is the BBArgument in the merge point.
SILValue result;
if (resultTL.isAddressOnly())
result = emitTemporaryAllocation(loc, resultTy);
else
result = new (F.getModule()) SILArgument(contBB, resultTL.getLoweredType());
// Branch on whether the input is optional, this doesn't consume the value.
auto isPresent = emitDoesOptionalHaveValue(loc, input.getValue());
B.createCondBranch(loc, isPresent, isPresentBB, isNotPresentBB);
// If it's present, apply the recursive transformation to the value.
B.emitBlock(isPresentBB);
SILValue branchArg;
{
// Don't allow cleanups to escape the conditional block.
FullExpr presentScope(Cleanups, CleanupLocation::get(loc));
CanType resultValueTy =
resultTy.getSwiftRValueType().getAnyOptionalObjectType();
assert(resultValueTy);
SILType loweredResultValueTy = getLoweredType(resultValueTy);
// Pull the value out. This will load if the value is not address-only.
auto &inputTL = getTypeLowering(input.getType());
auto inputValue = emitUncheckedGetOptionalValueFrom(loc, input,
inputTL, SGFContext());
// Transform it.
auto resultValue = transformValue(*this, loc, inputValue,
loweredResultValueTy);
// Inject that into the result type if the result is address-only.
if (resultTL.isAddressOnly()) {
ArgumentSource resultValueRV(loc, RValue(resultValue, resultValueTy));
emitInjectOptionalValueInto(loc, std::move(resultValueRV),
result, resultTL);
} else {
resultValue = getOptionalSomeValue(loc, resultValue, resultTL);
branchArg = resultValue.forward(*this);
}
}
if (branchArg)
B.createBranch(loc, contBB, branchArg);
else
B.createBranch(loc, contBB);
// If it's not present, inject 'nothing' into the result.
B.emitBlock(isNotPresentBB);
if (resultTL.isAddressOnly()) {
emitInjectOptionalNothingInto(loc, result, resultTL);
B.createBranch(loc, contBB);
} else {
branchArg = getOptionalNoneValue(loc, resultTL);
B.createBranch(loc, contBB, branchArg);
}
// Continue.
B.emitBlock(contBB);
if (resultTL.isAddressOnly())
return emitManagedBufferWithCleanup(result, resultTL);
return emitManagedRValueWithCleanup(result, resultTL);
}
RValue SILGenFunction::emitEmptyTupleRValue(SILLocation loc,
SGFContext C) {
return RValue(CanType(TupleType::getEmpty(F.getASTContext())));
}
namespace {
/// A visitor for creating a flattened list of LValues from a
/// tuple-of-lvalues expression.
///
/// Note that we can have tuples down to arbitrary depths in the
/// type, but every branch should lead to an l-value otherwise.
class TupleLValueEmitter
: public Lowering::ExprVisitor<TupleLValueEmitter> {
SILGenFunction &SGF;
AccessKind TheAccessKind;
/// A flattened list of l-values.
SmallVectorImpl<Optional<LValue>> &Results;
public:
TupleLValueEmitter(SILGenFunction &SGF, AccessKind accessKind,
SmallVectorImpl<Optional<LValue>> &results)
: SGF(SGF), TheAccessKind(accessKind), Results(results) {}
// If the destination is a tuple, recursively destructure.
void visitTupleExpr(TupleExpr *E) {
assert(E->getType()->is<TupleType>());
assert(!E->getType()->isMaterializable());
for (auto &elt : E->getElements()) {
visit(elt);
}
}
// If the destination is '_', queue up a discard.
void visitDiscardAssignmentExpr(DiscardAssignmentExpr *E) {
Results.push_back(None);
}
// Otherwise, queue up a scalar assignment to an lvalue.
void visitExpr(Expr *E) {
assert(E->getType()->is<LValueType>());
Results.push_back(SGF.emitLValue(E, TheAccessKind));
}
};
/// A visitor for consuming tuples of l-values.
class TupleLValueAssigner
: public CanTypeVisitor<TupleLValueAssigner, void, RValue &&> {
SILGenFunction &SGF;
SILLocation AssignLoc;
MutableArrayRef<Optional<LValue>> DestLVQueue;
Optional<LValue> &&getNextDest() {
assert(!DestLVQueue.empty());
Optional<LValue> &next = DestLVQueue.front();
DestLVQueue = DestLVQueue.slice(1);
return std::move(next);
}
public:
TupleLValueAssigner(SILGenFunction &SGF, SILLocation assignLoc,
SmallVectorImpl<Optional<LValue>> &destLVs)
: SGF(SGF), AssignLoc(assignLoc), DestLVQueue(destLVs) {}
/// Top-level entrypoint.
void emit(CanType destType, RValue &&src) {
visitTupleType(cast<TupleType>(destType), std::move(src));
assert(DestLVQueue.empty() && "didn't consume all l-values!");
}
// If the destination is a tuple, recursively destructure.
void visitTupleType(CanTupleType destTupleType, RValue &&srcTuple) {
// Break up the source r-value.
SmallVector<RValue, 4> srcElts;
std::move(srcTuple).extractElements(srcElts);
// Consume source elements off the queue.
unsigned eltIndex = 0;
for (CanType destEltType : destTupleType.getElementTypes()) {
visit(destEltType, std::move(srcElts[eltIndex++]));
}
}
// Okay, otherwise we pull one destination off the queue.
void visitType(CanType destType, RValue &&src) {
assert(isa<LValueType>(destType));
Optional<LValue> &&next = getNextDest();
// If the destination is a discard, do nothing.
if (!next.hasValue())
return;
// Otherwise, emit the scalar assignment.
SGF.emitAssignToLValue(AssignLoc, std::move(src),
std::move(next.getValue()));
}
};
}
/// Emit a simple assignment, i.e.
///
/// dest = src
///
/// The destination operand can be an arbitrarily-structured tuple of
/// l-values.
static void emitSimpleAssignment(SILGenFunction &SGF, SILLocation loc,
Expr *dest, Expr *src) {
// Handle lvalue-to-lvalue assignments with a high-level copy_addr
// instruction if possible.
if (auto *srcLoad = dyn_cast<LoadExpr>(src)) {
// Check that the two l-value expressions have the same type.
// Compound l-values like (a,b) have tuple type, so this check
// also prevents us from getting into that case.
if (dest->getType()->isEqual(srcLoad->getSubExpr()->getType())) {
assert(!dest->getType()->is<TupleType>());
WritebackScope writeback(SGF);
auto destLV = SGF.emitLValue(dest, AccessKind::Write);
auto srcLV = SGF.emitLValue(srcLoad->getSubExpr(), AccessKind::Read);
SGF.emitAssignLValueToLValue(loc, std::move(srcLV), std::move(destLV));
return;
}
}
// Handle tuple destinations by destructuring them if present.
CanType destType = dest->getType()->getCanonicalType();
assert(!destType->isMaterializable());
// But avoid this in the common case.
if (!isa<TupleType>(destType)) {
// If we're assigning to a discard, just emit the operand as ignored.
dest = dest->getSemanticsProvidingExpr();
if (isa<DiscardAssignmentExpr>(dest)) {
SGF.emitIgnoredExpr(src);
return;
}
WritebackScope writeback(SGF);
LValue destLV = SGF.emitLValue(dest, AccessKind::Write);
RValue srcRV = SGF.emitRValue(src);
SGF.emitAssignToLValue(loc, std::move(srcRV), std::move(destLV));
return;
}
WritebackScope writeback(SGF);
// Produce a flattened queue of LValues.
SmallVector<Optional<LValue>, 4> destLVs;
TupleLValueEmitter(SGF, AccessKind::Write, destLVs).visit(dest);
// Emit the r-value.
RValue srcRV = SGF.emitRValue(src);
// Recurse on the type of the destination, pulling LValues as
// needed from the queue we built up before.
TupleLValueAssigner(SGF, loc, destLVs).emit(destType, std::move(srcRV));
}
RValue RValueEmitter::visitAssignExpr(AssignExpr *E, SGFContext C) {
FullExpr scope(SGF.Cleanups, CleanupLocation(E));
emitSimpleAssignment(SGF, E, E->getDest(), E->getSrc());
return SGF.emitEmptyTupleRValue(E, C);
}
void SILGenFunction::emitBindOptional(SILLocation loc,
ManagedValue optionalAddrOrValue,
unsigned depth) {
assert(depth < BindOptionalFailureDests.size());
auto failureDest = BindOptionalFailureDests[BindOptionalFailureDests.size()
- depth - 1];
// Check whether the optional has a value.
SILBasicBlock *hasValueBB = createBasicBlock();
auto hasValue = emitDoesOptionalHaveValue(loc,optionalAddrOrValue.getValue());
// If there is a cleanup for the optional value being tested, we can disable
// it on the failure path. We don't need to destroy it because we know that
// on that path it is nil.
if (optionalAddrOrValue.hasCleanup())
Cleanups.setCleanupState(optionalAddrOrValue.getCleanup(),
CleanupState::Dormant);
// If not, thread out through a bunch of cleanups.
SILBasicBlock *hasNoValueBB = Cleanups.emitBlockForCleanups(failureDest, loc);
B.createCondBranch(loc, hasValue, hasValueBB, hasNoValueBB);
// If so, continue.
B.emitBlock(hasValueBB);
// Reenable the cleanup for the optional on the normal path.
if (optionalAddrOrValue.hasCleanup())
Cleanups.setCleanupState(optionalAddrOrValue.getCleanup(),
CleanupState::Active);
}
RValue RValueEmitter::visitBindOptionalExpr(BindOptionalExpr *E, SGFContext C) {
// Create a temporary of type Optional<T> if it is address-only.
auto &optTL = SGF.getTypeLowering(E->getSubExpr()->getType());
ManagedValue optValue;
if (optTL.isLoadable()) {
optValue = SGF.emitRValueAsSingleValue(E->getSubExpr());
} else {
auto temp = SGF.emitTemporary(E, optTL);
optValue = temp->getManagedAddress();
// Emit the operand into the temporary.
SGF.emitExprInto(E->getSubExpr(), temp.get());
}
// Check to see whether the optional is present, if not, jump to the current
// nil handler block.
SGF.emitBindOptional(E, optValue, E->getDepth());
// If we continued, get the value out as the result of the expression.
auto resultValue = SGF.emitUncheckedGetOptionalValueFrom(E, optValue,
optTL, C);
return RValue(SGF, E, resultValue);
}
namespace {
/// A RAII object to save and restore BindOptionalFailureDest.
class RestoreOptionalFailureDest {
SILGenFunction &SGF;
#ifndef NDEBUG
unsigned Depth;
#endif
public:
RestoreOptionalFailureDest(SILGenFunction &SGF, JumpDest &&dest)
: SGF(SGF)
#ifndef NDEBUG
, Depth(SGF.BindOptionalFailureDests.size())
#endif
{
SGF.BindOptionalFailureDests.push_back(std::move(dest));
}
~RestoreOptionalFailureDest() {
assert(SGF.BindOptionalFailureDests.size() == Depth + 1);
SGF.BindOptionalFailureDests.pop_back();
}
};
}
/// emitOptimizedOptionalEvaluation - Look for cases where we can short-circuit
/// evaluation of an OptionalEvaluationExpr by pattern matching the AST.
///
static bool emitOptimizedOptionalEvaluation(OptionalEvaluationExpr *E,
SILValue &LoadableResult,
Initialization *optInit,
RValueEmitter &RVE) {
auto &SGF = RVE.SGF;
// It is a common occurrence to get conversions back and forth from T! to T?.
// Peephole these by looking for a subexpression that is a BindOptionalExpr.
// If we see one, we can produce a single instruction, which doesn't require
// a CFG diamond.
//
// Check for:
// (optional_evaluation_expr type='T?'
// (inject_into_optional type='T?'
// (bind_optional_expr type='T'
// (whatever type='T?' ...)
auto *IIO = dyn_cast<InjectIntoOptionalExpr>(E->getSubExpr()
->getSemanticsProvidingExpr());
if (!IIO) return false;
// Make sure the bind is to the OptionalEvaluationExpr we're emitting.
auto *BO = dyn_cast<BindOptionalExpr>(IIO->getSubExpr()
->getSemanticsProvidingExpr());
if (!BO || BO->getDepth() != 0) return false;
auto &optTL = SGF.getTypeLowering(E->getType());
// If the subexpression type is exactly the same, then just peephole the
// whole thing away.
if (BO->getSubExpr()->getType()->isEqual(E->getType())) {
if (optInit)
SGF.emitExprInto(BO->getSubExpr(), optInit);
else
LoadableResult=SGF.emitRValueAsSingleValue(BO->getSubExpr()).forward(SGF);
return true;
}
OptionalTypeKind Kind = OTK_None; (void)Kind;
assert(BO->getSubExpr()->getType()->getAnyOptionalObjectType(Kind)
->isEqual(E->getType()->getAnyOptionalObjectType(Kind)));
// If we're not emitting into memory (which happens both because the type is
// address only or because we have a contextual memory location to
// initialize).
if (optInit == nullptr) {
auto subMV = SGF.emitRValueAsSingleValue(BO->getSubExpr());
SILValue result;
if (optTL.isTrivial())
result = SGF.B.createUncheckedTrivialBitCast(E, subMV.forward(SGF),
optTL.getLoweredType());
else
result = SGF.B.createUncheckedRefBitCast(E, subMV.forward(SGF),
optTL.getLoweredType());
LoadableResult = result;
return true;
}
// If this is an address-only case, get the address of the buffer we want the
// result in, then cast the address of it to the right type, then emit into
// it.
SILValue optAddr = getAddressForInPlaceInitialization(optInit);
assert(optAddr && "Caller should have provided a buffer");
auto &subTL = SGF.getTypeLowering(BO->getSubExpr()->getType());
SILValue subAddr = SGF.B.createUncheckedAddrCast(E, optAddr,
subTL.getLoweredType().getAddressType());
KnownAddressInitialization subInit(subAddr);
SGF.emitExprInto(BO->getSubExpr(), &subInit);
optInit->finishInitialization(SGF);
return true;
}
RValue RValueEmitter::visitOptionalEvaluationExpr(OptionalEvaluationExpr *E,
SGFContext C) {
auto &optTL = SGF.getTypeLowering(E->getType());
Initialization *optInit = C.getEmitInto();
bool usingProvidedContext = optInit && optInit->isSingleBuffer();
// Form the optional using address operations if the type is address-only or
// if we already have an address to use.
bool isByAddress = usingProvidedContext || optTL.isAddressOnly();
std::unique_ptr<TemporaryInitialization> optTemp;
if (!usingProvidedContext && isByAddress) {
// Allocate the temporary for the Optional<T> if we didn't get one from the
// context. This needs to happen outside of the cleanups scope we're about
// to push.
optTemp = SGF.emitTemporary(E, optTL);
optInit = optTemp.get();
} else if (!usingProvidedContext) {
// If the caller produced a context for us, but we can't use it, then don't.
optInit = nullptr;
}
// Enter a cleanups scope.
FullExpr scope(SGF.Cleanups, E);
// Install a new optional-failure destination just outside of the
// cleanups scope.
SILBasicBlock *failureBB = SGF.createBasicBlock();
RestoreOptionalFailureDest restoreFailureDest(SGF,
JumpDest(failureBB, SGF.Cleanups.getCleanupsDepth(), E));
SILValue NormalArgument;
bool hasEmittedResult = false;
if (emitOptimizedOptionalEvaluation(E, NormalArgument, optInit, *this)) {
// Already emitted code for this.
hasEmittedResult = true;
} else if (isByAddress) {
// Emit the operand into the temporary.
SGF.emitExprInto(E->getSubExpr(), optInit);
} else {
NormalArgument = SGF.emitRValueAsSingleValue(E->getSubExpr()).forward(SGF);
}
// We fell out of the normal result, which generated a T? as either
// a scalar in NormalArgument or directly into optInit.
// This concludes the conditional scope.
scope.pop();
// In the usual case, the code will have emitted one or more branches to the
// failure block. However, if the body is simple enough, we can end up with
// no branches to the failureBB. Detect this and simplify the generated code
// if so.
if (failureBB->pred_empty()) {
// Remove the dead failureBB.
failureBB->eraseFromParent();
// The value we provide is the one we've already got.
if (!isByAddress)
return RValue(SGF, E,
SGF.emitManagedRValueWithCleanup(NormalArgument, optTL));
// If we emitted into the provided context, we're done.
if (usingProvidedContext)
return RValue();
return RValue(SGF, E, optTemp->getManagedAddress());
}
SILBasicBlock *contBB = SGF.createBasicBlock();
// Branch to the continuation block.
if (NormalArgument)
SGF.B.createBranch(E, contBB, NormalArgument);
else
SGF.B.createBranch(E, contBB);
// If control branched to the failure block, inject .None into the
// result type.
SGF.B.emitBlock(failureBB);
if (isByAddress) {
SGF.emitInjectOptionalNothingInto(E, optInit->getAddress(), optTL);
SGF.B.createBranch(E, contBB);
} else {
auto branchArg = SGF.getOptionalNoneValue(E, optTL);
SGF.B.createBranch(E, contBB, branchArg);
}
// Emit the continuation block.
SGF.B.emitBlock(contBB);
// If this was done in SSA registers, then the value is provided as an
// argument to the block.
if (!isByAddress) {
auto arg = new (SGF.SGM.M) SILArgument(contBB, optTL.getLoweredType());
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(arg, optTL));
}
// If we emitted into the provided context, we're done.
if (usingProvidedContext)
return RValue();
assert(optTemp);
return RValue(SGF, E, optTemp->getManagedAddress());
}
RValue RValueEmitter::visitForceValueExpr(ForceValueExpr *E, SGFContext C) {
return emitForceValue(E, E->getSubExpr(), 0, C);
}
/// Emit an expression in a forced context.
///
/// \param loc - the location that is causing the force
/// \param E - the forced expression
/// \param numOptionalEvaluations - the number of enclosing
/// OptionalEvaluationExprs that we've opened.
RValue RValueEmitter::emitForceValue(SILLocation loc, Expr *E,
unsigned numOptionalEvaluations,
SGFContext C) {
auto valueType = E->getType()->getAnyOptionalObjectType();
assert(valueType);
E = E->getSemanticsProvidingExpr();
// If the subexpression is a conditional checked cast, emit an unconditional
// cast, which drastically simplifies the generated SIL for something like:
//
// (x as? Foo)!
if (auto checkedCast = dyn_cast<ConditionalCheckedCastExpr>(E)) {
return emitUnconditionalCheckedCast(SGF, loc, checkedCast->getSubExpr(),
valueType, checkedCast->getCastKind(),
C);
}
// If the subexpression is a monadic optional operation, peephole
// the emission of the operation.
if (auto eval = dyn_cast<OptionalEvaluationExpr>(E)) {
CleanupLocation cleanupLoc = CleanupLocation::get(loc);
SILBasicBlock *failureBB;
JumpDest failureDest(cleanupLoc);
// Set up an optional-failure scope (which cannot actually return).
// We can just borrow the enclosing one if we're in a nested context.
if (numOptionalEvaluations) {
failureBB = nullptr; // remember that we did this
failureDest = SGF.BindOptionalFailureDests.back();
} else {
failureBB = SGF.createBasicBlock(FunctionSection::Postmatter);
failureDest = JumpDest(failureBB, SGF.Cleanups.getCleanupsDepth(),
cleanupLoc);
}
RestoreOptionalFailureDest restoreFailureDest(SGF, std::move(failureDest));
RValue result = emitForceValue(loc, eval->getSubExpr(),
numOptionalEvaluations + 1, C);
// Emit the failure destination, but only if actually used.
if (failureBB) {
if (failureBB->pred_empty()) {
SGF.eraseBasicBlock(failureBB);
} else {
SILBuilder failureBuilder(failureBB);
failureBuilder.setTrackingList(SGF.getBuilder().getTrackingList());
auto boolTy = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
auto trueV = failureBuilder.createIntegerLiteral(loc, boolTy, 1);
failureBuilder.createCondFail(loc, trueV);
failureBuilder.createUnreachable(loc);
}
}
return result;
}
// Handle injections.
if (auto injection = dyn_cast<InjectIntoOptionalExpr>(E)) {
auto subexpr = injection->getSubExpr()->getSemanticsProvidingExpr();
// An injection of a bind is the idiom for a conversion between
// optional types (e.g. ImplicitlyUnwrappedOptional<T> -> Optional<T>).
// Handle it specially to avoid unnecessary control flow.
if (auto bindOptional = dyn_cast<BindOptionalExpr>(subexpr)) {
if (bindOptional->getDepth() < numOptionalEvaluations) {
return emitForceValue(loc, bindOptional->getSubExpr(),
numOptionalEvaluations, C);
}
}
// Otherwise, just emit the injected value directly into the result.
return SGF.emitRValue(injection->getSubExpr(), C);
}
// Otherwise, emit the value into memory and use the optional intrinsic.
const TypeLowering &optTL = SGF.getTypeLowering(E->getType());
auto optTemp = SGF.emitTemporary(E, optTL);
SGF.emitExprInto(E, optTemp.get());
ManagedValue V =
SGF.emitCheckedGetOptionalValueFrom(loc,
optTemp->getManagedAddress(), optTL, C);
return RValue(SGF, loc, valueType->getCanonicalType(), V);
}
void SILGenFunction::emitOpenExistentialImpl(
OpenExistentialExpr *E,
llvm::function_ref<void(Expr *)> emitSubExpr) {
Optional<WritebackScope> writebackScope;
// Emit the existential value.
ManagedValue existentialValue;
if (E->getExistentialValue()->getType()->is<LValueType>()) {
// Create a writeback scope for the access to the existential lvalue.
writebackScope.emplace(*this);
existentialValue = emitAddressOfLValue(
E->getExistentialValue(),
emitLValue(E->getExistentialValue(),
AccessKind::ReadWrite),
AccessKind::ReadWrite);
} else {
existentialValue = emitRValueAsSingleValue(
E->getExistentialValue(),
SGFContext::AllowGuaranteedPlusZero);
}
// Open the existential value into the opened archetype value.
bool isUnique = E->getOpaqueValue()->isUniquelyReferenced();
bool canConsume;
SILValue archetypeValue;
Type opaqueValueType = E->getOpaqueValue()->getType()->getRValueType();
switch (existentialValue.getType()
.getPreferredExistentialRepresentation(SGM.M)) {
case ExistentialRepresentation::Opaque:
assert(existentialValue.getValue().getType().isAddress());
archetypeValue = B.createOpenExistentialAddr(
E, existentialValue.forward(*this),
getLoweredType(opaqueValueType));
if (existentialValue.hasCleanup()) {
canConsume = true;
// Leave a cleanup to deinit the existential container.
Cleanups.pushCleanup<TakeFromExistentialCleanup>(
existentialValue.getValue());
} else {
canConsume = false;
}
break;
case ExistentialRepresentation::Metatype:
assert(existentialValue.getValue().getType().isObject());
archetypeValue = B.createOpenExistentialMetatype(
E, existentialValue.forward(*this),
getLoweredType(opaqueValueType));
// Metatypes are always trivial. Consuming would be a no-op.
canConsume = false;
break;
case ExistentialRepresentation::Class:
assert(existentialValue.getValue().getType().isObject());
archetypeValue = B.createOpenExistentialRef(
E, existentialValue.forward(*this),
getLoweredType(opaqueValueType));
canConsume = existentialValue.hasCleanup();
break;
case ExistentialRepresentation::Boxed:
assert(existentialValue.getValue().getType().isObject());
// NB: Don't forward the cleanup, because consuming a boxed value won't
// consume the box reference.
archetypeValue = B.createOpenExistentialBox(
E, existentialValue.getValue(),
getLoweredType(opaqueValueType));
// The boxed value can't be assumed to be uniquely referenced. We can never
// consume it.
// TODO: We could use isUniquelyReferenced to shorten the duration of
// the box to the point that the opaque value is copied out.
isUnique = false;
canConsume = false;
break;
case ExistentialRepresentation::None:
llvm_unreachable("not existential");
}
setArchetypeOpeningSite(CanArchetypeType(E->getOpenedArchetype()),
archetypeValue);
// Register the opaque value for the projected existential.
SILGenFunction::OpaqueValueRAII opaqueValueRAII(
*this, E->getOpaqueValue(),
archetypeValue,
/*destroy=*/canConsume,
/*uniquely referenced=*/isUnique);
emitSubExpr(E->getSubExpr());
}
RValue RValueEmitter::visitOpenExistentialExpr(OpenExistentialExpr *E,
SGFContext C) {
return SGF.emitOpenExistential<RValue>(E,
[&](Expr *subExpr) -> RValue {
return visit(subExpr, C);
});
}
RValue RValueEmitter::visitOpaqueValueExpr(OpaqueValueExpr *E, SGFContext C) {
assert(SGF.OpaqueValues.count(E) && "Didn't bind OpaqueValueExpr");
auto &entry = SGF.OpaqueValues[E];
// If the context wants a +0 value, guaranteed or immediate, we can give it to
// them, because OpenExistential emission guarantees the value.
if (C.isGuaranteedPlusZeroOk()) {
return RValue(SGF, E, ManagedValue::forUnmanaged(entry.value));
}
// If the opaque value is consumable, we can just return the
// value with a cleanup. There is no need to retain it separately.
if (entry.isConsumable) {
assert(!entry.hasBeenConsumed
&& "Uniquely-referenced opaque value already consumed");
entry.hasBeenConsumed = true;
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(entry.value));
}
// Otherwise, copy the value.
return RValue(SGF, E,
ManagedValue::forUnmanaged(entry.value).copyUnmanaged(SGF, E));
}
ProtocolDecl *SILGenFunction::getPointerProtocol() {
if (SGM.PointerProtocol)
return *SGM.PointerProtocol;
SmallVector<ValueDecl*, 1> lookup;
getASTContext().lookupInSwiftModule("_PointerType", lookup);
// FIXME: Should check for protocol in Sema
assert(lookup.size() == 1 && "no _PointerType protocol");
assert(isa<ProtocolDecl>(lookup[0]) && "_PointerType is not a protocol");
SGM.PointerProtocol = cast<ProtocolDecl>(lookup[0]);
return cast<ProtocolDecl>(lookup[0]);
}
/// Produce a Substitution for a type that conforms to the standard library
/// _Pointer protocol.
Substitution SILGenFunction::getPointerSubstitution(Type pointerType,
ArchetypeType *archetype) {
auto &Ctx = getASTContext();
ProtocolDecl *pointerProto = getPointerProtocol();
auto conformance
= Ctx.getStdlibModule()->lookupConformance(pointerType, pointerProto,
nullptr);
assert(conformance.getInt() == ConformanceKind::Conforms
&& "not a _Pointer type");
// FIXME: Cache this
ProtocolConformance *conformances[] = {conformance.getPointer()};
auto conformancesCopy = Ctx.AllocateCopy(conformances);
return Substitution{archetype, pointerType, conformancesCopy};
}
namespace {
class AutoreleasingWritebackComponent : public LogicalPathComponent {
public:
AutoreleasingWritebackComponent(LValueTypeData typeData)
: LogicalPathComponent(typeData, AutoreleasingWritebackKind)
{}
std::unique_ptr<LogicalPathComponent>
clone(SILGenFunction &gen, SILLocation l) const override {
return std::unique_ptr<LogicalPathComponent>(
new AutoreleasingWritebackComponent(getTypeData()));
}
AccessKind getBaseAccessKind(SILGenFunction &gen,
AccessKind kind) const override {
return kind;
}
void set(SILGenFunction &gen, SILLocation loc,
RValue &&value, ManagedValue base) && override {
// Convert the value back to a +1 strong reference.
auto unowned = std::move(value).getAsSingleValue(gen, loc).getUnmanagedValue();
auto strongType = SILType::getPrimitiveObjectType(
unowned.getType().castTo<UnmanagedStorageType>().getReferentType());
auto owned = gen.B.createUnmanagedToRef(loc, unowned, strongType);
gen.B.createRetainValue(loc, owned);
auto ownedMV = gen.emitManagedRValueWithCleanup(owned);
// Reassign the +1 storage with it.
ownedMV.assignInto(gen, loc, base.getUnmanagedValue());
}
ManagedValue get(SILGenFunction &gen, SILLocation loc,
ManagedValue base, SGFContext c) && override {
// Load the value at +0.
SILValue owned = gen.B.createLoad(loc, base.getUnmanagedValue());
// Convert it to unowned.
auto unownedType = SILType::getPrimitiveObjectType(
CanUnmanagedStorageType::get(owned.getType().getSwiftRValueType()));
SILValue unowned = gen.B.createRefToUnmanaged(loc, owned, unownedType);
return ManagedValue::forUnmanaged(unowned);
}
/// Compare 'this' lvalue and the 'rhs' lvalue (which is guaranteed to have
/// the same dynamic PathComponent type as the receiver) to see if they are
/// identical. If so, there is a conflicting writeback happening, so emit a
/// diagnostic.
void diagnoseWritebackConflict(LogicalPathComponent *RHS,
SILLocation loc1, SILLocation loc2,
SILGenFunction &gen) override {
// auto &rhs = (GetterSetterComponent&)*RHS;
}
void print(raw_ostream &OS) const override {
OS << "AutoreleasingWritebackComponent()\n";
}
};
} // end anonymous namespace
RValue RValueEmitter::visitInOutToPointerExpr(InOutToPointerExpr *E,
SGFContext C) {
// If we're converting on the behalf of an
// AutoreleasingUnsafeMutablePointer, convert the lvalue to
// unowned(unsafe), so we can point at +0 storage.
PointerTypeKind pointerKind;
Type elt = E->getType()->getAnyPointerElementType(pointerKind);
assert(elt && "not a pointer");
(void)elt;
AccessKind accessKind =
(pointerKind == PTK_UnsafePointer
? AccessKind::Read : AccessKind::ReadWrite);
// Get the original lvalue.
LValue lv = SGF.emitLValue(cast<InOutExpr>(E->getSubExpr())->getSubExpr(),
accessKind);
auto ptr = SGF.emitLValueToPointer(E, std::move(lv),
E->getType()->getCanonicalType(),
pointerKind, accessKind);
return RValue(SGF, E, ptr);
}
/// Convert an l-value to a pointer type: unsafe, unsafe-mutable, or
/// autoreleasing-unsafe-mutable.
ManagedValue SILGenFunction::emitLValueToPointer(SILLocation loc,
LValue &&lv,
CanType pointerType,
PointerTypeKind pointerKind,
AccessKind accessKind) {
switch (pointerKind) {
case PTK_UnsafeMutablePointer:
case PTK_UnsafePointer:
// +1 is fine.
break;
case PTK_AutoreleasingUnsafeMutablePointer: {
// Set up a writeback through a +0 buffer.
LValueTypeData typeData = lv.getTypeData();
SILType rvalueType = SILType::getPrimitiveObjectType(
CanUnmanagedStorageType::get(typeData.TypeOfRValue.getSwiftRValueType()));
LValueTypeData unownedTypeData(
AbstractionPattern(
CanUnmanagedStorageType::get(typeData.OrigFormalType.getType())),
CanUnmanagedStorageType::get(typeData.SubstFormalType),
rvalueType);
lv.add<AutoreleasingWritebackComponent>(unownedTypeData);
break;
}
}
// Get the lvalue address as a raw pointer.
SILValue address =
emitAddressOfLValue(loc, std::move(lv), accessKind).getUnmanagedValue();
address = B.createAddressToPointer(loc, address,
SILType::getRawPointerType(getASTContext()));
// Disable nested writeback scopes for any calls evaluated during the
// conversion intrinsic.
InOutConversionScope scope(*this);
// Invoke the conversion intrinsic.
FuncDecl *converter =
getASTContext().getConvertInOutToPointerArgument(nullptr);
Substitution sub = getPointerSubstitution(pointerType,
converter->getGenericParams()->getAllArchetypes()[0]);
return emitApplyOfLibraryIntrinsic(loc, converter, sub,
ManagedValue::forUnmanaged(address),
SGFContext());
}
RValue RValueEmitter::visitArrayToPointerExpr(ArrayToPointerExpr *E,
SGFContext C) {
WritebackScope writeback(SGF);
auto &Ctx = SGF.getASTContext();
FuncDecl *converter;
ManagedValue orig;
// Convert the array mutably if it's being passed inout.
auto subExpr = E->getSubExpr();
if (subExpr->getType()->is<InOutType>()) {
converter = Ctx.getConvertMutableArrayToPointerArgument(nullptr);
orig = SGF.emitAddressOfLValue(subExpr,
SGF.emitLValue(subExpr, AccessKind::ReadWrite),
AccessKind::ReadWrite);
} else {
converter = Ctx.getConvertConstArrayToPointerArgument(nullptr);
orig = SGF.emitRValueAsSingleValue(subExpr);
}
auto converterArchetypes = converter->getGenericParams()->getAllArchetypes();
// Invoke the conversion intrinsic, which will produce an owner-pointer pair.
Substitution subs[2] = {
Substitution{
converterArchetypes[0],
subExpr->getType()->getInOutObjectType()
->castTo<BoundGenericType>()
->getGenericArgs()[0],
{}
},
SGF.getPointerSubstitution(E->getType(),
converterArchetypes[1]),
};
auto result = SGF.emitApplyOfLibraryIntrinsic(E, converter, subs, orig, C);
// Lifetime-extend the owner, and pass on the pointer.
auto owner = SGF.B.createTupleExtract(E, result.forward(SGF), 0);
SGF.emitManagedRValueWithCleanup(owner);
auto pointer = SGF.B.createTupleExtract(E, result.getValue(), 1);
return RValue(SGF, E, ManagedValue::forUnmanaged(pointer));
}
RValue RValueEmitter::visitStringToPointerExpr(StringToPointerExpr *E,
SGFContext C) {
auto &Ctx = SGF.getASTContext();
FuncDecl *converter = Ctx.getConvertConstStringToUTF8PointerArgument(nullptr);
auto converterArchetypes = converter->getGenericParams()->getAllArchetypes();
// Get the original value.
ManagedValue orig = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Invoke the conversion intrinsic, which will produce an owner-pointer pair.
Substitution sub =
SGF.getPointerSubstitution(E->getType(),
converterArchetypes[0]);
auto result = SGF.emitApplyOfLibraryIntrinsic(E, converter, sub, orig, C);
// Lifetime-extend the owner, and pass on the pointer.
auto owner = SGF.B.createTupleExtract(E, result.forward(SGF), 0);
SGF.emitManagedRValueWithCleanup(owner);
auto pointer = SGF.B.createTupleExtract(E, result.getValue(), 1);
return RValue(SGF, E, ManagedValue::forUnmanaged(pointer));
}
RValue RValueEmitter::visitPointerToPointerExpr(PointerToPointerExpr *E,
SGFContext C) {
auto &Ctx = SGF.getASTContext();
auto converter = Ctx.getConvertPointerToPointerArgument(nullptr);
auto converterArchetypes = converter->getGenericParams()->getAllArchetypes();
// Get the original pointer value, abstracted to the converter function's
// expected level.
AbstractionPattern origTy(converter->getType()->castTo<AnyFunctionType>()
->getInput());
auto &origTL = SGF.getTypeLowering(origTy, E->getSubExpr()->getType());
ManagedValue orig = SGF.emitRValueAsOrig(E->getSubExpr(), origTy, origTL);
// The generic function currently always requires indirection, but pointers
// are always loadable.
auto origBuf = SGF.emitTemporaryAllocation(E, orig.getType());
SGF.B.createStore(E, orig.forward(SGF), origBuf);
orig = SGF.emitManagedBufferWithCleanup(origBuf);
// Invoke the conversion intrinsic to convert to the destination type.
Substitution subs[2] = {
SGF.getPointerSubstitution(E->getSubExpr()->getType(), converterArchetypes[0]),
SGF.getPointerSubstitution(E->getType(), converterArchetypes[1]),
};
auto result = SGF.emitApplyOfLibraryIntrinsic(E, converter, subs, orig, C);
return RValue(SGF, E, result);
}
RValue RValueEmitter::visitForeignObjectConversionExpr(
ForeignObjectConversionExpr *E,
SGFContext C) {
// Get the original value.
ManagedValue orig = SGF.emitRValueAsSingleValue(E->getSubExpr());
ManagedValue result(SGF.B.createUncheckedRefCast(
E, orig.getValue(),
SGF.getLoweredType(E->getType())),
orig.getCleanup());
return RValue(SGF, E, E->getType()->getCanonicalType(), result);
}
/// Emit a check that returns 1 if the running OS version is in
/// the specified version range and 0 otherwise. The returned SILValue
/// (which has type Builtin.Int1) represents the result of this check.
static SILValue emitOSVersionRangeCheck(SILLocation loc,
const VersionRange &range,
SILGenFunction &SGF, SGFContext C) {
// Emit constants for the checked version range.
clang::VersionTuple Vers = range.getLowerEndpoint();
unsigned major = Vers.getMajor();
unsigned minor =
(Vers.getMinor().hasValue() ? Vers.getMinor().getValue() : 0);
unsigned subminor =
(Vers.getSubminor().hasValue() ? Vers.getSubminor().getValue() : 0);
SILType wordType = SILType::getBuiltinWordType(SGF.getASTContext());
SILValue majorValue = SGF.B.createIntegerLiteral(loc, wordType, major);
SILValue minorValue = SGF.B.createIntegerLiteral(loc, wordType, minor);
SILValue subminorValue = SGF.B.createIntegerLiteral(loc, wordType, subminor);
// Emit call to _stdlib_isOSVersionAtLeast(major, minor, patch)
FuncDecl *versionQueryDecl =
SGF.getASTContext().getIsOSVersionAtLeastDecl(nullptr);
assert(versionQueryDecl);
auto silDeclRef = SILDeclRef(versionQueryDecl);
SILValue availabilityGTEFn = SGF.emitGlobalFunctionRef(
loc, silDeclRef, SGF.getConstantInfo(silDeclRef));
SILValue args[] = {majorValue, minorValue, subminorValue};
SILValue queryResult = SGF.B.createApply(loc, availabilityGTEFn, args);
return queryResult;
}
RValue RValueEmitter::visitAvailabilityQueryExpr(AvailabilityQueryExpr *E,
SGFContext C) {
// Check the running OS version to determine whether it is in the range
// specified by E.
SILValue inRange = emitOSVersionRangeCheck(E, E->getAvailableRange(), SGF, C);
// Convert Builtin.Int1 result into Bool with the _getBool library intrinsic.
ASTContext &ctx = SGF.SGM.M.getASTContext();
auto result =
SGF.emitApplyOfLibraryIntrinsic(E, ctx.getGetBoolDecl(nullptr), {},
ManagedValue::forUnmanaged(inRange), C);
return RValue(SGF, E, result);
}
RValue
RValueEmitter::visitUnavailableToOptionalExpr(UnavailableToOptionalExpr *E,
SGFContext C) {
// Emit construction of an optional value for E's declaration reference.
// The value will be .None if the underlying declaration reference is
// unavailable and .Some(rvalue) if the declaration is available.
// E must have an optional type.
assert(E->getType().getPointer()->getOptionalObjectType().getPointer());
Expr *unavailExpr = E->getSubExpr();
SILType silOptType = SGF.getLoweredType(E->getType());
SILLocation loc(E);
SILValue allocatedOptional = SGF.emitTemporaryAllocation(loc, silOptType);
// Emit the check for availability
SILValue isAvailable;
const UnavailabilityReason &Reason = E->getReason();
switch (Reason.getReasonKind()) {
case UnavailabilityReason::Kind::RequiresOSVersionRange:
isAvailable = emitOSVersionRangeCheck(
loc, Reason.getRequiredOSVersionRange(), SGF, C);
break;
case UnavailabilityReason::Kind::ExplicitlyWeakLinked:
// We don't handle explicit weak linking yet.
// In the future, we will do so by converting the global variable
// lvalue to an address and comparing to 0.
llvm_unreachable("Unimplemented optional for weakly-linked global");
}
Condition cond = SGF.emitCondition(isAvailable, loc);
cond.enterTrue(SGF);
{
ArgumentSource source;
if (E->getSubExpr()->getType()->getAs<LValueType>()) {
// If the unavailable expression is an lvalue, we will load it.
auto lval = SGF.emitLValue(unavailExpr, AccessKind::Read);
ManagedValue loadedValue = SGF.emitLoadOfLValue(loc, std::move(lval), C);
source = ArgumentSource(
loc, RValue(SGF, loc, lval.getSubstFormalType(), loadedValue));
} else {
source = ArgumentSource(unavailExpr);
}
SGF.emitInjectOptionalValueInto(loc, std::move(source), allocatedOptional,
SGF.getTypeLowering(silOptType));
}
cond.exitTrue(SGF);
cond.enterFalse(SGF);
{
// If the declaration is not available, inject .None.
SGF.emitInjectOptionalNothingInto(loc, allocatedOptional,
SGF.getTypeLowering(silOptType));
}
cond.exitFalse(SGF);
cond.complete(SGF);
ManagedValue managedValue = SGF.emitLoad(
loc, allocatedOptional, SGF.getTypeLowering(silOptType), C, IsNotTake);
return RValue(SGF, E, managedValue);
}
RValue SILGenFunction::emitRValue(Expr *E, SGFContext C) {
assert(E->getType()->isMaterializable() &&
"l-values must be emitted with emitLValue");
return RValueEmitter(*this).visit(E, C);
}
// Evaluate the expression as an lvalue or rvalue, discarding the result.
void SILGenFunction::emitIgnoredExpr(Expr *E) {
// If this is a tuple expression, recursively ignore its elements.
// This may let us recursively avoid work.
if (auto *TE = dyn_cast<TupleExpr>(E)) {
for (auto *elt : TE->getElements())
emitIgnoredExpr(elt);
return;
}
// TODO: Could look through arbitrary implicit conversions that don't have
// side effects, or through tuple shuffles, by emitting ignored default
// arguments.
FullExpr scope(Cleanups, CleanupLocation(E));
if (!E->getType()->isMaterializable()) {
// Emit the l-value, but don't perform an access.
emitLValue(E, AccessKind::Read);
return;
}
// If this is a load expression, we try hard not to actually do the load
// (which could materialize a potentially expensive value with cleanups).
if (auto *LE = dyn_cast<LoadExpr>(E)) {
LValue lv = emitLValue(LE->getSubExpr(), AccessKind::Read);
// If the lvalue is purely physical, then it won't have any side effects,
// and we don't need to drill into it.
if (lv.isPhysical())
return;
// If the last component is physical, then we just need to drill through
// side effects in the lvalue, but don't need to perform the final load.
if (lv.isLastComponentPhysical()) {
emitAddressOfLValue(E, std::move(lv), AccessKind::Read);
return;
}
// Otherwise, we must call the ultimate getter to get its potential side
// effect.
emitLoadOfLValue(E, std::move(lv), SGFContext::AllowImmediatePlusZero);
return;
}
// Otherwise, emit the result (to get any side effects), but produce it at +0
// if that allows simplification.
emitRValue(E, SGFContext::AllowImmediatePlusZero);
}
/// Emit the given expression as an r-value, then (if it is a tuple), combine
/// it together into a single ManagedValue.
ManagedValue SILGenFunction::emitRValueAsSingleValue(Expr *E, SGFContext C) {
RValue &&rv = emitRValue(E, C);
if (rv.isUsed()) return ManagedValue::forInContext();
return std::move(rv).getAsSingleValue(*this, E);
}
static ManagedValue emitUndef(SILGenFunction &gen, SILLocation loc,
const TypeLowering &undefTL) {
SILValue undef = SILUndef::get(undefTL.getLoweredType(), gen.SGM.M);
return gen.emitManagedRValueWithCleanup(undef, undefTL);
}
ManagedValue SILGenFunction::emitUndef(SILLocation loc, Type type) {
return ::emitUndef(*this, loc, getTypeLowering(type));
}
ManagedValue SILGenFunction::emitUndef(SILLocation loc, SILType type) {
return ::emitUndef(*this, loc, getTypeLowering(type));
}