mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
1000 lines
36 KiB
C++
1000 lines
36 KiB
C++
//===--- CapturePromotion.cpp - Promotes closure captures -----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Promotes captures from 'inout' (i.e. by-reference) to by-value
|
|
// ==============================================================
|
|
//
|
|
// Swift's closure model is that all local variables are capture by reference.
|
|
// This produces a very simple programming model which is great to use, but
|
|
// relies on the optimizer to promote by-ref captures to by-value (i.e. by-copy)
|
|
// captures for decent performance. Consider this simple example:
|
|
//
|
|
// func foo(a : () -> ()) {} // assume this has an unknown body
|
|
//
|
|
// func bar() {
|
|
// var x = 42
|
|
//
|
|
// foo({ print(x) })
|
|
// }
|
|
//
|
|
// Since x is captured by-ref by the closure, x must live on the heap. By
|
|
// looking at bar without any knowledge of foo, we can know that it is safe to
|
|
// promote this to a by-value capture, allowing x to live on the stack under the
|
|
// following conditions:
|
|
//
|
|
// 1. If x is not modified in the closure body and is only loaded.
|
|
// 2. If we can prove that all mutations to x occur before the closure is
|
|
// formed.
|
|
//
|
|
// Under these conditions if x is loadable then we can even load the given value
|
|
// and pass it as a scalar instead of an address.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-capture-promotion"
|
|
#include "swift/SILPasses/Passes.h"
|
|
#include "swift/SIL/Mangle.h"
|
|
#include "swift/SIL/SILCloner.h"
|
|
#include "swift/SIL/TypeSubstCloner.h"
|
|
#include "swift/SILPasses/Transforms.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <tuple>
|
|
|
|
using namespace swift;
|
|
|
|
typedef llvm::SmallSet<unsigned, 4> IndicesSet;
|
|
typedef llvm::DenseMap<PartialApplyInst*, IndicesSet> PartialApplyIndicesMap;
|
|
|
|
STATISTIC(NumCapturesPromoted, "Number of captures promoted");
|
|
|
|
namespace {
|
|
/// \brief Transient reference to a block set within ReachabilityInfo.
|
|
///
|
|
/// This is a bitset that conveniently flattens into a matrix allowing bit-wise
|
|
/// operations without masking.
|
|
///
|
|
/// TODO: If this sticks around, maybe we'll make a BitMatrix ADT.
|
|
class ReachingBlockSet {
|
|
public:
|
|
enum { BITWORD_SIZE = (unsigned)sizeof(uint64_t) * CHAR_BIT };
|
|
|
|
static size_t numBitWords(unsigned NumBlocks) {
|
|
return (NumBlocks + BITWORD_SIZE - 1) / BITWORD_SIZE;
|
|
}
|
|
|
|
/// \brief Transient reference to a reaching block matrix.
|
|
struct ReachingBlockMatrix {
|
|
uint64_t *Bits;
|
|
unsigned NumBitWords; // Words per row.
|
|
|
|
ReachingBlockMatrix(): Bits(0), NumBitWords(0) {}
|
|
|
|
bool empty() const { return !Bits; }
|
|
};
|
|
|
|
static ReachingBlockMatrix allocateMatrix(unsigned NumBlocks) {
|
|
ReachingBlockMatrix M;
|
|
M.NumBitWords = numBitWords(NumBlocks);
|
|
M.Bits = new uint64_t[NumBlocks * M.NumBitWords];
|
|
memset(M.Bits, 0, NumBlocks * M.NumBitWords * sizeof(uint64_t));
|
|
return M;
|
|
}
|
|
static void deallocateMatrix(ReachingBlockMatrix &M) {
|
|
delete [] M.Bits;
|
|
M.Bits = 0;
|
|
M.NumBitWords = 0;
|
|
}
|
|
static ReachingBlockSet allocateSet(unsigned NumBlocks) {
|
|
ReachingBlockSet S;
|
|
S.NumBitWords = numBitWords(NumBlocks);
|
|
S.Bits = new uint64_t[S.NumBitWords];
|
|
return S;
|
|
}
|
|
static void deallocateSet(ReachingBlockSet &S) {
|
|
delete [] S.Bits;
|
|
S.Bits = 0;
|
|
S.NumBitWords = 0;
|
|
}
|
|
|
|
private:
|
|
uint64_t *Bits;
|
|
unsigned NumBitWords;
|
|
|
|
public:
|
|
ReachingBlockSet(): Bits(0), NumBitWords(0) {}
|
|
|
|
ReachingBlockSet(unsigned BlockID, ReachingBlockMatrix &M)
|
|
: Bits(&M.Bits[BlockID * M.NumBitWords]),
|
|
NumBitWords(M.NumBitWords) {}
|
|
|
|
bool test(unsigned ID) const {
|
|
assert(ID / BITWORD_SIZE < NumBitWords && "block ID out-of-bounds");
|
|
return Bits[ID / BITWORD_SIZE] & (1L << (ID % BITWORD_SIZE));
|
|
}
|
|
|
|
void set(unsigned ID) {
|
|
assert(ID / BITWORD_SIZE < NumBitWords && "block ID out-of-bounds");
|
|
Bits[ID / BITWORD_SIZE] |= 1L << (ID % BITWORD_SIZE);
|
|
}
|
|
|
|
ReachingBlockSet &operator|=(const ReachingBlockSet &RHS) {
|
|
for (size_t i = 0, e = NumBitWords; i != e; ++i)
|
|
Bits[i] |= RHS.Bits[i];
|
|
return *this;
|
|
}
|
|
|
|
void clear() {
|
|
memset(Bits, 0, NumBitWords * sizeof(uint64_t));
|
|
}
|
|
|
|
bool operator==(const ReachingBlockSet &RHS) const {
|
|
assert(NumBitWords == RHS.NumBitWords && "mismatched sets");
|
|
for (size_t i = 0, e = NumBitWords; i != e; ++i) {
|
|
if (Bits[i] != RHS.Bits[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool operator!=(const ReachingBlockSet &RHS) const {
|
|
return !(*this == RHS);
|
|
}
|
|
|
|
const ReachingBlockSet &operator=(const ReachingBlockSet &RHS) {
|
|
assert(NumBitWords == RHS.NumBitWords && "mismatched sets");
|
|
for (size_t i = 0, e = NumBitWords; i != e; ++i)
|
|
Bits[i] = RHS.Bits[i];
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
/// \brief Store the reachability matrix: ToBlock -> FromBlocks.
|
|
class ReachabilityInfo {
|
|
SILFunction *F;
|
|
llvm::DenseMap<SILBasicBlock*, unsigned> BlockMap;
|
|
ReachingBlockSet::ReachingBlockMatrix Matrix;
|
|
|
|
public:
|
|
ReachabilityInfo(SILFunction *f) : F(f) {}
|
|
~ReachabilityInfo() { ReachingBlockSet::deallocateMatrix(Matrix); }
|
|
|
|
bool isComputed() const { return !Matrix.empty(); }
|
|
|
|
bool isReachable(SILBasicBlock *From, SILBasicBlock *To);
|
|
|
|
private:
|
|
void compute();
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
|
|
namespace {
|
|
/// \brief A SILCloner subclass which clones a closure function while converting
|
|
/// one or more captures from 'inout' (by-reference) to by-value.
|
|
class ClosureCloner : public TypeSubstCloner<ClosureCloner> {
|
|
public:
|
|
friend class SILVisitor<ClosureCloner>;
|
|
friend class SILCloner<ClosureCloner>;
|
|
|
|
ClosureCloner(SILFunction *Orig, StringRef ClonedName,
|
|
TypeSubstitutionMap &InterfaceSubs,
|
|
TypeSubstitutionMap &ContextSubs,
|
|
ArrayRef<Substitution> ApplySubs,
|
|
IndicesSet &PromotableIndices);
|
|
|
|
void populateCloned();
|
|
|
|
SILFunction *getCloned() { return &getBuilder().getFunction(); }
|
|
|
|
protected:
|
|
// FIXME: We intentionally call SILClonerWithScopes here to ensure
|
|
// the debug scopes are set correctly for cloned
|
|
// functions. TypeSubstCloner, SILClonerWithScopes, and
|
|
// SILCloner desperately need refactoring and/or combining so
|
|
// that the obviously right things are happening for cloning
|
|
// vs. inlining.
|
|
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
|
|
SILClonerWithScopes<ClosureCloner>::postProcess(Orig, Cloned);
|
|
}
|
|
|
|
private:
|
|
static SILFunction *initCloned(SILFunction *Orig, StringRef ClonedName,
|
|
TypeSubstitutionMap &InterfaceSubs,
|
|
IndicesSet &PromotableIndices);
|
|
|
|
void visitStrongReleaseInst(StrongReleaseInst *Inst);
|
|
void visitStructElementAddrInst(StructElementAddrInst *Inst);
|
|
void visitLoadInst(LoadInst *Inst);
|
|
|
|
SILFunction *Orig;
|
|
IndicesSet &PromotableIndices;
|
|
llvm::DenseMap<SILArgument*, SILValue> BoxArgumentMap;
|
|
llvm::DenseMap<SILArgument*, SILValue> AddrArgumentMap;
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
/// \brief Compute ReachabilityInfo so that it can answer queries about
|
|
/// whether a given basic block in a function is reachable from another basic
|
|
/// block in the function.
|
|
///
|
|
/// FIXME: Computing global reachability requires initializing an N^2
|
|
/// bitset. This could be avoided by computing reachability on-the-fly
|
|
/// for each alloc_box by walking backward from mutations.
|
|
void ReachabilityInfo::compute() {
|
|
assert(!isComputed() && "already computed");
|
|
|
|
unsigned N = 0;
|
|
for (auto &BB : *F)
|
|
BlockMap.insert({ &BB, N++ });
|
|
Matrix = ReachingBlockSet::allocateMatrix(N);
|
|
ReachingBlockSet NewSet = ReachingBlockSet::allocateSet(N);
|
|
|
|
DEBUG(llvm::dbgs() << "Computing Reachability for " << F->getName()
|
|
<< " with " << N << " blocks.\n");
|
|
|
|
// Iterate to a fix point, two times for a topological DAG.
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
|
|
// Visit all blocks in a predictable order, hopefully close to topological.
|
|
for (auto &BB : *F) {
|
|
ReachingBlockSet CurSet(BlockMap[&BB], Matrix);
|
|
if (!Changed) {
|
|
// If we have not detected a change yet, then calculate new
|
|
// reachabilities into a new bit vector so we can determine if any
|
|
// change has occured.
|
|
NewSet = CurSet;
|
|
for (auto PI = BB.pred_begin(), PE = BB.pred_end(); PI != PE; ++PI) {
|
|
unsigned PredID = BlockMap[*PI];
|
|
ReachingBlockSet PredSet(PredID, Matrix);
|
|
NewSet |= PredSet;
|
|
NewSet.set(PredID);
|
|
}
|
|
if (NewSet != CurSet) {
|
|
CurSet = NewSet;
|
|
Changed = true;
|
|
}
|
|
} else {
|
|
// Otherwise, just update the existing reachabilities in-place.
|
|
for (auto PI = BB.pred_begin(), PE = BB.pred_end(); PI != PE; ++PI) {
|
|
unsigned PredID = BlockMap[*PI];
|
|
ReachingBlockSet PredSet(PredID, Matrix);
|
|
CurSet |= PredSet;
|
|
CurSet.set(PredID);
|
|
}
|
|
}
|
|
DEBUG(llvm::dbgs() << " Block " << BlockMap[&BB] << " reached by ";
|
|
for (unsigned i = 0; i < N; ++i) {
|
|
if (CurSet.test(i))
|
|
llvm::dbgs() << i << " ";
|
|
}
|
|
llvm::dbgs() << "\n");
|
|
}
|
|
} while (Changed);
|
|
|
|
ReachingBlockSet::deallocateSet(NewSet);
|
|
}
|
|
|
|
/// \brief Return true if the To basic block is reachable from the From basic
|
|
/// block. A block is considered reachable from itself only if its entry can be
|
|
/// recursively reached from its own exit.
|
|
bool
|
|
ReachabilityInfo::isReachable(SILBasicBlock *From, SILBasicBlock *To) {
|
|
if (!isComputed())
|
|
compute();
|
|
|
|
auto FI = BlockMap.find(From), TI = BlockMap.find(To);
|
|
assert(FI != BlockMap.end() && TI != BlockMap.end());
|
|
ReachingBlockSet FromSet(TI->second, Matrix);
|
|
return FromSet.test(FI->second);
|
|
}
|
|
|
|
ClosureCloner::ClosureCloner(SILFunction *Orig, StringRef ClonedName,
|
|
TypeSubstitutionMap &InterfaceSubs,
|
|
TypeSubstitutionMap &ContextSubs,
|
|
ArrayRef<Substitution> ApplySubs,
|
|
IndicesSet &PromotableIndices)
|
|
: TypeSubstCloner<ClosureCloner>(
|
|
*initCloned(Orig, ClonedName, InterfaceSubs,
|
|
PromotableIndices),
|
|
*Orig, ContextSubs, ApplySubs),
|
|
Orig(Orig), PromotableIndices(PromotableIndices) {
|
|
}
|
|
|
|
/// Compute the SILParameterInfo list for the new cloned closure.
|
|
///
|
|
/// SILGen always closes over boxes such that the container address is
|
|
/// first. Thus we know that:
|
|
///
|
|
/// 1. By assumption, all indices that is a box container value is in
|
|
/// PromotableIndices.
|
|
/// 2. All box address values must have the box container value previous to
|
|
/// it implying that PromotableIndices.count(ParamIndex - 1) will be true.
|
|
/// 3. The first parameter can *never* be a box address value since there
|
|
/// does not exist any previous box container that is able to be
|
|
/// associated with it.
|
|
///
|
|
/// Our goal as a result of this transformation is to:
|
|
///
|
|
/// 1. Let through all arguments not related to a promotable box.
|
|
/// 2. Do not add any container box value arguments to the cloned closure.
|
|
/// 3. Add the address box value argument to the cloned closure with the
|
|
/// appropriate transformations.
|
|
static void
|
|
computeNewArgInterfaceTypes(SILFunction *F,
|
|
IndicesSet &PromotableIndices,
|
|
SmallVectorImpl<SILParameterInfo> &OutTys) {
|
|
auto Parameters = F->getLoweredFunctionType()->getParameters();
|
|
|
|
DEBUG(llvm::dbgs() << "Preparing New Args!\n");
|
|
|
|
// For each parameter in the old function...
|
|
for (unsigned Index : indices(Parameters)) {
|
|
auto ¶m = Parameters[Index];
|
|
|
|
DEBUG(llvm::dbgs() << "Index: " << Index << "; PromotableIndices: "
|
|
<< (PromotableIndices.count(Index)?"yes":"no")
|
|
<< " Param: "; param.dump());
|
|
|
|
// With that in mind, first check if we do not have a box address value...
|
|
if (Index == 0 || !PromotableIndices.count(Index - 1)) {
|
|
|
|
// If we do not have a box address value, if we have a box container
|
|
// value, continue so we do not add it to the new closure's function type.
|
|
if (PromotableIndices.count(Index))
|
|
continue;
|
|
|
|
// Otherwise, we have a function argument not related to a promotable
|
|
// box. Just add it to the new signature and continue.
|
|
OutTys.push_back(param);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have an address value of the box. Perform the proper
|
|
// conversions and then add it to the new parameter list for the type.
|
|
assert(param.getConvention() == ParameterConvention::Indirect_Inout);
|
|
auto ¶mTL = F->getModule().Types.getTypeLowering(param.getSILType());
|
|
ParameterConvention convention;
|
|
if (paramTL.isPassedIndirectly()) {
|
|
convention = ParameterConvention::Indirect_In;
|
|
} else if (paramTL.isTrivial()) {
|
|
convention = ParameterConvention::Direct_Unowned;
|
|
} else {
|
|
convention = ParameterConvention::Direct_Owned;
|
|
}
|
|
OutTys.push_back(SILParameterInfo(param.getType(), convention));
|
|
}
|
|
}
|
|
|
|
static llvm::SmallString<64> getSpecializedName(SILFunction *F,
|
|
IndicesSet &PromotableIndices) {
|
|
llvm::SmallString<64> Name;
|
|
|
|
{
|
|
llvm::raw_svector_ostream buffer(Name);
|
|
Mangle::Mangler M(buffer);
|
|
auto P = Mangle::SpecializationPass::CapturePromotion;
|
|
Mangle::FunctionSignatureSpecializationMangler FSSM(P, M, F);
|
|
CanSILFunctionType FTy = F->getLoweredFunctionType();
|
|
|
|
ArrayRef<SILParameterInfo> Parameters = FTy->getParameters();
|
|
for (unsigned Index : indices(Parameters)) {
|
|
if (Index == 0 || !PromotableIndices.count(Index - 1)) {
|
|
if (!PromotableIndices.count(Index))
|
|
continue;
|
|
FSSM.setArgumentDead(Index);
|
|
continue;
|
|
}
|
|
|
|
FSSM.setArgumentInOutToValue(Index);
|
|
}
|
|
|
|
FSSM.mangle();
|
|
}
|
|
|
|
return Name;
|
|
}
|
|
|
|
/// \brief Create the function corresponding to the clone of the original
|
|
/// closure with the signature modified to reflect promotable captures (which
|
|
/// are givien by PromotableIndices, such that each entry in the set is the
|
|
/// index of the box containing the variable in the closure's argument list, and
|
|
/// the address of the box's contents is the argument immediately following each
|
|
/// box argument); does not actually clone the body of the function
|
|
///
|
|
/// *NOTE* PromotableIndices only contains the container value of the box, not
|
|
/// the address value.
|
|
SILFunction*
|
|
ClosureCloner::initCloned(SILFunction *Orig, StringRef ClonedName,
|
|
TypeSubstitutionMap &InterfaceSubs,
|
|
IndicesSet &PromotableIndices) {
|
|
SILModule &M = Orig->getModule();
|
|
|
|
// Compute the arguments for our new function.
|
|
SmallVector<SILParameterInfo, 4> ClonedInterfaceArgTys;
|
|
computeNewArgInterfaceTypes(Orig, PromotableIndices, ClonedInterfaceArgTys);
|
|
|
|
Module *SM = M.getSwiftModule();
|
|
SILFunctionType *OrigFTI = Orig->getLoweredFunctionType();
|
|
|
|
// Create the thin function type for the cloned closure.
|
|
auto ClonedTy =
|
|
SILFunctionType::get(OrigFTI->getGenericSignature(),
|
|
OrigFTI->getExtInfo(),
|
|
OrigFTI->getCalleeConvention(),
|
|
ClonedInterfaceArgTys,
|
|
OrigFTI->getResult(),
|
|
OrigFTI->getOptionalErrorResult(),
|
|
M.getASTContext());
|
|
|
|
auto SubstTy = SILType::substFuncType(M, SM, InterfaceSubs, ClonedTy,
|
|
/* dropGenerics = */ false);
|
|
|
|
assert((Orig->isTransparent() || Orig->isBare() || Orig->getLocation())
|
|
&& "SILFunction missing location");
|
|
assert((Orig->isTransparent() || Orig->isBare() || Orig->getDebugScope())
|
|
&& "SILFunction missing DebugScope");
|
|
assert(!Orig->isGlobalInit() && "Global initializer cannot be cloned");
|
|
|
|
auto Fn =
|
|
SILFunction::create(M, Orig->getLinkage(), ClonedName, SubstTy,
|
|
Orig->getContextGenericParams(), Orig->getLocation(),
|
|
Orig->isBare(), IsNotTransparent, Orig->isFragile(),
|
|
Orig->isThunk(),
|
|
Orig->getClassVisibility(), Orig->getInlineStrategy(),
|
|
Orig->getEffectsKind(), Orig, Orig->getDebugScope());
|
|
Fn->setSemanticsAttr(Orig->getSemanticsAttr());
|
|
return Fn;
|
|
}
|
|
|
|
/// \brief Populate the body of the cloned closure, modifying instructions as
|
|
/// necessary to take into consideration the promoted capture(s)
|
|
void
|
|
ClosureCloner::populateCloned() {
|
|
SILFunction *Cloned = getCloned();
|
|
SILModule &M = Cloned->getModule();
|
|
|
|
// Create arguments for the entry block
|
|
SILBasicBlock *OrigEntryBB = Orig->begin();
|
|
SILBasicBlock *ClonedEntryBB = new (M) SILBasicBlock(Cloned);
|
|
unsigned ArgNo = 0;
|
|
auto I = OrigEntryBB->bbarg_begin(), E = OrigEntryBB->bbarg_end();
|
|
while (I != E) {
|
|
if (PromotableIndices.count(ArgNo)) {
|
|
// Handle the case of a promoted capture argument
|
|
SILArgument *ReleaseArgument = *I++;
|
|
SILValue MappedValue =
|
|
new (M) SILArgument(ClonedEntryBB,
|
|
(*I)->getType().getObjectType(),
|
|
(*I)->getDecl());
|
|
BoxArgumentMap.insert(std::make_pair(ReleaseArgument, MappedValue));
|
|
AddrArgumentMap.insert(std::make_pair(*I, MappedValue));
|
|
++ArgNo;
|
|
} else {
|
|
// Otherwise, create a new argument which copies the original argument
|
|
SILValue MappedValue =
|
|
new (M) SILArgument(ClonedEntryBB, (*I)->getType(), (*I)->getDecl());
|
|
ValueMap.insert(std::make_pair(*I, MappedValue));
|
|
}
|
|
++ArgNo;
|
|
++I;
|
|
}
|
|
|
|
getBuilder().setInsertionPoint(ClonedEntryBB);
|
|
BBMap.insert(std::make_pair(OrigEntryBB, ClonedEntryBB));
|
|
// Recursively visit original BBs in depth-first preorder, starting with the
|
|
// entry block, cloning all instructions other than terminators.
|
|
visitSILBasicBlock(OrigEntryBB);
|
|
|
|
// Now iterate over the BBs and fix up the terminators.
|
|
for (auto BI = BBMap.begin(), BE = BBMap.end(); BI != BE; ++BI) {
|
|
getBuilder().setInsertionPoint(BI->second);
|
|
visit(BI->first->getTerminator());
|
|
}
|
|
}
|
|
|
|
/// \brief Handle a strong_release instruction during cloning of a closure; if
|
|
/// it is a strong release of a promoted box argument, then it is replaced wit
|
|
/// a ReleaseValue of the new object type argument, otherwise it is handled
|
|
/// normally.
|
|
void
|
|
ClosureCloner::visitStrongReleaseInst(StrongReleaseInst *Inst) {
|
|
SILValue Operand = Inst->getOperand();
|
|
if (SILArgument *A = dyn_cast<SILArgument>(Operand)) {
|
|
assert(Operand.getResultNumber() == 0);
|
|
auto I = BoxArgumentMap.find(A);
|
|
if (I != BoxArgumentMap.end()) {
|
|
// Releases of the box arguments get replaced with ReleaseValue of the new
|
|
// object type argument.
|
|
SILFunction &F = getBuilder().getFunction();
|
|
auto &typeLowering = F.getModule().getTypeLowering(I->second.getType());
|
|
SILBuilderWithPostProcess<ClosureCloner, 1> B(this, Inst);
|
|
typeLowering.emitReleaseValue(B, Inst->getLoc(), I->second);
|
|
return;
|
|
}
|
|
}
|
|
|
|
SILCloner<ClosureCloner>::visitStrongReleaseInst(Inst);
|
|
}
|
|
|
|
/// \brief Handle a struct_element_addr instruction during cloning of a closure;
|
|
/// if its operand is the promoted address argument then ignore it, otherwise it
|
|
/// is handled normally.
|
|
void
|
|
ClosureCloner::visitStructElementAddrInst(StructElementAddrInst *Inst) {
|
|
SILValue Operand = Inst->getOperand();
|
|
if (SILArgument *A = dyn_cast<SILArgument>(Operand)) {
|
|
assert(Operand.getResultNumber() == 0);
|
|
auto I = AddrArgumentMap.find(A);
|
|
if (I != AddrArgumentMap.end())
|
|
return;
|
|
}
|
|
|
|
SILCloner<ClosureCloner>::visitStructElementAddrInst(Inst);
|
|
}
|
|
|
|
/// \brief Handle a load instruction during cloning of a closure; the two
|
|
/// relevant cases are a direct load from a promoted address argument or a load
|
|
/// of a struct_element_addr of a promoted address argument.
|
|
void
|
|
ClosureCloner::visitLoadInst(LoadInst *Inst) {
|
|
SILValue Operand = Inst->getOperand();
|
|
if (auto *A = dyn_cast<SILArgument>(Operand)) {
|
|
assert(Operand.getResultNumber() == 0);
|
|
auto I = AddrArgumentMap.find(A);
|
|
if (I != AddrArgumentMap.end()) {
|
|
// Loads of the address argument get eliminated completely; the uses of
|
|
// the loads get mapped to uses of the new object type argument.
|
|
ValueMap.insert(std::make_pair(Inst, I->second));
|
|
return;
|
|
}
|
|
} else if (auto *SEAI = dyn_cast<StructElementAddrInst>(Operand)) {
|
|
assert(Operand.getResultNumber() == 0);
|
|
if (auto *A = dyn_cast<SILArgument>(SEAI->getOperand())) {
|
|
assert(SEAI->getOperand().getResultNumber() == 0);
|
|
auto I = AddrArgumentMap.find(A);
|
|
if (I != AddrArgumentMap.end()) {
|
|
// Loads of a struct_element_addr of an argument get replaced with
|
|
// struct_extract of the new object type argument.
|
|
SILBuilderWithPostProcess<ClosureCloner, 1> B(this, Inst);
|
|
SILValue V = B.emitStructExtract(Inst->getLoc(), I->second,
|
|
SEAI->getField(),
|
|
Inst->getType());
|
|
ValueMap.insert(std::make_pair(Inst, V));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
SILCloner<ClosureCloner>::visitLoadInst(Inst);
|
|
}
|
|
|
|
static std::pair<SILArgument *, SILArgument *> getBoxAndAddrFromIndex(
|
|
SILFunction *F,
|
|
unsigned Index) {
|
|
assert(F->isDefinition() && "Expected definition not external declaration!");
|
|
auto &Entry = F->front();
|
|
auto *Box = Entry.getBBArg(Index);
|
|
auto *Addr = Entry.getBBArg(Index + 1);
|
|
|
|
return std::make_pair(Box, Addr);
|
|
}
|
|
|
|
static SILFunction *getFunctionDefinition(SILValue FunctionValue) {
|
|
auto *FRI = dyn_cast<FunctionRefInst>(FunctionValue);
|
|
if (!FRI)
|
|
return nullptr;
|
|
|
|
auto *Fn = FRI->getReferencedFunction();
|
|
if (!Fn->isDefinition())
|
|
return nullptr;
|
|
|
|
return Fn;
|
|
}
|
|
|
|
/// \brief Given a partial_apply instruction and the argument index into its
|
|
/// callee's argument list of a box argument (which is followed by an argument
|
|
/// for the address of the box's contents), return true if the closure is known
|
|
/// not to mutate the captured variable.
|
|
static bool
|
|
isNonmutatingCapture(SILArgument *BoxArg, SILArgument *AddrArg) {
|
|
// Conservatively do not allow any use of the box argument other than a
|
|
// strong_release, since this is the pattern expected from SILGen.
|
|
for (auto *O : BoxArg->getUses())
|
|
if (!isa<StrongReleaseInst>(O->getUser()))
|
|
return false;
|
|
|
|
// Only allow loads of the address argument, either directly or via
|
|
// struct_element_addr instructions.
|
|
//
|
|
// TODO: This seems overly limited. Why not projections of tuples and other
|
|
// stuff? Also, why not recursive struct elements? This should be a helper
|
|
// function that mirrors isNonEscapingUse.
|
|
for (auto *O : AddrArg->getUses()) {
|
|
if (auto *SEAI = dyn_cast<StructElementAddrInst>(O->getUser())) {
|
|
for (auto *UO : SEAI->getUses())
|
|
if (!isa<LoadInst>(UO->getUser()))
|
|
return false;
|
|
continue;
|
|
}
|
|
if (!isa<LoadInst>(O->getUser()))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Given a use of an alloc_box instruction, return true if the use
|
|
/// definitely does not allow the box to escape; also, if the use is an
|
|
/// instruction which possibly mutates the contents of the box, then add it to
|
|
/// the Mutations vector.
|
|
static bool
|
|
isNonescapingUse(Operand *O, SmallVectorImpl<SILInstruction*> &Mutations) {
|
|
auto *U = O->getUser();
|
|
// A store or assign is ok if the alloc_box is the destination.
|
|
if (isa<StoreInst>(U) || isa<AssignInst>(U)) {
|
|
if (O->getOperandNumber() != 1)
|
|
return false;
|
|
Mutations.push_back(cast<SILInstruction>(U));
|
|
return true;
|
|
}
|
|
// copy_addr is ok, but counts as a mutation if the use is as the
|
|
// destination or the copy_addr is a take.
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(U)) {
|
|
if (O->getOperandNumber() == 1 || CAI->isTakeOfSrc())
|
|
Mutations.push_back(CAI);
|
|
return true;
|
|
}
|
|
// Recursively see through struct_element_addr, tuple_element_addr, and
|
|
// open_existential_addr instructions.
|
|
if (isa<StructElementAddrInst>(U) || isa<TupleElementAddrInst>(U) ||
|
|
isa<InitEnumDataAddrInst>(U) ||
|
|
isa<OpenExistentialAddrInst>(U) || isa<UncheckedTakeEnumDataAddrInst>(U)) {
|
|
// UncheckedTakeEnumDataAddr is additionally a mutation.
|
|
if (isa<UncheckedTakeEnumDataAddrInst>(U))
|
|
Mutations.push_back(U);
|
|
|
|
for (auto *UO : U->getUses())
|
|
if (!isNonescapingUse(UO, Mutations))
|
|
return false;
|
|
return true;
|
|
}
|
|
// An apply is ok if the argument is used as an inout parameter or an
|
|
// indirect return, but counts as a possible mutation in both cases.
|
|
if (auto *AI = dyn_cast<ApplyInst>(U)) {
|
|
if (AI->getSubstCalleeType()
|
|
->getParameters()[O->getOperandNumber()-1].isIndirect()) {
|
|
Mutations.push_back(AI);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
// These instructions are ok but count as mutations.
|
|
if (isa<DeallocBoxInst>(U)) {
|
|
Mutations.push_back(cast<SILInstruction>(U));
|
|
return true;
|
|
}
|
|
// These remaining instructions are ok and don't count as mutations.
|
|
if (isa<StrongRetainInst>(U) || isa<StrongReleaseInst>(U) ||
|
|
isa<LoadInst>(U))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool signatureHasDependentTypes(SILFunctionType &CalleeTy) {
|
|
if (CalleeTy.getSemanticResultSILType().isDependentType())
|
|
return true;
|
|
|
|
for (auto ParamTy : CalleeTy.getParameterSILTypesWithoutIndirectResult())
|
|
if (ParamTy.isDependentType())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Examine an alloc_box instruction, returning true if at least one
|
|
/// capture of the boxed variable is promotable. If so, then the pair of the
|
|
/// partial_apply instruction and the index of the box argument in the closure's
|
|
/// argument list is added to IM.
|
|
static bool
|
|
examineAllocBoxInst(AllocBoxInst *ABI, ReachabilityInfo &RI,
|
|
llvm::DenseMap<PartialApplyInst*, unsigned> &IM) {
|
|
SmallVector<SILInstruction*, 32> Mutations;
|
|
|
|
// If the AllocBox is used by a mark_uninitialized, scan the MUI for
|
|
// interesting uses.
|
|
SILValue Addr = ABI->getAddressResult();
|
|
if (Addr.hasOneUse())
|
|
if (auto MUI = dyn_cast<MarkUninitializedInst>(Addr.use_begin()->getUser()))
|
|
Addr = SILValue(MUI);
|
|
|
|
for (Operand *O : Addr.getUses()) {
|
|
if (auto *PAI = dyn_cast<PartialApplyInst>(O->getUser())) {
|
|
unsigned OpNo = O->getOperandNumber();
|
|
assert(OpNo != 0 && "Alloc box used as callee of partial apply?");
|
|
|
|
// If we've already seen this partial apply, then it means the same alloc
|
|
// box is being captured twice by the same closure, which is odd and
|
|
// unexpected: bail instead of trying to handle this case.
|
|
if (IM.count(PAI))
|
|
return false;
|
|
|
|
// Verify that the previous operand of the partial apply is the refcount
|
|
// result of the alloc_box.
|
|
if (PAI->getOperand(OpNo - 1) != SILValue(ABI))
|
|
return false;
|
|
|
|
auto Callee = PAI->getCallee();
|
|
auto CalleeTy = Callee.getType().castTo<SILFunctionType>();
|
|
|
|
// Bail if the signature has any dependent types as we do not
|
|
// currently support these.
|
|
if (signatureHasDependentTypes(*CalleeTy))
|
|
return false;
|
|
|
|
auto closureType = PAI->getType().castTo<SILFunctionType>();
|
|
|
|
// Calculate the index into the closure's argument list of the captured
|
|
// box pointer (the captured address is always the immediately following
|
|
// index so is not stored separately);
|
|
unsigned Index = OpNo - 2 + closureType->getParameters().size();
|
|
|
|
auto *Fn = getFunctionDefinition(Callee);
|
|
if (!Fn)
|
|
return false;
|
|
|
|
SILArgument *BoxArg;
|
|
SILArgument *AddrArg;
|
|
std::tie(BoxArg, AddrArg) = getBoxAndAddrFromIndex(Fn, Index);
|
|
|
|
// For now, return false is the address argument is an address-only type,
|
|
// since we currently assume loadable types only.
|
|
// TODO: handle address-only types
|
|
SILModule &M = PAI->getModule();
|
|
if (AddrArg->getType().isAddressOnly(M))
|
|
return false;
|
|
|
|
// Verify that this closure is known not to mutate the captured value; if
|
|
// it does, then conservatively refuse to promote any captures of this
|
|
// value.
|
|
if (!isNonmutatingCapture(BoxArg, AddrArg))
|
|
return false;
|
|
|
|
// Record the index and continue.
|
|
IM.insert(std::make_pair(PAI, Index));
|
|
continue;
|
|
}
|
|
|
|
// Verify that this this use does not otherwise allow the alloc_box to
|
|
// escape.
|
|
if (!isNonescapingUse(O, Mutations))
|
|
return false;
|
|
}
|
|
|
|
// Helper lambda function to determine if instruction b is strictly after
|
|
// instruction a, assuming both are in the same basic block.
|
|
auto isAfter = [](SILInstruction *a, SILInstruction *b) {
|
|
SILInstruction *f = b->getParent()->begin();
|
|
while (b != f) {
|
|
b = b->getPrevNode();
|
|
if (a == b)
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Loop over all mutations to possibly invalidate captures.
|
|
for (auto *I : Mutations) {
|
|
auto Iter = IM.begin();
|
|
while (Iter != IM.end()) {
|
|
auto *PAI = Iter->first;
|
|
// The mutation invalidates a capture if it occurs in a block reachable
|
|
// from the block the partial_apply is in, or if it is in the same
|
|
// block is after the partial_apply.
|
|
if (RI.isReachable(PAI->getParent(), I->getParent()) ||
|
|
(PAI->getParent() == I->getParent() && isAfter(PAI, I))) {
|
|
auto Prev = Iter++;
|
|
IM.erase(Prev);
|
|
continue;
|
|
}
|
|
++Iter;
|
|
}
|
|
// If there are no valid captures left, then stop.
|
|
if (IM.empty())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static SILFunction *
|
|
constructClonedFunction(PartialApplyInst *PAI, FunctionRefInst *FRI,
|
|
IndicesSet &PromotableIndices) {
|
|
SILFunction *F = PAI->getFunction();
|
|
|
|
// Create the substitution maps.
|
|
TypeSubstitutionMap InterfaceSubs;
|
|
TypeSubstitutionMap ContextSubs;
|
|
|
|
ArrayRef<Substitution> ApplySubs = PAI->getSubstitutions();
|
|
auto genericSig = F->getLoweredFunctionType()->getGenericSignature();
|
|
auto *genericParams = F->getContextGenericParams();
|
|
|
|
if (ApplySubs.size()) {
|
|
InterfaceSubs = genericSig->getSubstitutionMap(ApplySubs);
|
|
ContextSubs = genericParams->getSubstitutionMap(ApplySubs);
|
|
} else {
|
|
assert(!genericSig && "Function type has Unexpected generic signature!");
|
|
assert(!genericParams &&
|
|
"Function definition has unexpected generic params!");
|
|
}
|
|
|
|
// Create the Cloned Name for the function.
|
|
SILFunction *Orig = FRI->getReferencedFunction();
|
|
auto ClonedName = getSpecializedName(Orig, PromotableIndices);
|
|
|
|
// If we already have such a cloned function in the module then just use it.
|
|
if (auto *PrevF = F->getModule().lookUpFunction(ClonedName))
|
|
return PrevF;
|
|
|
|
// Otherwise, create a new clone.
|
|
ClosureCloner cloner(Orig, ClonedName, InterfaceSubs,
|
|
ContextSubs, ApplySubs, PromotableIndices);
|
|
cloner.populateCloned();
|
|
return cloner.getCloned();
|
|
}
|
|
|
|
/// \brief Given a partial_apply instruction and a set of promotable indices,
|
|
/// clone the closure with the promoted captures and replace the partial_apply
|
|
/// with a partial_apply of the new closure, fixing up reference counting as
|
|
/// necessary. Also, if the closure is cloned, the cloned function is added to
|
|
/// the worklist.
|
|
static void
|
|
processPartialApplyInst(PartialApplyInst *PAI, IndicesSet &PromotableIndices,
|
|
SmallVectorImpl<SILFunction*> &Worklist) {
|
|
SILModule &M = PAI->getModule();
|
|
|
|
auto *FRI = dyn_cast<FunctionRefInst>(PAI->getCallee());
|
|
assert(FRI && PAI->getCallee().getResultNumber() == 0);
|
|
|
|
// Clone the closure with the given promoted captures.
|
|
SILFunction *ClonedFn = constructClonedFunction(PAI, FRI, PromotableIndices);
|
|
Worklist.push_back(ClonedFn);
|
|
|
|
// Initialize a SILBuilder and create a function_ref referencing the cloned
|
|
// closure.
|
|
SILBuilderWithScope<8> B(PAI);
|
|
SILValue FnVal = B.createFunctionRef(PAI->getLoc(), ClonedFn);
|
|
SILType FnTy = FnVal.getType();
|
|
|
|
// Populate the argument list for a new partial_apply instruction, taking into
|
|
// consideration any captures.
|
|
auto CalleePInfo =
|
|
PAI->getCallee().getType().castTo<SILFunctionType>()->getParameters();
|
|
auto PInfo = PAI->getType().castTo<SILFunctionType>()->getParameters();
|
|
unsigned FirstIndex = PInfo.size();
|
|
unsigned OpNo = 1, OpCount = PAI->getNumOperands();
|
|
SmallVector<SILValue, 16> Args;
|
|
while (OpNo != OpCount) {
|
|
unsigned Index = OpNo - 1 + FirstIndex;
|
|
if (PromotableIndices.count(Index)) {
|
|
SILValue BoxValue = PAI->getOperand(OpNo);
|
|
SILValue AddrValue = PAI->getOperand(OpNo + 1);
|
|
SILValue UnderlyingAddrValue = AddrValue;
|
|
if (auto *MUI = dyn_cast<MarkUninitializedInst>(AddrValue))
|
|
UnderlyingAddrValue = MUI->getOperand();
|
|
assert(BoxValue.getDef() == UnderlyingAddrValue.getDef() &&
|
|
BoxValue.getResultNumber() == 0 &&
|
|
UnderlyingAddrValue.getResultNumber() == 1);
|
|
|
|
SILParameterInfo CPInfo = CalleePInfo[Index];
|
|
assert(CPInfo.getSILType() == BoxValue.getType() &&
|
|
"SILType of parameter info does not match type of parameter");
|
|
// Cleanup the captured argument.
|
|
releasePartialApplyCapturedArg(B, PAI->getLoc(), BoxValue,
|
|
CPInfo);
|
|
|
|
// Load and copy from the address value, passing the result as an argument
|
|
// to the new closure.
|
|
auto &typeLowering = M.getTypeLowering(AddrValue.getType());
|
|
Args.push_back(
|
|
typeLowering.emitLoadOfCopy(B, PAI->getLoc(), AddrValue, IsNotTake));
|
|
++OpNo;
|
|
++NumCapturesPromoted;
|
|
} else {
|
|
Args.push_back(PAI->getOperand(OpNo));
|
|
}
|
|
++OpNo;
|
|
}
|
|
|
|
auto SubstFnTy = FnTy.substGenericArgs(M, PAI->getSubstitutions());
|
|
|
|
// Create a new partial apply with the new arguments.
|
|
auto *NewPAI = B.createPartialApply(PAI->getLoc(), FnVal, SubstFnTy,
|
|
PAI->getSubstitutions(), Args,
|
|
PAI->getType());
|
|
SILValue(PAI, 0).replaceAllUsesWith(NewPAI);
|
|
PAI->eraseFromParent();
|
|
if (FRI->use_empty()) {
|
|
FRI->eraseFromParent();
|
|
// TODO: If this is the last use of the closure, and if it has internal
|
|
// linkage, we should remove it from the SILModule now.
|
|
}
|
|
}
|
|
|
|
static void
|
|
constructMapFromPartialApplyToPromoteableIndices(SILFunction *F,
|
|
PartialApplyIndicesMap &Map) {
|
|
ReachabilityInfo RS(F);
|
|
|
|
// This is a map from each partial apply to a single index which is a
|
|
// promotable box variable for the alloc_box currently being considered.
|
|
llvm::DenseMap<PartialApplyInst*, unsigned> IndexMap;
|
|
|
|
// Consider all alloc_box instructions in the function.
|
|
for (auto &BB : *F) {
|
|
for (auto &I : BB) {
|
|
if (auto *ABI = dyn_cast<AllocBoxInst>(&I)) {
|
|
IndexMap.clear();
|
|
if (examineAllocBoxInst(ABI, RS, IndexMap)) {
|
|
// If we are able to promote at least one capture of the alloc_box,
|
|
// then add the promotable indices to the main map.
|
|
for (auto &IndexPair : IndexMap)
|
|
Map[IndexPair.first].insert(IndexPair.second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
processFunction(SILFunction *F, SmallVectorImpl<SILFunction*> &Worklist) {
|
|
// This is a map from each partial apply to a set of indices of promotable
|
|
// box variables.
|
|
PartialApplyIndicesMap IndicesMap;
|
|
constructMapFromPartialApplyToPromoteableIndices(F, IndicesMap);
|
|
|
|
// Do the actual promotions; all promotions on a single partial_apply are
|
|
// handled together.
|
|
for (auto &IndicesPair : IndicesMap)
|
|
processPartialApplyInst(IndicesPair.first, IndicesPair.second, Worklist);
|
|
}
|
|
|
|
namespace {
|
|
class CapturePromotionPass : public SILModuleTransform {
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
SmallVector<SILFunction*, 128> Worklist;
|
|
for (auto &F : *getModule())
|
|
processFunction(&F, Worklist);
|
|
|
|
if (!Worklist.empty())
|
|
invalidateAnalysis(SILAnalysis::PreserveKind::Nothing);
|
|
|
|
while (!Worklist.empty())
|
|
processFunction(Worklist.pop_back_val(), Worklist);
|
|
}
|
|
|
|
StringRef getName() override { return "Capture Promotion"; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
SILTransform *swift::createCapturePromotion() {
|
|
return new CapturePromotionPass();
|
|
}
|