Files
swift-mirror/lib/SILPasses/DefiniteInitialization.cpp
Michael Gottesman 9006fca42b Rename SILBuilder::emitDestroyAddr => SILBuilder::emitDestroyAddrAndFold.
Now it matches SILBuilder::emit{StrongRelease,ReleaseValue}AndFold which perform
the same operation but on object types.

Swift SVN r27806
2015-04-27 17:29:50 +00:00

2057 lines
77 KiB
C++

//===--- DefiniteInitialization.cpp - Perform definite init analysis ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "definite-init"
#include "swift/SILPasses/Passes.h"
#include "DIMemoryUseCollector.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SILPasses/Transforms.h"
#include "swift/Basic/Fallthrough.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/StringExtras.h"
using namespace swift;
STATISTIC(NumAssignRewritten, "Number of assigns rewritten");
template<typename ...ArgTypes>
static void diagnose(SILModule &M, SILLocation loc, ArgTypes... args) {
M.getASTContext().Diags.diagnose(loc.getSourceLoc(), Diagnostic(args...));
}
/// Emit the sequence that an assign instruction lowers to once we know
/// if it is an initialization or an assignment. If it is an assignment,
/// a live-in value can be provided to optimize out the reload.
static void LowerAssignInstruction(SILBuilder &B, AssignInst *Inst,
IsInitialization_t isInitialization) {
DEBUG(llvm::dbgs() << " *** Lowering [isInit=" << (bool)isInitialization
<< "]: " << *Inst << "\n");
++NumAssignRewritten;
SILValue Src = Inst->getSrc();
// If this is an initialization, or the storage type is trivial, we
// can just replace the assignment with a store.
// Otherwise, if it has trivial type, we can always just replace the
// assignment with a store. If it has non-trivial type and is an
// initialization, we can also replace it with a store.
if (isInitialization == IsInitialization ||
Inst->getDest().getType().isTrivial(Inst->getModule())) {
B.createStore(Inst->getLoc(), Src, Inst->getDest());
} else {
// Otherwise, we need to replace the assignment with the full
// load/store/release dance. Note that the new value is already
// considered to be retained (by the semantics of the storage type),
// and we're transfering that ownership count into the destination.
// This is basically TypeLowering::emitStoreOfCopy, except that if we have
// a known incoming value, we can avoid the load.
SILValue IncomingVal = B.createLoad(Inst->getLoc(), Inst->getDest());
B.createStore(Inst->getLoc(), Src, Inst->getDest());
B.emitReleaseValueOperation(Inst->getLoc(), IncomingVal);
}
Inst->eraseFromParent();
}
/// InsertCFGDiamond - Insert a CFG diamond at the position specified by the
/// SILBuilder, with a conditional branch based on "Cond". This returns the
/// true, false, and continuation block. If FalseBB is passed in as a null
/// pointer, then only the true block is created - a CFG triangle instead of a
/// diamond.
///
/// The SILBuilder is left at the start of the ContBB block.
static void InsertCFGDiamond(SILValue Cond, SILLocation Loc, SILBuilder &B,
SILBasicBlock *&TrueBB,
SILBasicBlock **FalseBB,
SILBasicBlock *&ContBB) {
SILBasicBlock *StartBB = B.getInsertionBB();
SILModule &Module = StartBB->getModule();
// Start by splitting the current block.
ContBB = StartBB->splitBasicBlock(B.getInsertionPoint());
// Create the true block.
TrueBB = new (Module) SILBasicBlock(StartBB->getParent());
B.moveBlockTo(TrueBB, ContBB);
B.setInsertionPoint(TrueBB);
B.createBranch(Loc, ContBB);
// If the client wanted a false BB, create it too.
SILBasicBlock *FalseDest;
if (!FalseBB) {
FalseDest = ContBB;
} else {
FalseDest = new (Module) SILBasicBlock(StartBB->getParent());
B.moveBlockTo(FalseDest, ContBB);
B.setInsertionPoint(FalseDest);
B.createBranch(Loc, ContBB);
*FalseBB = FalseDest;
}
// Now that we have our destinations, insert a conditional branch on the
// condition.
B.setInsertionPoint(StartBB);
B.createCondBranch(Loc, Cond, TrueBB, FalseDest);
B.setInsertionPoint(ContBB, ContBB->begin());
}
//===----------------------------------------------------------------------===//
// Per-Element Promotion Logic
//===----------------------------------------------------------------------===//
namespace {
enum class DIKind {
No,
Yes,
Partial
};
}
/// This implements the lattice merge operation for 2 optional DIKinds.
static Optional<DIKind> mergeKinds(Optional<DIKind> OK1, Optional<DIKind> OK2) {
// If OK1 is unset, ignore it.
if (!OK1.hasValue())
return OK2;
DIKind K1 = OK1.getValue();
// If "this" is already partial, we won't learn anything.
if (K1 == DIKind::Partial)
return K1;
// If OK2 is unset, take K1.
if (!OK2.hasValue())
return K1;
DIKind K2 = OK2.getValue();
// If "K1" is yes, or no, then switch to partial if we find a different
// answer.
if (K1 != K2)
return DIKind::Partial;
// Otherwise, we're still consistently Yes or No.
return K1;
}
namespace {
/// AvailabilitySet - This class stores an array of lattice values for tuple
/// elements being analyzed for liveness computations. Each element is
/// represented with two bits in a bitvector, allowing this to represent the
/// lattice values corresponding to "Unknown" (bottom), "Live" or "Not Live",
/// which are the middle elements of the lattice, and "Partial" which is the
/// top element.
class AvailabilitySet {
// We store two bits per element, encoded in the following form:
// T,T -> Nothing/Unknown
// F,F -> No
// F,T -> Yes
// T,F -> Partial
llvm::SmallBitVector Data;
public:
AvailabilitySet(unsigned NumElts) {
Data.resize(NumElts*2, true);
}
bool empty() const { return Data.empty(); }
unsigned size() const { return Data.size()/2; }
DIKind get(unsigned Elt) const {
return getConditional(Elt).getValue();
}
Optional<DIKind> getConditional(unsigned Elt) const {
bool V1 = Data[Elt*2], V2 = Data[Elt*2+1];
if (V1 == V2)
return V1 ? Optional<DIKind>(None) : DIKind::No;
return V2 ? DIKind::Yes : DIKind::Partial;
}
void set(unsigned Elt, DIKind K) {
switch (K) {
case DIKind::No: Data[Elt*2] = false; Data[Elt*2+1] = false; break;
case DIKind::Yes: Data[Elt*2] = false, Data[Elt*2+1] = true; break;
case DIKind::Partial: Data[Elt*2] = true, Data[Elt*2+1] = false; break;
}
}
void set(unsigned Elt, Optional<DIKind> K) {
if (!K.hasValue())
Data[Elt*2] = true, Data[Elt*2+1] = true;
else
set(Elt, K.getValue());
}
/// containsUnknownElements - Return true if there are any elements that are
/// unknown.
bool containsUnknownElements() const {
// Check that we didn't get any unknown values.
for (unsigned i = 0, e = size(); i != e; ++i)
if (!getConditional(i).hasValue())
return true;
return false;
}
bool isAll(DIKind K) const {
for (unsigned i = 0, e = size(); i != e; ++i) {
auto Elt = getConditional(i);
if (!Elt.hasValue() || Elt.getValue() != K)
return false;
}
return true;
}
bool hasAny(DIKind K) const {
for (unsigned i = 0, e = size(); i != e; ++i) {
auto Elt = getConditional(i);
if (Elt.hasValue() && Elt.getValue() == K)
return true;
}
return false;
}
bool isAllYes() const { return isAll(DIKind::Yes); }
bool isAllNo() const { return isAll(DIKind::No); }
/// changeUnsetElementsTo - If any elements of this availability set are not
/// known yet, switch them to the specified value.
void changeUnsetElementsTo(DIKind K) {
for (unsigned i = 0, e = size(); i != e; ++i)
if (!getConditional(i).hasValue())
set(i, K);
}
void mergeIn(const AvailabilitySet &RHS) {
// Logically, this is an elementwise "this = merge(this, RHS)" operation,
// using the lattice merge operation for each element.
for (unsigned i = 0, e = size(); i != e; ++i)
set(i, mergeKinds(getConditional(i), RHS.getConditional(i)));
}
void dump(llvm::raw_ostream &OS) const {
OS << '(';
for (unsigned i = 0, e = size(); i != e; ++i) {
if (Optional<DIKind> Elt = getConditional(i)) {
switch (Elt.getValue()) {
case DIKind::No: OS << 'n'; break;
case DIKind::Yes: OS << 'y'; break;
case DIKind::Partial: OS << 'p'; break;
}
} else {
OS << '.';
}
}
OS << ')';
}
};
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const AvailabilitySet &AS) {
AS.dump(OS);
return OS;
}
}
namespace {
/// LiveOutBlockState - Keep track of information about blocks that have
/// already been analyzed. Since this is a global analysis, we need this to
/// cache information about different paths through the CFG.
struct LiveOutBlockState {
/// Keep track of whether there is a Store, InOutUse, or Escape locally in
/// this block.
bool HasNonLoadUse : 1;
/// Helper flag used during building the worklist for the dataflow analysis.
bool isInWorkList : 1;
/// Availability of elements within the block.
/// Not "empty" for all blocks which have non-load uses or contain the
/// definition of the memory object.
AvailabilitySet LocalAvailability;
/// The live out information of the block. This is the LocalAvailability
/// plus the information merged-in from the predecessor blocks.
AvailabilitySet OutAvailability;
LiveOutBlockState(unsigned NumElements)
: HasNonLoadUse(false),
isInWorkList(false),
LocalAvailability(NumElements),
OutAvailability(NumElements) {
}
/// Sets all unknown elements to not-available.
void setUnknownToNotAvailable() {
LocalAvailability.changeUnsetElementsTo(DIKind::No);
OutAvailability.changeUnsetElementsTo(DIKind::No);
}
/// Merge the state from a predecessor block into the OutAvailability.
/// Returns true if the l
bool mergeFromPred(const LiveOutBlockState &Pred) {
bool changed = false;
for (unsigned i = 0, e = OutAvailability.size(); i != e; ++i) {
const Optional<DIKind> out = OutAvailability.getConditional(i);
const Optional<DIKind> local = LocalAvailability.getConditional(i);
Optional<DIKind> result;
if (local.hasValue()) {
// A local availibility overrides the incoming value.
result = local;
} else {
result = mergeKinds(out, Pred.OutAvailability.getConditional(i));
}
if (result.hasValue() &&
(!out.hasValue() || result.getValue() != out.getValue())) {
changed = true;
OutAvailability.set(i, result);
}
}
return changed;
}
/// Sets the elements of a use to available.
void markAvailable(const DIMemoryUse &Use) {
// If the memory object has nothing in it (e.g., is an empty tuple)
// ignore.
if (LocalAvailability.empty()) return;
for (unsigned i = 0; i != Use.NumElements; ++i) {
LocalAvailability.set(Use.FirstElement+i, DIKind::Yes);
OutAvailability.set(Use.FirstElement+i, DIKind::Yes);
}
}
};
} // end anonymous namespace
namespace {
/// LifetimeChecker - This is the main heavy lifting for definite
/// initialization checking of a memory object.
class LifetimeChecker {
SILModule &Module;
/// TheMemory - This holds information about the memory object being
/// analyzed.
DIMemoryObjectInfo TheMemory;
SmallVectorImpl<DIMemoryUse> &Uses;
SmallVectorImpl<SILInstruction*> &Releases;
std::vector<std::pair<unsigned, AvailabilitySet>> ConditionalDestroys;
llvm::SmallDenseMap<SILBasicBlock*, LiveOutBlockState, 32> PerBlockInfo;
/// This is a map of uses that are not loads (i.e., they are Stores,
/// InOutUses, and Escapes), to their entry in Uses.
llvm::SmallDenseMap<SILInstruction*, unsigned, 16> NonLoadUses;
/// This is true when there is an ambiguous store, which may be an init or
/// assign, depending on the CFG path.
bool HasConditionalInitAssignOrDestroys = false;
// Keep track of whether we've emitted an error. We only emit one error per
// location as a policy decision.
std::vector<SourceLoc> EmittedErrorLocs;
SmallPtrSet<SILBasicBlock*, 16> BlocksReachableFromEntry;
public:
LifetimeChecker(const DIMemoryObjectInfo &TheMemory,
SmallVectorImpl<DIMemoryUse> &Uses,
SmallVectorImpl<SILInstruction*> &Releases);
void doIt();
private:
LiveOutBlockState &getBlockInfo(SILBasicBlock *BB) {
return PerBlockInfo.insert({BB,
LiveOutBlockState(TheMemory.NumElements)}).first->second;
}
AvailabilitySet getLivenessAtInst(SILInstruction *Inst, unsigned FirstElt,
unsigned NumElts);
bool isInitializedAtUse(const DIMemoryUse &Use, bool *SuperInitDone = 0);
void handleStoreUse(unsigned UseID);
void handleInOutUse(const DIMemoryUse &Use);
void handleLoadUseFailure(const DIMemoryUse &InstInfo,
bool IsSuperInitComplete);
void handleSuperInitUse(const DIMemoryUse &InstInfo);
void handleSelfInitUse(DIMemoryUse &InstInfo);
void updateInstructionForInitState(DIMemoryUse &InstInfo);
void processNonTrivialRelease(unsigned ReleaseID);
SILValue handleConditionalInitAssign();
void handleConditionalDestroys(SILValue ControlVariableAddr);
typedef SmallVector<SILBasicBlock *, 16> WorkListType;
void putIntoWorkList(SILBasicBlock *BB, WorkListType &WorkList);
void getPredsLiveOut(SILBasicBlock *BB, AvailabilitySet &Result);
bool shouldEmitError(SILInstruction *Inst);
std::string getUninitElementName(const DIMemoryUse &Use);
void noteUninitializedMembers(const DIMemoryUse &Use);
void diagnoseInitError(const DIMemoryUse &Use, Diag<StringRef> DiagMessage);
bool isBlockIsReachableFromEntry(SILBasicBlock *BB);
};
} // end anonymous namespace
LifetimeChecker::LifetimeChecker(const DIMemoryObjectInfo &TheMemory,
SmallVectorImpl<DIMemoryUse> &Uses,
SmallVectorImpl<SILInstruction*> &Releases)
: Module(TheMemory.MemoryInst->getModule()), TheMemory(TheMemory), Uses(Uses),
Releases(Releases) {
// The first step of processing an element is to collect information about the
// element into data structures we use later.
for (unsigned ui = 0, e = Uses.size(); ui != e; ++ui) {
auto &Use = Uses[ui];
assert(Use.Inst && "No instruction identified?");
// Keep track of all the uses that aren't loads or escapes. These are
// important uses that we'll visit, but we don't consider them definition
// points for liveness computation purposes.
if (Use.Kind == DIUseKind::Load || Use.Kind == DIUseKind::Escape)
continue;
NonLoadUses[Use.Inst] = ui;
auto &BBInfo = getBlockInfo(Use.Inst->getParent());
BBInfo.HasNonLoadUse = true;
// Each of the non-load instructions will each be checked to make sure that
// they are live-in or a full element store. This means that the block they
// are in should be treated as a live out for cross-block analysis purposes.
BBInfo.markAvailable(Use);
}
// If isn't really a use, but we account for the alloc_box/mark_uninitialized
// as a use so we see it in our dataflow walks.
NonLoadUses[TheMemory.MemoryInst] = ~0U;
auto &MemBBInfo = getBlockInfo(TheMemory.MemoryInst->getParent());
MemBBInfo.HasNonLoadUse = true;
// There is no scanning required (or desired) for the block that defines the
// memory object itself. Its live-out properties are whatever are trivially
// locally inferred by the loop above. Mark any unset elements as not
// available.
MemBBInfo.setUnknownToNotAvailable();
}
/// Determine whether the specified block is reachable from the entry of the
/// containing function's entrypoint. This allows us to avoid diagnosing DI
/// errors in synthesized code that turns out to be unreachable.
bool LifetimeChecker::isBlockIsReachableFromEntry(SILBasicBlock *BB) {
// Lazily compute reachability, so we only have to do it in the case of an
// error.
if (BlocksReachableFromEntry.empty()) {
SmallVector<SILBasicBlock*, 128> Worklist;
Worklist.push_back(&BB->getParent()->front());
BlocksReachableFromEntry.insert(Worklist.back());
// Collect all reachable blocks by walking the successors.
while (!Worklist.empty()) {
SILBasicBlock *BB = Worklist.pop_back_val();
for (auto &Succ : BB->getSuccessors()) {
if (BlocksReachableFromEntry.insert(Succ).second)
Worklist.push_back(Succ);
}
}
}
return BlocksReachableFromEntry.count(BB);
}
/// shouldEmitError - Check to see if we've already emitted an error at the
/// specified instruction. If so, return false. If not, remember the
/// instruction and return true.
bool LifetimeChecker::shouldEmitError(SILInstruction *Inst) {
// If this instruction is in a dead region, don't report the error. This can
// occur because we haven't run DCE before DI and this may be a synthesized
// statement. If it isn't synthesized, then DCE will report an error on the
// dead code.
if (!isBlockIsReachableFromEntry(Inst->getParent()))
return false;
// Check to see if we've already emitted an error at this location. If so,
// swallow the error.
for (auto L : EmittedErrorLocs)
if (L == Inst->getLoc().getSourceLoc())
return false;
EmittedErrorLocs.push_back(Inst->getLoc().getSourceLoc());
return true;
}
/// Emit notes for each uninitialized stored property in a designated
/// initializer.
void LifetimeChecker::noteUninitializedMembers(const DIMemoryUse &Use) {
assert(TheMemory.isAnyInitSelf() && !TheMemory.isDelegatingInit() &&
"Not an designated initializer");
// Determine which members, specifically are uninitialized.
AvailabilitySet Liveness =
getLivenessAtInst(Use.Inst, Use.FirstElement, Use.NumElements);
for (unsigned i = Use.FirstElement, e = Use.FirstElement+Use.NumElements;
i != e; ++i) {
if (Liveness.get(i) == DIKind::Yes) continue;
// Ignore a failed super.init requirement.
if (i == TheMemory.NumElements-1 && TheMemory.isDerivedClassSelf())
continue;
std::string Name;
auto *Decl = TheMemory.getPathStringToElement(i, Name);
SILLocation Loc = Use.Inst->getLoc();
// If we found a non-implicit declaration, use its source location.
if (Decl && !Decl->isImplicit())
Loc = SILLocation(Decl);
diagnose(Module, Loc, diag::stored_property_not_initialized, Name);
}
}
/// Given a use that has at least one uninitialized element in it, produce a
/// nice symbolic name for the element being accessed.
std::string LifetimeChecker::getUninitElementName(const DIMemoryUse &Use) {
// If the overall memory allocation has multiple elements, then dive in to
// explain *which* element is being used uninitialized. Start by rerunning
// the query, to get a bitmask of exactly which elements are uninitialized.
// In a multi-element query, the first element may already be defined and
// we want to point to the second one.
AvailabilitySet Liveness =
getLivenessAtInst(Use.Inst, Use.FirstElement, Use.NumElements);
unsigned FirstUndefElement = Use.FirstElement;
while (Liveness.get(FirstUndefElement) == DIKind::Yes) {
++FirstUndefElement;
assert(FirstUndefElement != Use.FirstElement+Use.NumElements &&
"No undef elements found?");
}
// Verify that it isn't the super.init marker that failed. The client should
// handle this, not pass it down to diagnoseInitError.
assert((!TheMemory.isDerivedClassSelf() ||
FirstUndefElement != TheMemory.NumElements-1) &&
"super.init failure not handled in the right place");
// If the definition is a declaration, try to reconstruct a name and
// optionally an access path to the uninitialized element.
//
// TODO: Given that we know the range of elements being accessed, we don't
// need to go all the way deep into a recursive tuple here. We could print
// an error about "v" instead of "v.0" when "v" has tuple type and the whole
// thing is accessed inappropriately.
std::string Name;
TheMemory.getPathStringToElement(FirstUndefElement, Name);
return Name;
}
void LifetimeChecker::diagnoseInitError(const DIMemoryUse &Use,
Diag<StringRef> DiagMessage) {
auto *Inst = Use.Inst;
if (!shouldEmitError(Inst))
return;
// If the definition is a declaration, try to reconstruct a name and
// optionally an access path to the uninitialized element.
std::string Name = getUninitElementName(Use);
// Figure out the source location to emit the diagnostic to. If this is null,
// it is probably implicitly generated code, so we'll adjust it.
SILLocation DiagLoc = Inst->getLoc();
if (DiagLoc.isNull() || DiagLoc.getSourceLoc().isInvalid())
DiagLoc = Inst->getFunction()->getLocation();
diagnose(Module, DiagLoc, DiagMessage, Name);
// As a debugging hack, print the instruction itself if there is no location
// information. This should never happen.
if (Inst->getLoc().isNull())
llvm::dbgs() << " the instruction: " << *Inst << "\n";
// Provide context as note diagnostics.
// TODO: The QoI could be improved in many different ways here. For example,
// We could give some path information where the use was uninitialized, like
// the static analyzer.
if (!TheMemory.isAnyInitSelf())
diagnose(Module, TheMemory.getLoc(), diag::variable_defined_here);
}
void LifetimeChecker::doIt() {
// With any escapes tallied up, we can work through all the uses, checking
// for definitive initialization, promoting loads, rewriting assigns, and
// performing other tasks.
// Note that this should not use a for-each loop, as the Uses list can grow
// and reallocate as we iterate over it.
for (unsigned i = 0; i != Uses.size(); ++i) {
auto &Use = Uses[i];
auto *Inst = Uses[i].Inst;
// Ignore entries for instructions that got expanded along the way.
if (Inst == nullptr) continue;
switch (Use.Kind) {
case DIUseKind::Initialization:
// We assume that SILGen knows what it is doing when it produces
// initializations of variables, because it only produces them when it
// knows they are correct, and this is a super common case for "var x = y"
// cases.
continue;
case DIUseKind::Assign:
// Instructions classified as assign are only generated when lowering
// InitOrAssign instructions in regions known to be initialized. Since
// they are already known to be definitely init, don't reprocess them.
continue;
case DIUseKind::InitOrAssign:
// FIXME: This is a hack because DI is not understanding SILGen's
// stack values that have multiple init and destroy lifetime cycles with
// one allocation. This happens in foreach silgen (see rdar://15532779)
// and needs to be resolved someday, either by changing silgen or by
// teaching DI about destroy events. In the meantime, just assume that
// all stores of trivial type are ok.
if (isa<StoreInst>(Inst))
continue;
SWIFT_FALLTHROUGH;
case DIUseKind::PartialStore:
handleStoreUse(i);
break;
case DIUseKind::IndirectIn:
case DIUseKind::Load: {
bool IsSuperInitComplete;
// If the value is not definitively initialized, emit an error.
if (!isInitializedAtUse(Use, &IsSuperInitComplete))
handleLoadUseFailure(Use, IsSuperInitComplete);
break;
}
case DIUseKind::InOutUse:
handleInOutUse(Use);
break;
case DIUseKind::Escape:
if (!isInitializedAtUse(Use)) {
Diag<StringRef> DiagMessage;
// This is a use of an uninitialized value. Emit a diagnostic.
if (TheMemory.isDelegatingInit()) {
DiagMessage = diag::self_use_before_init_in_delegatinginit;
// If this is a load with a single user that is a return, then this is
// a return before self.init. Emit a specific diagnostic.
if (auto *LI = dyn_cast<LoadInst>(Inst))
if (LI->hasOneUse() &&
isa<ReturnInst>((*LI->use_begin())->getUser())) {
if (shouldEmitError(Inst))
diagnose(Module, Inst->getLoc(),
diag::return_from_init_without_self_init);
break;
}
if (isa<ReturnInst>(Inst)) {
if (shouldEmitError(Inst))
diagnose(Module, Inst->getLoc(),
diag::return_from_init_without_self_init);
break;
}
} else if (isa<ApplyInst>(Inst) && TheMemory.isStructInitSelf()) {
if (shouldEmitError(Inst)) {
diagnose(Module, Inst->getLoc(),
diag::use_of_self_before_fully_init);
noteUninitializedMembers(Use);
}
break;
} else if (isa<MarkFunctionEscapeInst>(Inst))
DiagMessage = diag::global_variable_function_use_uninit;
else if (isa<AddressToPointerInst>(Inst))
DiagMessage = diag::variable_addrtaken_before_initialized;
else
DiagMessage = diag::variable_escape_before_initialized;
diagnoseInitError(Use, DiagMessage);
}
break;
case DIUseKind::SuperInit:
handleSuperInitUse(Use);
break;
case DIUseKind::SelfInit:
handleSelfInitUse(Use);
break;
}
}
// If we emitted an error, there is no reason to proceed with load promotion.
if (!EmittedErrorLocs.empty()) return;
// If the memory object has nontrivial type, then any destroy/release of the
// memory object will destruct the memory. If the memory (or some element
// thereof) is not initialized on some path, the bad things happen. Process
// releases to adjust for this.
if (!TheMemory.MemorySILType.isTrivial(Module)) {
for (unsigned i = 0, e = Releases.size(); i != e; ++i)
processNonTrivialRelease(i);
}
// If the memory object had any non-trivial stores that are init or assign
// based on the control flow path reaching them, then insert dynamic control
// logic and CFG diamonds to handle this.
SILValue ControlVariable;
if (HasConditionalInitAssignOrDestroys)
ControlVariable = handleConditionalInitAssign();
if (!ConditionalDestroys.empty())
handleConditionalDestroys(ControlVariable);
}
void LifetimeChecker::handleStoreUse(unsigned UseID) {
DIMemoryUse &InstInfo = Uses[UseID];
// Determine the liveness state of the element that we care about.
auto Liveness = getLivenessAtInst(InstInfo.Inst, InstInfo.FirstElement,
InstInfo.NumElements);
// Check to see if the stored location is either fully uninitialized or fully
// initialized.
bool isFullyInitialized = true;
bool isFullyUninitialized = true;
for (unsigned i = InstInfo.FirstElement, e = i+InstInfo.NumElements;
i != e;++i) {
auto DI = Liveness.get(i);
if (DI != DIKind::Yes)
isFullyInitialized = false;
if (DI != DIKind::No)
isFullyUninitialized = false;
}
// If this is a partial store into a struct and the whole struct hasn't been
// initialized, diagnose this as an error.
if (InstInfo.Kind == DIUseKind::PartialStore && !isFullyInitialized) {
assert(InstInfo.NumElements == 1 && "partial stores are intra-element");
diagnoseInitError(InstInfo, diag::struct_not_fully_initialized);
return;
}
// If this is a store to a 'let' property in an initializer, then we only
// allow the assignment if the property was completely uninitialized.
// Overwrites are not permitted.
if (InstInfo.Kind == DIUseKind::PartialStore || !isFullyUninitialized) {
for (unsigned i = InstInfo.FirstElement, e = i+InstInfo.NumElements;
i != e; ++i) {
if (Liveness.get(i) == DIKind::No || !TheMemory.isElementLetProperty(i))
continue;
// Don't emit errors for unreachable code, or if we have already emitted
// a diagnostic.
if (!shouldEmitError(InstInfo.Inst))
continue;
std::string PropertyName;
auto *VD = TheMemory.getPathStringToElement(i, PropertyName);
diagnose(Module, InstInfo.Inst->getLoc(),
diag::immutable_property_already_initialized, PropertyName);
if (auto *Var = dyn_cast<VarDecl>(VD)) {
if (Var->getParentInitializer())
diagnose(Module, SILLocation(VD),
diag::initial_value_provided_in_let_decl);
Var->emitLetToVarNoteIfSimple();
}
return;
}
}
// If this is an initialization or a normal assignment, upgrade the store to
// an initialization or assign in the uses list so that clients know about it.
if (isFullyUninitialized) {
InstInfo.Kind = DIUseKind::Initialization;
} else if (isFullyInitialized) {
InstInfo.Kind = DIUseKind::Assign;
} else {
// If it is initialized on some paths, but not others, then we have an
// inconsistent initialization, which needs dynamic control logic in the
// general case.
// This is classified as InitOrAssign (not PartialStore), so there are only
// a few instructions that could reach here.
assert(InstInfo.Kind == DIUseKind::InitOrAssign &&
"should only have inconsistent InitOrAssign's here");
// If this access stores something of non-trivial type, then keep track of
// it for later. Once we've collected all of the conditional init/assigns,
// we can insert a single control variable for the memory object for the
// whole function.
if (!InstInfo.onlyTouchesTrivialElements(TheMemory))
HasConditionalInitAssignOrDestroys = true;
return;
}
// Otherwise, we have a definite init or assign. Make sure the instruction
// itself is tagged properly.
updateInstructionForInitState(InstInfo);
}
void LifetimeChecker::handleInOutUse(const DIMemoryUse &Use) {
// inout uses are generally straight-forward: the memory must be initialized
// before the "address" is passed as an l-value.
if (!isInitializedAtUse(Use)) {
diagnoseInitError(Use, diag::variable_inout_before_initialized);
return;
}
// One additional check: 'let' properties may never be passed inout, because
// they are only allowed to have their initial value set, not a subsequent
// overwrite.
for (unsigned i = Use.FirstElement, e = i+Use.NumElements;
i != e; ++i) {
if (!TheMemory.isElementLetProperty(i))
continue;
std::string PropertyName;
(void)TheMemory.getPathStringToElement(i, PropertyName);
// Try to produce a specific error message about the inout use. If this is
// a call to a method or a mutating property access, indicate that.
// Otherwise, we produce a generic error.
FuncDecl *FD = nullptr;
bool isAssignment = false;
if (auto *Apply = dyn_cast<ApplyInst>(Use.Inst)) {
// If this is a method application, produce a nice, specific, error.
if (auto *WMI = dyn_cast<MethodInst>(Apply->getOperand(0)))
FD = dyn_cast<FuncDecl>(WMI->getMember().getDecl());
// If this is a direct/devirt method application, check the location info.
if (auto *FRI = dyn_cast<FunctionRefInst>(Apply->getOperand(0))) {
if (FRI->getReferencedFunction()->hasLocation()) {
auto SILLoc = FRI->getReferencedFunction()->getLocation();
FD = SILLoc.getAsASTNode<FuncDecl>();
}
}
// If we failed to find the decl a clean and principled way, try hacks:
// map back to the AST and look for some common patterns.
if (!FD) {
if (Apply->getLoc().getAsASTNode<AssignExpr>())
isAssignment = true;
else if (auto *CE = Apply->getLoc().getAsASTNode<ApplyExpr>()) {
if (auto *DSCE = dyn_cast<SelfApplyExpr>(CE->getFn()))
// Normal method calls are curried, so they are:
// (call_expr (dot_syntax_call_expr (decl_ref_expr METHOD)))
FD = dyn_cast<FuncDecl>(DSCE->getCalledValue());
else
// Operators and normal function calls are just (CallExpr DRE)
FD = dyn_cast<FuncDecl>(CE->getCalledValue());
}
}
}
// If we were able to find a method or function call, emit a diagnostic
// about the method. The magic numbers used by the diagnostic are:
// 0 -> method, 1 -> property, 2 -> subscript, 3 -> operator.
unsigned Case = ~0;
Identifier MethodName;
if (FD && FD->isAccessor()) {
MethodName = FD->getAccessorStorageDecl()->getName();
Case = isa<SubscriptDecl>(FD->getAccessorStorageDecl()) ? 2 : 1;
} else if (FD && FD->isOperator()) {
MethodName = FD->getName();
Case = 3;
} else if (FD && FD->isInstanceMember()) {
MethodName = FD->getName();
Case = 0;
}
if (Case != ~0U) {
diagnose(Module, Use.Inst->getLoc(),
diag::mutating_method_called_on_immutable_value,
MethodName, Case, PropertyName);
} else if (isAssignment) {
diagnose(Module, Use.Inst->getLoc(),
diag::assignment_to_immutable_value, PropertyName);
} else {
diagnose(Module, Use.Inst->getLoc(),
diag::immutable_value_passed_inout, PropertyName);
}
return;
}
}
/// Failable enum initializer produce a CFG for the return that looks like this,
/// where the load is the use of 'self'. Detect this pattern so we can consider
/// it a 'return' use of self.
///
/// %3 = load %2 : $*Enum
/// %4 = enum $Optional<Enum>, #Optional.Some!enumelt.1, %3 : $Enum
/// br bb2(%4 : $Optional<Enum>) // id: %5
/// bb1:
/// %6 = enum $Optional<Enum>, #Optional.None!enumelt // user: %7
/// br bb2(%6 : $Optional<Enum>) // id: %7
/// bb2(%8 : $Optional<Enum>): // Preds: bb0 bb1
/// dealloc_stack %1#0 : $*@local_storage Enum // id: %9
/// return %8 : $Optional<Enum> // id: %10
///
static bool isFailableInitReturnUseOfEnum(EnumInst *EI) {
// Only allow enums forming an optional.
if (!EI->getType().getSwiftRValueType()->getOptionalObjectType())
return false;
if (!EI->hasOneUse()) return false;
auto *BI = dyn_cast<BranchInst>(EI->use_begin()->getUser());
if (!BI || BI->getNumArgs() != 1) return false;
auto *TargetArg = BI->getDestBB()->getBBArg(0);
if (!TargetArg->hasOneUse()) return false;
return isa<ReturnInst>(TargetArg->use_begin()->getUser());
}
/// handleLoadUseFailure - Check and diagnose various failures when a load use
/// is not fully initialized.
///
/// TODO: In the "No" case, we can emit a fixit adding a default
/// initialization of the type.
///
void LifetimeChecker::handleLoadUseFailure(const DIMemoryUse &Use,
bool IsSuperInitComplete) {
SILInstruction *Inst = Use.Inst;
// If this is a load with a single user that is a return (and optionally a
// retain_value for non-trivial structs/enums), then this is a return in the
// enum/struct init case, and we haven't stored to self. Emit a specific
// diagnostic.
if (auto *LI = dyn_cast<LoadInst>(Inst)) {
bool hasReturnUse = false, hasUnknownUses = false;
for (auto LoadUse : LI->getUses()) {
auto *User = LoadUse->getUser();
// Ignore retains of the struct/enum before the return.
if (isa<RetainValueInst>(User))
continue;
if (isa<ReturnInst>(User)) {
hasReturnUse = true;
continue;
}
if (auto *EI = dyn_cast<EnumInst>(User))
if (isFailableInitReturnUseOfEnum(EI)) {
hasReturnUse = true;
continue;
}
hasUnknownUses = true;
break;
}
if (hasReturnUse && !hasUnknownUses) {
if (TheMemory.isEnumInitSelf()) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(),
diag::return_from_init_without_initing_self);
return;
} else if (TheMemory.isAnyInitSelf() && !TheMemory.isClassInitSelf() &&
!TheMemory.isDelegatingInit()) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(),
diag::return_from_init_without_initing_stored_properties);
noteUninitializedMembers(Use);
return;
}
}
}
// If this is a copy_addr into the 'self' argument, and the memory object is a
// rootself struct/enum or a non-delegating initializer, then we're looking at
// the implicit "return self" in an address-only initializer. Emit a specific
// diagnostic.
if (auto *CA = dyn_cast<CopyAddrInst>(Inst)) {
if (CA->isInitializationOfDest() &&
!CA->getFunction()->getArguments().empty() &&
SILValue(CA->getFunction()->getArgument(0)) == CA->getDest()) {
if (TheMemory.isEnumInitSelf()) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(),
diag::return_from_init_without_initing_self);
return;
} else if (TheMemory.isAnyInitSelf() && !TheMemory.isClassInitSelf() &&
!TheMemory.isDelegatingInit()) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(),
diag::return_from_init_without_initing_stored_properties);
noteUninitializedMembers(Use);
return;
}
}
}
// Check to see if we're returning self in a class initializer before all the
// ivars/super.init are set up.
if (isa<ReturnInst>(Inst) && TheMemory.isAnyInitSelf()) {
if (!shouldEmitError(Inst)) return;
if (!IsSuperInitComplete) {
diagnose(Module, Inst->getLoc(),
diag::superselfinit_not_called_before_return,
(unsigned)TheMemory.isDelegatingInit());
} else {
diagnose(Module, Inst->getLoc(),
diag::return_from_init_without_initing_stored_properties);
noteUninitializedMembers(Use);
}
return;
}
// Check to see if this is a use of self or super, due to a method call. If
// so, emit a specific diagnostic.
FuncDecl *Method = nullptr;
// Check for an access to the base class through an Upcast.
if (auto UCI = dyn_cast<UpcastInst>(Inst)) {
// If the upcast is used by a ref_element_addr, then it is an access to a
// base ivar before super.init is called.
if (UCI->hasOneUse() && !IsSuperInitComplete) {
if (auto *REI =
dyn_cast<RefElementAddrInst>((*UCI->use_begin())->getUser())) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(),
diag::self_use_before_fully_init,
REI->getField()->getName(), true, true);
return;
}
}
// If the upcast is used by a class_method + apply, then this is a call of a
// superclass method or property accessor. If we have a guaranteed method,
// we will have a release due to a missing optimization in SILGen that will
// be removed.
//
// TODO: Implement the SILGen fixes so this can be removed.
ClassMethodInst *CMI = nullptr;
ApplyInst *AI = nullptr;
SILInstruction *Release = nullptr;
for (auto UI : SILValue(UCI, 0).getUses()) {
auto *User = UI->getUser();
if (auto *TAI = dyn_cast<ApplyInst>(User)) {
if (!AI) {
AI = TAI;
continue;
}
}
if (auto *TCMI = dyn_cast<ClassMethodInst>(User)) {
if (!CMI) {
CMI = TCMI;
continue;
}
}
if (isa<ReleaseValueInst>(User) || isa<StrongReleaseInst>(User)) {
if (!Release) {
Release = User;
continue;
}
}
// Not a pattern we recognize, conservatively generate a generic
// diagnostic.
CMI = nullptr;
break;
}
// If we have a release, make sure that AI is guaranteed. If it is not, emit
// the generic error that we would emit before.
//
// That is the only case where we support pattern matching a release.
if (Release &&
!AI->getSubstCalleeType()->getExtInfo().hasGuaranteedSelfParam())
CMI = nullptr;
if (AI && CMI) {
// TODO: Could handle many other members more specifically.
auto *Decl = CMI->getMember().getDecl();
Method = dyn_cast<FuncDecl>(Decl);
}
}
// If this is an apply instruction and we're in an class initializer, we're
// calling a method on self.
if (isa<ApplyInst>(Inst) && TheMemory.isClassInitSelf()) {
// If this is a method application, produce a nice, specific, error.
if (auto *CMI = dyn_cast<ClassMethodInst>(Inst->getOperand(0)))
Method = dyn_cast<FuncDecl>(CMI->getMember().getDecl());
// If this is a direct/devirt method application, check the location info.
if (auto *FRI = dyn_cast<FunctionRefInst>(Inst->getOperand(0))) {
if (FRI->getReferencedFunction()->hasLocation()) {
auto SILLoc = FRI->getReferencedFunction()->getLocation();
Method = SILLoc.getAsASTNode<FuncDecl>();
}
}
}
// If we were able to find a method call, emit a diagnostic about the method.
if (Method) {
Identifier Name;
if (Method->isAccessor())
Name = Method->getAccessorStorageDecl()->getName();
else
Name = Method->getName();
// If this is a use of self before super.init was called, emit a diagnostic
// about *that* instead of about individual properties not being
// initialized.
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(), diag::self_use_before_fully_init,
Name, Method->isAccessor(), !IsSuperInitComplete);
if (IsSuperInitComplete)
noteUninitializedMembers(Use);
return;
}
// Otherwise, we couldn't find a specific thing to complain about, so emit a
// generic error, depending on what kind of failure this is.
if (!IsSuperInitComplete) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(), diag::self_before_superselfinit,
(unsigned)TheMemory.isDelegatingInit());
return;
}
// If this is a call to a method in a class initializer, then it must be a use
// of self before the stored properties are set up.
if (isa<ApplyInst>(Inst) && TheMemory.isClassInitSelf()) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(), diag::use_of_self_before_fully_init);
noteUninitializedMembers(Use);
return;
}
// If this is a load of self in a struct/enum initializer, then it must be a
// use of 'self' before all the stored properties are set up.
if (isa<LoadInst>(Inst) && TheMemory.isAnyInitSelf() &&
!TheMemory.isClassInitSelf()) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(), diag::use_of_self_before_fully_init);
noteUninitializedMembers(Use);
return;
}
diagnoseInitError(Use, diag::variable_used_before_initialized);
}
/// handleSuperInitUse - When processing a 'self' argument on a class, this is
/// a call to super.init.
void LifetimeChecker::handleSuperInitUse(const DIMemoryUse &InstInfo) {
auto *Inst = cast<ApplyInst>(InstInfo.Inst);
// Determine the liveness states of the memory object, including the
// super.init state.
AvailabilitySet Liveness = getLivenessAtInst(Inst, 0, TheMemory.NumElements);
// super.init() calls require that super.init has not already been called. If
// it has, reject the program.
switch (Liveness.get(TheMemory.NumElements-1)) {
case DIKind::No: // This is good! Keep going.
break;
case DIKind::Yes:
case DIKind::Partial:
// This is bad, only one super.init call is allowed.
if (shouldEmitError(Inst))
diagnose(Module, Inst->getLoc(), diag::selfinit_multiple_times, 0);
return;
}
// super.init also requires that all ivars are initialized before the
// superclass initializer runs.
for (unsigned i = 0, e = TheMemory.NumElements-1; i != e; ++i) {
if (Liveness.get(i) == DIKind::Yes) continue;
// If the super.init call is implicit generated, produce a specific
// diagnostic.
bool isImplicit = InstInfo.Inst->getLoc().getSourceLoc().isInvalid();
auto diag = isImplicit ? diag::ivar_not_initialized_at_implicit_superinit :
diag::ivar_not_initialized_at_superinit;
return diagnoseInitError(InstInfo, diag);
}
// Otherwise everything is good!
}
/// handleSuperInitUse - When processing a 'self' argument on a class, this is
/// a call to self.init.
void LifetimeChecker::handleSelfInitUse(DIMemoryUse &InstInfo) {
auto *Inst = InstInfo.Inst;
assert(TheMemory.NumElements == 1 && "delegating inits have a single elt");
// Determine the self.init state. self.init() calls require that self.init
// has not already been called. If it has, reject the program.
switch (getLivenessAtInst(Inst, 0, 1).get(0)) {
case DIKind::No: // This is good! Keep going.
break;
case DIKind::Yes:
case DIKind::Partial:
// This is bad, only one self.init call is allowed.
if (EmittedErrorLocs.empty() && shouldEmitError(Inst))
diagnose(Module, Inst->getLoc(), diag::selfinit_multiple_times, 1);
return;
}
// If this is a copy_addr, make sure we remember that it is an initialization.
if (auto *CAI = dyn_cast<CopyAddrInst>(InstInfo.Inst))
CAI->setIsInitializationOfDest(IsInitialization);
// Lower Assign instructions if needed.
if (isa<AssignInst>(InstInfo.Inst))
updateInstructionForInitState(InstInfo);
}
/// updateInstructionForInitState - When an instruction being analyzed moves
/// from being InitOrAssign to some concrete state, update it for that state.
/// This includes rewriting them from assign instructions into their composite
/// operations.
void LifetimeChecker::updateInstructionForInitState(DIMemoryUse &InstInfo) {
SILInstruction *Inst = InstInfo.Inst;
IsInitialization_t InitKind;
if (InstInfo.Kind == DIUseKind::Initialization ||
InstInfo.Kind == DIUseKind::SelfInit)
InitKind = IsInitialization;
else {
assert(InstInfo.Kind == DIUseKind::Assign);
InitKind = IsNotInitialization;
}
// If this is a copy_addr or store_weak, we just set the initialization bit
// depending on what we find.
if (auto *CA = dyn_cast<CopyAddrInst>(Inst)) {
assert(!CA->isInitializationOfDest() &&
"should not modify copy_addr that already knows it is initialized");
CA->setIsInitializationOfDest(InitKind);
return;
}
if (auto *SW = dyn_cast<StoreWeakInst>(Inst)) {
assert(!SW->isInitializationOfDest() &&
"should not modify store_weak that already knows it is initialized");
SW->setIsInitializationOfDest(InitKind);
return;
}
// If this is an assign, rewrite it based on whether it is an initialization
// or not.
if (auto *AI = dyn_cast<AssignInst>(Inst)) {
// Remove this instruction from our data structures, since we will be
// removing it.
auto Kind = InstInfo.Kind;
InstInfo.Inst = nullptr;
NonLoadUses.erase(Inst);
unsigned FirstElement = InstInfo.FirstElement;
unsigned NumElements = InstInfo.NumElements;
SmallVector<SILInstruction*, 4> InsertedInsts;
SILBuilder B(Inst, &InsertedInsts);
LowerAssignInstruction(B, AI, InitKind);
// If lowering of the assign introduced any new loads or stores, keep track
// of them.
for (auto I : InsertedInsts) {
I->setDebugScope(AI->getDebugScope());
if (isa<StoreInst>(I)) {
NonLoadUses[I] = Uses.size();
Uses.push_back(DIMemoryUse(I, Kind, FirstElement, NumElements));
} else if (isa<LoadInst>(I)) {
Uses.push_back(DIMemoryUse(I, Load, FirstElement, NumElements));
}
}
return;
}
// Ignore non-stores for SelfInits.
assert(isa<StoreInst>(Inst) && "Unknown store instruction!");
}
/// processNonTrivialRelease - We handle two kinds of release instructions here:
/// destroy_addr for alloc_stack's and strong_release/dealloc_box for
/// alloc_box's. By the time that DI gets here, we've validated that all uses
/// of the memory location are valid. Unfortunately, the uses being valid
/// doesn't mean that the memory is actually initialized on all paths leading to
/// a release. As such, we have to push the releases up the CFG to where the
/// value is initialized.
///
/// This returns true if the release was deleted.
///
void LifetimeChecker::processNonTrivialRelease(unsigned ReleaseID) {
SILInstruction *Release = Releases[ReleaseID];
// If the instruction is a deallocation of uninitialized memory, no action is
// required (or desired).
if (isa<DeallocStackInst>(Release) || isa<DeallocBoxInst>(Release) ||
isa<DeallocRefInst>(Release))
return;
// We only handle strong_release and destroy_addr here. The former is a
// release of a class in an initializer, the later is used for local variable
// destruction.
assert(isa<StrongReleaseInst>(Release) || isa<DestroyAddrInst>(Release));
// If the memory object is completely initialized, then nothing needs to be
// done at this release point.
AvailabilitySet Availability =
getLivenessAtInst(Release, 0, TheMemory.NumElements);
if (Availability.isAllYes()) return;
// Right now we don't fully support cleaning up a partially initialized object
// after a failure. Handle this by only allowing an early 'return nil' in an
// initializer after all properties are initialized or in a convenience init.
if (TheMemory.isClassInitSelf() && !TheMemory.isDelegatingInit()) {
SILLocation loc = Release->getLoc();
// The release is generally a cleanup in a failure block, and is usually the
// first instruction in the block. For better QoI, try to rewind back up
// the CFG a bit to find a source location that is better.
if (loc.getKind() == SILLocation::CleanupKind) {
SILBasicBlock *SILBB = Release->getParent();
for (auto pred : SILBB->getPreds()) {
// Pick the terminator of any predecessor who doesn't have all members
// initialized.
if (!getLivenessAtInst(pred->getTerminator(), 0, TheMemory.NumElements)
.isAllYes())
loc = pred->getTerminator()->getLoc();
}
}
// All members must be initialized (including the base class, if
// present).
diagnose(Module, loc, diag::object_not_fully_initialized_before_failure);
// Note each of the members that isn't initialized.
DIMemoryUse Use(Release, DIUseKind::Load, 0, TheMemory.NumElements);
noteUninitializedMembers(Use);
// If we're tracking the state of super.init (i.e., in a derived class)
// then report on failure to call super.init as well.
if (TheMemory.isAnyDerivedClassSelf() &&
Availability.get(Availability.size()-1) != DIKind::Yes)
diagnose(Module, loc, diag::must_call_super_init_failable_init);
}
// If it is all 'no' then we can handle is specially without conditional code.
if (Availability.isAllNo()) {
// If this is an early release in a class, we need to emit a dealloc_ref to
// free the memory. If this is a derived class, we may have to do a load of
// the 'self' box to get the class reference.
if (TheMemory.isClassInitSelf()) {
SILBuilderWithScope<4> B(Release);
SILValue Pointer = Release->getOperand(0);
// If we see an alloc_box as the pointer, then we're deallocating a 'box'
// for self. Make sure we're using its address result, not its refcount
// result, and make sure that the box gets deallocated (not released)
// since the pointer it contains will be manually cleaned up.
if (isa<AllocBoxInst>(Pointer))
Pointer = SILValue(Pointer.getDef(), 1);
if (Pointer.getType().isAddress())
Pointer = B.createLoad(Release->getLoc(), Pointer);
auto Dealloc = B.createDeallocRef(Release->getLoc(), Pointer);
// dealloc_box the self box is necessary.
if (isa<AllocBoxInst>(Release->getOperand(0))) {
auto DB = B.createDeallocBox(Release->getLoc(), Pointer.getType(),
Release->getOperand(0));
Releases.push_back(DB);
}
Releases[ReleaseID] = Dealloc;
Release->eraseFromParent();
return;
}
// Otherwise, in the normal case, the destroy_addr can just be zapped.
assert(isa<DestroyAddrInst>(Release));
SILValue Addr = Release->getOperand(0);
Release->eraseFromParent();
if (auto *AddrI = dyn_cast<SILInstruction>(Addr))
recursivelyDeleteTriviallyDeadInstructions(AddrI);
Releases[ReleaseID] = nullptr;
return;
}
// If any elements are partially live, we need to emit conditional logic.
if (Availability.hasAny(DIKind::Partial))
HasConditionalInitAssignOrDestroys = true;
// Otherwise, it is conditionally live, safe it for later processing.
ConditionalDestroys.push_back({ ReleaseID, Availability });
}
static Identifier getBinaryFunction(StringRef Name, SILType IntSILTy,
ASTContext &C) {
CanType IntTy = IntSILTy.getSwiftRValueType();
unsigned NumBits =
cast<BuiltinIntegerType>(IntTy)->getWidth().getFixedWidth();
// Name is something like: add_Int64
std::string NameStr = Name;
NameStr += "_Int" + llvm::utostr(NumBits);
return C.getIdentifier(NameStr);
}
static Identifier getTruncateToI1Function(SILType IntSILTy, ASTContext &C) {
CanType IntTy = IntSILTy.getSwiftRValueType();
unsigned NumBits =
cast<BuiltinIntegerType>(IntTy)->getWidth().getFixedWidth();
// Name is something like: trunc_Int64_Int8
std::string NameStr = "trunc_Int" + llvm::utostr(NumBits) + "_Int1";
return C.getIdentifier(NameStr);
}
/// handleConditionalInitAssign - This memory object has some stores
/// into (some element of) it that is either an init or an assign based on the
/// control flow path through the function, or have a destroy event that happens
/// when the memory object may or may not be initialized. Handle this by
/// inserting a bitvector that tracks the liveness of each tuple element
/// independently.
SILValue LifetimeChecker::handleConditionalInitAssign() {
SILLocation Loc = TheMemory.getLoc();
Loc.markAutoGenerated();
unsigned NumMemoryElements = TheMemory.getNumMemoryElements();
// Create the control variable as the first instruction in the function (so
// that it is easy to destroy the stack location.
SILBuilderWithScope<16> B(TheMemory.getFunctionEntryPoint(),
TheMemory.getFunction().getDebugScope());
SILType IVType =
SILType::getBuiltinIntegerType(NumMemoryElements, Module.getASTContext());
auto Alloc = B.createAllocStack(Loc, IVType);
// Find all the return blocks in the function, inserting a dealloc_stack
// before the return.
for (auto &BB : TheMemory.getFunction()) {
if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
B.setInsertionPoint(RI);
B.createDeallocStack(Loc, SILValue(Alloc, 0));
}
}
// Before the memory allocation, store zero in the control variable.
B.setInsertionPoint(TheMemory.MemoryInst->getNextNode());
SILValue AllocAddr = SILValue(Alloc, 1);
auto Zero = B.createIntegerLiteral(Loc, IVType, 0);
B.createStore(Loc, Zero, AllocAddr);
Identifier OrFn;
// At each initialization, mark the initialized elements live. At each
// conditional assign, resolve the ambiguity by inserting a CFG diamond.
for (unsigned i = 0; i != Uses.size(); ++i) {
auto &Use = Uses[i];
// Ignore deleted uses.
if (Use.Inst == nullptr) continue;
// Only full initializations make something live. inout uses, escapes, and
// assignments only happen when some kind of init made the element live.
switch (Use.Kind) {
default:
// We can ignore most use kinds here.
continue;
case DIUseKind::InitOrAssign:
// The dynamically unknown case is the interesting one, handle it below.
break;
case DIUseKind::SelfInit:
case DIUseKind::Initialization:
// If this is an initialization of only trivial elements, then we don't
// need to update the bitvector.
if (Use.onlyTouchesTrivialElements(TheMemory))
continue;
// Get the integer constant.
B.setInsertionPoint(Use.Inst);
APInt Bitmask = Use.getElementBitmask(NumMemoryElements);
SILValue MaskVal = B.createIntegerLiteral(Loc, IVType, Bitmask);
// If the mask is all ones, do a simple store, otherwise do a
// load/or/store sequence to mask in the bits.
if (!Bitmask.isAllOnesValue()) {
SILValue Tmp = B.createLoad(Loc, AllocAddr);
if (!OrFn.get())
OrFn = getBinaryFunction("or", Tmp.getType(), B.getASTContext());
SILValue Args[] = { Tmp, MaskVal };
MaskVal = B.createBuiltin(Loc, OrFn, Tmp.getType(), {}, Args);
}
B.createStore(Loc, MaskVal, AllocAddr);
continue;
}
// If this ambiguous store is only of trivial types, then we don't need to
// do anything special. We don't even need keep the init bit for the
// element precise.
if (Use.onlyTouchesTrivialElements(TheMemory))
continue;
B.setInsertionPoint(Use.Inst);
// If this is the interesting case, we need to generate a CFG diamond for
// each element touched, destroying any live elements so that the resulting
// store is always an initialize. This disambiguates the dynamic
// uncertainty with a runtime check.
SILValue Bitmask = B.createLoad(Loc, AllocAddr);
// If we have multiple tuple elements, we'll have to do some shifting and
// truncating of the mask value. These values cache the function_ref so we
// don't emit multiple of them.
Identifier ShiftRightFn, TruncateFn;
// If the memory object has multiple tuple elements, we need to destroy any
// live subelements, since they can each be in a different state of
// initialization.
for (unsigned Elt = Use.FirstElement, e = Elt+Use.NumElements;
Elt != e; ++Elt) {
B.setInsertionPoint(Use.Inst);
SILValue CondVal = Bitmask;
if (NumMemoryElements != 1) {
// Shift the mask down to this element.
if (Elt != 0) {
if (!ShiftRightFn.get())
ShiftRightFn = getBinaryFunction("lshr", Bitmask.getType(),
B.getASTContext());
SILValue Amt = B.createIntegerLiteral(Loc, Bitmask.getType(), Elt);
SILValue Args[] = { CondVal, Amt };
CondVal = B.createBuiltin(Loc, ShiftRightFn, Bitmask.getType(),
{}, Args);
}
if (!TruncateFn.get())
TruncateFn = getTruncateToI1Function(Bitmask.getType(),
B.getASTContext());
CondVal = B.createBuiltin(Loc, TruncateFn,
SILType::getBuiltinIntegerType(1,
B.getASTContext()),
{}, CondVal);
}
SILBasicBlock *TrueBB, *ContBB;
InsertCFGDiamond(CondVal, Loc, B, TrueBB, nullptr, ContBB);
// Emit a destroy_addr in the taken block.
B.setInsertionPoint(TrueBB->begin());
SILValue EltPtr = TheMemory.emitElementAddress(Elt, Loc, B);
if (auto *DA = B.emitDestroyAddrAndFold(Loc, EltPtr))
Releases.push_back(DA);
}
// Finally, now that we know the value is uninitialized on all paths, it is
// safe to do an unconditional initialization.
Use.Kind = DIUseKind::Initialization;
// Now that the instruction has a concrete "init" form, update it to reflect
// that. Note that this can invalidate the Uses vector and delete
// the instruction.
updateInstructionForInitState(Use);
// Revisit the instruction on the next pass through the loop, so that we
// emit a mask update as appropriate.
--i;
}
return AllocAddr;
}
/// Process any destroy_addr and strong_release instructions that are invoked on
/// a partially initialized value. This generates code to destroy the elements
/// that are known to be alive, ignore the ones that are known to be dead, and
/// to emit branching logic when an element may or may not be initialized.
void LifetimeChecker::
handleConditionalDestroys(SILValue ControlVariableAddr) {
SILBuilderWithScope<16> B(TheMemory.MemoryInst);
Identifier ShiftRightFn, TruncateFn;
unsigned NumMemoryElements = TheMemory.getNumMemoryElements();
// After handling any conditional initializations, check to see if we have any
// cases where the value is only partially initialized by the time its
// lifetime ends. In this case, we have to make sure not to destroy an
// element that wasn't initialized yet.
for (auto &CDElt : ConditionalDestroys) {
auto *Release = Releases[CDElt.first];
auto Loc = Release->getLoc();
auto &Availability = CDElt.second;
// The instruction in a partially live region is a destroy_addr or
// strong_release.
SILValue Addr = Release->getOperand(0);
// If the memory is not-fully initialized at the destroy_addr, then there
// can be multiple issues: we could have some tuple elements initialized and
// some not, or we could have a control flow sensitive situation where the
// elements are only initialized on some paths. We handle this by splitting
// the multi-element case into its component parts and treating each
// separately.
//
// Classify each element into three cases: known initialized, known
// uninitialized, or partially initialized. The first two cases are simple
// to handle, whereas the partial case requires dynamic codegen based on the
// liveness bitmask.
SILValue LoadedMask;
for (unsigned Elt = 0; Elt != NumMemoryElements; ++Elt) {
switch (Availability.get(Elt)) {
case DIKind::No:
// If an element is known to be uninitialized, then we know we can
// completely ignore it.
continue;
case DIKind::Partial:
// In the partially live case, we have to check our control variable to
// destroy it. Handle this below.
break;
case DIKind::Yes:
// If an element is known to be initialized, then we can strictly
// destroy its value at releases position.
B.setInsertionPoint(Release);
SILValue EltPtr = TheMemory.emitElementAddress(Elt, Loc, B);
if (auto *DA = B.emitDestroyAddrAndFold(Release->getLoc(), EltPtr))
Releases.push_back(DA);
continue;
}
// Note - in some partial liveness cases, we can push the destroy_addr up
// the CFG, instead of immediately generating dynamic control flow checks.
// This could be handled in processNonTrivialRelease some day.
// Insert a load of the liveness bitmask and split the CFG into a diamond
// right before the destroy_addr, if we haven't already loaded it.
B.setInsertionPoint(Release);
if (!LoadedMask)
LoadedMask = B.createLoad(Loc, ControlVariableAddr);
SILValue CondVal = LoadedMask;
// If this memory object has multiple tuple elements, we need to make sure
// to test the right one.
if (NumMemoryElements != 1) {
// Shift the mask down to this element.
if (Elt != 0) {
if (!ShiftRightFn.get())
ShiftRightFn = getBinaryFunction("lshr", CondVal.getType(),
B.getASTContext());
SILValue Amt = B.createIntegerLiteral(Loc, CondVal.getType(), Elt);
SILValue Args[] = { CondVal, Amt };
CondVal = B.createBuiltin(Loc, ShiftRightFn,
CondVal.getType(), {},
Args);
}
if (!TruncateFn.get())
TruncateFn = getTruncateToI1Function(CondVal.getType(),
B.getASTContext());
CondVal = B.createBuiltin(Loc, TruncateFn,
SILType::getBuiltinIntegerType(1,
B.getASTContext()),
{}, CondVal);
}
SILBasicBlock *CondDestroyBlock, *ContBlock;
InsertCFGDiamond(CondVal, Loc, B, CondDestroyBlock, nullptr, ContBlock);
// Set up the conditional destroy block.
B.setInsertionPoint(CondDestroyBlock->begin());
SILValue EltPtr = TheMemory.emitElementAddress(Elt, Loc, B);
if (auto *DA = B.emitDestroyAddrAndFold(Loc, EltPtr))
Releases.push_back(DA);
}
// If this is an early release in a class, we need to emit a dealloc_ref to
// free the memory. If this is a derived class, we may have to do a load of
// the 'self' box to get the class reference.
if (TheMemory.isClassInitSelf()) {
B.setInsertionPoint(Release);
SILValue Pointer = Release->getOperand(0);
// If we see an alloc_box as the pointer, then we're deallocating a 'box'
// for self. Make sure we're using its address result, not its refcount
// result, and make sure that the box gets deallocated (not released)
// since the pointer it contains will be manually cleaned up.
if (isa<AllocBoxInst>(Pointer))
Pointer = SILValue(Pointer.getDef(), 1);
if (Pointer.getType().isAddress())
Pointer = B.createLoad(Release->getLoc(), Pointer);
B.createDeallocRef(Release->getLoc(), Pointer);
// dealloc_box the self box is necessary.
if (isa<AllocBoxInst>(Release->getOperand(0))) {
auto DB = B.createDeallocBox(Release->getLoc(), Pointer.getType(),
Release->getOperand(0));
Releases.push_back(DB);
}
}
// Finally, now that the original instruction is handled, remove the
// original destroy.
Release->eraseFromParent();
if (auto *AddrI = dyn_cast<SILInstruction>(Addr))
recursivelyDeleteTriviallyDeadInstructions(AddrI);
}
}
void LifetimeChecker::
putIntoWorkList(SILBasicBlock *BB, WorkListType &WorkList) {
LiveOutBlockState &State = getBlockInfo(BB);
if (!State.isInWorkList && State.OutAvailability.containsUnknownElements()) {
DEBUG(llvm::dbgs() << " add block " << BB->getDebugID()
<< " to worklist\n");
WorkList.push_back(BB);
State.isInWorkList = true;
}
}
void LifetimeChecker::
getPredsLiveOut(SILBasicBlock *BB, AvailabilitySet &Result) {
DEBUG(llvm::dbgs() << " Get liveness for block " << BB->getDebugID() << "\n");
// Collect blocks for which we have to calculate the out-availability.
// These are the pathes from blocks with known out-availability to the BB.
WorkListType WorkList;
for (auto Pred : BB->getPreds()) {
putIntoWorkList(Pred, WorkList);
}
size_t idx = 0;
while (idx < WorkList.size()) {
SILBasicBlock *WorkBB = WorkList[idx++];
for (auto Pred : WorkBB->getPreds()) {
putIntoWorkList(Pred, WorkList);
}
}
// Solve the dataflow problem.
#ifndef NDEBUG
int iteration = 0;
int upperIterationLimit = WorkList.size() * 2 + 10; // More than enough.
#endif
bool changed;
do {
assert(iteration < upperIterationLimit &&
"Infinite loop in dataflow analysis?");
DEBUG(llvm::dbgs() << " Iteration " << iteration++ << "\n");
changed = false;
// We collected the blocks in reverse order. Since it is a forward dataflow-
// problem, it is faster to go through the worklist in reverse order.
for (auto iter = WorkList.rbegin(); iter != WorkList.rend(); ++iter) {
SILBasicBlock *WorkBB = *iter;
LiveOutBlockState &BBState = getBlockInfo(WorkBB);
// Merge from the predecessor blocks.
for (auto Pred : WorkBB->getPreds()) {
changed |= BBState.mergeFromPred(getBlockInfo(Pred));
}
DEBUG(llvm::dbgs() << " Block " << WorkBB->getDebugID() << " out: "
<< BBState.OutAvailability << "\n");
// Clear the worklist-flag for the next call to getPredsLiveOut().
// This could be moved out of the outer loop, but doing it here avoids
// another loop with getBlockInfo() calls.
BBState.isInWorkList = false;
}
} while (changed);
// Finally merge to the result (= state at BB's entry).
for (auto Pred : BB->getPreds()) {
Result.mergeIn(getBlockInfo(Pred).OutAvailability);
}
DEBUG(llvm::dbgs() << " Result: " << Result << "\n");
}
/// getLivenessAtInst - Compute the liveness state for any number of tuple
/// elements at the specified instruction. The elements are returned as an
/// AvailabilitySet. Elements outside of the range specified may not be
/// computed correctly.
AvailabilitySet LifetimeChecker::
getLivenessAtInst(SILInstruction *Inst, unsigned FirstElt, unsigned NumElts) {
DEBUG(llvm::dbgs() << "Get liveness " << FirstElt << ", #" << NumElts <<
" at " << *Inst);
AvailabilitySet Result(TheMemory.NumElements);
// Empty tuple queries return a completely "unknown" vector, since they don't
// care about any of the elements.
if (NumElts == 0)
return Result;
SILBasicBlock *InstBB = Inst->getParent();
// The vastly most common case is memory allocations that are not tuples,
// so special case this with a more efficient algorithm.
if (TheMemory.NumElements == 1) {
// If there is a store in the current block, scan the block to see if the
// store is before or after the load. If it is before, it produces the value
// we are looking for.
if (getBlockInfo(InstBB).HasNonLoadUse) {
for (SILBasicBlock::iterator BBI = Inst, E = InstBB->begin();
BBI != E;) {
SILInstruction *TheInst = --BBI;
// If this instruction is unrelated to the memory, ignore it.
if (!NonLoadUses.count(TheInst))
continue;
// If we found the allocation itself, then we are loading something that
// is not defined at all yet. Otherwise, we've found a definition, or
// something else that will require that the memory is initialized at
// this point.
Result.set(0,
TheInst == TheMemory.MemoryInst ? DIKind::No : DIKind::Yes);
return Result;
}
}
getPredsLiveOut(InstBB, Result);
// If the result element wasn't computed, we must be analyzing code within
// an unreachable cycle that is not dominated by "TheMemory". Just force
// the unset element to yes so that clients don't have to handle this.
if (!Result.getConditional(0))
Result.set(0, DIKind::Yes);
return Result;
}
// Check locally to see if any elements are satified within the block, and
// keep track of which ones are still needed in the NeededElements set.
llvm::SmallBitVector NeededElements(TheMemory.NumElements);
NeededElements.set(FirstElt, FirstElt+NumElts);
// If there is a store in the current block, scan the block to see if the
// store is before or after the load. If it is before, it may produce some of
// the elements we are looking for.
if (getBlockInfo(InstBB).HasNonLoadUse) {
for (SILBasicBlock::iterator BBI = Inst, E = InstBB->begin(); BBI != E;) {
SILInstruction *TheInst = --BBI;
// If this instruction is unrelated to the memory, ignore it.
auto It = NonLoadUses.find(TheInst);
if (It == NonLoadUses.end())
continue;
// If we found the allocation itself, then we are loading something that
// is not defined at all yet. Scan no further.
if (TheInst == TheMemory.MemoryInst) {
// The result is perfectly decided locally.
for (unsigned i = FirstElt, e = i+NumElts; i != e; ++i)
Result.set(i, NeededElements[i] ? DIKind::No : DIKind::Yes);
return Result;
}
// Check to see which tuple elements this instruction defines. Clear them
// from the set we're scanning from.
auto &TheInstUse = Uses[It->second];
NeededElements.reset(TheInstUse.FirstElement,
TheInstUse.FirstElement+TheInstUse.NumElements);
// If that satisfied all of the elements we're looking for, then we're
// done. Otherwise, keep going.
if (NeededElements.none()) {
Result.changeUnsetElementsTo(DIKind::Yes);
return Result;
}
}
}
// Compute the liveness of each element according to our predecessors.
getPredsLiveOut(InstBB, Result);
// If any of the elements was locally satisfied, make sure to mark them.
for (unsigned i = FirstElt, e = i+NumElts; i != e; ++i) {
if (!NeededElements[i] || !Result.getConditional(i)) {
// If the result element wasn't computed, we must be analyzing code within
// an unreachable cycle that is not dominated by "TheMemory". Just force
// the unset element to yes so that clients don't have to handle this.
Result.set(i, DIKind::Yes);
}
}
return Result;
}
/// The specified instruction is a use of some number of elements. Determine
/// whether all of the elements touched by the instruction are definitely
/// initialized at this point or not.
bool LifetimeChecker::isInitializedAtUse(const DIMemoryUse &Use,
bool *SuperInitDone) {
// Determine the liveness states of the elements that we care about.
AvailabilitySet Liveness =
getLivenessAtInst(Use.Inst, Use.FirstElement, Use.NumElements);
// If the client wants to know about super.init, check to see if we failed
// it or some other element.
if (SuperInitDone) {
*SuperInitDone = true;
if (Use.FirstElement+Use.NumElements == TheMemory.NumElements &&
TheMemory.isAnyDerivedClassSelf() &&
Liveness.get(Liveness.size()-1) != DIKind::Yes)
*SuperInitDone = false;
}
// Check all the results.
for (unsigned i = Use.FirstElement, e = i+Use.NumElements;
i != e; ++i)
if (Liveness.get(i) != DIKind::Yes)
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
static bool processMemoryObject(SILInstruction *I) {
DEBUG(llvm::dbgs() << "*** Definite Init looking at: " << *I << "\n");
DIMemoryObjectInfo MemInfo(I);
// Set up the datastructure used to collect the uses of the allocation.
SmallVector<DIMemoryUse, 16> Uses;
SmallVector<SILInstruction*, 4> Releases;
// Walk the use list of the pointer, collecting them into the Uses array.
collectDIElementUsesFrom(MemInfo, Uses, Releases, false);
LifetimeChecker(MemInfo, Uses, Releases).doIt();
return true;
}
/// checkDefiniteInitialization - Check that all memory objects that require
/// initialization before use are properly set and transform the code as
/// required for flow-sensitive properties.
static bool checkDefiniteInitialization(SILFunction &Fn) {
DEBUG(llvm::dbgs() << "*** Definite Init visiting function: "
<< Fn.getName() << "\n");
bool Changed = false;
for (auto &BB : Fn) {
for (auto I = BB.begin(), E = BB.end(); I != E; ++I) {
SILInstruction *Inst = I;
if (isa<MarkUninitializedInst>(Inst))
Changed |= processMemoryObject(Inst);
}
}
return Changed;
}
/// lowerRawSILOperations - There are a variety of raw-sil instructions like
/// 'assign' that are only used by this pass. Now that definite initialization
/// checking is done, remove them.
static bool lowerRawSILOperations(SILFunction &Fn) {
bool Changed = false;
for (auto &BB : Fn) {
auto I = BB.begin(), E = BB.end();
while (I != E) {
SILInstruction *Inst = I++;
// Unprocessed assigns just lower into assignments, not initializations.
if (auto *AI = dyn_cast<AssignInst>(Inst)) {
SILBuilderWithScope<4> B(AI);
LowerAssignInstruction(B, AI, IsNotInitialization);
// Assign lowering may split the block. If it did,
// reset our iteration range to the block after the insertion.
if (B.getInsertionBB() != &BB)
I = E;
Changed = true;
continue;
}
// mark_uninitialized just becomes a noop, resolving to its operand.
if (auto *MUI = dyn_cast<MarkUninitializedInst>(Inst)) {
SILValue(MUI, 0).replaceAllUsesWith(MUI->getOperand());
MUI->eraseFromParent();
Changed = true;
continue;
}
// mark_function_escape just gets zapped.
if (isa<MarkFunctionEscapeInst>(Inst)) {
Inst->eraseFromParent();
Changed = true;
continue;
}
}
}
return Changed;
}
namespace {
/// Perform definitive initialization analysis and promote alloc_box uses into
/// SSA registers for later SSA-based dataflow passes.
class DefiniteInitialization : public SILFunctionTransform {
/// The entry point to the transformation.
void run() override {
// Walk through and promote all of the alloc_box's that we can.
if (checkDefiniteInitialization(*getFunction()))
invalidateAnalysis(SILAnalysis::PreserveKind::Nothing);
DEBUG(getFunction()->verify());
// Lower raw-sil only instructions used by this pass, like "assign".
if (lowerRawSILOperations(*getFunction()))
invalidateAnalysis(SILAnalysis::PreserveKind::Nothing);
}
StringRef getName() override { return "Definite Initialization"; }
};
} // end anonymous namespace
SILTransform *swift::createDefiniteInitialization() {
return new DefiniteInitialization();
}