mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
2899 lines
94 KiB
C++
2899 lines
94 KiB
C++
//===--- SimplifyCFG.cpp - Clean up the SIL CFG ---------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-simplify-cfg"
|
|
#include "swift/SILPasses/Passes.h"
|
|
#include "swift/SIL/Dominance.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SILAnalysis/DominanceAnalysis.h"
|
|
#include "swift/SILAnalysis/SimplifyInstruction.h"
|
|
#include "swift/SILPasses/Transforms.h"
|
|
#include "swift/SILPasses/Utils/CFG.h"
|
|
#include "swift/SILPasses/Utils/Local.h"
|
|
#include "swift/SILPasses/Utils/SILInliner.h"
|
|
#include "swift/SILPasses/Utils/SILSSAUpdater.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumBlocksDeleted, "Number of unreachable blocks removed");
|
|
STATISTIC(NumBlocksMerged, "Number of blocks merged together");
|
|
STATISTIC(NumJumpThreads, "Number of jumps threaded");
|
|
STATISTIC(NumConstantFolded, "Number of terminators constant folded");
|
|
STATISTIC(NumDeadArguments, "Number of unused arguments removed");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CFG Simplification
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// dominatorBasedSimplify iterates between dominator based simplifation of
|
|
/// terminator branch condition values and cfg simplification. This is the
|
|
/// maximum number of iterations we run. The number is the maximum number of
|
|
/// iterations encountered when compiling the stdlib on April 2 2015.
|
|
///
|
|
static unsigned MaxIterationsOfDominatorBasedSimplify = 10;
|
|
|
|
namespace {
|
|
class SimplifyCFG {
|
|
SILFunction &Fn;
|
|
SILPassManager *PM;
|
|
|
|
// WorklistList is the actual list that we iterate over (for determinism).
|
|
// Slots may be null, which should be ignored.
|
|
SmallVector<SILBasicBlock*, 32> WorklistList;
|
|
// WorklistMap keeps track of which slot a BB is in, allowing efficient
|
|
// containment query, and allows efficient removal.
|
|
llvm::SmallDenseMap<SILBasicBlock*, unsigned, 32> WorklistMap;
|
|
// Keep track of loop headers - we don't want to jump-thread through them.
|
|
SmallPtrSet<SILBasicBlock *, 32> LoopHeaders;
|
|
|
|
// Dominance and post-dominance info for the current function
|
|
DominanceInfo *DT;
|
|
PostDominanceInfo *PDT;
|
|
|
|
bool ShouldVerify;
|
|
bool EnableJumpThread;
|
|
public:
|
|
SimplifyCFG(SILFunction &Fn, SILPassManager *PM, bool Verify,
|
|
bool EnableJumpThread)
|
|
: Fn(Fn), PM(PM), ShouldVerify(Verify),
|
|
EnableJumpThread(EnableJumpThread) {}
|
|
|
|
bool run();
|
|
|
|
bool simplifyBlockArgs() {
|
|
auto *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
auto *PDA = PM->getAnalysis<PostDominanceAnalysis>();
|
|
|
|
DT = DA->get(&Fn);
|
|
PDT = PDA->get(&Fn);
|
|
bool Changed = false;
|
|
for (SILBasicBlock &BB : Fn) {
|
|
Changed |= simplifyArgs(&BB);
|
|
}
|
|
DT = nullptr;
|
|
PDT = nullptr;
|
|
return Changed;
|
|
}
|
|
|
|
private:
|
|
void clearWorklist() {
|
|
WorklistMap.clear();
|
|
WorklistList.clear();
|
|
}
|
|
|
|
/// popWorklist - Return the next basic block to look at, or null if the
|
|
/// worklist is empty. This handles skipping over null entries in the
|
|
/// worklist.
|
|
SILBasicBlock *popWorklist() {
|
|
while (!WorklistList.empty())
|
|
if (auto *BB = WorklistList.pop_back_val()) {
|
|
WorklistMap.erase(BB);
|
|
return BB;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// addToWorklist - Add the specified block to the work list if it isn't
|
|
/// already present.
|
|
void addToWorklist(SILBasicBlock *BB) {
|
|
unsigned &Entry = WorklistMap[BB];
|
|
if (Entry != 0) return;
|
|
WorklistList.push_back(BB);
|
|
Entry = WorklistList.size();
|
|
}
|
|
|
|
/// removeFromWorklist - Remove the specified block from the worklist if
|
|
/// present.
|
|
void removeFromWorklist(SILBasicBlock *BB) {
|
|
assert(BB && "Cannot add null pointer to the worklist");
|
|
auto It = WorklistMap.find(BB);
|
|
if (It == WorklistMap.end()) return;
|
|
|
|
// If the BB is in the worklist, null out its entry.
|
|
if (It->second) {
|
|
assert(WorklistList[It->second-1] == BB && "Consistency error");
|
|
WorklistList[It->second-1] = nullptr;
|
|
}
|
|
|
|
// Remove it from the map as well.
|
|
WorklistMap.erase(It);
|
|
|
|
if (LoopHeaders.count(BB))
|
|
LoopHeaders.erase(BB);
|
|
}
|
|
|
|
bool simplifyBlocks();
|
|
bool canonicalizeSwitchEnums();
|
|
bool simplifyThreadedTerminators();
|
|
bool dominatorBasedSimplifications(SILFunction &Fn,
|
|
DominanceInfo *DT);
|
|
bool dominatorBasedSimplify(DominanceAnalysis *DA,
|
|
PostDominanceAnalysis *PDA);
|
|
|
|
/// \brief Remove the basic block if it has no predecessors. Returns true
|
|
/// If the block was removed.
|
|
bool removeIfDead(SILBasicBlock *BB);
|
|
|
|
bool tryJumpThreading(BranchInst *BI);
|
|
bool tailDuplicateObjCMethodCallSuccessorBlocks();
|
|
bool simplifyAfterDroppingPredecessor(SILBasicBlock *BB);
|
|
|
|
bool simplifyBranchOperands(OperandValueArrayRef Operands);
|
|
bool simplifyBranchBlock(BranchInst *BI);
|
|
bool simplifyCondBrBlock(CondBranchInst *BI);
|
|
bool simplifyCheckedCastBranchBlock(CheckedCastBranchInst *CCBI);
|
|
bool simplifyCheckedCastAddrBranchBlock(CheckedCastAddrBranchInst *CCABI);
|
|
bool simplifySwitchValueBlock(SwitchValueInst *SVI);
|
|
bool simplifyTermWithIdenticalDestBlocks(SILBasicBlock *BB);
|
|
bool simplifySwitchEnumUnreachableBlocks(SwitchEnumInst *SEI);
|
|
bool simplifySwitchEnumBlock(SwitchEnumInst *SEI);
|
|
bool simplifyUnreachableBlock(UnreachableInst *UI);
|
|
bool simplifyArgument(SILBasicBlock *BB, unsigned i);
|
|
bool simplifyArgs(SILBasicBlock *BB);
|
|
bool trySimplifyCheckedCastBr(TermInst *Term, DominanceInfo *DT);
|
|
void findLoopHeaders();
|
|
};
|
|
|
|
class RemoveUnreachable {
|
|
SILFunction &Fn;
|
|
llvm::SmallSet<SILBasicBlock *, 8> Visited;
|
|
public:
|
|
RemoveUnreachable(SILFunction &Fn) : Fn(Fn) { }
|
|
void visit(SILBasicBlock *BB);
|
|
bool run();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Return true if there are any users of V outside the specified block.
|
|
static bool isUsedOutsideOfBlock(SILValue V, SILBasicBlock *BB) {
|
|
for (auto UI : V.getUses())
|
|
if (UI->getUser()->getParent() != BB)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Helper function to perform SSA updates in case of jump threading.
|
|
void swift::updateSSAAfterCloning(BaseThreadingCloner &Cloner,
|
|
SILBasicBlock *SrcBB, SILBasicBlock *DestBB,
|
|
bool NeedToSplitCriticalEdges) {
|
|
// We are updating SSA form. This means we need to be able to insert phi
|
|
// nodes. To make sure we can do this split all critical edges from
|
|
// instructions that don't support block arguments.
|
|
if (NeedToSplitCriticalEdges)
|
|
splitAllCriticalEdges(*DestBB->getParent(), true, nullptr, nullptr);
|
|
|
|
SILSSAUpdater SSAUp;
|
|
for (auto AvailValPair : Cloner.AvailVals) {
|
|
ValueBase *Inst = AvailValPair.first;
|
|
if (Inst->use_empty())
|
|
continue;
|
|
|
|
for (unsigned i = 0, e = Inst->getNumTypes(); i != e; ++i) {
|
|
// Get the result index for the cloned instruction. This is going to be
|
|
// the result index stored in the available value for arguments (we look
|
|
// through the phi node) and the same index as the original value
|
|
// otherwise.
|
|
unsigned ResIdx = i;
|
|
if (isa<SILArgument>(Inst))
|
|
ResIdx = AvailValPair.second.getResultNumber();
|
|
|
|
SILValue Res(Inst, i);
|
|
SILValue NewRes(AvailValPair.second.getDef(), ResIdx);
|
|
|
|
SmallVector<UseWrapper, 16> UseList;
|
|
// Collect the uses of the value.
|
|
for (auto Use : Res.getUses())
|
|
UseList.push_back(UseWrapper(Use));
|
|
|
|
SSAUp.Initialize(Res.getType());
|
|
SSAUp.AddAvailableValue(DestBB, Res);
|
|
SSAUp.AddAvailableValue(SrcBB, NewRes);
|
|
|
|
if (UseList.empty())
|
|
continue;
|
|
|
|
// Update all the uses.
|
|
for (auto U : UseList) {
|
|
Operand *Use = U;
|
|
SILInstruction *User = Use->getUser();
|
|
assert(User && "Missing user");
|
|
|
|
// Ignore uses in the same basic block.
|
|
if (User->getParent() == DestBB)
|
|
continue;
|
|
|
|
SSAUp.RewriteUse(*Use);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Perform a dominator-based jump-threading for checked_cast_br [exact]
|
|
/// instructions if they use the same condition (modulo upcasts and downcasts).
|
|
/// This is very beneficial for code that:
|
|
/// - references the same object multiple times (e.g. x.f1() + x.f2())
|
|
/// - and for method invocation chaining (e.g. x.f3().f4().f5())
|
|
bool
|
|
SimplifyCFG::trySimplifyCheckedCastBr(TermInst *Term, DominanceInfo *DT) {
|
|
// Ignore unreachable blocks.
|
|
if (!DT->getNode(Term->getParent()))
|
|
return false;
|
|
|
|
SmallVector<SILBasicBlock *, 16> BBs;
|
|
auto Result = tryCheckedCastBrJumpThreading(Term, DT, BBs);
|
|
|
|
if (Result) {
|
|
for (auto BB: BBs)
|
|
addToWorklist(BB);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
static SILValue getTerminatorCondition(TermInst *Term) {
|
|
if (auto *CondBr = dyn_cast<CondBranchInst>(Term))
|
|
return CondBr->getCondition().stripExpectIntrinsic();
|
|
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term))
|
|
return SEI->getOperand();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Is this basic block jump threadable.
|
|
static bool isThreadableBlock(SILBasicBlock *BB,
|
|
SmallPtrSet<SILBasicBlock *, 32> &LoopHeaders) {
|
|
if (isa<ReturnInst>(BB->getTerminator()))
|
|
return false;
|
|
|
|
// We know how to handle cond_br and switch_enum .
|
|
if (!isa<CondBranchInst>(BB->getTerminator()) &&
|
|
!isa<SwitchEnumInst>(BB->getTerminator()))
|
|
return false;
|
|
|
|
if (LoopHeaders.count(BB))
|
|
return false;
|
|
|
|
unsigned Cost = 0;
|
|
for (auto &Inst : BB->getInstList()) {
|
|
if (!Inst.isTriviallyDuplicatable())
|
|
return false;
|
|
|
|
// Don't jumpthread function calls.
|
|
if (isa<ApplyInst>(Inst))
|
|
return false;
|
|
|
|
// Only thread 'small blocks'.
|
|
if (instructionInlineCost(Inst) != InlineCost::Free)
|
|
if (++Cost == 4)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// A description of an edge leading to a conditionally branching (or switching)
|
|
/// block and the successor block to thread to.
|
|
///
|
|
/// Src:
|
|
/// br Dest
|
|
/// \
|
|
/// \ Edge
|
|
/// v
|
|
/// Dest:
|
|
/// ...
|
|
/// switch/cond_br
|
|
/// / \
|
|
/// ... v
|
|
/// EnumCase/ThreadedSuccessorIdx
|
|
class ThreadInfo {
|
|
SILBasicBlock *Src;
|
|
SILBasicBlock *Dest;
|
|
EnumElementDecl *EnumCase;
|
|
unsigned ThreadedSuccessorIdx;
|
|
|
|
public:
|
|
ThreadInfo(SILBasicBlock *Src, SILBasicBlock *Dest,
|
|
unsigned ThreadedBlockSuccessorIdx)
|
|
: Src(Src), Dest(Dest), EnumCase(nullptr),
|
|
ThreadedSuccessorIdx(ThreadedBlockSuccessorIdx) {}
|
|
|
|
ThreadInfo(SILBasicBlock *Src, SILBasicBlock *Dest, EnumElementDecl *EnumCase)
|
|
: Src(Src), Dest(Dest), EnumCase(EnumCase), ThreadedSuccessorIdx(0) {}
|
|
|
|
ThreadInfo() = default;
|
|
|
|
void threadEdge() {
|
|
auto *SrcTerm = cast<BranchInst>(Src->getTerminator());
|
|
|
|
EdgeThreadingCloner Cloner(SrcTerm);
|
|
for (auto &I : *Dest)
|
|
Cloner.process(&I);
|
|
|
|
// We have copied the threaded block into the edge.
|
|
Src = Cloner.getEdgeBB();
|
|
|
|
if (auto *CondTerm = dyn_cast<CondBranchInst>(Src->getTerminator())) {
|
|
// We know the direction this conditional branch is going to take thread
|
|
// it.
|
|
assert(Src->getSuccessors().size() > ThreadedSuccessorIdx &&
|
|
"Threaded terminator does not have enough successors");
|
|
|
|
auto *ThreadedSuccessorBlock =
|
|
Src->getSuccessors()[ThreadedSuccessorIdx].getBB();
|
|
auto Args = ThreadedSuccessorIdx == 0 ? CondTerm->getTrueArgs()
|
|
: CondTerm->getFalseArgs();
|
|
|
|
SILBuilderWithScope<1>(CondTerm)
|
|
.createBranch(CondTerm->getLoc(), ThreadedSuccessorBlock, Args);
|
|
|
|
CondTerm->eraseFromParent();
|
|
} else {
|
|
// Get the enum element and the destination block of the block we jump
|
|
// thread.
|
|
auto *SEI = cast<SwitchEnumInst>(Src->getTerminator());
|
|
auto *ThreadedSuccessorBlock = SEI->getCaseDestination(EnumCase);
|
|
|
|
// Instantiate the payload if necessary.
|
|
SILBuilderWithScope<1> Builder(SEI);
|
|
if (!ThreadedSuccessorBlock->bbarg_empty()) {
|
|
auto EnumVal = SEI->getOperand();
|
|
auto EnumTy = EnumVal->getType(0);
|
|
auto Loc = SEI->getLoc();
|
|
auto Ty = EnumTy.getEnumElementType(EnumCase, SEI->getModule());
|
|
SILValue UED(
|
|
Builder.createUncheckedEnumData(Loc, EnumVal, EnumCase, Ty));
|
|
assert(UED.getType() ==
|
|
(*ThreadedSuccessorBlock->bbarg_begin())->getType() &&
|
|
"Argument types must match");
|
|
Builder.createBranch(SEI->getLoc(), ThreadedSuccessorBlock, {UED});
|
|
} else
|
|
Builder.createBranch(SEI->getLoc(), ThreadedSuccessorBlock, {});
|
|
SEI->eraseFromParent();
|
|
|
|
// Split the edge from 'Dest' to 'ThreadedSuccessorBlock' it is now
|
|
// critical. Doing this here safes us from doing it over the whole
|
|
// function in updateSSAAfterCloning because we have split all other
|
|
// critical edges earlier.
|
|
splitEdgesFromTo(Dest, ThreadedSuccessorBlock, nullptr, nullptr);
|
|
}
|
|
updateSSAAfterCloning(Cloner, Src, Dest, false);
|
|
}
|
|
};
|
|
|
|
/// Give a cond_br or switch_enum instruction and one successor block return
|
|
/// true if we can infer the value of the condition/enum along the edge to this
|
|
/// successor blocks.
|
|
static bool isKnownEdgeValue(TermInst *Term, SILBasicBlock *SuccBB,
|
|
EnumElementDecl *&EnumCase) {
|
|
assert((isa<CondBranchInst>(Term) || isa<SwitchEnumInst>(Term)) &&
|
|
"Expect a cond_br or switch_enum");
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term)) {
|
|
if (auto Case = SEI->getUniqueCaseForDestination(SuccBB)) {
|
|
EnumCase = Case.get();
|
|
return SuccBB->getSinglePredecessor() != nullptr;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return SuccBB->getSinglePredecessor() != nullptr;
|
|
}
|
|
|
|
/// Create a enum element by extracting the operand of a switch_enum.
|
|
static SILInstruction *createEnumElement(SILBuilder &Builder,
|
|
SwitchEnumInst *SEI,
|
|
EnumElementDecl *EnumElement) {
|
|
auto EnumVal = SEI->getOperand();
|
|
// Do we have a payload.
|
|
auto EnumTy = EnumVal->getType(0);
|
|
if (EnumElement->hasArgumentType()) {
|
|
auto Ty = EnumTy.getEnumElementType(EnumElement, SEI->getModule());
|
|
SILValue UED(Builder.createUncheckedEnumData(SEI->getLoc(), EnumVal,
|
|
EnumElement, Ty));
|
|
return Builder.createEnum(SEI->getLoc(), UED, EnumElement, EnumTy);
|
|
}
|
|
return Builder.createEnum(SEI->getLoc(), SILValue(), EnumElement, EnumTy);
|
|
}
|
|
|
|
/// Create a value for the condition of the terminator that flows along the edge
|
|
/// with 'EdgeIdx'. Insert it before the 'UserInst'.
|
|
static SILInstruction *createValueForEdge(SILInstruction *UserInst,
|
|
SILInstruction *DominatingTerminator,
|
|
unsigned EdgeIdx) {
|
|
SILBuilderWithScope<1> Builder(UserInst);
|
|
|
|
if (auto *CBI = dyn_cast<CondBranchInst>(DominatingTerminator))
|
|
return Builder.createIntegerLiteral(
|
|
CBI->getLoc(), CBI->getCondition().getType(), EdgeIdx == 0 ? -1 : 0);
|
|
|
|
auto *SEI = cast<SwitchEnumInst>(DominatingTerminator);
|
|
auto *DstBlock = SEI->getSuccessors()[EdgeIdx].getBB();
|
|
auto Case = SEI->getUniqueCaseForDestination(DstBlock);
|
|
assert(Case && "No unique case found for destination block");
|
|
return createEnumElement(Builder, SEI, Case.get());
|
|
}
|
|
|
|
/// Peform dominator based value simplifications and jump threading on all users
|
|
/// of the operand of 'DominatingBB's terminator.
|
|
static bool tryDominatorBasedSimplifications(
|
|
SILBasicBlock *DominatingBB, DominanceInfo *DT,
|
|
SmallPtrSet<SILBasicBlock *, 32> &LoopHeaders,
|
|
SmallVectorImpl<ThreadInfo> &JumpThreadableEdges,
|
|
llvm::DenseSet<std::pair<SILBasicBlock *, SILBasicBlock *>>
|
|
&ThreadedEdgeSet,
|
|
bool TryJumpThreading,
|
|
llvm::DenseMap<SILBasicBlock *, bool> &CachedThreadable) {
|
|
auto *DominatingTerminator = DominatingBB->getTerminator();
|
|
|
|
// We handle value propagation from cond_br and switch_enum terminators.
|
|
bool IsEnumValue = isa<SwitchEnumInst>(DominatingTerminator);
|
|
if (!isa<CondBranchInst>(DominatingTerminator) && !IsEnumValue)
|
|
return false;
|
|
|
|
auto DominatingCondition = getTerminatorCondition(DominatingTerminator);
|
|
if (!DominatingCondition)
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
|
|
// We will look at all the outgoing edges from the conditional branch to see
|
|
// whether any other uses of the condition or uses of the condition along an
|
|
// edge are dominated by said outgoing edges. The outgoing edge carries the
|
|
// value on which we switch/cond_branch.
|
|
auto Succs = DominatingBB->getSuccessors();
|
|
for (unsigned Idx = 0; Idx < Succs.size(); ++Idx) {
|
|
auto *DominatingSuccBB = Succs[Idx].getBB();
|
|
|
|
EnumElementDecl *EnumCase = nullptr;
|
|
if (!isKnownEdgeValue(DominatingTerminator, DominatingSuccBB, EnumCase))
|
|
continue;
|
|
|
|
// Look for other uses of DominatingCondition that are either:
|
|
// * dominated by the DominatingSuccBB
|
|
//
|
|
// cond_br %dominating_cond / switch_enum
|
|
// /
|
|
// /
|
|
// /
|
|
// DominatingSuccBB:
|
|
// ...
|
|
// use %dominating_cond
|
|
//
|
|
// * are a conditional branch that has an incoming edge that is
|
|
// dominated by DominatingSuccBB.
|
|
//
|
|
// cond_br %dominating_cond
|
|
// /
|
|
// /
|
|
// /
|
|
//
|
|
// DominatingSuccBB:
|
|
// ...
|
|
// br DestBB
|
|
//
|
|
// \
|
|
// \ E -> %dominating_cond = true
|
|
// \
|
|
// v
|
|
// DestBB
|
|
// cond_br %dominating_cond
|
|
SmallVector<SILInstruction *, 16> UsersToReplace;
|
|
for (auto *Op : ignore_expect_uses(DominatingCondition.getDef())) {
|
|
auto *CondUserInst = Op->getUser();
|
|
|
|
// Ignore the DominatingTerminator itself.
|
|
if (CondUserInst->getParent() == DominatingBB)
|
|
continue;
|
|
|
|
// For enum values we are only interested in switch_enum and select_enum
|
|
// users.
|
|
if (IsEnumValue && !isa<SwitchEnumInst>(CondUserInst) &&
|
|
!isa<SelectEnumInst>(CondUserInst))
|
|
continue;
|
|
|
|
// If the use is dominated we can replace this use by the value
|
|
// flowing to DominatingSuccBB.
|
|
if (DT->dominates(DominatingSuccBB, CondUserInst->getParent())) {
|
|
UsersToReplace.push_back(CondUserInst);
|
|
continue;
|
|
}
|
|
|
|
// Jump threading is expensive so we don't always do it.
|
|
if (!TryJumpThreading)
|
|
continue;
|
|
|
|
auto *DestBB = CondUserInst->getParent();
|
|
|
|
// Check whether we have seen this destination block already.
|
|
auto CacheEntryIt = CachedThreadable.find(DestBB);
|
|
bool IsThreadable = CacheEntryIt != CachedThreadable.end()
|
|
? CacheEntryIt->second
|
|
: (CachedThreadable[DestBB] =
|
|
isThreadableBlock(DestBB, LoopHeaders));
|
|
|
|
// If the use is a conditional branch/switch then look for an incoming
|
|
// edge that is dominated by DominatingSuccBB.
|
|
if (IsThreadable) {
|
|
auto Preds = DestBB->getPreds();
|
|
|
|
for (SILBasicBlock *PredBB : Preds) {
|
|
if (!isa<BranchInst>(PredBB->getTerminator()))
|
|
continue;
|
|
if (!DT->dominates(DominatingSuccBB, PredBB))
|
|
continue;
|
|
|
|
// Don't jumpthread the same edge twice.
|
|
if (!ThreadedEdgeSet.insert(std::make_pair(PredBB, DestBB)).second)
|
|
continue;
|
|
|
|
if (isa<CondBranchInst>(DestBB->getTerminator()))
|
|
JumpThreadableEdges.push_back(ThreadInfo(PredBB, DestBB, Idx));
|
|
else
|
|
JumpThreadableEdges.push_back(ThreadInfo(PredBB, DestBB, EnumCase));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replace dominated user instructions.
|
|
for (auto *UserInst : UsersToReplace) {
|
|
SILInstruction *EdgeValue = nullptr;
|
|
for (auto &Op : UserInst->getAllOperands()) {
|
|
if (Op.get().stripExpectIntrinsic() == DominatingCondition) {
|
|
if (!EdgeValue)
|
|
EdgeValue = createValueForEdge(UserInst, DominatingTerminator, Idx);
|
|
Op.set(EdgeValue);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// Propagate values of branched upon values along the outgoing edges down the
|
|
/// dominator tree.
|
|
bool SimplifyCFG::dominatorBasedSimplifications(SILFunction &Fn,
|
|
DominanceInfo *DT) {
|
|
bool Changed = false;
|
|
// Collect jump threadable edges and propagate outgoing edge values of
|
|
// conditional branches/switches.
|
|
SmallVector<ThreadInfo, 8> JumpThreadableEdges;
|
|
llvm::DenseMap<SILBasicBlock *, bool> CachedThreadable;
|
|
llvm::DenseSet<std::pair<SILBasicBlock *, SILBasicBlock *>> ThreadedEdgeSet;
|
|
for (auto &BB : Fn)
|
|
if (DT->getNode(&BB)) // Only handle reachable blocks.
|
|
Changed |= tryDominatorBasedSimplifications(
|
|
&BB, DT, LoopHeaders, JumpThreadableEdges, ThreadedEdgeSet,
|
|
EnableJumpThread, CachedThreadable);
|
|
|
|
// Nothing to jump thread?
|
|
if (JumpThreadableEdges.empty())
|
|
return Changed;
|
|
|
|
for (auto &ThreadInfo : JumpThreadableEdges) {
|
|
ThreadInfo.threadEdge();
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Simplify terminators that could have been simplified by threading.
|
|
bool SimplifyCFG::simplifyThreadedTerminators() {
|
|
bool HaveChangedCFG = false;
|
|
for (auto &BB : Fn) {
|
|
auto *Term = BB.getTerminator();
|
|
// Simplify a switch_enum.
|
|
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term)) {
|
|
if (auto *EI = dyn_cast<EnumInst>(SEI->getOperand())) {
|
|
auto *LiveBlock = SEI->getCaseDestination(EI->getElement());
|
|
if (EI->hasOperand() && !LiveBlock->bbarg_empty())
|
|
SILBuilderWithScope<1>(SEI)
|
|
.createBranch(SEI->getLoc(), LiveBlock, EI->getOperand());
|
|
else
|
|
SILBuilderWithScope<1>(SEI).createBranch(SEI->getLoc(), LiveBlock);
|
|
SEI->eraseFromParent();
|
|
if (EI->use_empty())
|
|
EI->eraseFromParent();
|
|
HaveChangedCFG = true;
|
|
}
|
|
continue;
|
|
} else if (auto *CondBr = dyn_cast<CondBranchInst>(Term)) {
|
|
// If the condition is an integer literal, we can constant fold the
|
|
// branch.
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(CondBr->getCondition())) {
|
|
SILBasicBlock *TrueSide = CondBr->getTrueBB();
|
|
SILBasicBlock *FalseSide = CondBr->getFalseBB();
|
|
auto TrueArgs = CondBr->getTrueArgs();
|
|
auto FalseArgs = CondBr->getFalseArgs();
|
|
bool isFalse = !IL->getValue();
|
|
auto LiveArgs = isFalse ? FalseArgs : TrueArgs;
|
|
auto *LiveBlock = isFalse ? FalseSide : TrueSide;
|
|
SILBuilderWithScope<1>(CondBr)
|
|
.createBranch(CondBr->getLoc(), LiveBlock, LiveArgs);
|
|
CondBr->eraseFromParent();
|
|
if (IL->use_empty())
|
|
IL->eraseFromParent();
|
|
HaveChangedCFG = true;
|
|
}
|
|
}
|
|
}
|
|
return HaveChangedCFG;
|
|
}
|
|
|
|
// Simplifications that walk the dominator tree to prove redundancy in
|
|
// conditional branching.
|
|
bool SimplifyCFG::dominatorBasedSimplify(DominanceAnalysis *DA,
|
|
PostDominanceAnalysis *PDA) {
|
|
// Get the dominator tree.
|
|
DT = DA->get(&Fn);
|
|
|
|
// Split all critical edges such that we can move code onto edges. This is
|
|
// also required for SSA construction in dominatorBasedSimplifications' jump
|
|
// threading. It only splits new critical edges it creates by jump threading.
|
|
bool Changed =
|
|
EnableJumpThread ? splitAllCriticalEdges(Fn, false, DT, nullptr) : false;
|
|
|
|
unsigned MaxIter = MaxIterationsOfDominatorBasedSimplify;
|
|
|
|
bool HasChangedInCurrentIter;
|
|
do {
|
|
HasChangedInCurrentIter = false;
|
|
|
|
// Do dominator based simplification of terminator condition. This does not
|
|
// and MUST NOT change the CFG without updating the dominator tree to
|
|
// reflect such change.
|
|
for (auto &BB : Fn) {
|
|
// Any method called from this loop should update
|
|
// the DT if it changes anything related to dominators.
|
|
TermInst *Term = BB.getTerminator();
|
|
switch (Term->getKind()) {
|
|
case ValueKind::SwitchValueInst:
|
|
// TODO: handle switch_value
|
|
break;
|
|
case ValueKind::CheckedCastBranchInst:
|
|
if (trySimplifyCheckedCastBr(BB.getTerminator(), DT)) {
|
|
HasChangedInCurrentIter = true;
|
|
// FIXME: trySimplifyCheckedCastBr function should preserve the
|
|
// dominator tree but its code to do so is buggy.
|
|
DT->recalculate(Fn);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ShouldVerify)
|
|
DT->verify();
|
|
|
|
// Simplify the block argument list. This is extremely subtle: simplifyArgs
|
|
// will not change the CFG iff the PDT is null. Really we should move that
|
|
// one optimization out of simplifyArgs ... I am squinting at you
|
|
// simplifySwitchEnumToSelectEnum.
|
|
// simplifyArgs does use the dominator tree, though.
|
|
PDT = nullptr;
|
|
for (auto &BB : Fn)
|
|
HasChangedInCurrentIter |= simplifyArgs(&BB);
|
|
|
|
if (ShouldVerify)
|
|
DT->verify();
|
|
|
|
// Jump thread.
|
|
if (dominatorBasedSimplifications(Fn, DT)) {
|
|
DominanceInfo *InvalidDT = DT;
|
|
DT = nullptr;
|
|
HasChangedInCurrentIter = true;
|
|
// Simplify terminators.
|
|
simplifyThreadedTerminators();
|
|
DT = InvalidDT;
|
|
DT->recalculate(Fn);
|
|
}
|
|
|
|
Changed |= HasChangedInCurrentIter;
|
|
} while (HasChangedInCurrentIter && --MaxIter);
|
|
|
|
// Do the simplification that requires both the dom and postdom tree.
|
|
PDT = PDA->get(&Fn);
|
|
for (auto &BB : Fn)
|
|
Changed |= simplifyArgs(&BB);
|
|
|
|
if (ShouldVerify)
|
|
DT->verify();
|
|
|
|
// The functions we used to simplify the CFG put things in the worklist. Clear
|
|
// it here.
|
|
clearWorklist();
|
|
return Changed;
|
|
}
|
|
|
|
// If BB is trivially unreachable, remove it from the worklist, add its
|
|
// successors to the worklist, and then remove the block.
|
|
bool SimplifyCFG::removeIfDead(SILBasicBlock *BB) {
|
|
if (!BB->pred_empty() || BB == &*Fn.begin())
|
|
return false;
|
|
|
|
removeFromWorklist(BB);
|
|
|
|
// Add successor blocks to the worklist since their predecessor list is about
|
|
// to change.
|
|
for (auto &S : BB->getSuccessors())
|
|
addToWorklist(S);
|
|
|
|
removeDeadBlock(BB);
|
|
++NumBlocksDeleted;
|
|
return true;
|
|
}
|
|
|
|
/// This is called when a predecessor of a block is dropped, to simplify the
|
|
/// block and add it to the worklist.
|
|
bool SimplifyCFG::simplifyAfterDroppingPredecessor(SILBasicBlock *BB) {
|
|
// TODO: If BB has only one predecessor and has bb args, fold them away, then
|
|
// use instsimplify on all the users of those values - even ones outside that
|
|
// block.
|
|
|
|
|
|
// Make sure that DestBB is in the worklist, as well as its remaining
|
|
// predecessors, since they may not be able to be simplified.
|
|
addToWorklist(BB);
|
|
for (auto *P : BB->getPreds())
|
|
addToWorklist(P);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// couldSimplifyUsers - Check to see if any simplifications are possible if
|
|
/// "Val" is substituted for BBArg. If so, return true, if nothing obvious
|
|
/// is possible, return false.
|
|
static bool couldSimplifyUsers(SILArgument *BBArg, SILValue Val) {
|
|
// If the value being substituted is an enum, check to see if there are any
|
|
// switches on it.
|
|
auto *EI = dyn_cast<EnumInst>(Val);
|
|
if (!EI)
|
|
return false;
|
|
|
|
for (auto UI : BBArg->getUses()) {
|
|
auto *User = UI->getUser();
|
|
// We only know we can simplify if the switch_enum user is in the block we
|
|
// are trying to jump thread.
|
|
// The value must not be define in the same basic block as the switch enum
|
|
// user. If this is the case we have a single block switch_enum loop.
|
|
if (isa<SwitchEnumInst>(User) || isa<SelectEnumInst>(User))
|
|
if (BBArg->getParent() == User->getParent() &&
|
|
EI->getParent() != BBArg->getParent())
|
|
return true;
|
|
|
|
// Also allow enum of enum, which usually can be combined to a single
|
|
// instruction. This helps to simplify the creation of an enum from an
|
|
// integer raw value.
|
|
if (isa<EnumInst>(User))
|
|
if (BBArg->getParent() == User->getParent() &&
|
|
EI->getParent() != BBArg->getParent())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void SimplifyCFG::findLoopHeaders() {
|
|
/// Find back edges in the CFG. This performs a dfs search and identifies
|
|
/// back edges as edges going to an ancestor in the dfs search. If a basic
|
|
/// block is the target of such a back edge we will identify it as a header.
|
|
LoopHeaders.clear();
|
|
|
|
SmallPtrSet<SILBasicBlock *, 16> Visited;
|
|
SmallPtrSet<SILBasicBlock *, 16> InDFSStack;
|
|
SmallVector<std::pair<SILBasicBlock *, SILBasicBlock::succ_iterator>, 16>
|
|
DFSStack;
|
|
|
|
auto EntryBB = &Fn.front();
|
|
DFSStack.push_back(std::make_pair(EntryBB, EntryBB->succ_begin()));
|
|
Visited.insert(EntryBB);
|
|
InDFSStack.insert(EntryBB);
|
|
|
|
while (!DFSStack.empty()) {
|
|
auto &D = DFSStack.back();
|
|
// No successors.
|
|
if (D.second == D.first->succ_end()) {
|
|
// Retreat the dfs search.
|
|
DFSStack.pop_back();
|
|
InDFSStack.erase(D.first);
|
|
} else {
|
|
// Visit the next successor.
|
|
SILBasicBlock *NextSucc = *(D.second);
|
|
++D.second;
|
|
if (Visited.insert(NextSucc).second) {
|
|
InDFSStack.insert(NextSucc);
|
|
DFSStack.push_back(std::make_pair(NextSucc, NextSucc->succ_begin()));
|
|
} else if (InDFSStack.count(NextSucc)) {
|
|
// We have already visited this node and it is in our dfs search. This
|
|
// is a back-edge.
|
|
LoopHeaders.insert(NextSucc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// tryJumpThreading - Check to see if it looks profitable to duplicate the
|
|
/// destination of an unconditional jump into the bottom of this block.
|
|
bool SimplifyCFG::tryJumpThreading(BranchInst *BI) {
|
|
auto *DestBB = BI->getDestBB();
|
|
auto *SrcBB = BI->getParent();
|
|
// If the destination block ends with a return, we don't want to duplicate it.
|
|
// We want to maintain the canonical form of a single return where possible.
|
|
if (isa<ReturnInst>(DestBB->getTerminator()))
|
|
return false;
|
|
|
|
// We need to update SSA if a value duplicated is used outside of the
|
|
// duplicated block.
|
|
bool NeedToUpdateSSA = false;
|
|
|
|
// Are the arguments to this block used outside of the block.
|
|
for (auto Arg : DestBB->getBBArgs())
|
|
if ((NeedToUpdateSSA |= isUsedOutsideOfBlock(Arg, DestBB))) {
|
|
break;
|
|
}
|
|
|
|
// We don't have a great cost model at the SIL level, so we don't want to
|
|
// blissly duplicate tons of code with a goal of improved performance (we'll
|
|
// leave that to LLVM). However, doing limited code duplication can lead to
|
|
// major second order simplifications. Here we only do it if there are
|
|
// "constant" arguments to the branch or if we know how to fold something
|
|
// given the duplication.
|
|
bool WantToThread = false;
|
|
|
|
if (isa<CondBranchInst>(DestBB->getTerminator()))
|
|
for (auto V : BI->getArgs()) {
|
|
if (isa<IntegerLiteralInst>(V) || isa<FloatLiteralInst>(V)) {
|
|
WantToThread = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!WantToThread) {
|
|
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i)
|
|
if (couldSimplifyUsers(DestBB->getBBArg(i), BI->getArg(i))) {
|
|
WantToThread = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we don't have anything that we can simplify, don't do it.
|
|
if (!WantToThread) return false;
|
|
|
|
// If it looks potentially interesting, decide whether we *can* do the
|
|
// operation and whether the block is small enough to be worth duplicating.
|
|
unsigned Cost = 0;
|
|
|
|
for (auto &Inst : DestBB->getInstList()) {
|
|
if (!Inst.isTriviallyDuplicatable())
|
|
return false;
|
|
|
|
// Don't jumpthread function calls.
|
|
if (isa<ApplyInst>(Inst))
|
|
return false;
|
|
|
|
// This is a really trivial cost model, which is only intended as a starting
|
|
// point.
|
|
if (instructionInlineCost(Inst) != InlineCost::Free)
|
|
if (++Cost == 4) return false;
|
|
|
|
// We need to update ssa if a value is used outside the duplicated block.
|
|
if (!NeedToUpdateSSA)
|
|
NeedToUpdateSSA |= isUsedOutsideOfBlock(&Inst, DestBB);
|
|
}
|
|
|
|
// Don't jump thread through a potential header - this can produce irreducible
|
|
// control flow.
|
|
if (!isa<SwitchEnumInst>(DestBB->getTerminator()) &&
|
|
LoopHeaders.count(DestBB))
|
|
return false;
|
|
|
|
// Okay, it looks like we want to do this and we can. Duplicate the
|
|
// destination block into this one, rewriting uses of the BBArgs to use the
|
|
// branch arguments as we go.
|
|
EdgeThreadingCloner Cloner(BI);
|
|
|
|
for (auto &I : *DestBB)
|
|
Cloner.process(&I);
|
|
|
|
// Once all the instructions are copied, we can nuke BI itself. We also add
|
|
// the threaded and edge block to the worklist now that they (likely) can be
|
|
// simplified.
|
|
addToWorklist(SrcBB);
|
|
addToWorklist(Cloner.getEdgeBB());
|
|
|
|
if (NeedToUpdateSSA)
|
|
updateSSAAfterCloning(Cloner, Cloner.getEdgeBB(), DestBB);
|
|
|
|
// We may be able to simplify DestBB now that it has one fewer predecessor.
|
|
simplifyAfterDroppingPredecessor(DestBB);
|
|
|
|
++NumJumpThreads;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// simplifyBranchOperands - Simplify operands of branches, since it can
|
|
/// result in exposing opportunities for CFG simplification.
|
|
bool SimplifyCFG::simplifyBranchOperands(OperandValueArrayRef Operands) {
|
|
bool Simplified = false;
|
|
for (auto O = Operands.begin(), E = Operands.end(); O != E; ++O)
|
|
if (auto *I = dyn_cast<SILInstruction>(*O))
|
|
if (SILValue Result = simplifyInstruction(I)) {
|
|
SILValue(I, 0).replaceAllUsesWith(Result.getDef());
|
|
if (isInstructionTriviallyDead(I)) {
|
|
I->eraseFromParent();
|
|
Simplified = true;
|
|
}
|
|
}
|
|
return Simplified;
|
|
}
|
|
|
|
/// \return If this basic blocks has a single br instruction passing all of the
|
|
/// arguments in the original order, then returns the destination of that br.
|
|
static SILBasicBlock *getTrampolineDest(SILBasicBlock *SBB) {
|
|
// Ignore blocks with more than one instruction.
|
|
if (SBB->getTerminator() != SBB->begin())
|
|
return nullptr;
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(SBB->getTerminator());
|
|
if (!BI)
|
|
return nullptr;
|
|
|
|
// Disallow infinite loops.
|
|
if (BI->getDestBB() == SBB)
|
|
return nullptr;
|
|
|
|
auto BrArgs = BI->getArgs();
|
|
if (BrArgs.size() != SBB->getNumBBArg())
|
|
return nullptr;
|
|
|
|
// Check that the arguments are the same and in the right order.
|
|
for (int i = 0, e = SBB->getNumBBArg(); i < e; ++i) {
|
|
SILArgument *BBArg = SBB->getBBArg(i);
|
|
if (BrArgs[i] != BBArg)
|
|
return nullptr;
|
|
|
|
// The arguments may not be used in another block, because when the
|
|
// predecessor of SBB directly jumps to the successor, the SBB block does
|
|
// not dominate the other use anymore.
|
|
if (!BBArg->hasOneUse())
|
|
return nullptr;
|
|
}
|
|
|
|
return BI->getDestBB();
|
|
}
|
|
|
|
/// \return If this is a basic block without any arguments and it has
|
|
/// a single br instruction, return this br.
|
|
static BranchInst *getTrampolineWithoutBBArgsTerminator(SILBasicBlock *SBB) {
|
|
if (!SBB->bbarg_empty())
|
|
return nullptr;
|
|
|
|
// Ignore blocks with more than one instruction.
|
|
if (SBB->getTerminator() != SBB->begin())
|
|
return nullptr;
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(SBB->getTerminator());
|
|
if (!BI)
|
|
return nullptr;
|
|
|
|
// Disallow infinite loops.
|
|
if (BI->getDestBB() == SBB)
|
|
return nullptr;
|
|
|
|
return BI;
|
|
}
|
|
|
|
/// simplifyBranchBlock - Simplify a basic block that ends with an unconditional
|
|
/// branch.
|
|
bool SimplifyCFG::simplifyBranchBlock(BranchInst *BI) {
|
|
// First simplify instructions generating branch operands since that
|
|
// can expose CFG simplifications.
|
|
bool Simplified = simplifyBranchOperands(BI->getArgs());
|
|
|
|
auto *BB = BI->getParent(), *DestBB = BI->getDestBB();
|
|
|
|
// If this block branches to a block with a single predecessor, then
|
|
// merge the DestBB into this BB.
|
|
if (BB != DestBB && DestBB->getSinglePredecessor()) {
|
|
// If there are any BB arguments in the destination, replace them with the
|
|
// branch operands, since they must dominate the dest block.
|
|
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i)
|
|
SILValue(DestBB->getBBArg(i)).replaceAllUsesWith(BI->getArg(i));
|
|
|
|
// Zap BI and move all of the instructions from DestBB into this one.
|
|
BI->eraseFromParent();
|
|
BB->getInstList().splice(BB->end(), DestBB->getInstList(),
|
|
DestBB->begin(), DestBB->end());
|
|
|
|
// Revisit this block now that we've changed it and remove the DestBB.
|
|
addToWorklist(BB);
|
|
|
|
// This can also expose opportunities in the successors of
|
|
// the merged block.
|
|
for (auto &Succ : BB->getSuccessors())
|
|
addToWorklist(Succ);
|
|
|
|
if (LoopHeaders.count(DestBB))
|
|
LoopHeaders.insert(BB);
|
|
|
|
removeFromWorklist(DestBB);
|
|
DestBB->eraseFromParent();
|
|
++NumBlocksMerged;
|
|
return true;
|
|
}
|
|
|
|
// If the destination block is a simple trampoline (jump to another block)
|
|
// then jump directly.
|
|
if (SILBasicBlock *TrampolineDest = getTrampolineDest(DestBB)) {
|
|
SILBuilderWithScope<1>(BI).createBranch(BI->getLoc(), TrampolineDest,
|
|
BI->getArgs());
|
|
// Eliminating the trampoline can expose opportuntities to improve the
|
|
// new block we branch to.
|
|
if (LoopHeaders.count(DestBB))
|
|
LoopHeaders.insert(BB);
|
|
|
|
addToWorklist(TrampolineDest);
|
|
BI->eraseFromParent();
|
|
removeIfDead(DestBB);
|
|
addToWorklist(BB);
|
|
return true;
|
|
}
|
|
|
|
// If this unconditional branch has BBArgs, check to see if duplicating the
|
|
// destination would allow it to be simplified. This is a simple form of jump
|
|
// threading.
|
|
if (!BI->getArgs().empty() &&
|
|
tryJumpThreading(BI))
|
|
return true;
|
|
|
|
return Simplified;
|
|
}
|
|
|
|
/// \brief Check if replacing an existing edge of the terminator by another
|
|
/// one which has a DestBB as its destination would create a critical edge.
|
|
static bool wouldIntroduceCriticalEdge(TermInst *T, SILBasicBlock *DestBB) {
|
|
auto SrcSuccs = T->getSuccessors();
|
|
if (SrcSuccs.size() <= 1)
|
|
return false;
|
|
|
|
assert(!DestBB->pred_empty() && "There should be a predecessor");
|
|
if (DestBB->getSinglePredecessor())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Returns the first cond_fail if it is the first side-effect
|
|
/// instruction in this block.
|
|
static CondFailInst *getFistCondFail(SILBasicBlock *BB) {
|
|
auto It = BB->begin();
|
|
CondFailInst *CondFail = nullptr;
|
|
// Skip instructions that don't have side-effects.
|
|
while (It != BB->end() && !(CondFail = dyn_cast<CondFailInst>(It))) {
|
|
if (It->mayHaveSideEffects())
|
|
return nullptr;
|
|
++It;
|
|
}
|
|
return CondFail;
|
|
}
|
|
|
|
/// \brief Is the first side-effect instruction in this block a cond_fail that
|
|
/// is guarantueed to fail.
|
|
static bool isCondFailBlock(SILBasicBlock *BB,
|
|
CondFailInst *&OrigCondFailInst) {
|
|
CondFailInst *CondFail = getFistCondFail(BB);
|
|
if (!CondFail)
|
|
return false;
|
|
auto *IL = dyn_cast<IntegerLiteralInst>(CondFail->getOperand());
|
|
if (!IL)
|
|
return false;
|
|
OrigCondFailInst = CondFail;
|
|
return IL->getValue() != 0;
|
|
}
|
|
|
|
/// \brief Creates a new cond_fail instruction, optionally with an xor inverted
|
|
/// condition.
|
|
static void createCondFail(CondFailInst *Orig, SILValue Cond, bool inverted,
|
|
SILBuilder &Builder) {
|
|
if (inverted) {
|
|
auto *True = Builder.createIntegerLiteral(Orig->getLoc(), Cond.getType(), 1);
|
|
Cond = Builder.createBuiltinBinaryFunction(Orig->getLoc(), "xor",
|
|
Cond.getType(), Cond.getType(),
|
|
{Cond, True});
|
|
}
|
|
Builder.createCondFail(Orig->getLoc(), Cond);
|
|
}
|
|
|
|
/// Inverts the expected value of 'PotentialExpect' (if it is an expect
|
|
/// intrinsic) and returns this expected value apply to 'V'.
|
|
static SILValue invertExpectAndApplyTo(SILBuilder &Builder,
|
|
SILValue PotentialExpect, SILValue V) {
|
|
auto *BI = dyn_cast<BuiltinInst>(PotentialExpect);
|
|
if (!BI)
|
|
return V;
|
|
if (BI->getIntrinsicInfo().ID != llvm::Intrinsic::expect)
|
|
return V;
|
|
auto Args = BI->getArguments();
|
|
IntegerLiteralInst *IL = dyn_cast<IntegerLiteralInst>(Args[1]);
|
|
if (!IL)
|
|
return V;
|
|
SILValue NegatedExpectedValue = Builder.createIntegerLiteral(
|
|
IL->getLoc(), Args[1].getType(), IL->getValue() == 0 ? -1 : 0);
|
|
return Builder.createBuiltin(BI->getLoc(), BI->getName(), BI->getType(), {},
|
|
{V, NegatedExpectedValue});
|
|
}
|
|
|
|
/// simplifyCondBrBlock - Simplify a basic block that ends with a conditional
|
|
/// branch.
|
|
bool SimplifyCFG::simplifyCondBrBlock(CondBranchInst *BI) {
|
|
// First simplify instructions generating branch operands since that
|
|
// can expose CFG simplifications.
|
|
simplifyBranchOperands(OperandValueArrayRef(BI->getAllOperands()));
|
|
auto *ThisBB = BI->getParent();
|
|
SILBasicBlock *TrueSide = BI->getTrueBB();
|
|
SILBasicBlock *FalseSide = BI->getFalseBB();
|
|
auto TrueArgs = BI->getTrueArgs();
|
|
auto FalseArgs = BI->getFalseArgs();
|
|
|
|
// If the condition is an integer literal, we can constant fold the branch.
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(BI->getCondition())) {
|
|
bool isFalse = !IL->getValue();
|
|
auto LiveArgs = isFalse ? FalseArgs : TrueArgs;
|
|
auto *LiveBlock = isFalse ? FalseSide : TrueSide;
|
|
auto *DeadBlock = !isFalse ? FalseSide : TrueSide;
|
|
auto *ThisBB = BI->getParent();
|
|
|
|
SILBuilderWithScope<1>(BI).createBranch(BI->getLoc(), LiveBlock, LiveArgs);
|
|
BI->eraseFromParent();
|
|
if (IL->use_empty()) IL->eraseFromParent();
|
|
|
|
addToWorklist(ThisBB);
|
|
simplifyAfterDroppingPredecessor(DeadBlock);
|
|
addToWorklist(LiveBlock);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
|
|
// Canonicalize "cond_br (not %cond), BB1, BB2" to "cond_br %cond, BB2, BB1".
|
|
// This looks through expect intrinsic calls and applies the ultimate expect
|
|
// call inverted to the condition.
|
|
if (auto *Xor =
|
|
dyn_cast<BuiltinInst>(BI->getCondition().stripExpectIntrinsic())) {
|
|
if (Xor->getBuiltinInfo().ID == BuiltinValueKind::Xor) {
|
|
// Check if it's a boolean invertion of the condition.
|
|
OperandValueArrayRef Args = Xor->getArguments();
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[1])) {
|
|
if (IL->getValue().isAllOnesValue()) {
|
|
auto Cond = Args[0];
|
|
SILBuilderWithScope<2> Builder(BI);
|
|
Builder.createCondBranch(
|
|
BI->getLoc(),
|
|
invertExpectAndApplyTo(Builder, BI->getCondition(), Cond),
|
|
FalseSide, FalseArgs, TrueSide, TrueArgs);
|
|
BI->eraseFromParent();
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the destination block is a simple trampoline (jump to another block)
|
|
// then jump directly.
|
|
SILBasicBlock *TrueTrampolineDest = getTrampolineDest(TrueSide);
|
|
if (TrueTrampolineDest && TrueTrampolineDest != FalseSide) {
|
|
SILBuilderWithScope<1>(BI)
|
|
.createCondBranch(BI->getLoc(), BI->getCondition(),
|
|
TrueTrampolineDest, TrueArgs,
|
|
FalseSide, FalseArgs);
|
|
BI->eraseFromParent();
|
|
|
|
if (LoopHeaders.count(TrueSide))
|
|
LoopHeaders.insert(ThisBB);
|
|
removeIfDead(TrueSide);
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
|
|
SILBasicBlock *FalseTrampolineDest = getTrampolineDest(FalseSide);
|
|
if (FalseTrampolineDest && FalseTrampolineDest != TrueSide) {
|
|
SILBuilderWithScope<1>(BI)
|
|
.createCondBranch(BI->getLoc(), BI->getCondition(),
|
|
TrueSide, TrueArgs,
|
|
FalseTrampolineDest, FalseArgs);
|
|
BI->eraseFromParent();
|
|
if (LoopHeaders.count(FalseSide))
|
|
LoopHeaders.insert(ThisBB);
|
|
removeIfDead(FalseSide);
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
|
|
// Simplify cond_br where both sides jump to the same blocks with the same
|
|
// args.
|
|
if (TrueArgs == FalseArgs && (TrueSide == FalseTrampolineDest ||
|
|
FalseSide == TrueTrampolineDest)) {
|
|
SILBuilderWithScope<1>(BI).createBranch(BI->getLoc(),
|
|
TrueTrampolineDest ? FalseSide : TrueSide, TrueArgs);
|
|
BI->eraseFromParent();
|
|
addToWorklist(ThisBB);
|
|
addToWorklist(TrueSide);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
|
|
auto *TrueTrampolineBr = getTrampolineWithoutBBArgsTerminator(TrueSide);
|
|
if (TrueTrampolineBr &&
|
|
!wouldIntroduceCriticalEdge(BI, TrueTrampolineBr->getDestBB())) {
|
|
SILBuilderWithScope<1>(BI).createCondBranch(
|
|
BI->getLoc(), BI->getCondition(),
|
|
TrueTrampolineBr->getDestBB(), TrueTrampolineBr->getArgs(),
|
|
FalseSide, FalseArgs);
|
|
BI->eraseFromParent();
|
|
|
|
if (LoopHeaders.count(TrueSide))
|
|
LoopHeaders.insert(ThisBB);
|
|
removeIfDead(TrueSide);
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
|
|
auto *FalseTrampolineBr = getTrampolineWithoutBBArgsTerminator(FalseSide);
|
|
if (FalseTrampolineBr &&
|
|
!wouldIntroduceCriticalEdge(BI, FalseTrampolineBr->getDestBB())) {
|
|
SILBuilderWithScope<1>(BI).createCondBranch(
|
|
BI->getLoc(), BI->getCondition(),
|
|
TrueSide, TrueArgs,
|
|
FalseTrampolineBr->getDestBB(), FalseTrampolineBr->getArgs());
|
|
BI->eraseFromParent();
|
|
if (LoopHeaders.count(FalseSide))
|
|
LoopHeaders.insert(ThisBB);
|
|
removeIfDead(FalseSide);
|
|
addToWorklist(ThisBB);
|
|
return true;
|
|
}
|
|
// If we have a (cond (select_enum)) on a two element enum, always have the
|
|
// first case as our checked tag. If we have the second, create a new
|
|
// select_enum with the first case and swap our operands. This simplifies
|
|
// later dominance based processing.
|
|
if (auto *SEI = dyn_cast<SelectEnumInst>(BI->getCondition())) {
|
|
EnumDecl *E = SEI->getEnumOperand().getType().getEnumOrBoundGenericEnum();
|
|
|
|
auto AllElts = E->getAllElements();
|
|
auto Iter = AllElts.begin();
|
|
EnumElementDecl *FirstElt = *Iter;
|
|
|
|
if (SEI->getNumCases() >= 1
|
|
&& SEI->getCase(0).first != FirstElt) {
|
|
++Iter;
|
|
|
|
if (Iter != AllElts.end() &&
|
|
std::next(Iter) == AllElts.end() &&
|
|
*Iter == SEI->getCase(0).first) {
|
|
EnumElementDecl *SecondElt = *Iter;
|
|
|
|
SILValue FirstValue;
|
|
// SelectEnum must be exhaustive, so the second case must be handled
|
|
// either by a case or the default.
|
|
if (SEI->getNumCases() >= 2) {
|
|
assert(FirstElt == SEI->getCase(1).first
|
|
&& "select_enum missing a case?!");
|
|
FirstValue = SEI->getCase(1).second;
|
|
} else {
|
|
FirstValue = SEI->getDefaultResult();
|
|
}
|
|
|
|
|
|
std::pair<EnumElementDecl*, SILValue> SwappedCases[2] = {
|
|
{FirstElt, SEI->getCase(0).second},
|
|
{SecondElt, FirstValue},
|
|
};
|
|
|
|
auto *NewSEI = SILBuilderWithScope<1>(SEI)
|
|
.createSelectEnum(SEI->getLoc(),
|
|
SEI->getEnumOperand(),
|
|
SEI->getType(),
|
|
SILValue(),
|
|
SwappedCases);
|
|
|
|
// We only change the condition to be NewEITI instead of all uses since
|
|
// EITI may have other uses besides this one that need to be updated.
|
|
BI->setCondition(NewSEI);
|
|
BI->swapSuccessors();
|
|
addToWorklist(BI->getParent());
|
|
addToWorklist(TrueSide);
|
|
addToWorklist(FalseSide);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Simplify a condition branch to a block starting with "cond_fail 1".
|
|
//
|
|
// cond_br %cond, TrueSide, FalseSide
|
|
// TrueSide:
|
|
// cond_fail 1
|
|
//
|
|
bool IsTrueSideFailing;
|
|
CondFailInst *OrigCFI = nullptr;
|
|
if ((IsTrueSideFailing = isCondFailBlock(TrueSide, OrigCFI)) ||
|
|
isCondFailBlock(FalseSide, OrigCFI)) {
|
|
auto LiveArgs = IsTrueSideFailing ? FalseArgs : TrueArgs;
|
|
auto *LiveBlock = IsTrueSideFailing ? FalseSide : TrueSide;
|
|
auto *DeadBlock = !IsTrueSideFailing ? FalseSide : TrueSide;
|
|
auto *ThisBB = BI->getParent();
|
|
auto CFCondition = BI->getCondition();
|
|
|
|
// If the false side is failing, negate the branch condition.
|
|
SILBuilderWithScope<1> Builder(BI);
|
|
createCondFail(OrigCFI, CFCondition, !IsTrueSideFailing, Builder);
|
|
SILBuilderWithScope<1>(BI).createBranch(BI->getLoc(), LiveBlock, LiveArgs);
|
|
|
|
BI->eraseFromParent();
|
|
|
|
addToWorklist(ThisBB);
|
|
simplifyAfterDroppingPredecessor(DeadBlock);
|
|
addToWorklist(LiveBlock);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Does this basic block consist of only an "unreachable" instruction?
|
|
static bool isOnlyUnreachable(SILBasicBlock *BB) {
|
|
auto *Term = BB->getTerminator();
|
|
if (!isa<UnreachableInst>(Term))
|
|
return false;
|
|
|
|
return (&*BB->begin() == BB->getTerminator());
|
|
}
|
|
|
|
|
|
/// simplifySwitchEnumUnreachableBlocks - Attempt to replace a
|
|
/// switch_enum_inst where all but one block consists of just an
|
|
/// "unreachable" with an unchecked_enum_data and branch.
|
|
bool SimplifyCFG::simplifySwitchEnumUnreachableBlocks(SwitchEnumInst *SEI) {
|
|
auto Count = SEI->getNumCases();
|
|
|
|
SILBasicBlock *Dest = nullptr;
|
|
EnumElementDecl *Element = nullptr;
|
|
|
|
if (SEI->hasDefault())
|
|
if (!isOnlyUnreachable(SEI->getDefaultBB()))
|
|
Dest = SEI->getDefaultBB();
|
|
|
|
for (unsigned i = 0; i < Count; ++i) {
|
|
auto EnumCase = SEI->getCase(i);
|
|
|
|
if (isOnlyUnreachable(EnumCase.second))
|
|
continue;
|
|
|
|
if (Dest)
|
|
return false;
|
|
|
|
assert(!Element && "Did not expect to have an element without a block!");
|
|
Element = EnumCase.first;
|
|
Dest = EnumCase.second;
|
|
}
|
|
|
|
if (!Dest) {
|
|
addToWorklist(SEI->getParent());
|
|
SILBuilderWithScope<1>(SEI).createUnreachable(SEI->getLoc());
|
|
SEI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
if (!Element || !Element->hasArgumentType() || Dest->bbarg_empty()) {
|
|
assert(Dest->bbarg_empty() && "Unexpected argument at destination!");
|
|
|
|
SILBuilderWithScope<1>(SEI).createBranch(SEI->getLoc(), Dest);
|
|
|
|
addToWorklist(SEI->getParent());
|
|
addToWorklist(Dest);
|
|
|
|
SEI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
auto &Mod = SEI->getModule();
|
|
auto OpndTy = SEI->getOperand()->getType(0);
|
|
auto Ty = OpndTy.getEnumElementType(Element, Mod);
|
|
auto *UED = SILBuilderWithScope<1>(SEI)
|
|
.createUncheckedEnumData(SEI->getLoc(), SEI->getOperand(), Element, Ty);
|
|
|
|
assert(Dest->bbarg_size() == 1 && "Expected only one argument!");
|
|
ArrayRef<SILValue> Args = { UED };
|
|
SILBuilderWithScope<1>(SEI).createBranch(SEI->getLoc(), Dest, Args);
|
|
|
|
addToWorklist(SEI->getParent());
|
|
addToWorklist(Dest);
|
|
|
|
SEI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// simplifySwitchEnumBlock - Simplify a basic block that ends with a
|
|
/// switch_enum instruction that gets its operand from a an enum
|
|
/// instruction.
|
|
bool SimplifyCFG::simplifySwitchEnumBlock(SwitchEnumInst *SEI) {
|
|
auto *EI = dyn_cast<EnumInst>(SEI->getOperand());
|
|
|
|
// If the operand is not from an enum, see if this is a case where
|
|
// only one destination of the branch has code that does not end
|
|
// with unreachable.
|
|
if (!EI)
|
|
return simplifySwitchEnumUnreachableBlocks(SEI);
|
|
|
|
auto *LiveBlock = SEI->getCaseDestination(EI->getElement());
|
|
auto *ThisBB = SEI->getParent();
|
|
|
|
bool DroppedLiveBlock = false;
|
|
// Copy the successors into a vector, dropping one entry for the liveblock.
|
|
SmallVector<SILBasicBlock*, 4> Dests;
|
|
for (auto &S : SEI->getSuccessors()) {
|
|
if (S == LiveBlock && !DroppedLiveBlock) {
|
|
DroppedLiveBlock = true;
|
|
continue;
|
|
}
|
|
Dests.push_back(S);
|
|
}
|
|
|
|
if (EI->hasOperand() && !LiveBlock->bbarg_empty())
|
|
SILBuilderWithScope<1>(SEI).createBranch(SEI->getLoc(), LiveBlock,
|
|
EI->getOperand());
|
|
else
|
|
SILBuilderWithScope<1>(SEI).createBranch(SEI->getLoc(), LiveBlock);
|
|
SEI->eraseFromParent();
|
|
if (EI->use_empty()) EI->eraseFromParent();
|
|
|
|
addToWorklist(ThisBB);
|
|
|
|
for (auto B : Dests)
|
|
simplifyAfterDroppingPredecessor(B);
|
|
addToWorklist(LiveBlock);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
|
|
/// simplifySwitchValueBlock - Simplify a basic block that ends with a
|
|
/// switch_value instruction that gets its operand from a an integer
|
|
/// literal instruction.
|
|
bool SimplifyCFG::simplifySwitchValueBlock(SwitchValueInst *SVI) {
|
|
auto *ThisBB = SVI->getParent();
|
|
if (auto *ILI = dyn_cast<IntegerLiteralInst>(SVI->getOperand())) {
|
|
SILBasicBlock *LiveBlock = nullptr;
|
|
|
|
auto Value = ILI->getValue();
|
|
// Find a case corresponding to this value
|
|
int i, e;
|
|
for (i = 0, e = SVI->getNumCases(); i < e; ++i) {
|
|
auto Pair = SVI->getCase(i);
|
|
auto *CaseIL = dyn_cast<IntegerLiteralInst>(Pair.first);
|
|
if (!CaseIL)
|
|
break;
|
|
auto CaseValue = CaseIL->getValue();
|
|
if (Value == CaseValue) {
|
|
LiveBlock = Pair.second;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == e && !LiveBlock) {
|
|
if (SVI->hasDefault()) {
|
|
LiveBlock = SVI->getDefaultBB();
|
|
}
|
|
}
|
|
|
|
if (LiveBlock) {
|
|
bool DroppedLiveBlock = false;
|
|
// Copy the successors into a vector, dropping one entry for the
|
|
// liveblock.
|
|
SmallVector<SILBasicBlock *, 4> Dests;
|
|
for (auto &S : SVI->getSuccessors()) {
|
|
if (S == LiveBlock && !DroppedLiveBlock) {
|
|
DroppedLiveBlock = true;
|
|
continue;
|
|
}
|
|
Dests.push_back(S);
|
|
}
|
|
|
|
SILBuilderWithScope<1>(SVI).createBranch(SVI->getLoc(), LiveBlock);
|
|
SVI->eraseFromParent();
|
|
if (ILI->use_empty())
|
|
ILI->eraseFromParent();
|
|
|
|
addToWorklist(ThisBB);
|
|
|
|
for (auto B : Dests)
|
|
simplifyAfterDroppingPredecessor(B);
|
|
addToWorklist(LiveBlock);
|
|
++NumConstantFolded;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return simplifyTermWithIdenticalDestBlocks(ThisBB);
|
|
}
|
|
|
|
/// simplifyUnreachableBlock - Simplify blocks ending with unreachable by
|
|
/// removing instructions that are safe to delete backwards until we
|
|
/// hit an instruction we cannot delete.
|
|
bool SimplifyCFG::simplifyUnreachableBlock(UnreachableInst *UI) {
|
|
bool Changed = false;
|
|
auto BB = UI->getParent();
|
|
auto I = std::next(BB->rbegin());
|
|
auto End = BB->rend();
|
|
SmallVector<SILInstruction *, 8> DeadInstrs;
|
|
|
|
// Walk backwards deleting instructions that should be safe to delete
|
|
// in a block that ends with unreachable.
|
|
while (I != End) {
|
|
auto MaybeDead = I++;
|
|
|
|
switch (MaybeDead->getKind()) {
|
|
// These technically have side effects, but not ones that matter
|
|
// in a block that we shouldn't really reach...
|
|
case ValueKind::StrongRetainInst:
|
|
case ValueKind::StrongReleaseInst:
|
|
case ValueKind::RetainValueInst:
|
|
case ValueKind::ReleaseValueInst:
|
|
break;
|
|
|
|
default:
|
|
if (MaybeDead->mayHaveSideEffects()) {
|
|
if (Changed)
|
|
for (auto Dead : DeadInstrs)
|
|
Dead->eraseFromParent();
|
|
return Changed;
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = MaybeDead->getNumTypes(); i != e; ++i)
|
|
if (!SILValue(&*MaybeDead, i).use_empty()) {
|
|
auto Undef = SILUndef::get(MaybeDead->getType(i), BB->getModule());
|
|
SILValue(&*MaybeDead, i).replaceAllUsesWith(Undef);
|
|
}
|
|
|
|
DeadInstrs.push_back(&*MaybeDead);
|
|
Changed = true;
|
|
}
|
|
|
|
// If this block was changed and it now consists of only the unreachable,
|
|
// make sure we process its predecessors.
|
|
if (Changed) {
|
|
for (auto Dead : DeadInstrs)
|
|
Dead->eraseFromParent();
|
|
|
|
if (isOnlyUnreachable(BB))
|
|
for (auto *P : BB->getPreds())
|
|
addToWorklist(P);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyCheckedCastBranchBlock(CheckedCastBranchInst *CCBI) {
|
|
auto SuccessBB = CCBI->getSuccessBB();
|
|
auto FailureBB = CCBI->getFailureBB();
|
|
auto ThisBB = CCBI->getParent();
|
|
|
|
CastOptimizer CastOpt(
|
|
[](SILInstruction *I, ValueBase *V){} /* ReplaceInstUsesAction */,
|
|
[](SILInstruction *I) { /* EraseInstAction */
|
|
I->eraseFromParent();
|
|
},
|
|
[&]() { /* WillSucceedAction */
|
|
removeIfDead(FailureBB);
|
|
addToWorklist(ThisBB);
|
|
},
|
|
[&]() { /* WillFailAction */
|
|
removeIfDead(SuccessBB);
|
|
addToWorklist(ThisBB);
|
|
});
|
|
|
|
return CastOpt.simplifyCheckedCastBranchInst(CCBI) != nullptr;
|
|
}
|
|
|
|
bool
|
|
SimplifyCFG::
|
|
simplifyCheckedCastAddrBranchBlock(CheckedCastAddrBranchInst *CCABI) {
|
|
auto SuccessBB = CCABI->getSuccessBB();
|
|
auto FailureBB = CCABI->getFailureBB();
|
|
auto ThisBB = CCABI->getParent();
|
|
|
|
CastOptimizer CastOpt(
|
|
[](SILInstruction *I, ValueBase *V){} /* ReplaceInstUsesAction */,
|
|
[](SILInstruction *I) { /* EraseInstAction */
|
|
I->eraseFromParent();
|
|
},
|
|
[&]() { /* WillSucceedAction */
|
|
removeIfDead(FailureBB);
|
|
addToWorklist(ThisBB);
|
|
},
|
|
[&]() { /* WillFailAction */
|
|
removeIfDead(SuccessBB);
|
|
addToWorklist(ThisBB);
|
|
});
|
|
|
|
return CastOpt.simplifyCheckedCastAddrBranchInst(CCABI) != nullptr;
|
|
}
|
|
|
|
// Replace the terminator of BB with a simple branch if all successors go
|
|
// to trampoline jumps to the same destination block. The successor blocks
|
|
// and the destination blocks may have no arguments.
|
|
bool SimplifyCFG::simplifyTermWithIdenticalDestBlocks(SILBasicBlock *BB) {
|
|
SILBasicBlock *commonDest = nullptr;
|
|
for (const SILSuccessor &Succ : BB->getSuccessors()) {
|
|
SILBasicBlock *SuccBlock = Succ.getBB();
|
|
if (SuccBlock->getNumBBArg() != 0)
|
|
return false;
|
|
SILBasicBlock *DestBlock = getTrampolineDest(SuccBlock);
|
|
if (!DestBlock)
|
|
return false;
|
|
if (!commonDest) {
|
|
commonDest = DestBlock;
|
|
} else if (DestBlock != commonDest) {
|
|
return false;
|
|
}
|
|
}
|
|
if (!commonDest)
|
|
return false;
|
|
|
|
assert(commonDest->getNumBBArg() == 0 &&
|
|
"getTrampolineDest should have checked that commonDest has no args");
|
|
|
|
TermInst *Term = BB->getTerminator();
|
|
SILBuilderWithScope<1>(Term).createBranch(Term->getLoc(), commonDest, {});
|
|
Term->eraseFromParent();
|
|
addToWorklist(BB);
|
|
addToWorklist(commonDest);
|
|
return true;
|
|
}
|
|
|
|
void RemoveUnreachable::visit(SILBasicBlock *BB) {
|
|
if (!Visited.insert(BB).second)
|
|
return;
|
|
|
|
for (auto &Succ : BB->getSuccessors())
|
|
visit(Succ);
|
|
}
|
|
|
|
bool RemoveUnreachable::run() {
|
|
bool Changed = false;
|
|
|
|
// Clear each time we run so that we can run multiple times.
|
|
Visited.clear();
|
|
|
|
// Visit all blocks reachable from the entry block of the function.
|
|
visit(Fn.begin());
|
|
|
|
// Remove the blocks we never reached.
|
|
for (auto It = Fn.begin(), End = Fn.end(); It != End; ) {
|
|
auto *BB = &*It++;
|
|
if (!Visited.count(BB)) {
|
|
removeDeadBlock(BB);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Checks if the block contains a cond_fail as first side-effect instruction
|
|
/// and trys to move it to the predecessors (if benefitial). A sequence
|
|
///
|
|
/// bb1:
|
|
/// br bb3(%c)
|
|
/// bb2:
|
|
/// %i = integer_literal
|
|
/// br bb3(%i) // at least one input argument must be constant
|
|
/// bb3(%a) // = BB
|
|
/// cond_fail %a // %a must not have other uses
|
|
///
|
|
/// is replaced with
|
|
///
|
|
/// bb1:
|
|
/// cond_fail %c
|
|
/// br bb3(%c)
|
|
/// bb2:
|
|
/// %i = integer_literal
|
|
/// cond_fail %i
|
|
/// br bb3(%i)
|
|
/// bb3(%a) // %a is dead
|
|
///
|
|
static bool tryMoveCondFailToPreds(SILBasicBlock *BB) {
|
|
|
|
CondFailInst *CFI = getFistCondFail(BB);
|
|
if (!CFI)
|
|
return false;
|
|
|
|
// Find the underlying condition value of the cond_fail.
|
|
SILValue cond = CFI->getOperand();
|
|
bool inverted = false;
|
|
while (auto *BI = dyn_cast<BuiltinInst>(cond)) {
|
|
|
|
// This is not a correctness check, but we only want to to the optimization
|
|
// if the condition gets dead after moving the cond_fail.
|
|
if (!BI->hasOneUse())
|
|
return false;
|
|
|
|
OperandValueArrayRef Args = BI->getArguments();
|
|
|
|
if (BI->getBuiltinInfo().ID == BuiltinValueKind::Xor) {
|
|
// Check if it's a boolean invertion of the condition.
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[1])) {
|
|
if (IL->getValue().isAllOnesValue()) {
|
|
cond = Args[0];
|
|
inverted = !inverted;
|
|
continue;
|
|
}
|
|
} else if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[0])) {
|
|
if (IL->getValue().isAllOnesValue()) {
|
|
cond = Args[1];
|
|
inverted = !inverted;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
// Check if the condition is a single-used argument in the current block.
|
|
SILArgument *condArg = dyn_cast<SILArgument>(cond);
|
|
if (!condArg || !condArg->hasOneUse())
|
|
return false;
|
|
|
|
if (condArg->getParent() != BB)
|
|
return false;
|
|
|
|
// Check if some of the predecessor blocks provide a constant for the
|
|
// cond_fail condition. So that the optimization has a positive effect.
|
|
bool somePredsAreConst = false;
|
|
for (auto *Pred : BB->getPreds()) {
|
|
|
|
// The cond_fail must post-dominate the predecessor block. We may not
|
|
// execute the cond_fail speculatively.
|
|
if (!Pred->getSingleSuccessor())
|
|
return false;
|
|
|
|
SILValue incoming = condArg->getIncomingValue(Pred);
|
|
if (isa<IntegerLiteralInst>(incoming)) {
|
|
somePredsAreConst = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!somePredsAreConst)
|
|
return false;
|
|
|
|
DEBUG(llvm::dbgs() << "### move to predecessors: " << *CFI);
|
|
|
|
// Move the cond_fail to the predecessor blocks.
|
|
for (auto *Pred : BB->getPreds()) {
|
|
SILValue incoming = condArg->getIncomingValue(Pred);
|
|
SILBuilderWithScope<4> Builder(Pred->getTerminator());
|
|
|
|
createCondFail(CFI, incoming, inverted, Builder);
|
|
}
|
|
CFI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyBlocks() {
|
|
bool Changed = false;
|
|
|
|
// Add all of the blocks to the function.
|
|
for (auto &BB : Fn)
|
|
addToWorklist(&BB);
|
|
|
|
// Iteratively simplify while there is still work to do.
|
|
while (SILBasicBlock *BB = popWorklist()) {
|
|
// If the block is dead, remove it.
|
|
if (removeIfDead(BB)) {
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, try to simplify the terminator.
|
|
TermInst *TI = BB->getTerminator();
|
|
|
|
switch (TI->getKind()) {
|
|
case ValueKind::BranchInst:
|
|
Changed |= simplifyBranchBlock(cast<BranchInst>(TI));
|
|
break;
|
|
case ValueKind::CondBranchInst:
|
|
Changed |= simplifyCondBrBlock(cast<CondBranchInst>(TI));
|
|
break;
|
|
case ValueKind::SwitchValueInst:
|
|
// FIXME: Optimize for known switch values.
|
|
Changed |= simplifySwitchValueBlock(cast<SwitchValueInst>(TI));
|
|
break;
|
|
case ValueKind::SwitchEnumInst:
|
|
Changed |= simplifySwitchEnumBlock(cast<SwitchEnumInst>(TI));
|
|
Changed |= simplifyTermWithIdenticalDestBlocks(BB);
|
|
break;
|
|
case ValueKind::UnreachableInst:
|
|
Changed |= simplifyUnreachableBlock(cast<UnreachableInst>(TI));
|
|
break;
|
|
case ValueKind::CheckedCastBranchInst:
|
|
Changed |= simplifyCheckedCastBranchBlock(cast<CheckedCastBranchInst>(TI));
|
|
break;
|
|
case ValueKind::CheckedCastAddrBranchInst:
|
|
Changed |= simplifyCheckedCastAddrBranchBlock(cast<CheckedCastAddrBranchInst>(TI));
|
|
break;
|
|
case ValueKind::SwitchEnumAddrInst:
|
|
Changed |= simplifyTermWithIdenticalDestBlocks(BB);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
// If the block has a cond_fail, try to move it to the predecessors.
|
|
Changed |= tryMoveCondFailToPreds(BB);
|
|
|
|
// Simplify the block argument list.
|
|
Changed |= simplifyArgs(BB);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Canonicalize all switch_enum and switch_enum_addr instructions.
|
|
/// If possible, replace the default with the corresponding unique case.
|
|
bool SimplifyCFG::canonicalizeSwitchEnums() {
|
|
bool Changed = false;
|
|
for (auto &BB : Fn) {
|
|
TermInst *TI = BB.getTerminator();
|
|
|
|
SwitchEnumInstBase *SWI = dyn_cast<SwitchEnumInstBase>(TI);
|
|
if (!SWI)
|
|
continue;
|
|
|
|
if (!SWI->hasDefault())
|
|
continue;
|
|
|
|
NullablePtr<EnumElementDecl> elementDecl = SWI->getUniqueCaseForDefault();
|
|
if (!elementDecl)
|
|
continue;
|
|
|
|
// Construct a new instruction by copying all the case entries.
|
|
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 4> CaseBBs;
|
|
for (int idx = 0, numIdcs = SWI->getNumCases(); idx < numIdcs; idx++) {
|
|
CaseBBs.push_back(SWI->getCase(idx));
|
|
}
|
|
// Add the default-entry of the original instruction as case-entry.
|
|
CaseBBs.push_back(std::make_pair(elementDecl.get(), SWI->getDefaultBB()));
|
|
|
|
if (SWI->getKind() == ValueKind::SwitchEnumInst) {
|
|
SILBuilderWithScope<1>(SWI).createSwitchEnum(SWI->getLoc(),
|
|
SWI->getOperand(), nullptr, CaseBBs);
|
|
} else {
|
|
assert(SWI->getKind() == ValueKind::SwitchEnumAddrInst &&
|
|
"unknown switch_enum instruction");
|
|
SILBuilderWithScope<1>(SWI).createSwitchEnumAddr(SWI->getLoc(),
|
|
SWI->getOperand(), nullptr, CaseBBs);
|
|
}
|
|
SWI->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static SILBasicBlock *isObjCMethodCallBlock(SILBasicBlock &Block) {
|
|
auto *Branch = dyn_cast<BranchInst>(Block.getTerminator());
|
|
if (!Branch)
|
|
return nullptr;
|
|
|
|
for (auto &Inst : Block) {
|
|
// Look for a objc method call.
|
|
auto *Apply = dyn_cast<ApplyInst>(&Inst);
|
|
if (!Apply)
|
|
continue;
|
|
auto *Callee = dyn_cast<WitnessMethodInst>(Apply->getCallee());
|
|
if (!Callee || !Callee->getMember().isForeign)
|
|
continue;
|
|
|
|
return Branch->getDestBB();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// We want to duplicate small blocks that contain a least on release and have
|
|
/// multiple predecessor.
|
|
static bool shouldTailDuplicate(SILBasicBlock &Block) {
|
|
unsigned Cost = 0;
|
|
bool SawRelease = false;
|
|
|
|
if (isa<ReturnInst>(Block.getTerminator()))
|
|
return false;
|
|
|
|
if (Block.getSinglePredecessor())
|
|
return false;
|
|
|
|
for (auto &Inst : Block) {
|
|
if (!Inst.isTriviallyDuplicatable())
|
|
return false;
|
|
|
|
if (isa<ApplyInst>(&Inst))
|
|
return false;
|
|
|
|
if (isa<ReleaseValueInst>(&Inst) ||
|
|
isa<StrongReleaseInst>(&Inst))
|
|
SawRelease = true;
|
|
|
|
if (instructionInlineCost(Inst) != InlineCost::Free)
|
|
if (++Cost == 12)
|
|
return false;
|
|
}
|
|
|
|
return SawRelease;
|
|
}
|
|
|
|
|
|
/// Tail duplicate successor blocks of blocks that perform an objc method call
|
|
/// and who contain releases. Cloning such blocks can allow ARC to sink retain
|
|
/// releases onto the ObjC path.
|
|
bool SimplifyCFG::tailDuplicateObjCMethodCallSuccessorBlocks() {
|
|
SmallVector<SILBasicBlock *, 16> ObjCBlocks;
|
|
|
|
// Collect blocks to tail duplicate.
|
|
for (auto &BB : Fn) {
|
|
SILBasicBlock *DestBB;
|
|
if ((DestBB = isObjCMethodCallBlock(BB)) && !LoopHeaders.count(DestBB) &&
|
|
shouldTailDuplicate(*DestBB))
|
|
ObjCBlocks.push_back(&BB);
|
|
}
|
|
|
|
bool Changed = false;
|
|
for (auto *BB : ObjCBlocks) {
|
|
auto *Branch = cast<BranchInst>(BB->getTerminator());
|
|
auto *DestBB = Branch->getDestBB();
|
|
Changed = true;
|
|
|
|
// Okay, it looks like we want to do this and we can. Duplicate the
|
|
// destination block into this one, rewriting uses of the BBArgs to use the
|
|
// branch arguments as we go.
|
|
EdgeThreadingCloner Cloner(Branch);
|
|
|
|
for (auto &I : *DestBB)
|
|
Cloner.process(&I);
|
|
|
|
updateSSAAfterCloning(Cloner, Cloner.getEdgeBB(), DestBB);
|
|
addToWorklist(Cloner.getEdgeBB());
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SimplifyCFG::run() {
|
|
RemoveUnreachable RU(Fn);
|
|
|
|
// First remove any block not reachable from the entry.
|
|
bool Changed = RU.run();
|
|
|
|
// Find the set of loop headers. We don't want to jump-thread through headers.
|
|
findLoopHeaders();
|
|
|
|
DT = nullptr;
|
|
PDT = nullptr;
|
|
if (simplifyBlocks()) {
|
|
// Simplifying other blocks might have resulted in unreachable
|
|
// loops.
|
|
RU.run();
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
// Do simplifications that require the dominator tree to be accurate.
|
|
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
PostDominanceAnalysis *PDA = PM->getAnalysis<PostDominanceAnalysis>();
|
|
|
|
if (Changed) {
|
|
// Force dominator recomputation since we modifed the cfg.
|
|
DA->invalidate(&Fn, SILAnalysis::PreserveKind::Nothing);
|
|
PDA->invalidate(&Fn, SILAnalysis::PreserveKind::Nothing);
|
|
}
|
|
|
|
Changed |= dominatorBasedSimplify(DA, PDA);
|
|
|
|
DT = nullptr;
|
|
PDT = nullptr;
|
|
// Now attempt to simplify the remaining blocks.
|
|
if (simplifyBlocks()) {
|
|
// Simplifying other blocks might have resulted in unreachable
|
|
// loops.
|
|
RU.run();
|
|
Changed = true;
|
|
}
|
|
|
|
if (tailDuplicateObjCMethodCallSuccessorBlocks()) {
|
|
Changed = true;
|
|
if (simplifyBlocks())
|
|
RU.run();
|
|
}
|
|
|
|
// Split all critical edges from non cond_br terminators.
|
|
Changed |= splitAllCriticalEdges(Fn, true, nullptr, nullptr);
|
|
|
|
// Canonicalize switch_enum instructions.
|
|
Changed |= canonicalizeSwitchEnums();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static void
|
|
removeArgumentFromTerminator(SILBasicBlock *BB, SILBasicBlock *Dest, int idx) {
|
|
TermInst *Branch = BB->getTerminator();
|
|
SILBuilderWithScope<2> Builder(Branch);
|
|
|
|
if (CondBranchInst *CBI = dyn_cast<CondBranchInst>(Branch)) {
|
|
DEBUG(llvm::dbgs() << "*** Fixing CondBranchInst.\n");
|
|
|
|
SmallVector<SILValue, 8> TrueArgs;
|
|
SmallVector<SILValue, 8> FalseArgs;
|
|
|
|
for (auto A : CBI->getTrueArgs())
|
|
TrueArgs.push_back(A);
|
|
|
|
for (auto A : CBI->getFalseArgs())
|
|
FalseArgs.push_back(A);
|
|
|
|
if (Dest == CBI->getTrueBB())
|
|
TrueArgs.erase(TrueArgs.begin() + idx);
|
|
|
|
if (Dest == CBI->getFalseBB())
|
|
FalseArgs.erase(FalseArgs.begin() + idx);
|
|
|
|
Builder.createCondBranch(CBI->getLoc(), CBI->getCondition(),
|
|
CBI->getTrueBB(), TrueArgs,
|
|
CBI->getFalseBB(), FalseArgs);
|
|
Branch->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(Branch)) {
|
|
DEBUG(llvm::dbgs() << "*** Fixing BranchInst.\n");
|
|
SmallVector<SILValue, 8> Args;
|
|
|
|
for (auto A : BI->getArgs())
|
|
Args.push_back(A);
|
|
|
|
Args.erase(Args.begin() + idx);
|
|
Builder.createBranch(BI->getLoc(), BI->getDestBB(), Args);
|
|
Branch->eraseFromParent();
|
|
return;
|
|
}
|
|
llvm_unreachable("unsupported terminator");
|
|
}
|
|
|
|
/// Is an argument from this terminator considered mandatory?
|
|
static bool hasMandatoryArgument(TermInst *term) {
|
|
// It's more maintainable to just white-list the instructions that
|
|
// *do* have mandatory arguments.
|
|
return (!isa<BranchInst>(term) && !isa<CondBranchInst>(term));
|
|
}
|
|
|
|
|
|
// Get the element of Aggregate corresponding to the one extracted by
|
|
// Extract.
|
|
static SILValue getInsertedValue(SILInstruction *Aggregate,
|
|
SILInstruction *Extract) {
|
|
if (auto *Struct = dyn_cast<StructInst>(Aggregate)) {
|
|
auto *SEI = cast<StructExtractInst>(Extract);
|
|
return Struct->getFieldValue(SEI->getField());
|
|
}
|
|
auto *Tuple = cast<TupleInst>(Aggregate);
|
|
auto *TEI = cast<TupleExtractInst>(Extract);
|
|
return Tuple->getElement(TEI->getFieldNo());
|
|
}
|
|
|
|
/// Check a diamond-form property of graphs generated by swith_enum
|
|
/// instructions, who only produce integer values by each of BBs handling its
|
|
/// case tags.
|
|
/// In such graphs, switch_enum dominates any blocks processing cases and all
|
|
/// those blocks processing different cases are post-dominated by a single
|
|
/// basic block consuming those values, where all the paths join.
|
|
static bool isDiamondForm(SILBasicBlock *BB, SILBasicBlock *PredBB,
|
|
SILBasicBlock *PostBB, DominanceInfo *DT,
|
|
PostDominanceInfo *PDT) {
|
|
if (PredBB && !DT->dominates(PredBB, BB))
|
|
return false;
|
|
if (PostBB && !PDT->dominates(PostBB, BB))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Check if a basic blocks consists of a single branch instruction.
|
|
static bool isSingleBranchBlock(SILBasicBlock *BB) {
|
|
TermInst *TI = BB->getTerminator();
|
|
if (!isa<BranchInst>(TI))
|
|
return false;
|
|
return TI == BB->begin();
|
|
}
|
|
|
|
/// Find a parent SwitchEnumInst of a basic block. If SEI is set, then
|
|
/// only return non-nullptr if the found SwitchEnumInst is the same one as SEI.
|
|
/// We consider only those predecessor blocks which are post-dominated by
|
|
/// PostBB and dominated by SEI. This ensures that we have a diamond-like CFG
|
|
/// starting at SEI and ending at PostBB.
|
|
static SwitchEnumInst *
|
|
getSwitchEnumPred(SILBasicBlock *BB, SwitchEnumInst *SEI, SILBasicBlock *PostBB,
|
|
SmallPtrSet<SILBasicBlock *, 8> &Blocks,
|
|
SmallPtrSet<SILBasicBlock *, 8> Visited, DominanceInfo *DT,
|
|
PostDominanceInfo *PDT) {
|
|
|
|
if (BB->pred_empty())
|
|
return nullptr;
|
|
|
|
// Any BB can be visited only once.
|
|
if (Visited.count(BB))
|
|
return nullptr;
|
|
|
|
// Remember that this BB was seen already.
|
|
Visited.insert(BB);
|
|
|
|
// Only consider blocks which are post-dominated by PostBB and
|
|
// dominated by SEI.
|
|
if (!isDiamondForm(BB, (SEI) ? SEI->getParent() : nullptr, PostBB, DT, PDT))
|
|
return nullptr;
|
|
|
|
// Check that this block only produces the value, but does not
|
|
// have any side effects.
|
|
bool BBHasIntegerLiteral = false;
|
|
auto First = BB->begin();
|
|
auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!BI)
|
|
return nullptr;
|
|
if (BI != First) {
|
|
// There may be only one instruction before the branch.
|
|
if (BI != next(First))
|
|
return nullptr;
|
|
|
|
// There are some instructions besides the branch.
|
|
// It should be only an integer literal instruction.
|
|
// Handle only integer values for now.
|
|
auto *ILI = dyn_cast<IntegerLiteralInst>(First);
|
|
if (!ILI)
|
|
return nullptr;
|
|
|
|
// Check that this literal is used by the terminator.
|
|
for (auto U : ILI->getUses())
|
|
if (U->getUser() != BI)
|
|
return nullptr;
|
|
|
|
// The branch can pass arguments only to the PostBB.
|
|
if (BI->getDestBB() != PostBB)
|
|
return nullptr;
|
|
BBHasIntegerLiteral = true;
|
|
}
|
|
|
|
// Each BB on the path should have only a single branch instruction.
|
|
// The only exception is a BB which has a BB ending with switch_enum
|
|
// as its single predecessor. Such a block may have an integer_literal
|
|
// instruction before the branch.
|
|
|
|
for (auto PredBB : BB->getPreds()) {
|
|
SwitchEnumInst *PredSEI;
|
|
if (isSingleBranchBlock(PredBB)) {
|
|
PredSEI = getSwitchEnumPred(PredBB, SEI, PostBB, Blocks, Visited,
|
|
DT, PDT);
|
|
} else {
|
|
// Check if a predecessor BB terminates with a switch_enum instruction
|
|
PredSEI = dyn_cast<SwitchEnumInst>(PredBB->getTerminator());
|
|
if (!PredSEI)
|
|
return nullptr;
|
|
// Remember that this BB is immediately reachable from a switch_enum.
|
|
Blocks.insert(BB);
|
|
}
|
|
|
|
if (!PredSEI)
|
|
return nullptr;
|
|
|
|
if (SEI && PredSEI != SEI)
|
|
return nullptr;
|
|
|
|
if (!SEI)
|
|
SEI = PredSEI;
|
|
}
|
|
return SEI;
|
|
}
|
|
|
|
/// Helper function to produce a SILValue from a result value
|
|
/// produced by a basic block responsible for handling a
|
|
/// specific enum tag.
|
|
static SILValue
|
|
getSILValueFromCaseResult(SILBuilder &B, SILLocation Loc,
|
|
SILType Type, SILValue Val) {
|
|
if (auto *IL = dyn_cast<IntegerLiteralInst>(Val)) {
|
|
auto Value = IL->getValue();
|
|
if (Value.getBitWidth() != 1)
|
|
return B.createIntegerLiteral(Loc, Type, Value);
|
|
else
|
|
// This is a boolean value
|
|
return B.createIntegerLiteral(Loc, Type, Value.getBoolValue());
|
|
} else {
|
|
llvm::errs() << "Non IntegerLiteralInst switch case result\n";
|
|
Val.dump();
|
|
return Val;
|
|
}
|
|
}
|
|
|
|
/// Given an integer argument, see if it is ultimately matching whether
|
|
/// a given enum is of a given tag. If so, create a new select_enum instruction
|
|
/// This is used to simplify arbitrary simple switch_enum diamonds into
|
|
/// select_enums.
|
|
bool simplifySwitchEnumToSelectEnum(SILBasicBlock *BB, unsigned ArgNum,
|
|
SILArgument *IntArg, DominanceInfo *DT,
|
|
PostDominanceInfo *PDT) {
|
|
|
|
if (!DT || !PDT)
|
|
return false;
|
|
auto &Fn = *BB->getParent();
|
|
|
|
// Don't know which values should be passed if there is more
|
|
// than one basic block argument.
|
|
if (BB->bbarg_size() > 1)
|
|
return false;
|
|
|
|
// Mapping from case values to the results corresponding to this case value.
|
|
SmallVector<std::pair<EnumElementDecl *, SILValue>, 8> CaseToValue;
|
|
|
|
// Mapping from BB responsible for a specific case value to the result it
|
|
// produces.
|
|
llvm::DenseMap<SILBasicBlock *, SILValue> BBToValue;
|
|
|
|
// switch_enum instruction to be replaced.
|
|
SwitchEnumInst *SEI = nullptr;
|
|
|
|
bool HasNonSwitchEnumPreds = false;
|
|
|
|
// Iterate over all immediate predecessors of the target basic block.
|
|
// - Check that each one stems directly or indirectly from the same
|
|
// switch_enum instruction.
|
|
// - Remember for each case tag of the switch_enum instruction which
|
|
// integer value it produces.
|
|
// - Check that each block handling a given case tag of a switch_enum
|
|
// only produces an integer value and does not have any side-effects.
|
|
for (auto P : BB->getPreds()) {
|
|
// Only handle branch instructions.
|
|
auto *TI = P->getTerminator();
|
|
if (!isa<BranchInst>(TI))
|
|
return false;
|
|
|
|
// Find the Nth argument passed to BB.
|
|
auto Arg = TI->getOperand(ArgNum);
|
|
auto *SI = dyn_cast<SILInstruction>(Arg);
|
|
if (!SI) {
|
|
return false;
|
|
} else {
|
|
// Handle integer values
|
|
auto *IntLit = dyn_cast<IntegerLiteralInst>(SI);
|
|
if (!IntLit) {
|
|
// TODO: SI may be any instruction that dominates the switch_enum
|
|
// instruction?
|
|
//if (!DT->dominates(SI->getParent(), P))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Set of blocks that branch to/reach this basic block P and are immediate
|
|
// successors of a switch_enum instruction.
|
|
SmallPtrSet<SILBasicBlock *, 8> Blocks;
|
|
// Set of blocks visited during a search for a parent switch_enum instruction.
|
|
SmallPtrSet<SILBasicBlock *, 8> Visited;
|
|
|
|
// Try to find a parent SwitchEnumInst for the current predecessor of BB.
|
|
auto *PredSEI = getSwitchEnumPred(P, SEI, BB, Blocks, Visited, DT, PDT);
|
|
|
|
// Predecessor is not produced by a switch_enum instruction, bail.
|
|
if (!PredSEI) {
|
|
HasNonSwitchEnumPreds = true;
|
|
continue;
|
|
}
|
|
|
|
// Check if all predecessors stem from the same switch_enum instruction.
|
|
if (SEI) {
|
|
if (SEI != PredSEI) {
|
|
// It comes from a different switch_enum instruction, bail.
|
|
HasNonSwitchEnumPreds = true;
|
|
continue;
|
|
}
|
|
} else {
|
|
SEI = PredSEI;
|
|
}
|
|
|
|
// Remember the result value used to branch to this instruction.
|
|
for (auto B : Blocks)
|
|
BBToValue[B] = Arg;
|
|
}
|
|
|
|
if (!SEI)
|
|
return false;
|
|
|
|
// Insert the new enum_select instruction right after enum_switch
|
|
SILBuilder B(SEI);
|
|
|
|
// Form a set of case_tag:result pairs for select_enum
|
|
for (unsigned i = 0, e = SEI->getNumCases(); i != e; ++i) {
|
|
std::pair<EnumElementDecl *, SILBasicBlock *> Pair = SEI->getCase(i);
|
|
// If one of the branches is not covered, bail
|
|
if (!BBToValue.count(Pair.second))
|
|
return false;
|
|
auto CaseValue = BBToValue[Pair.second];
|
|
auto CaseSILValue = getSILValueFromCaseResult(B, SEI->getLoc(),
|
|
IntArg->getType(),
|
|
CaseValue);
|
|
CaseToValue.push_back(std::make_pair(Pair.first, CaseSILValue));
|
|
}
|
|
|
|
// Default value for select_enum.
|
|
SILValue DefaultSILValue = SILValue();
|
|
|
|
if (SEI->hasDefault()) {
|
|
// Try to define a default case for enum_select based
|
|
// on the default case of enum_switch.
|
|
|
|
// If default branch is not covered, bail
|
|
if (!BBToValue.count(SEI->getDefaultBB()))
|
|
return false;
|
|
auto DefaultValue = BBToValue[SEI->getDefaultBB()];
|
|
DefaultSILValue = getSILValueFromCaseResult(B, SEI->getLoc(),
|
|
IntArg->getType(),
|
|
DefaultValue);
|
|
} else {
|
|
// Try to see if enum_switch covers all possible cases.
|
|
// If it does, then pick one of those cases as a default.
|
|
|
|
// Count the number of possible case tags for a given enum type
|
|
auto *Enum = SEI->getOperand().getType().getEnumOrBoundGenericEnum();
|
|
unsigned ElemCount = 0;
|
|
for (auto E : Enum->getAllElements()) {
|
|
if (E)
|
|
ElemCount++;
|
|
}
|
|
|
|
// Check if all possible cases are covered.
|
|
if (ElemCount == SEI->getNumCases()) {
|
|
// This enum_switch instruction is exhaustive.
|
|
// Make the last case a default.
|
|
auto Pair = CaseToValue.pop_back_val();
|
|
DefaultSILValue = Pair.second;
|
|
}
|
|
}
|
|
|
|
// We don't need to have explicit cases for any case tags which produce the
|
|
// same result as the default branch.
|
|
if (DefaultSILValue != SILValue()) {
|
|
auto DefaultValue = DefaultSILValue;
|
|
auto *DefaultSI = dyn_cast<IntegerLiteralInst>(DefaultValue);
|
|
for (auto I = CaseToValue.begin(); I != CaseToValue.end();) {
|
|
auto CaseValue = I->second;
|
|
if (CaseValue == DefaultValue) {
|
|
I = CaseToValue.erase(I);
|
|
continue;
|
|
}
|
|
|
|
if (DefaultSI) {
|
|
if (auto CaseSI = dyn_cast<IntegerLiteralInst>(CaseValue)) {
|
|
if (DefaultSI->getValue() == CaseSI->getValue()) {
|
|
I = CaseToValue.erase(I);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// Create a new select_enum instruction
|
|
auto SelectInst = B.createSelectEnum(SEI->getLoc(), SEI->getOperand(),
|
|
IntArg->getType(),
|
|
DefaultSILValue, CaseToValue);
|
|
if (!HasNonSwitchEnumPreds) {
|
|
// Check that all uses of IntArg are dominated by SelectInst
|
|
bool SelectDominatesAllArgUses = true;
|
|
|
|
for(auto U : IntArg->getUses()) {
|
|
if (!DT->dominates(SelectInst->getParent(), U->getUser()->getParent())) {
|
|
SelectDominatesAllArgUses = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If all uses of IntArg are dominated by SelectInst, it is safe
|
|
// to replace IntArg by the result of SelectInst because
|
|
// it is the only incoming value for the IntArg.
|
|
if (SelectDominatesAllArgUses) {
|
|
IntArg->replaceAllUsesWith(SelectInst);
|
|
}
|
|
}
|
|
|
|
// Do not replace the bbarg
|
|
SmallVector<SILValue, 4> Args;
|
|
Args.push_back(SelectInst);
|
|
B.setInsertionPoint(SelectInst->getNextNode());
|
|
B.createBranch(SEI->getLoc(), BB, Args);
|
|
// Remove switch_enum instruction
|
|
SEI->getParent()->getTerminator()->eraseFromParent();
|
|
|
|
// We have modified the CFG recompute the (post)dominators.
|
|
PDT->recalculate(Fn);
|
|
DT->recalculate(Fn);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Collected information for a select_value case or default case.
|
|
struct CaseInfo {
|
|
/// The input value or null if it is the default case.
|
|
IntegerLiteralInst *Literal = nullptr;
|
|
|
|
/// The result value.
|
|
SILInstruction *Result = nullptr;
|
|
|
|
/// The block which conains the cond_br of the input value comparison
|
|
/// or the block which assigns the default value.
|
|
SILBasicBlock *CmpOrDefault = nullptr;
|
|
};
|
|
|
|
/// Get information about a potential select_value case (or default).
|
|
/// \p Input is set to the common input value.
|
|
/// \p Pred is the predecessor block of the last merge block of the CFG pattern.
|
|
/// \p ArgNum is the index of the argument passed to the merge block.
|
|
CaseInfo getCaseInfo(SILValue &Input, SILBasicBlock *Pred, unsigned ArgNum) {
|
|
|
|
CaseInfo CaseInfo;
|
|
|
|
auto *TI = Pred->getTerminator();
|
|
if (!isa<BranchInst>(TI))
|
|
return CaseInfo;
|
|
|
|
// Find the Nth argument passed to BB.
|
|
auto Arg = TI->getOperand(ArgNum);
|
|
|
|
// Currently we only accept enums as result values.
|
|
auto *EI2 = dyn_cast<EnumInst>(Arg);
|
|
if (!EI2)
|
|
return CaseInfo;
|
|
|
|
if (EI2->hasOperand()) {
|
|
// ... or enums with enum data. This is exactly the pattern for an enum
|
|
// with integer raw value initialization.
|
|
auto *EI1 = dyn_cast<EnumInst>(EI2->getOperand());
|
|
if (!EI1)
|
|
return CaseInfo;
|
|
|
|
// But not enums with enums with data.
|
|
if (EI1->hasOperand())
|
|
return CaseInfo;
|
|
}
|
|
|
|
// Check if we come to the Pred block by comparing the input value to a
|
|
// constant.
|
|
SILBasicBlock *CmpBlock = Pred->getSinglePredecessor();
|
|
if (!CmpBlock)
|
|
return CaseInfo;
|
|
|
|
auto *CmpInst = dyn_cast<CondBranchInst>(CmpBlock->getTerminator());
|
|
if (!CmpInst)
|
|
return CaseInfo;
|
|
|
|
auto *CondInst = dyn_cast<BuiltinInst>(CmpInst->getCondition());
|
|
if (!CondInst)
|
|
return CaseInfo;
|
|
|
|
if (!CondInst->getName().str().startswith("cmp_eq"))
|
|
return CaseInfo;
|
|
|
|
auto CondArgs = CondInst->getArguments();
|
|
assert(CondArgs.size() == 2);
|
|
|
|
SILValue Arg1 = CondArgs[0];
|
|
SILValue Arg2 = CondArgs[1];
|
|
|
|
if (isa<IntegerLiteralInst>(Arg1))
|
|
std::swap(Arg1, Arg2);
|
|
|
|
auto *CmpVal = dyn_cast<IntegerLiteralInst>(Arg2);
|
|
if (!CmpVal)
|
|
return CaseInfo;
|
|
|
|
SILBasicBlock *FalseBB = CmpInst->getFalseBB();
|
|
if (!FalseBB)
|
|
return CaseInfo;
|
|
|
|
// Check for a common input value.
|
|
if (Input && Input != Arg1)
|
|
return CaseInfo;
|
|
|
|
Input = Arg1;
|
|
CaseInfo.Result = EI2;
|
|
if (CmpInst->getTrueBB() == Pred) {
|
|
// This is a case for the select_value.
|
|
CaseInfo.Literal = CmpVal;
|
|
CaseInfo.CmpOrDefault = CmpBlock;
|
|
} else {
|
|
// This is the default for the select_value.
|
|
CaseInfo.CmpOrDefault = Pred;
|
|
}
|
|
|
|
return CaseInfo;
|
|
}
|
|
|
|
/// Move an instruction which is an operand to the new SelectValueInst to its
|
|
/// correct place.
|
|
/// Either the instruction is somewhere inside the CFG pattern, then we move it
|
|
/// up, immediately before the SelectValueInst in the pattern's dominating
|
|
/// entry block. Or it is somewhere above the entry block, then we can leave the
|
|
/// instruction there.
|
|
void moveIfNotDominating(SILInstruction *I, SILInstruction *InsertPos,
|
|
DominanceInfo *DT) {
|
|
SILBasicBlock *InstBlock = I->getParent();
|
|
SILBasicBlock *InsertBlock = InsertPos->getParent();
|
|
if (!DT->dominates(InstBlock, InsertBlock)) {
|
|
assert(DT->dominates(InsertBlock, InstBlock));
|
|
I->moveBefore(InsertPos);
|
|
}
|
|
}
|
|
|
|
/// Simplify a pattern of integer compares to a select_value.
|
|
/// \code
|
|
/// if input == 1 {
|
|
/// result = Enum.A
|
|
/// } else if input == 2 {
|
|
/// result = Enum.B
|
|
/// ...
|
|
/// } else {
|
|
/// result = Enum.X
|
|
/// }
|
|
/// \endcode
|
|
/// Currently this only works if the input value is an integer and the result
|
|
/// value is an enum.
|
|
/// \p MergeBlock The "last" block which contains an argument in which all
|
|
/// result values are merged.
|
|
/// \p ArgNum The index of the block argument which is the result value.
|
|
/// \p DT The dominance info.
|
|
/// \return Returns true if a select_value is generated.
|
|
bool simplifyToSelectValue(SILBasicBlock *MergeBlock, unsigned ArgNum,
|
|
DominanceInfo *DT) {
|
|
if (!DT)
|
|
return false;
|
|
|
|
// Collect all case infos from the merge block's predecessors.
|
|
SmallPtrSet<SILBasicBlock *, 8> FoundCmpBlocks;
|
|
SmallVector<CaseInfo, 8> CaseInfos;
|
|
SILValue Input;
|
|
for (auto *Pred : MergeBlock->getPreds()) {
|
|
CaseInfo CaseInfo = getCaseInfo(Input, Pred, ArgNum);
|
|
if (!CaseInfo.Result)
|
|
return false;
|
|
|
|
FoundCmpBlocks.insert(CaseInfo.CmpOrDefault);
|
|
CaseInfos.push_back(CaseInfo);
|
|
}
|
|
|
|
SmallVector<std::pair<SILValue, SILValue>, 8> Cases;
|
|
SILValue defaultResult;
|
|
|
|
// The block of the first input value compare. It dominates all other blocks
|
|
// in this CFG pattern.
|
|
SILBasicBlock *dominatingBlock = nullptr;
|
|
|
|
// Build the cases for the SelectValueInst and find the first dominatingBlock.
|
|
for (auto &CaseInfo : CaseInfos) {
|
|
if (CaseInfo.Literal) {
|
|
auto *BrInst = cast<CondBranchInst>(CaseInfo.CmpOrDefault->getTerminator());
|
|
if (FoundCmpBlocks.count(BrInst->getFalseBB()) != 1)
|
|
return false;
|
|
Cases.push_back({CaseInfo.Literal, CaseInfo.Result});
|
|
SILBasicBlock *Pred = CaseInfo.CmpOrDefault->getSinglePredecessor();
|
|
if (!Pred || FoundCmpBlocks.count(Pred) == 0) {
|
|
// There may be only a single block whose predecessor we didn't see. And
|
|
// this is the entry block to the CFG pattern.
|
|
if (dominatingBlock)
|
|
return false;
|
|
dominatingBlock = CaseInfo.CmpOrDefault;
|
|
}
|
|
} else {
|
|
if (defaultResult)
|
|
return false;
|
|
defaultResult = CaseInfo.Result;
|
|
}
|
|
}
|
|
if (!defaultResult)
|
|
return false;
|
|
|
|
if (!dominatingBlock)
|
|
return false;
|
|
|
|
// Generate the select_value right before the first cond_br of the pattern.
|
|
SILInstruction *insertPos = dominatingBlock->getTerminator();
|
|
SILBuilder B(insertPos);
|
|
|
|
// Move all needed operands to a place where they dominate the select_value.
|
|
for (auto &CaseInfo : CaseInfos) {
|
|
if (CaseInfo.Literal)
|
|
moveIfNotDominating(CaseInfo.Literal, insertPos, DT);
|
|
auto *EI2 = dyn_cast<EnumInst>(CaseInfo.Result);
|
|
assert(EI2);
|
|
|
|
if (EI2->hasOperand()) {
|
|
auto *EI1 = dyn_cast<EnumInst>(EI2->getOperand());
|
|
assert(EI1);
|
|
assert(!EI1->hasOperand());
|
|
|
|
moveIfNotDominating(EI1, insertPos, DT);
|
|
}
|
|
moveIfNotDominating(EI2, insertPos, DT);
|
|
}
|
|
|
|
SILArgument *bbArg = MergeBlock->getBBArg(ArgNum);
|
|
auto SelectInst = B.createSelectValue(dominatingBlock->getTerminator()->getLoc(),
|
|
Input, bbArg->getType(),
|
|
defaultResult, Cases);
|
|
|
|
bbArg->replaceAllUsesWith(SelectInst);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Attempt to simplify the ith argument of BB. We simplify cases
|
|
// where there is a single use of the argument that is an extract from
|
|
// a struct or tuple and where the predecessors all build the struct
|
|
// or tuple and pass it directly.
|
|
bool SimplifyCFG::simplifyArgument(SILBasicBlock *BB, unsigned i) {
|
|
auto *A = BB->getBBArg(i);
|
|
|
|
// Try to create a select_value.
|
|
if (simplifyToSelectValue(BB, i, DT))
|
|
return true;
|
|
|
|
// If we are reading an i1, then check to see if it comes from
|
|
// a switch_enum. If so, we may be able to lower this sequence to
|
|
// a select_enum.
|
|
if (A->getType().is<BuiltinIntegerType>())
|
|
return simplifySwitchEnumToSelectEnum(BB, i, A, DT, PDT);
|
|
|
|
// For now, just focus on cases where there is a single use.
|
|
if (!A->hasOneUse())
|
|
return false;
|
|
|
|
auto *Use = *A->use_begin();
|
|
auto *User = cast<SILInstruction>(Use->getUser());
|
|
if (!dyn_cast<StructExtractInst>(User) &&
|
|
!dyn_cast<TupleExtractInst>(User))
|
|
return false;
|
|
|
|
// For now, just handle the case where all predecessors are
|
|
// unconditional branches.
|
|
for (auto *Pred : BB->getPreds()) {
|
|
if (!isa<BranchInst>(Pred->getTerminator()))
|
|
return false;
|
|
auto *Branch = cast<BranchInst>(Pred->getTerminator());
|
|
if (!isa<StructInst>(Branch->getArg(i)) &&
|
|
!isa<TupleInst>(Branch->getArg(i)))
|
|
return false;
|
|
}
|
|
|
|
// Okay, we'll replace the BB arg with one with the right type, replace
|
|
// the uses in this block, and then rewrite the branch operands.
|
|
A->replaceAllUsesWith(SILUndef::get(A->getType(), BB->getModule()));
|
|
auto *NewArg = BB->replaceBBArg(i, User->getType(0));
|
|
User->replaceAllUsesWith(NewArg);
|
|
User->eraseFromParent();
|
|
|
|
// Rewrite the branch operand for each incoming branch.
|
|
for (auto *Pred : BB->getPreds()) {
|
|
if (auto *Branch = cast<BranchInst>(Pred->getTerminator())) {
|
|
auto V = getInsertedValue(cast<SILInstruction>(Branch->getArg(i)),
|
|
User);
|
|
Branch->setOperand(i, V);
|
|
addToWorklist(Pred);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void tryToReplaceArgWithIncomingValue(SILBasicBlock *BB, unsigned i,
|
|
DominanceInfo *DT) {
|
|
auto *A = BB->getBBArg(i);
|
|
SmallVector<SILValue, 4> Incoming;
|
|
if (!A->getIncomingValues(Incoming) || Incoming.empty())
|
|
return;
|
|
|
|
SILValue V = Incoming[0];
|
|
for (size_t Idx = 1, Size = Incoming.size(); Idx < Size; ++Idx) {
|
|
if (Incoming[Idx] != V)
|
|
return;
|
|
}
|
|
|
|
// If the incoming values of all predecessors are equal usually this means
|
|
// that the common incoming value dominates the BB. But: this might be not
|
|
// the case if BB is unreachable. Therefore we still have to check it.
|
|
if (!DT->dominates(V.getDef()->getParentBB(), BB))
|
|
return;
|
|
|
|
// An argument has one result value. We need to replace this with the *value*
|
|
// of the incoming block(s).
|
|
SILValue(A, 0).replaceAllUsesWith(V);
|
|
}
|
|
|
|
bool SimplifyCFG::simplifyArgs(SILBasicBlock *BB) {
|
|
// Ignore blocks with no arguments.
|
|
if (BB->bbarg_empty())
|
|
return false;
|
|
|
|
// Ignore the entry block.
|
|
if (BB->pred_empty())
|
|
return false;
|
|
|
|
// Ignore blocks that are successors of terminators with mandatory args.
|
|
for (SILBasicBlock *pred : BB->getPreds()) {
|
|
if (hasMandatoryArgument(pred->getTerminator()))
|
|
return false;
|
|
}
|
|
|
|
bool Changed = false;
|
|
for (int i = BB->getNumBBArg() - 1; i >= 0; --i) {
|
|
SILArgument *A = BB->getBBArg(i);
|
|
|
|
// Replace a block argument if all incoming values are equal. If this
|
|
// succeeds, argument A will have no uses afterwards.
|
|
if (DT)
|
|
tryToReplaceArgWithIncomingValue(BB, i, DT);
|
|
|
|
// Try to simplify the argument
|
|
if (!A->use_empty()) {
|
|
if (simplifyArgument(BB, i))
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << "*** Erasing " << i <<"th BB argument.\n");
|
|
NumDeadArguments++;
|
|
Changed = true;
|
|
BB->eraseBBArg(i);
|
|
|
|
// Determine the set of predecessors in case any predecessor has
|
|
// two edges to this block (e.g. a conditional branch where both
|
|
// sides reach this block).
|
|
llvm::SmallPtrSet<SILBasicBlock *, 4> PredBBs;
|
|
for (auto *Pred : BB->getPreds())
|
|
PredBBs.insert(Pred);
|
|
|
|
for (auto *Pred : PredBBs)
|
|
removeArgumentFromTerminator(Pred, BB, i);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
class SimplifyCFGPass : public SILFunctionTransform {
|
|
bool EnableJumpThread;
|
|
|
|
public:
|
|
SimplifyCFGPass(bool EnableJumpThread)
|
|
: EnableJumpThread(EnableJumpThread) {}
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
if (SimplifyCFG(*getFunction(), PM, getOptions().VerifyAll,
|
|
EnableJumpThread)
|
|
.run())
|
|
invalidateAnalysis(SILAnalysis::PreserveKind::Nothing);
|
|
}
|
|
|
|
StringRef getName() override { return "Simplify CFG"; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
SILTransform *swift::createSimplifyCFG() {
|
|
return new SimplifyCFGPass(false);
|
|
}
|
|
|
|
SILTransform *swift::createJumpThreadSimplifyCFG() {
|
|
return new SimplifyCFGPass(true);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes only for Testing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
// Used to test critical edge splitting with sil-opt.
|
|
class SplitCriticalEdges : public SILFunctionTransform {
|
|
bool OnlyNonCondBrEdges;
|
|
|
|
public:
|
|
SplitCriticalEdges(bool SplitOnlyNonCondBrEdges)
|
|
: OnlyNonCondBrEdges(SplitOnlyNonCondBrEdges) {}
|
|
|
|
void run() override {
|
|
auto &Fn = *getFunction();
|
|
|
|
// Split all critical egdes from all or non only cond_br terminators.
|
|
bool Changed =
|
|
splitAllCriticalEdges(Fn, OnlyNonCondBrEdges, nullptr, nullptr);
|
|
|
|
if (Changed)
|
|
invalidateAnalysis(SILAnalysis::PreserveKind::Calls);
|
|
}
|
|
|
|
StringRef getName() override { return "Split Critical Edges"; }
|
|
};
|
|
|
|
// Used to test SimplifyCFG::simplifyArgs with sil-opt.
|
|
class SimplifyBBArgs : public SILFunctionTransform {
|
|
public:
|
|
SimplifyBBArgs() {}
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
if (SimplifyCFG(*getFunction(), PM, getOptions().VerifyAll, false)
|
|
.simplifyBlockArgs())
|
|
invalidateAnalysis(SILAnalysis::PreserveKind::Calls);
|
|
}
|
|
|
|
StringRef getName() override { return "Simplify Block Args"; }
|
|
};
|
|
|
|
|
|
} // End anonymous namespace.
|
|
|
|
/// Splits all critical edges in a function.
|
|
SILTransform *swift::createSplitAllCriticalEdges() {
|
|
return new SplitCriticalEdges(false);
|
|
}
|
|
|
|
/// Splits all critical edges from non cond_br terminators in a function.
|
|
SILTransform *swift::createSplitNonCondBrCriticalEdges() {
|
|
return new SplitCriticalEdges(true);
|
|
}
|
|
|
|
// Simplifies basic block arguments.
|
|
SILTransform *swift::createSimplifyBBArgs() {
|
|
return new SimplifyBBArgs();
|
|
}
|
|
|