mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Otherwise, we'll get assertion failures and verifier errors down the line. rdar://problem/20689300 Swift SVN r28144
846 lines
31 KiB
C++
846 lines
31 KiB
C++
//===--- MiscDiagnostics.cpp - AST-Level Diagnostics ----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements AST-level diagnostics.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MiscDiagnostics.h"
|
|
#include "TypeChecker.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "swift/Parse/Lexer.h"
|
|
using namespace swift;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Diagnose assigning variable to itself.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
static Decl *findSimpleReferencedDecl(const Expr *E) {
|
|
if (auto *LE = dyn_cast<LoadExpr>(E))
|
|
E = LE->getSubExpr();
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
|
|
return DRE->getDecl();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static std::pair<Decl *, Decl *> findReferencedDecl(const Expr *E) {
|
|
if (auto *LE = dyn_cast<LoadExpr>(E))
|
|
E = LE->getSubExpr();
|
|
|
|
if (auto *D = findSimpleReferencedDecl(E))
|
|
return std::make_pair(nullptr, D);
|
|
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
|
|
if (auto *BaseDecl = findSimpleReferencedDecl(MRE->getBase()))
|
|
return std::make_pair(BaseDecl, MRE->getMember().getDecl());
|
|
}
|
|
|
|
return std::make_pair(nullptr, nullptr);
|
|
}
|
|
|
|
/// Diagnose assigning variable to itself.
|
|
static void diagSelfAssignment(TypeChecker &TC, const Expr *E) {
|
|
auto *AE = dyn_cast<AssignExpr>(E);
|
|
if (!AE)
|
|
return;
|
|
|
|
auto LHSDecl = findReferencedDecl(AE->getDest());
|
|
auto RHSDecl = findReferencedDecl(AE->getSrc());
|
|
if (LHSDecl.second && LHSDecl == RHSDecl) {
|
|
TC.diagnose(AE->getLoc(), LHSDecl.first ? diag::self_assignment_prop
|
|
: diag::self_assignment_var)
|
|
.highlight(AE->getDest()->getSourceRange())
|
|
.highlight(AE->getSrc()->getSourceRange());
|
|
}
|
|
}
|
|
|
|
|
|
/// Issue a warning on code where a returned expression is on a different line
|
|
/// than the return keyword, but both have the same indentation.
|
|
///
|
|
/// \code
|
|
/// ...
|
|
/// return
|
|
/// foo()
|
|
/// \endcode
|
|
static void diagUnreachableCode(TypeChecker &TC, const Stmt *S) {
|
|
auto *RS = dyn_cast<ReturnStmt>(S);
|
|
if (!RS)
|
|
return;
|
|
if (!RS->hasResult())
|
|
return;
|
|
|
|
auto RetExpr = RS->getResult();
|
|
auto RSLoc = RS->getStartLoc();
|
|
auto RetExprLoc = RetExpr->getStartLoc();
|
|
// FIXME: Expose getColumnNumber() in LLVM SourceMgr to make this check
|
|
// cheaper.
|
|
if (RSLoc.isInvalid() || RetExprLoc.isInvalid() || (RSLoc == RetExprLoc))
|
|
return;
|
|
SourceManager &SM = TC.Context.SourceMgr;
|
|
if (SM.getLineAndColumn(RSLoc).second ==
|
|
SM.getLineAndColumn(RetExprLoc).second) {
|
|
TC.diagnose(RetExpr->getStartLoc(), diag::unindented_code_after_return);
|
|
TC.diagnose(RetExpr->getStartLoc(), diag::indent_expression_to_silence);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
/// Diagnose syntactic restrictions of expressions:
|
|
/// - Module values may only occur as part of qualification.
|
|
/// - Metatype names cannot generally be used as values: they need a "T.self"
|
|
/// qualification unless used in narrow case (e.g. T() for construction).
|
|
///
|
|
static void diagSyntacticUseRestrictions(TypeChecker &TC, const Expr *E) {
|
|
class DiagnoseWalker : public ASTWalker {
|
|
SmallPtrSet<Expr*, 4> AlreadyDiagnosedMetatypes;
|
|
SmallPtrSet<DeclRefExpr*, 4> AlreadyDiagnosedNoEscapes;
|
|
public:
|
|
TypeChecker &TC;
|
|
|
|
DiagnoseWalker(TypeChecker &TC) : TC(TC) {}
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
// Diagnose module values that don't appear as part of a qualification.
|
|
if (auto *ME = dyn_cast<ModuleExpr>(E))
|
|
checkUseOfModuleExpr(ME);
|
|
|
|
// See through implicit conversions of the expression. We want to be able
|
|
// to associate the parent of this expression with the ultimate callee.
|
|
auto Base = E;
|
|
while (auto Conv = dyn_cast<ImplicitConversionExpr>(Base))
|
|
Base = Conv->getSubExpr();
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
|
|
// Verify metatype uses.
|
|
if (isa<TypeDecl>(DRE->getDecl()))
|
|
checkUseOfMetaTypeName(Base);
|
|
|
|
// Verify noescape parameter uses.
|
|
checkNoEscapeParameterUse(DRE, nullptr);
|
|
}
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(Base))
|
|
if (isa<TypeDecl>(MRE->getMember().getDecl()))
|
|
checkUseOfMetaTypeName(Base);
|
|
if (isa<TypeExpr>(Base))
|
|
checkUseOfMetaTypeName(Base);
|
|
|
|
// Check function calls, looking through implicit conversions on the
|
|
// function and inspecting the arguments directly.
|
|
if (auto *Call = dyn_cast<ApplyExpr>(E)) {
|
|
// Check the callee, looking through implicit conversions.
|
|
auto Base = Call->getFn();
|
|
while (auto Conv = dyn_cast<ImplicitConversionExpr>(Base))
|
|
Base = Conv->getSubExpr();
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
|
|
checkNoEscapeParameterUse(DRE, Call);
|
|
|
|
auto *Arg = Call->getArg();
|
|
|
|
// The argument could be shuffled if it includes default arguments,
|
|
// label differences, or other exciting things like that.
|
|
if (auto *TSE = dyn_cast<TupleShuffleExpr>(Arg))
|
|
Arg = TSE->getSubExpr();
|
|
|
|
// The argument is either a ParenExpr or TupleExpr.
|
|
ArrayRef<Expr*> arguments;
|
|
if (auto *TE = dyn_cast<TupleExpr>(Arg))
|
|
arguments = TE->getElements();
|
|
else
|
|
arguments = Call->getArg();
|
|
|
|
// Check each argument.
|
|
for (auto arg : arguments) {
|
|
while (1) {
|
|
if (auto conv = dyn_cast<ImplicitConversionExpr>(arg))
|
|
arg = conv->getSubExpr();
|
|
else if (auto *PE = dyn_cast<ParenExpr>(arg))
|
|
arg = PE->getSubExpr();
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(arg))
|
|
checkNoEscapeParameterUse(DRE, Call);
|
|
}
|
|
}
|
|
|
|
return { true, E };
|
|
}
|
|
|
|
void checkUseOfModuleExpr(ModuleExpr *E) {
|
|
// Allow module values as a part of:
|
|
// - ignored base expressions;
|
|
// - expressions that failed to type check.
|
|
if (auto *ParentExpr = Parent.getAsExpr()) {
|
|
if (isa<DotSyntaxBaseIgnoredExpr>(ParentExpr) ||
|
|
isa<UnresolvedDotExpr>(ParentExpr))
|
|
return;
|
|
}
|
|
|
|
TC.diagnose(E->getStartLoc(), diag::value_of_module_type);
|
|
}
|
|
|
|
/// The DRE argument is a reference to a noescape parameter. Verify that
|
|
/// its uses are ok.
|
|
void checkNoEscapeParameterUse(DeclRefExpr *DRE, Expr *ParentExpr=nullptr) {
|
|
// This only cares about declarations marked noescape.
|
|
if (!DRE->getDecl()->getAttrs().hasAttribute<NoEscapeAttr>())
|
|
return;
|
|
|
|
// Only diagnose this once. If we check and accept this use higher up in
|
|
// the AST, don't recheck here.
|
|
if (!AlreadyDiagnosedNoEscapes.insert(DRE).second)
|
|
return;
|
|
|
|
// The only valid use of the noescape parameter is an immediate call,
|
|
// either as the callee or as an argument (in which case, the typechecker
|
|
// validates that the noescape bit didn't get stripped off).
|
|
if (ParentExpr && isa<ApplyExpr>(ParentExpr)) // param()
|
|
return;
|
|
|
|
TC.diagnose(DRE->getStartLoc(), diag::invalid_noescape_use,
|
|
DRE->getDecl()->getName());
|
|
if (DRE->getDecl()->getAttrs().hasAttribute<AutoClosureAttr>() &&
|
|
DRE->getDecl()->getAttrs().getAttribute<NoEscapeAttr>()->isImplicit())
|
|
TC.diagnose(DRE->getDecl()->getLoc(), diag::noescape_autoclosure,
|
|
DRE->getDecl()->getName());
|
|
}
|
|
|
|
// Diagnose metatype values that don't appear as part of a property,
|
|
// method, or constructor reference.
|
|
void checkUseOfMetaTypeName(Expr *E) {
|
|
// If we've already checked this at a higher level, we're done.
|
|
if (!AlreadyDiagnosedMetatypes.insert(E).second)
|
|
return;
|
|
|
|
// Allow references to types as a part of:
|
|
// - member references T.foo, T.Type, T.self, etc. (but *not* T.type)
|
|
// - constructor calls T()
|
|
if (auto *ParentExpr = Parent.getAsExpr()) {
|
|
// Reject use of "T.dynamicType", it should be written as "T.self".
|
|
if (auto metaExpr = dyn_cast<DynamicTypeExpr>(ParentExpr)) {
|
|
// Add a fixit to replace '.dynamicType' with '.self'.
|
|
TC.diagnose(E->getStartLoc(), diag::type_of_metatype)
|
|
.fixItReplace(metaExpr->getMetatypeLoc(), "self");
|
|
return;
|
|
}
|
|
|
|
// This is the white-list of accepted syntactic forms.
|
|
if (isa<ErrorExpr>(ParentExpr) ||
|
|
isa<DotSelfExpr>(ParentExpr) || // T.self
|
|
isa<CallExpr>(ParentExpr) || // T()
|
|
isa<MemberRefExpr>(ParentExpr) || // T.foo
|
|
isa<UnresolvedMemberExpr>(ParentExpr) ||
|
|
isa<SelfApplyExpr>(ParentExpr) || // T.foo() T()
|
|
isa<UnresolvedDotExpr>(ParentExpr) ||
|
|
isa<DotSyntaxBaseIgnoredExpr>(ParentExpr) ||
|
|
isa<UnresolvedSelectorExpr>(ParentExpr) ||
|
|
isa<UnresolvedSpecializeExpr>(ParentExpr) ||
|
|
isa<OpenExistentialExpr>(ParentExpr)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
TC.diagnose(E->getStartLoc(), diag::value_of_metatype_type);
|
|
// Add fixits to insert '()' or '.self'.
|
|
TC.diagnose(E->getEndLoc(), diag::add_parens_to_type)
|
|
.fixItInsertAfter(E->getEndLoc(), "()");
|
|
TC.diagnose(E->getEndLoc(), diag::add_self_to_type)
|
|
.fixItInsertAfter(E->getEndLoc(), ".self");
|
|
}
|
|
};
|
|
|
|
DiagnoseWalker Walker(TC);
|
|
const_cast<Expr *>(E)->walk(Walker);
|
|
}
|
|
|
|
|
|
/// Diagnose recursive use of properties within their own accessors
|
|
static void diagRecursivePropertyAccess(TypeChecker &TC, const Expr *E,
|
|
const DeclContext *DC) {
|
|
auto fn = dyn_cast<FuncDecl>(DC);
|
|
if (!fn || !fn->isAccessor())
|
|
return;
|
|
|
|
auto var = dyn_cast<VarDecl>(fn->getAccessorStorageDecl());
|
|
if (!var) // Ignore subscripts
|
|
return;
|
|
|
|
class DiagnoseWalker : public ASTWalker {
|
|
TypeChecker &TC;
|
|
VarDecl *Var;
|
|
const FuncDecl *Accessor;
|
|
|
|
public:
|
|
explicit DiagnoseWalker(TypeChecker &TC, VarDecl *var,
|
|
const FuncDecl *Accessor)
|
|
: TC(TC), Var(var), Accessor(Accessor) {}
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
// Handle local and top-level computed variables.
|
|
if (DRE->getDecl() == Var &&
|
|
DRE->getAccessSemantics() != AccessSemantics::DirectToStorage &&
|
|
Accessor->getAccessorKind() != AccessorKind::IsMaterializeForSet) {
|
|
bool shouldDiagnose = true;
|
|
if (auto *ParentExpr = Parent.getAsExpr()) {
|
|
if (isa<DotSyntaxBaseIgnoredExpr>(ParentExpr))
|
|
shouldDiagnose = false;
|
|
else if (Accessor->isSetter())
|
|
shouldDiagnose = !isa<LoadExpr>(ParentExpr);
|
|
}
|
|
if (shouldDiagnose) {
|
|
TC.diagnose(E->getLoc(), diag::recursive_accessor_reference,
|
|
Var->getName(), Accessor->isSetter());
|
|
}
|
|
}
|
|
|
|
// If this is a direct store in a "willSet", we reject this because
|
|
// it is about to get overwritten.
|
|
if (DRE->getDecl() == Var &&
|
|
DRE->getAccessSemantics() == AccessSemantics::DirectToStorage &&
|
|
!dyn_cast_or_null<LoadExpr>(Parent.getAsExpr()) &&
|
|
Accessor->getAccessorKind() == AccessorKind::IsWillSet) {
|
|
TC.diagnose(E->getLoc(), diag::store_in_willset, Var->getName());
|
|
}
|
|
|
|
|
|
} else if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
|
|
// Handle instance and type computed variables.
|
|
// Find MemberRefExprs that have an implicit "self" base.
|
|
if (MRE->getMember().getDecl() == Var &&
|
|
isa<DeclRefExpr>(MRE->getBase()) &&
|
|
MRE->getBase()->isImplicit()) {
|
|
|
|
if (MRE->getAccessSemantics() != AccessSemantics::DirectToStorage) {
|
|
bool shouldDiagnose = false;
|
|
// Warn about any property access in the getter.
|
|
if (Accessor->isGetter())
|
|
shouldDiagnose = true;
|
|
// Warn about stores in the setter, but allow loads.
|
|
if (Accessor->isSetter())
|
|
shouldDiagnose = !dyn_cast_or_null<LoadExpr>(Parent.getAsExpr());
|
|
|
|
if (shouldDiagnose) {
|
|
TC.diagnose(E->getLoc(), diag::recursive_accessor_reference,
|
|
Var->getName(), Accessor->isSetter());
|
|
TC.diagnose(E->getLoc(),
|
|
diag::recursive_accessor_reference_silence)
|
|
.fixItInsert(E->getStartLoc(), "self.");
|
|
}
|
|
} else {
|
|
// If this is a direct store in a "willSet", we reject this because
|
|
// it is about to get overwritten.
|
|
if (!dyn_cast_or_null<LoadExpr>(Parent.getAsExpr()) &&
|
|
Accessor->getAccessorKind() == AccessorKind::IsWillSet) {
|
|
TC.diagnose(E->getLoc(), diag::store_in_willset, Var->getName());
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (auto *PE = dyn_cast<IdentityExpr>(E)) {
|
|
// Look through ParenExprs because a function argument of a single
|
|
// rvalue will have a LoadExpr /outside/ the ParenExpr.
|
|
return { true, PE->getSubExpr() };
|
|
}
|
|
|
|
return { true, E };
|
|
}
|
|
};
|
|
|
|
DiagnoseWalker walker(TC, var, fn);
|
|
const_cast<Expr *>(E)->walk(walker);
|
|
}
|
|
|
|
/// Look for any property references in closures that lack a "self." qualifier.
|
|
/// Within a closure, we require that the source code contain "self." explicitly
|
|
/// because 'self' is captured, not the property value. This is a common source
|
|
/// of confusion, so we force an explicit self.
|
|
static void diagnoseImplicitSelfUseInClosure(TypeChecker &TC, const Expr *E,
|
|
const DeclContext *DC) {
|
|
class DiagnoseWalker : public ASTWalker {
|
|
TypeChecker &TC;
|
|
unsigned InClosure;
|
|
public:
|
|
explicit DiagnoseWalker(TypeChecker &TC, bool isAlreadyInClosure)
|
|
: TC(TC), InClosure(isAlreadyInClosure) {}
|
|
|
|
/// Return true if this is an implicit reference to self.
|
|
static bool isImplicitSelfUse(Expr *E) {
|
|
auto *DRE = dyn_cast<DeclRefExpr>(E);
|
|
return DRE && DRE->isImplicit() && DRE->getDecl()->hasName() &&
|
|
DRE->getDecl()->getName().str() == "self";
|
|
}
|
|
|
|
/// Return true if this is a closure expression that will require "self."
|
|
/// qualification of member references.
|
|
static bool isClosureRequiringSelfQualification(
|
|
const AbstractClosureExpr *CE) {
|
|
if (auto *CCE = dyn_cast<ClosureExpr>(CE))
|
|
if (CCE->isDeferBody())
|
|
return false;
|
|
|
|
// If the closure's type was inferred to be noescape, then it doesn't
|
|
// need qualification.
|
|
return !AnyFunctionRef(const_cast<AbstractClosureExpr *>(CE))
|
|
.isKnownNoEscape();
|
|
}
|
|
|
|
|
|
// Don't walk into nested decls.
|
|
bool walkToDeclPre(Decl *D) override {
|
|
return false;
|
|
}
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
if (auto *CE = dyn_cast<AbstractClosureExpr>(E)) {
|
|
if (!CE->hasSingleExpressionBody())
|
|
return { false, E };
|
|
|
|
// If this is a potentially-escaping closure expression, start looking
|
|
// for references to self if we aren't already.
|
|
if (isClosureRequiringSelfQualification(CE))
|
|
++InClosure;
|
|
}
|
|
|
|
|
|
// If we aren't in a closure, no diagnostics will be produced.
|
|
if (!InClosure)
|
|
return { true, E };
|
|
|
|
// If we see a property reference with an implicit base from within a
|
|
// closure, then reject it as requiring an explicit "self." qualifier. We
|
|
// do this in explicit closures, not autoclosures, because otherwise the
|
|
// transparence of autoclosures is lost.
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(E))
|
|
if (isImplicitSelfUse(MRE->getBase())) {
|
|
TC.diagnose(MRE->getLoc(),
|
|
diag::property_use_in_closure_without_explicit_self,
|
|
MRE->getMember().getDecl()->getName())
|
|
.fixItInsert(MRE->getLoc(), "self.");
|
|
return { false, E };
|
|
}
|
|
|
|
// Handle method calls with a specific diagnostic + fixit.
|
|
if (auto *DSCE = dyn_cast<DotSyntaxCallExpr>(E))
|
|
if (isImplicitSelfUse(DSCE->getBase()) &&
|
|
isa<DeclRefExpr>(DSCE->getFn())) {
|
|
auto MethodExpr = cast<DeclRefExpr>(DSCE->getFn());
|
|
TC.diagnose(DSCE->getLoc(),
|
|
diag::method_call_in_closure_without_explicit_self,
|
|
MethodExpr->getDecl()->getName())
|
|
.fixItInsert(DSCE->getLoc(), "self.");
|
|
return { false, E };
|
|
}
|
|
|
|
// Catch any other implicit uses of self with a generic diagnostic.
|
|
if (isImplicitSelfUse(E))
|
|
TC.diagnose(E->getLoc(), diag::implicit_use_of_self_in_closure);
|
|
|
|
return { true, E };
|
|
}
|
|
|
|
Expr *walkToExprPost(Expr *E) override {
|
|
if (auto *CE = dyn_cast<AbstractClosureExpr>(E)) {
|
|
if (isClosureRequiringSelfQualification(CE)) {
|
|
assert(InClosure);
|
|
--InClosure;
|
|
}
|
|
}
|
|
|
|
return E;
|
|
}
|
|
};
|
|
|
|
bool isAlreadyInClosure = false;
|
|
if (DC->isLocalContext()) {
|
|
while (DC->getParent()->isLocalContext() && !isAlreadyInClosure) {
|
|
if (auto *closure = dyn_cast<AbstractClosureExpr>(DC))
|
|
if (DiagnoseWalker::isClosureRequiringSelfQualification(closure))
|
|
isAlreadyInClosure = true;
|
|
DC = DC->getParent();
|
|
}
|
|
}
|
|
const_cast<Expr *>(E)->walk(DiagnoseWalker(TC, isAlreadyInClosure));
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Diagnose availability.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Emit a diagnostic for references to declarations that have been
|
|
/// marked as unavailable, either through "unavailable" or "obsoleted=".
|
|
static bool diagnoseExplicitUnavailability(TypeChecker &TC, const ValueDecl *D,
|
|
SourceRange R,
|
|
const DeclContext *DC) {
|
|
auto *Attr = AvailabilityAttr::isUnavailable(D);
|
|
if (!Attr)
|
|
return false;
|
|
|
|
// Suppress the diagnostic if we are in synthesized code inside
|
|
// a synthesized function and the reference is lexically
|
|
// contained in a declaration that is itself marked unavailable.
|
|
// The right thing to do here is to not synthesize that code in the
|
|
// first place. rdar://problem/20491640
|
|
if (R.isInvalid() && TC.isInsideImplicitFunction(R, DC) &&
|
|
TC.isInsideUnavailableDeclaration(R, DC)) {
|
|
return false;
|
|
}
|
|
|
|
SourceLoc Loc = R.Start;
|
|
auto Name = D->getFullName();
|
|
|
|
switch (Attr->getUnconditionalAvailability()) {
|
|
case UnconditionalAvailabilityKind::Deprecated:
|
|
break;
|
|
|
|
case UnconditionalAvailabilityKind::None:
|
|
case UnconditionalAvailabilityKind::Unavailable:
|
|
if (!Attr->Rename.empty()) {
|
|
TC.diagnose(Loc, diag::availability_decl_unavailable_rename, Name,
|
|
Attr->Rename).fixItReplace(R, Attr->Rename);
|
|
} else if (Attr->Message.empty()) {
|
|
TC.diagnose(Loc, diag::availability_decl_unavailable, Name).highlight(R);
|
|
} else {
|
|
TC.diagnose(Loc, diag::availability_decl_unavailable_msg, Name,
|
|
Attr->Message).highlight(R);
|
|
}
|
|
break;
|
|
|
|
case UnconditionalAvailabilityKind::UnavailableInSwift:
|
|
if (Attr->Message.empty()) {
|
|
TC.diagnose(Loc, diag::availability_decl_unavailable_in_swift, Name)
|
|
.highlight(R);
|
|
} else {
|
|
TC.diagnose(Loc, diag::availability_decl_unavailable_in_swift_msg, Name,
|
|
Attr->Message).highlight(R);
|
|
}
|
|
break;
|
|
}
|
|
|
|
auto MinVersion = TC.Context.LangOpts.getMinPlatformVersion();
|
|
switch (Attr->getMinVersionAvailability(MinVersion)) {
|
|
case MinVersionComparison::Available:
|
|
case MinVersionComparison::PotentiallyUnavailable:
|
|
llvm_unreachable("These aren't considered unavailable");
|
|
|
|
case MinVersionComparison::Unavailable:
|
|
TC.diagnose(D, diag::availability_marked_unavailable, Name)
|
|
.highlight(Attr->getRange());
|
|
break;
|
|
|
|
case MinVersionComparison::Obsoleted:
|
|
// FIXME: Use of the platformString here is non-awesome for application
|
|
// extensions.
|
|
TC.diagnose(D, diag::availability_obsoleted, Name,
|
|
Attr->prettyPlatformString(),
|
|
*Attr->Obsoleted).highlight(Attr->getRange());
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Diagnose uses of unavailable declarations. Returns true if a diagnostic
|
|
/// was emitted.
|
|
static bool diagAvailability(TypeChecker &TC, const ValueDecl *D,
|
|
SourceRange R, const DeclContext *DC) {
|
|
if (!D)
|
|
return false;
|
|
|
|
if (diagnoseExplicitUnavailability(TC, D, R, DC))
|
|
return true;
|
|
|
|
// Diagnose for deprecation
|
|
if (const AvailabilityAttr *Attr = TypeChecker::getDeprecated(D)) {
|
|
TC.diagnoseDeprecated(R, DC, Attr, D->getFullName());
|
|
}
|
|
|
|
// We only diagnose potentially unavailability here if availability checking
|
|
// is turned on, but we are not treating unavailable symbols as having
|
|
// optional type.
|
|
if (TC.getLangOpts().DisableAvailabilityChecking ||
|
|
TC.getLangOpts().EnableExperimentalUnavailableAsOptional) {
|
|
return false;
|
|
}
|
|
|
|
// Diagnose for potential unavailability
|
|
auto maybeUnavail = TC.checkDeclarationAvailability(D, R.Start, DC);
|
|
if (maybeUnavail.hasValue()) {
|
|
TC.diagnosePotentialUnavailability(D, R, DC, maybeUnavail.getValue());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
class AvailabilityWalker : public ASTWalker {
|
|
/// Describes how the next member reference will be treated as we traverse
|
|
/// the AST.
|
|
enum class MemberAccessContext : unsigned {
|
|
/// The member reference is in a context where an access will call
|
|
/// the getter.
|
|
Getter,
|
|
|
|
/// The member reference is in a context where an access will call
|
|
/// the setter.
|
|
Setter,
|
|
|
|
/// The member reference is in a context where it will be turned into
|
|
/// an inout argument. (Once this happens, we have to conservatively assume
|
|
/// that both the getter and setter could be called.)
|
|
InOut
|
|
};
|
|
|
|
TypeChecker &TC;
|
|
const DeclContext *DC;
|
|
const MemberAccessContext AccessContext;
|
|
|
|
public:
|
|
AvailabilityWalker(
|
|
TypeChecker &TC, const DeclContext *DC,
|
|
MemberAccessContext AccessContext = MemberAccessContext::Getter)
|
|
: TC(TC), DC(DC), AccessContext(AccessContext) {}
|
|
|
|
virtual std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
if (auto DR = dyn_cast<DeclRefExpr>(E))
|
|
diagAvailability(TC, DR->getDecl(), DR->getSourceRange(), DC);
|
|
if (auto MR = dyn_cast<MemberRefExpr>(E)) {
|
|
walkMemberRef(MR);
|
|
return std::make_pair(false, E);
|
|
}
|
|
if (auto OCDR = dyn_cast<OtherConstructorDeclRefExpr>(E))
|
|
diagAvailability(TC, OCDR->getDecl(), OCDR->getConstructorLoc(), DC);
|
|
if (auto DMR = dyn_cast<DynamicMemberRefExpr>(E))
|
|
diagAvailability(TC, DMR->getMember().getDecl(), DMR->getNameLoc(), DC);
|
|
if (auto DS = dyn_cast<DynamicSubscriptExpr>(E))
|
|
diagAvailability(TC, DS->getMember().getDecl(), DS->getSourceRange(), DC);
|
|
if (auto S = dyn_cast<SubscriptExpr>(E)) {
|
|
if (S->hasDecl())
|
|
diagAvailability(TC, S->getDecl().getDecl(), S->getSourceRange(), DC);
|
|
}
|
|
if (auto A = dyn_cast<AssignExpr>(E)) {
|
|
walkAssignExpr(A);
|
|
return std::make_pair(false, E);
|
|
}
|
|
if (auto IO = dyn_cast<InOutExpr>(E)) {
|
|
walkInOutExpr(IO);
|
|
return std::make_pair(false, E);
|
|
}
|
|
|
|
return std::make_pair(true, E);
|
|
}
|
|
|
|
private:
|
|
/// Walk an assignment expression, checking for availability.
|
|
void walkAssignExpr(AssignExpr *E) const {
|
|
// We take over recursive walking of assignment expressions in order to
|
|
// walk the destination and source expressions in different member
|
|
// access contexts.
|
|
Expr *Dest = E->getDest();
|
|
if (!Dest) {
|
|
return;
|
|
}
|
|
|
|
// Check the Dest expression in a setter context.
|
|
// We have an implicit assumption here that the first MemberRefExpr
|
|
// encountered walking (pre-order) is the Dest is the destination of the
|
|
// write. For the moment this is fine -- but future syntax might violate
|
|
// this assumption.
|
|
walkInContext(Dest, MemberAccessContext::Setter);
|
|
|
|
// Check RHS in getter context
|
|
Expr *Source = E->getSrc();
|
|
if (!Source) {
|
|
return;
|
|
}
|
|
walkInContext(Source, MemberAccessContext::Getter);
|
|
}
|
|
|
|
/// Walk a member reference expression, checking for availability.
|
|
void walkMemberRef(MemberRefExpr *E) {
|
|
// Walk the base in a getter context.
|
|
walkInContext(E->getBase(), MemberAccessContext::Getter);
|
|
|
|
ValueDecl *D = E->getMember().getDecl();
|
|
// Diagnose for the the member declaration itself.
|
|
if (diagAvailability(TC, D, E->getNameLoc(), DC)) {
|
|
return;
|
|
}
|
|
|
|
if (TC.getLangOpts().DisableAvailabilityChecking ||
|
|
TC.getLangOpts().EnableExperimentalUnavailableAsOptional) {
|
|
return;
|
|
}
|
|
|
|
if (auto *ASD = dyn_cast<AbstractStorageDecl>(D)) {
|
|
// Diagnose for appropriate accessors, given the access context.
|
|
diagStorageAccess(ASD, E->getSourceRange(), DC);
|
|
}
|
|
}
|
|
|
|
/// Walk an inout expression, checking for availability.
|
|
void walkInOutExpr(InOutExpr *E) {
|
|
walkInContext(E->getSubExpr(), MemberAccessContext::InOut);
|
|
}
|
|
|
|
/// Walk the given expression in the member access context.
|
|
void walkInContext(Expr *E, MemberAccessContext AccessContext) const {
|
|
E->walk(AvailabilityWalker(TC, DC, AccessContext));
|
|
}
|
|
|
|
/// Emit diagnostics, if necessary, for accesses to storage where
|
|
/// the accessor for the AccessContext is not available.
|
|
void diagStorageAccess(AbstractStorageDecl *D,
|
|
SourceRange ReferenceRange,
|
|
const DeclContext *ReferenceDC) const {
|
|
if (!D->hasAccessorFunctions()) {
|
|
return;
|
|
}
|
|
|
|
// Check availability of accessor functions
|
|
switch (AccessContext) {
|
|
case MemberAccessContext::Getter:
|
|
diagAccessorAvailability(D->getGetter(), ReferenceRange, ReferenceDC,
|
|
/*ForInout=*/false);
|
|
break;
|
|
|
|
case MemberAccessContext::Setter:
|
|
diagAccessorAvailability(D->getSetter(), ReferenceRange, ReferenceDC,
|
|
/*ForInout=*/false);
|
|
break;
|
|
|
|
case MemberAccessContext::InOut:
|
|
diagAccessorAvailability(D->getGetter(), ReferenceRange, ReferenceDC,
|
|
/*ForInout=*/true);
|
|
|
|
diagAccessorAvailability(D->getSetter(), ReferenceRange, ReferenceDC,
|
|
/*ForInout=*/true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Emit a diagnostic, if necessary for a potentially unavailable accessor.
|
|
/// Returns true if a diagnostic was emitted.
|
|
void diagAccessorAvailability(FuncDecl *D, SourceRange ReferenceRange,
|
|
const DeclContext *ReferenceDC,
|
|
bool ForInout) const {
|
|
if (!D) {
|
|
return;
|
|
}
|
|
auto MaybeUnavail = TC.checkDeclarationAvailability(D, ReferenceRange.Start,
|
|
DC);
|
|
if (MaybeUnavail.hasValue()) {
|
|
TC.diagnosePotentialAccessorUnavailability(D, ReferenceRange, ReferenceDC,
|
|
MaybeUnavail.getValue(),
|
|
ForInout);
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Diagnose uses of unavailable declarations.
|
|
static void diagAvailability(TypeChecker &TC, const Expr *E,
|
|
const DeclContext *DC) {
|
|
AvailabilityWalker walker(TC, DC);
|
|
const_cast<Expr*>(E)->walk(walker);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// High-level entry points.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void swift::performExprDiagnostics(TypeChecker &TC, const Expr *E,
|
|
const DeclContext *DC) {
|
|
diagSelfAssignment(TC, E);
|
|
diagSyntacticUseRestrictions(TC, E);
|
|
diagRecursivePropertyAccess(TC, E, DC);
|
|
diagnoseImplicitSelfUseInClosure(TC, E, DC);
|
|
diagAvailability(TC, E, DC);
|
|
}
|
|
|
|
void swift::performStmtDiagnostics(TypeChecker &TC, const Stmt *S) {
|
|
TC.checkUnsupportedProtocolType(const_cast<Stmt *>(S));
|
|
return diagUnreachableCode(TC, S);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Utility functions
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void swift::fixItAccessibility(InFlightDiagnostic &diag, ValueDecl *VD,
|
|
Accessibility desiredAccess, bool isForSetter) {
|
|
StringRef fixItString;
|
|
switch (desiredAccess) {
|
|
case Accessibility::Private: fixItString = "private "; break;
|
|
case Accessibility::Internal: fixItString = "internal "; break;
|
|
case Accessibility::Public: fixItString = "public "; break;
|
|
}
|
|
|
|
DeclAttributes &attrs = VD->getAttrs();
|
|
DeclAttribute *attr;
|
|
if (isForSetter) {
|
|
attr = attrs.getAttribute<SetterAccessibilityAttr>();
|
|
cast<AbstractStorageDecl>(VD)->overwriteSetterAccessibility(desiredAccess);
|
|
} else {
|
|
attr = attrs.getAttribute<AccessibilityAttr>();
|
|
VD->overwriteAccessibility(desiredAccess);
|
|
|
|
if (auto *ASD = dyn_cast<AbstractStorageDecl>(VD)) {
|
|
if (auto *getter = ASD->getGetter())
|
|
getter->overwriteAccessibility(desiredAccess);
|
|
|
|
if (auto *setterAttr = attrs.getAttribute<SetterAccessibilityAttr>()) {
|
|
if (setterAttr->getAccess() > desiredAccess)
|
|
fixItAccessibility(diag, VD, desiredAccess, true);
|
|
} else {
|
|
ASD->overwriteSetterAccessibility(desiredAccess);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isForSetter && VD->getFormalAccess() == desiredAccess) {
|
|
assert(attr);
|
|
attr->setInvalid();
|
|
if (!attr->Range.isValid())
|
|
return;
|
|
|
|
// Remove the setter attribute along with a possible single trailing space.
|
|
SourceManager &sourceMgr = VD->getASTContext().SourceMgr;
|
|
SourceLoc nextCharLoc = Lexer::getLocForEndOfToken(sourceMgr,
|
|
attr->Range.End);
|
|
StringRef nextChar = sourceMgr.extractText({ nextCharLoc, 1 });
|
|
if (nextChar == " ")
|
|
diag.fixItRemoveChars(attr->Range.Start, nextCharLoc.getAdvancedLoc(1));
|
|
else
|
|
diag.fixItRemove(attr->Range);
|
|
|
|
} else if (attr) {
|
|
// This uses getLocation() instead of getRange() because we don't want to
|
|
// replace the "(set)" part of a setter attribute.
|
|
diag.fixItReplace(attr->getLocation(), fixItString.drop_back());
|
|
attr->setInvalid();
|
|
|
|
} else if (auto var = dyn_cast<VarDecl>(VD)) {
|
|
if (auto PBD = var->getParentPatternBinding())
|
|
diag.fixItInsert(PBD->getStartLoc(), fixItString);
|
|
|
|
} else {
|
|
diag.fixItInsert(VD->getStartLoc(), fixItString);
|
|
}
|
|
}
|