Files
swift-mirror/lib/Serialization/Deserialization.cpp
John McCall 7a4aeed570 Implement generalized accessors using yield-once coroutines.
For now, the accessors have been underscored as `_read` and `_modify`.
I'll prepare an evolution proposal for this feature which should allow
us to remove the underscores or, y'know, rename them to `purple` and
`lettuce`.

`_read` accessors do not make any effort yet to avoid copying the
value being yielded.  I'll work on it in follow-up patches.

Opaque accesses to properties and subscripts defined with `_modify`
accessors will use an inefficient `materializeForSet` pattern that
materializes the value to a temporary instead of accessing it in-place.
That will be fixed by migrating to `modify` over `materializeForSet`,
which is next up after the `read` optimizations.

SIL ownership verification doesn't pass yet for the test cases here
because of a general fault in SILGen where borrows can outlive their
borrowed value due to being cleaned up on the general cleanup stack
when the borrowed value is cleaned up on the formal-access stack.
Michael, Andy, and I discussed various ways to fix this, but it seems
clear to me that it's not in any way specific to coroutine accesses.

rdar://35399664
2018-07-23 18:59:58 -04:00

5474 lines
184 KiB
C++

//===--- Deserialization.cpp - Loading a serialized AST -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "DeserializationErrors.h"
#include "swift/Serialization/ModuleFile.h"
#include "swift/Serialization/ModuleFormat.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Serialization/BCReadingExtras.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Statistic.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "Serialization"
STATISTIC(NumDeclsLoaded, "# of decls deserialized");
STATISTIC(NumMemberListsLoaded,
"# of nominals/extensions whose members were loaded");
STATISTIC(NumNormalProtocolConformancesLoaded,
"# of normal protocol conformances deserialized");
STATISTIC(NumNormalProtocolConformancesCompleted,
"# of normal protocol conformances completed");
STATISTIC(NumNestedTypeShortcuts,
"# of same-module nested types resolved without lookup");
using namespace swift;
using namespace swift::serialization;
using llvm::Expected;
StringRef swift::getNameOfModule(const ModuleFile *MF) {
return MF->Name;
}
namespace {
struct IDAndKind {
const Decl *D;
DeclID ID;
};
static raw_ostream &operator<<(raw_ostream &os, IDAndKind &&pair) {
return os << Decl::getKindName(pair.D->getKind())
<< "Decl #" << pair.ID;
}
class PrettyDeclDeserialization : public llvm::PrettyStackTraceEntry {
const ModuleFile *MF;
const ModuleFile::Serialized<Decl*> &DeclOrOffset;
DeclID ID;
decls_block::RecordKind Kind;
public:
PrettyDeclDeserialization(ModuleFile *module,
const ModuleFile::Serialized<Decl*> &declOrOffset,
DeclID DID, decls_block::RecordKind kind)
: MF(module), DeclOrOffset(declOrOffset), ID(DID), Kind(kind) {
}
static const char *getRecordKindString(decls_block::RecordKind Kind) {
switch (Kind) {
#define RECORD(Id) case decls_block::Id: return #Id;
#include "swift/Serialization/DeclTypeRecordNodes.def"
}
llvm_unreachable("Unhandled RecordKind in switch.");
}
void print(raw_ostream &os) const override {
if (!DeclOrOffset.isComplete()) {
os << "While deserializing decl #" << ID << " ("
<< getRecordKindString(Kind) << ")";
} else {
os << "While deserializing ";
if (auto VD = dyn_cast<ValueDecl>(DeclOrOffset.get())) {
os << "'" << VD->getBaseName() << "' (" << IDAndKind{VD, ID} << ")";
} else if (auto ED = dyn_cast<ExtensionDecl>(DeclOrOffset.get())) {
os << "extension of '" << ED->getExtendedType() << "' ("
<< IDAndKind{ED, ID} << ")";
} else {
os << IDAndKind{DeclOrOffset.get(), ID};
}
}
os << " in '" << getNameOfModule(MF) << "'\n";
}
};
class PrettyXRefTrace :
public llvm::PrettyStackTraceEntry,
public XRefTracePath {
public:
explicit PrettyXRefTrace(ModuleDecl &M) : XRefTracePath(M) {}
void print(raw_ostream &os) const override {
XRefTracePath::print(os, "\t");
}
};
} // end anonymous namespace
const char DeclDeserializationError::ID = '\0';
void DeclDeserializationError::anchor() {}
const char XRefError::ID = '\0';
void XRefError::anchor() {}
const char OverrideError::ID = '\0';
void OverrideError::anchor() {}
const char TypeError::ID = '\0';
void TypeError::anchor() {}
const char ExtensionError::ID = '\0';
void ExtensionError::anchor() {}
/// Skips a single record in the bitstream.
///
/// Returns true if the next entry is a record of type \p recordKind.
/// Destroys the stream position if the next entry is not a record.
static void skipRecord(llvm::BitstreamCursor &cursor, unsigned recordKind) {
auto next = cursor.advance(AF_DontPopBlockAtEnd);
assert(next.Kind == llvm::BitstreamEntry::Record);
#if NDEBUG
cursor.skipRecord(next.ID);
#else
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned kind = cursor.readRecord(next.ID, scratch, &blobData);
assert(kind == recordKind);
#endif
}
void ModuleFile::fatal(llvm::Error error) {
if (FileContext) {
getContext().Diags.diagnose(SourceLoc(), diag::serialization_fatal, Name);
if (!CompatibilityVersion.empty()) {
if (getContext().LangOpts.EffectiveLanguageVersion
!= CompatibilityVersion) {
SmallString<16> effectiveVersionBuffer, compatVersionBuffer;
{
llvm::raw_svector_ostream out(effectiveVersionBuffer);
out << getContext().LangOpts.EffectiveLanguageVersion;
}
{
llvm::raw_svector_ostream out(compatVersionBuffer);
out << CompatibilityVersion;
}
getContext().Diags.diagnose(
SourceLoc(), diag::serialization_compatibility_version_mismatch,
effectiveVersionBuffer, Name, compatVersionBuffer);
}
}
}
logAllUnhandledErrors(std::move(error), llvm::errs(),
"\n*** DESERIALIZATION FAILURE (please include this "
"section in any bug report) ***\n");
abort();
}
ModuleFile &ModuleFile::getModuleFileForDelayedActions() {
assert(FileContext && "cannot delay actions before associating with a file");
ModuleDecl *associatedModule = getAssociatedModule();
// Check for the common case.
if (associatedModule->getFiles().size() == 1)
return *this;
for (FileUnit *file : associatedModule->getFiles())
if (auto *serialized = dyn_cast<SerializedASTFile>(file))
return serialized->File;
llvm_unreachable("should always have FileContext in the list of files");
}
void ModuleFile::finishPendingActions() {
assert(&getModuleFileForDelayedActions() == this &&
"wrong module used for delayed actions");
}
/// Translate from the serialization DefaultArgumentKind enumerators, which are
/// guaranteed to be stable, to the AST ones.
static Optional<swift::DefaultArgumentKind>
getActualDefaultArgKind(uint8_t raw) {
switch (static_cast<serialization::DefaultArgumentKind>(raw)) {
case serialization::DefaultArgumentKind::None:
return swift::DefaultArgumentKind::None;
case serialization::DefaultArgumentKind::Normal:
return swift::DefaultArgumentKind::Normal;
case serialization::DefaultArgumentKind::Inherited:
return swift::DefaultArgumentKind::Inherited;
case serialization::DefaultArgumentKind::Column:
return swift::DefaultArgumentKind::Column;
case serialization::DefaultArgumentKind::File:
return swift::DefaultArgumentKind::File;
case serialization::DefaultArgumentKind::Line:
return swift::DefaultArgumentKind::Line;
case serialization::DefaultArgumentKind::Function:
return swift::DefaultArgumentKind::Function;
case serialization::DefaultArgumentKind::DSOHandle:
return swift::DefaultArgumentKind::DSOHandle;
case serialization::DefaultArgumentKind::NilLiteral:
return swift::DefaultArgumentKind::NilLiteral;
case serialization::DefaultArgumentKind::EmptyArray:
return swift::DefaultArgumentKind::EmptyArray;
case serialization::DefaultArgumentKind::EmptyDictionary:
return swift::DefaultArgumentKind::EmptyDictionary;
}
return None;
}
ParameterList *ModuleFile::readParameterList() {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch);
assert(recordID == PARAMETERLIST);
(void) recordID;
unsigned numParams;
decls_block::ParameterListLayout::readRecord(scratch, numParams);
SmallVector<ParamDecl*, 8> params;
for (unsigned i = 0; i != numParams; ++i) {
scratch.clear();
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch);
assert(recordID == PARAMETERLIST_ELT);
(void) recordID;
DeclID paramID;
bool isVariadic;
uint8_t rawDefaultArg;
decls_block::ParameterListEltLayout::readRecord(scratch, paramID,
isVariadic, rawDefaultArg);
auto decl = cast<ParamDecl>(getDecl(paramID));
decl->setVariadic(isVariadic);
// Decode the default argument kind.
// FIXME: Default argument expression, if available.
if (auto defaultArg = getActualDefaultArgKind(rawDefaultArg))
decl->setDefaultArgumentKind(*defaultArg);
params.push_back(decl);
}
return ParameterList::create(getContext(), params);
}
Expected<Pattern *> ModuleFile::readPattern(DeclContext *owningDC) {
// Currently, the only case in which this function can fail (return an error)
// is when reading a pattern for a single variable declaration.
using namespace decls_block;
auto readPatternUnchecked = [this](DeclContext *owningDC) -> Pattern * {
Expected<Pattern *> deserialized = readPattern(owningDC);
if (!deserialized) {
fatal(deserialized.takeError());
}
assert(deserialized.get());
return deserialized.get();
};
SmallVector<uint64_t, 8> scratch;
BCOffsetRAII restoreOffset(DeclTypeCursor);
auto next = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (next.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
/// Local function to record the type of this pattern.
auto recordPatternType = [&](Pattern *pattern, Type type) {
if (type->hasTypeParameter())
pattern->setDelayedInterfaceType(type, owningDC);
else
pattern->setType(type);
};
unsigned kind = DeclTypeCursor.readRecord(next.ID, scratch);
switch (kind) {
case decls_block::PAREN_PATTERN: {
bool isImplicit;
ParenPatternLayout::readRecord(scratch, isImplicit);
Pattern *subPattern = readPatternUnchecked(owningDC);
auto result = new (getContext()) ParenPattern(SourceLoc(),
subPattern,
SourceLoc(),
isImplicit);
if (Type interfaceType = subPattern->getDelayedInterfaceType())
result->setDelayedInterfaceType(ParenType::get(getContext(),
interfaceType), owningDC);
else
result->setType(ParenType::get(getContext(), subPattern->getType()));
restoreOffset.reset();
return result;
}
case decls_block::TUPLE_PATTERN: {
TypeID tupleTypeID;
unsigned count;
bool isImplicit;
TuplePatternLayout::readRecord(scratch, tupleTypeID, count, isImplicit);
SmallVector<TuplePatternElt, 8> elements;
for ( ; count > 0; --count) {
scratch.clear();
next = DeclTypeCursor.advance();
assert(next.Kind == llvm::BitstreamEntry::Record);
kind = DeclTypeCursor.readRecord(next.ID, scratch);
assert(kind == decls_block::TUPLE_PATTERN_ELT);
// FIXME: Add something for this record or remove it.
IdentifierID labelID;
TuplePatternEltLayout::readRecord(scratch, labelID);
Identifier label = getIdentifier(labelID);
Pattern *subPattern = readPatternUnchecked(owningDC);
elements.push_back(TuplePatternElt(label, SourceLoc(), subPattern));
}
auto result = TuplePattern::create(getContext(), SourceLoc(),
elements, SourceLoc(), isImplicit);
recordPatternType(result, getType(tupleTypeID));
restoreOffset.reset();
return result;
}
case decls_block::NAMED_PATTERN: {
DeclID varID;
TypeID typeID;
bool isImplicit;
NamedPatternLayout::readRecord(scratch, varID, typeID, isImplicit);
auto deserialized = getDeclChecked(varID);
if (!deserialized) {
// Pass through the error. It's too bad that it affects the whole pattern,
// but that's what we get.
return deserialized.takeError();
}
auto var = cast<VarDecl>(deserialized.get());
auto result = new (getContext()) NamedPattern(var, isImplicit);
recordPatternType(result, getType(typeID));
restoreOffset.reset();
return result;
}
case decls_block::ANY_PATTERN: {
TypeID typeID;
bool isImplicit;
AnyPatternLayout::readRecord(scratch, typeID, isImplicit);
auto result = new (getContext()) AnyPattern(SourceLoc(), isImplicit);
recordPatternType(result, getType(typeID));
restoreOffset.reset();
return result;
}
case decls_block::TYPED_PATTERN: {
TypeID typeID;
bool isImplicit;
TypedPatternLayout::readRecord(scratch, typeID, isImplicit);
Expected<Pattern *> subPattern = readPattern(owningDC);
if (!subPattern) {
// Pass through any errors.
return subPattern;
}
auto result = new (getContext()) TypedPattern(subPattern.get(), TypeLoc(),
isImplicit);
recordPatternType(result, getType(typeID));
restoreOffset.reset();
return result;
}
case decls_block::VAR_PATTERN: {
bool isImplicit, isLet;
VarPatternLayout::readRecord(scratch, isLet, isImplicit);
Pattern *subPattern = readPatternUnchecked(owningDC);
auto result = new (getContext()) VarPattern(SourceLoc(), isLet, subPattern,
isImplicit);
if (Type interfaceType = subPattern->getDelayedInterfaceType())
result->setDelayedInterfaceType(interfaceType, owningDC);
else
result->setType(subPattern->getType());
restoreOffset.reset();
return result;
}
default:
return nullptr;
}
}
SILLayout *ModuleFile::readSILLayout(llvm::BitstreamCursor &Cursor) {
using namespace decls_block;
SmallVector<uint64_t, 16> scratch;
auto next = Cursor.advance(AF_DontPopBlockAtEnd);
assert(next.Kind == llvm::BitstreamEntry::Record);
unsigned kind = Cursor.readRecord(next.ID, scratch);
switch (kind) {
case decls_block::SIL_LAYOUT: {
GenericSignatureID rawGenericSig;
unsigned numFields;
ArrayRef<uint64_t> types;
decls_block::SILLayoutLayout::readRecord(scratch, rawGenericSig,
numFields, types);
SmallVector<SILField, 4> fields;
for (auto fieldInfo : types.slice(0, numFields)) {
bool isMutable = fieldInfo & 0x80000000U;
auto typeId = fieldInfo & 0x7FFFFFFFU;
fields.push_back(
SILField(getType(typeId)->getCanonicalType(),
isMutable));
}
CanGenericSignature canSig;
if (auto sig = getGenericSignature(rawGenericSig))
canSig = sig->getCanonicalSignature();
return SILLayout::get(getContext(), canSig, fields);
}
default:
error();
return nullptr;
}
}
ProtocolConformanceRef ModuleFile::readConformance(
llvm::BitstreamCursor &Cursor,
GenericEnvironment *genericEnv) {
using namespace decls_block;
SmallVector<uint64_t, 16> scratch;
auto next = Cursor.advance(AF_DontPopBlockAtEnd);
assert(next.Kind == llvm::BitstreamEntry::Record);
if (getContext().Stats)
getContext().Stats->getFrontendCounters().NumConformancesDeserialized++;
unsigned kind = Cursor.readRecord(next.ID, scratch);
switch (kind) {
case INVALID_PROTOCOL_CONFORMANCE: {
return ProtocolConformanceRef::forInvalid();
}
case ABSTRACT_PROTOCOL_CONFORMANCE: {
DeclID protoID;
AbstractProtocolConformanceLayout::readRecord(scratch, protoID);
auto proto = cast<ProtocolDecl>(getDecl(protoID));
return ProtocolConformanceRef(proto);
}
case SPECIALIZED_PROTOCOL_CONFORMANCE: {
TypeID conformingTypeID;
SubstitutionMapID substitutionMapID;
SpecializedProtocolConformanceLayout::readRecord(scratch, conformingTypeID,
substitutionMapID);
ASTContext &ctx = getContext();
Type conformingType = getType(conformingTypeID);
if (genericEnv) {
conformingType = genericEnv->mapTypeIntoContext(conformingType);
}
PrettyStackTraceType trace(getAssociatedModule()->getASTContext(),
"reading specialized conformance for",
conformingType);
auto subMap = getSubstitutionMap(substitutionMapID);
ProtocolConformanceRef genericConformance =
readConformance(Cursor, genericEnv);
PrettyStackTraceDecl traceTo("... to", genericConformance.getRequirement());
assert(genericConformance.isConcrete() && "Abstract generic conformance?");
auto conformance =
ctx.getSpecializedConformance(conformingType,
genericConformance.getConcrete(),
subMap);
return ProtocolConformanceRef(conformance);
}
case INHERITED_PROTOCOL_CONFORMANCE: {
TypeID conformingTypeID;
InheritedProtocolConformanceLayout::readRecord(scratch, conformingTypeID);
ASTContext &ctx = getContext();
Type conformingType = getType(conformingTypeID);
if (genericEnv) {
conformingType = genericEnv->mapTypeIntoContext(conformingType);
}
PrettyStackTraceType trace(getAssociatedModule()->getASTContext(),
"reading inherited conformance for",
conformingType);
ProtocolConformanceRef inheritedConformance =
readConformance(Cursor, genericEnv);
PrettyStackTraceDecl traceTo("... to",
inheritedConformance.getRequirement());
assert(inheritedConformance.isConcrete() &&
"Abstract inherited conformance?");
auto conformance =
ctx.getInheritedConformance(conformingType,
inheritedConformance.getConcrete());
return ProtocolConformanceRef(conformance);
}
case NORMAL_PROTOCOL_CONFORMANCE_ID: {
NormalConformanceID conformanceID;
NormalProtocolConformanceIdLayout::readRecord(scratch, conformanceID);
return ProtocolConformanceRef(readNormalConformance(conformanceID));
}
case PROTOCOL_CONFORMANCE_XREF: {
DeclID protoID;
DeclID nominalID;
ModuleID moduleID;
ProtocolConformanceXrefLayout::readRecord(scratch, protoID, nominalID,
moduleID);
auto nominal = cast<NominalTypeDecl>(getDecl(nominalID));
PrettyStackTraceDecl trace("cross-referencing conformance for", nominal);
auto proto = cast<ProtocolDecl>(getDecl(protoID));
PrettyStackTraceDecl traceTo("... to", proto);
auto module = getModule(moduleID);
SmallVector<ProtocolConformance *, 2> conformances;
nominal->lookupConformance(module, proto, conformances);
PrettyStackTraceModuleFile traceMsg(
"If you're seeing a crash here, check that your SDK and dependencies "
"are at least as new as the versions used to build", *this);
// This would normally be an assertion but it's more useful to print the
// PrettyStackTrace here even in no-asserts builds.
if (conformances.empty())
abort();
return ProtocolConformanceRef(conformances.front());
}
// Not a protocol conformance.
default:
error();
ProtocolConformance *conformance = nullptr;
return ProtocolConformanceRef(conformance); // FIXME: this will assert
}
}
NormalProtocolConformance *ModuleFile::readNormalConformance(
NormalConformanceID conformanceID) {
auto &conformanceEntry = NormalConformances[conformanceID-1];
if (conformanceEntry.isComplete()) {
return conformanceEntry.get();
}
using namespace decls_block;
// Find the conformance record.
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(conformanceEntry);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
DeclID protoID;
DeclContextID contextID;
unsigned valueCount, typeCount, conformanceCount;
ArrayRef<uint64_t> rawIDs;
SmallVector<uint64_t, 16> scratch;
unsigned kind = DeclTypeCursor.readRecord(entry.ID, scratch);
if (kind != NORMAL_PROTOCOL_CONFORMANCE) {
error();
return nullptr;
}
NormalProtocolConformanceLayout::readRecord(scratch, protoID,
contextID, typeCount,
valueCount, conformanceCount,
rawIDs);
ASTContext &ctx = getContext();
DeclContext *dc = getDeclContext(contextID);
assert(!isa<ClangModuleUnit>(dc->getModuleScopeContext())
&& "should not have serialized a conformance from a clang module");
Type conformingType = dc->getDeclaredInterfaceType();
PrettyStackTraceType trace(ctx, "reading conformance for", conformingType);
auto proto = cast<ProtocolDecl>(getDecl(protoID));
PrettyStackTraceDecl traceTo("... to", proto);
++NumNormalProtocolConformancesLoaded;
auto conformance = ctx.getConformance(conformingType, proto, SourceLoc(), dc,
ProtocolConformanceState::Incomplete);
// Record this conformance.
if (conformanceEntry.isComplete())
return conformance;
uint64_t offset = conformanceEntry;
conformanceEntry = conformance;
dc->getAsNominalTypeOrNominalTypeExtensionContext()
->registerProtocolConformance(conformance);
// If the conformance is complete, we're done.
if (conformance->isComplete())
return conformance;
conformance->setState(ProtocolConformanceState::Complete);
conformance->setLazyLoader(this, offset);
return conformance;
}
GenericParamList *ModuleFile::maybeReadGenericParams(DeclContext *DC,
GenericParamList *outerParams) {
using namespace decls_block;
assert(DC && "need a context for the decls in the list");
BCOffsetRAII lastRecordOffset(DeclTypeCursor);
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
auto next = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (next.Kind != llvm::BitstreamEntry::Record)
return nullptr;
unsigned kind = DeclTypeCursor.readRecord(next.ID, scratch, &blobData);
if (kind != GENERIC_PARAM_LIST)
return nullptr;
SmallVector<GenericTypeParamDecl *, 8> params;
while (true) {
lastRecordOffset.reset();
bool shouldContinue = true;
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
switch (recordID) {
case GENERIC_PARAM: {
DeclID paramDeclID;
GenericParamLayout::readRecord(scratch, paramDeclID);
auto genericParam = cast<GenericTypeParamDecl>(getDecl(paramDeclID, DC));
// FIXME: There are unfortunate inconsistencies in the treatment of
// generic param decls. Currently the first request for context wins
// because we don't want to change context on-the-fly.
// Here are typical scenarios:
// (1) AST reads decl, get's scope.
// Later, readSILFunction tries to force module scope.
// (2) readSILFunction forces module scope.
// Later, readVTable requests an enclosing scope.
// ...other combinations are possible, but as long as AST lookups
// precede SIL linkage, we should be ok.
assert((genericParam->getDeclContext()->isModuleScopeContext() ||
DC->isModuleScopeContext() ||
genericParam->getDeclContext() == DC ||
genericParam->getDeclContext()->isChildContextOf(DC)) &&
"Mismatched decl context for generic types.");
params.push_back(genericParam);
break;
}
default:
// This record is not part of the GenericParamList.
shouldContinue = false;
break;
}
if (!shouldContinue)
break;
}
// Don't create empty generic parameter lists.
if (params.empty())
return nullptr;
auto paramList = GenericParamList::create(getContext(), SourceLoc(),
params, SourceLoc(), { },
SourceLoc());
paramList->setOuterParameters(outerParams ? outerParams :
DC->getGenericParamsOfContext());
return paramList;
}
void ModuleFile::readGenericRequirements(
SmallVectorImpl<Requirement> &requirements,
llvm::BitstreamCursor &Cursor) {
using namespace decls_block;
BCOffsetRAII lastRecordOffset(Cursor);
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
while (true) {
lastRecordOffset.reset();
bool shouldContinue = true;
auto entry = Cursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = Cursor.readRecord(entry.ID, scratch, &blobData);
switch (recordID) {
case GENERIC_REQUIREMENT: {
uint8_t rawKind;
uint64_t rawTypeIDs[2];
GenericRequirementLayout::readRecord(scratch, rawKind,
rawTypeIDs[0], rawTypeIDs[1]);
switch (rawKind) {
case GenericRequirementKind::Conformance: {
auto subject = getType(rawTypeIDs[0]);
auto constraint = getType(rawTypeIDs[1]);
requirements.push_back(Requirement(RequirementKind::Conformance,
subject, constraint));
break;
}
case GenericRequirementKind::Superclass: {
auto subject = getType(rawTypeIDs[0]);
auto constraint = getType(rawTypeIDs[1]);
requirements.push_back(Requirement(RequirementKind::Superclass,
subject, constraint));
break;
}
case GenericRequirementKind::SameType: {
auto first = getType(rawTypeIDs[0]);
auto second = getType(rawTypeIDs[1]);
requirements.push_back(Requirement(RequirementKind::SameType,
first, second));
break;
}
default:
// Unknown requirement kind. Drop the requirement and continue, but log
// an error so that we don't actually try to generate code.
error();
}
break;
}
case LAYOUT_REQUIREMENT: {
uint8_t rawKind;
uint64_t rawTypeID;
uint32_t size;
uint32_t alignment;
LayoutRequirementLayout::readRecord(scratch, rawKind, rawTypeID,
size, alignment);
auto first = getType(rawTypeID);
LayoutConstraint layout;
LayoutConstraintKind kind = LayoutConstraintKind::UnknownLayout;
switch (rawKind) {
default: {
// Unknown layout requirement kind.
error();
break;
}
case LayoutRequirementKind::NativeRefCountedObject:
kind = LayoutConstraintKind::NativeRefCountedObject;
break;
case LayoutRequirementKind::RefCountedObject:
kind = LayoutConstraintKind::RefCountedObject;
break;
case LayoutRequirementKind::Trivial:
kind = LayoutConstraintKind::Trivial;
break;
case LayoutRequirementKind::TrivialOfExactSize:
kind = LayoutConstraintKind::TrivialOfExactSize;
break;
case LayoutRequirementKind::TrivialOfAtMostSize:
kind = LayoutConstraintKind::TrivialOfAtMostSize;
break;
case LayoutRequirementKind::Class:
kind = LayoutConstraintKind::Class;
break;
case LayoutRequirementKind::NativeClass:
kind = LayoutConstraintKind::NativeClass;
break;
case LayoutRequirementKind::UnknownLayout:
kind = LayoutConstraintKind::UnknownLayout;
break;
}
ASTContext &ctx = getContext();
if (kind != LayoutConstraintKind::TrivialOfAtMostSize &&
kind != LayoutConstraintKind::TrivialOfExactSize)
layout = LayoutConstraint::getLayoutConstraint(kind, ctx);
else
layout =
LayoutConstraint::getLayoutConstraint(kind, size, alignment, ctx);
requirements.push_back(
Requirement(RequirementKind::Layout, first, layout));
break;
}
default:
// This record is not part of the GenericParamList.
shouldContinue = false;
break;
}
if (!shouldContinue)
break;
}
}
void ModuleFile::configureGenericEnvironment(
GenericContext *genericDecl,
serialization::GenericEnvironmentID envID) {
if (envID == 0) return;
auto sigOrEnv = getGenericSignatureOrEnvironment(envID);
// If we just have a generic signature, set up lazy generic environment
// creation.
if (auto genericSig = sigOrEnv.dyn_cast<GenericSignature *>()) {
genericDecl->setLazyGenericEnvironment(this, genericSig, envID);
return;
}
// If we have a full generic environment, it's because it happened to be
// deserialized already. Record it directly.
if (auto genericEnv = sigOrEnv.dyn_cast<GenericEnvironment *>()) {
genericDecl->setGenericEnvironment(genericEnv);
return;
}
}
GenericSignature *ModuleFile::getGenericSignature(
serialization::GenericSignatureID ID) {
using namespace decls_block;
// Zero is a sentinel for having no generic signature.
if (ID == 0) return nullptr;
assert(ID <= GenericSignatures.size() && "invalid GenericSignature ID");
auto &sigOrOffset = GenericSignatures[ID-1];
// If we've already deserialized this generic signature, return it.
if (sigOrOffset.isComplete()) {
return sigOrOffset.get();
}
// Read the generic signature.
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(sigOrOffset);
DeserializingEntityRAII deserializingEntity(*this);
// Read the parameter types.
SmallVector<GenericTypeParamType *, 4> paramTypes;
StringRef blobData;
SmallVector<uint64_t, 8> scratch;
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
if (recordID != GENERIC_SIGNATURE) {
error();
return nullptr;
}
ArrayRef<uint64_t> rawParamIDs;
GenericSignatureLayout::readRecord(scratch, rawParamIDs);
for (unsigned i = 0, n = rawParamIDs.size(); i != n; ++i) {
auto paramTy = getType(rawParamIDs[i])->castTo<GenericTypeParamType>();
paramTypes.push_back(paramTy);
}
// Read the generic requirements.
SmallVector<Requirement, 4> requirements;
readGenericRequirements(requirements, DeclTypeCursor);
// Construct the generic signature from the loaded parameters and
// requirements.
auto signature = GenericSignature::get(paramTypes, requirements);
// If we've already deserialized this generic signature, return it.
if (sigOrOffset.isComplete()) {
return sigOrOffset.get();
}
sigOrOffset = signature;
return signature;
}
llvm::PointerUnion<GenericSignature *, GenericEnvironment *>
ModuleFile::getGenericSignatureOrEnvironment(
serialization::GenericEnvironmentID ID,
bool wantEnvironment) {
// The empty result with the type the caller expects.
llvm::PointerUnion<GenericSignature *, GenericEnvironment *> result;
if (wantEnvironment)
result = static_cast<GenericEnvironment *>(nullptr);
// Zero is a sentinel for having no generic environment.
if (ID == 0) return result;
assert(ID <= GenericEnvironments.size() && "invalid GenericEnvironment ID");
auto &envOrOffset = GenericEnvironments[ID-1];
// If we've already deserialized this generic environment, return it.
if (envOrOffset.isComplete()) {
return envOrOffset.get();
}
// Extract the bit offset or generic signature ID.
uint64_t bitOffset = envOrOffset;
GenericSignature *signature = nullptr;
if (bitOffset & 0x01) {
// We have a generic signature ID.
signature = getGenericSignature(bitOffset >> 1);
} else {
bitOffset = bitOffset >> 1;
// Read the generic environment.
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(bitOffset);
DeserializingEntityRAII deserializingEntity(*this);
SmallVector<GenericTypeParamType *, 4> paramTypes;
using namespace decls_block;
StringRef blobData;
SmallVector<uint64_t, 8> scratch;
// we only want to be tracking the offset for this part of the function,
// since loading the generic signature (a) may read the record we reject,
// and (b) shouldn't have its progress erased. (That function also does its
// own internal tracking.)
BCOffsetRAII lastRecordOffset(DeclTypeCursor);
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
return result;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
if (recordID != SIL_GENERIC_ENVIRONMENT) {
error();
return result;
}
ArrayRef<uint64_t> rawParamIDs;
SILGenericEnvironmentLayout::readRecord(scratch, rawParamIDs);
lastRecordOffset.reset();
if (rawParamIDs.size() % 2 != 0) {
error();
return result;
}
for (unsigned i = 0, n = rawParamIDs.size(); i != n; i += 2) {
Identifier name = getIdentifier(rawParamIDs[i]);
auto paramTy = getType(rawParamIDs[i+1])->castTo<GenericTypeParamType>();
if (!name.empty()) {
auto paramDecl =
createDecl<GenericTypeParamDecl>(getAssociatedModule(),
name,
SourceLoc(),
paramTy->getDepth(),
paramTy->getIndex());
paramTy = paramDecl->getDeclaredInterfaceType()
->castTo<GenericTypeParamType>();
}
paramTypes.push_back(paramTy);
}
// If there are no parameters, the environment is empty.
if (paramTypes.empty()) {
if (wantEnvironment)
envOrOffset = nullptr;
return result;
}
// Read the generic requirements.
SmallVector<Requirement, 4> requirements;
readGenericRequirements(requirements, DeclTypeCursor);
// Construct the generic signature from the loaded parameters and
// requirements.
signature = GenericSignature::get(paramTypes, requirements);
}
// If we only want the signature, return it now.
if (!wantEnvironment) return signature;
// If we've already deserialized this generic environment, return it.
if (envOrOffset.isComplete()) {
return envOrOffset.get();
}
// Form the generic environment. Record it now so that deserialization of
// the archetypes in the environment can refer to this environment.
auto genericEnv = signature->createGenericEnvironment();
envOrOffset = genericEnv;
return genericEnv;
}
GenericEnvironment *ModuleFile::getGenericEnvironment(
serialization::GenericEnvironmentID ID) {
return getGenericSignatureOrEnvironment(ID, /*wantEnvironment=*/true)
.get<GenericEnvironment *>();
}
SubstitutionMap ModuleFile::getSubstitutionMap(
serialization::SubstitutionMapID id) {
using namespace decls_block;
// Zero is a sentinel for having an empty substitution map.
if (id == 0) return SubstitutionMap();
assert(id <= SubstitutionMaps.size() && "invalid SubstitutionMap ID");
auto &substitutionsOrOffset = SubstitutionMaps[id-1];
// If we've already deserialized this substitution map, return it.
if (substitutionsOrOffset.isComplete()) {
return substitutionsOrOffset.get();
}
// Read the substitution map.
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(substitutionsOrOffset);
DeserializingEntityRAII deserializingEntity(*this);
// Read the substitution map.
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return SubstitutionMap();
}
StringRef blobData;
SmallVector<uint64_t, 8> scratch;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
if (recordID != SUBSTITUTION_MAP) {
error();
return SubstitutionMap();
}
GenericSignatureID genericSigID;
uint64_t numConformances;
ArrayRef<uint64_t> replacementTypeIDs;
SubstitutionMapLayout::readRecord(scratch, genericSigID, numConformances,
replacementTypeIDs);
// Generic signature.
auto genericSig = getGenericSignature(genericSigID);
if (!genericSig) {
error();
return SubstitutionMap();
}
// Load the replacement types.
SmallVector<Type, 4> replacementTypes;
replacementTypes.reserve(replacementTypeIDs.size());
for (auto typeID : replacementTypeIDs) {
replacementTypes.push_back(getType(typeID));
}
// Read the conformances.
SmallVector<ProtocolConformanceRef, 4> conformances;
conformances.reserve(numConformances);
for (unsigned i : range(numConformances)) {
(void)i;
conformances.push_back(readConformance(DeclTypeCursor));
}
// Form the substitution map and record it.
auto substitutions =
SubstitutionMap::get(genericSig, ArrayRef<Type>(replacementTypes),
ArrayRef<ProtocolConformanceRef>(conformances));
substitutionsOrOffset = substitutions;
return substitutions;
}
bool ModuleFile::readDefaultWitnessTable(ProtocolDecl *proto) {
using namespace decls_block;
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record)
return true;
SmallVector<uint64_t, 16> witnessIDBuffer;
unsigned kind = DeclTypeCursor.readRecord(entry.ID, witnessIDBuffer);
assert(kind == DEFAULT_WITNESS_TABLE);
(void)kind;
ArrayRef<uint64_t> rawWitnessIDs;
decls_block::DefaultWitnessTableLayout::readRecord(
witnessIDBuffer, rawWitnessIDs);
if (rawWitnessIDs.empty())
return false;
unsigned e = rawWitnessIDs.size();
assert(e % 2 == 0 && "malformed default witness table");
(void) e;
for (unsigned i = 0, e = rawWitnessIDs.size(); i < e; i += 2) {
ValueDecl *requirement = cast<ValueDecl>(getDecl(rawWitnessIDs[i]));
assert(requirement && "unable to deserialize next requirement");
ValueDecl *witness = cast<ValueDecl>(getDecl(rawWitnessIDs[i + 1]));
assert(witness && "unable to deserialize next witness");
assert(requirement->getDeclContext() == proto);
proto->setDefaultWitness(requirement, witness);
}
return false;
}
static Optional<swift::CtorInitializerKind>
getActualCtorInitializerKind(uint8_t raw) {
switch (serialization::CtorInitializerKind(raw)) {
#define CASE(NAME) \
case serialization::CtorInitializerKind::NAME: \
return swift::CtorInitializerKind::NAME;
CASE(Designated)
CASE(Convenience)
CASE(Factory)
CASE(ConvenienceFactory)
#undef CASE
}
return None;
}
/// Determine whether the two modules are re-exported to the same module.
static bool reExportedToSameModule(const ModuleDecl *fromModule,
const ModuleDecl *toModule) {
auto fromClangModule
= dyn_cast<ClangModuleUnit>(fromModule->getFiles().front());
if (!fromClangModule)
return false;
auto toClangModule
= dyn_cast<ClangModuleUnit>(toModule->getFiles().front());
if (!toClangModule)
return false;
return fromClangModule->getExportedModuleName() ==
toClangModule->getExportedModuleName();
}
/// Remove values from \p values that don't match the expected type or module.
///
/// Any of \p expectedTy, \p expectedModule, or \p expectedGenericSig can be
/// omitted, in which case any type or module is accepted. Values imported
/// from Clang can also appear in any module.
static void filterValues(Type expectedTy, ModuleDecl *expectedModule,
CanGenericSignature expectedGenericSig, bool isType,
bool inProtocolExt, bool importedFromClang,
bool isStatic,
Optional<swift::CtorInitializerKind> ctorInit,
SmallVectorImpl<ValueDecl *> &values) {
CanType canTy;
if (expectedTy)
canTy = expectedTy->getCanonicalType();
auto newEnd = std::remove_if(values.begin(), values.end(),
[=](ValueDecl *value) {
// Ignore anything that was parsed (vs. deserialized), because a serialized
// module cannot refer to it.
if (value->getDeclContext()->getParentSourceFile())
return true;
if (isType != isa<TypeDecl>(value))
return true;
if (!value->hasInterfaceType())
return true;
if (canTy && value->getInterfaceType()->getCanonicalType() != canTy)
return true;
if (value->isStatic() != isStatic)
return true;
if (value->hasClangNode() != importedFromClang)
return true;
if (value->getAttrs().hasAttribute<ForbidSerializingReferenceAttr>())
return true;
// FIXME: Should be able to move a value from an extension in a derived
// module to the original definition in a base module.
if (expectedModule && !value->hasClangNode() &&
value->getModuleContext() != expectedModule &&
!reExportedToSameModule(value->getModuleContext(), expectedModule))
return true;
// If we're expecting a member within a constrained extension with a
// particular generic signature, match that signature.
if (expectedGenericSig &&
value->getDeclContext()->getGenericSignatureOfContext()
->getCanonicalSignature() != expectedGenericSig)
return true;
// If we don't expect a specific generic signature, ignore anything from a
// constrained extension.
if (!expectedGenericSig &&
isa<ExtensionDecl>(value->getDeclContext()) &&
cast<ExtensionDecl>(value->getDeclContext())->isConstrainedExtension())
return true;
// If we're looking at members of a protocol or protocol extension,
// filter by whether we expect to find something in a protocol extension or
// not. This lets us distinguish between a protocol member and a protocol
// extension member that have the same type.
if (value->getDeclContext()->getAsProtocolOrProtocolExtensionContext() &&
(bool)value->getDeclContext()->getAsProtocolExtensionContext()
!= inProtocolExt)
return true;
// If we're expecting an initializer with a specific kind, and this is not
// an initializer with that kind, remove it.
if (ctorInit) {
if (!isa<ConstructorDecl>(value) ||
cast<ConstructorDecl>(value)->getInitKind() != *ctorInit)
return true;
}
return false;
});
values.erase(newEnd, values.end());
}
Expected<Decl *>
ModuleFile::resolveCrossReference(ModuleDecl *baseModule, uint32_t pathLen) {
using namespace decls_block;
assert(baseModule && "missing dependency");
PrettyXRefTrace pathTrace(*baseModule);
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
SmallVector<ValueDecl *, 8> values;
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
// Read the first path piece. This one is special because lookup is performed
// against the base module, rather than against the previous link in the path.
// In particular, operator path pieces represent actual operators here, but
// filters on operator functions when they appear later on.
scratch.clear();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
switch (recordID) {
case XREF_TYPE_PATH_PIECE:
case XREF_VALUE_PATH_PIECE: {
IdentifierID IID;
IdentifierID privateDiscriminator = 0;
TypeID TID = 0;
bool isType = (recordID == XREF_TYPE_PATH_PIECE);
bool inProtocolExt = false;
bool importedFromClang = false;
bool isStatic = false;
if (isType)
XRefTypePathPieceLayout::readRecord(scratch, IID, privateDiscriminator,
inProtocolExt, importedFromClang);
else
XRefValuePathPieceLayout::readRecord(scratch, TID, IID, inProtocolExt,
importedFromClang, isStatic);
DeclBaseName name = getDeclBaseName(IID);
pathTrace.addValue(name);
if (privateDiscriminator)
pathTrace.addValue(getIdentifier(privateDiscriminator));
Type filterTy;
if (!isType) {
auto maybeType = getTypeChecked(TID);
if (!maybeType) {
// FIXME: Don't throw away the inner error's information.
llvm::consumeError(maybeType.takeError());
return llvm::make_error<XRefError>("couldn't decode type",
pathTrace, name);
}
filterTy = maybeType.get();
pathTrace.addType(filterTy);
}
if (privateDiscriminator) {
baseModule->lookupMember(values, baseModule, name,
getIdentifier(privateDiscriminator));
} else {
baseModule->lookupQualified(ModuleType::get(baseModule), name,
NL_QualifiedDefault | NL_KnownNoDependency,
/*typeResolver=*/nullptr, values);
}
filterValues(filterTy, nullptr, nullptr, isType, inProtocolExt,
importedFromClang, isStatic, None, values);
break;
}
case XREF_EXTENSION_PATH_PIECE:
llvm_unreachable("can only extend a nominal");
case XREF_OPERATOR_OR_ACCESSOR_PATH_PIECE: {
IdentifierID IID;
uint8_t rawOpKind;
XRefOperatorOrAccessorPathPieceLayout::readRecord(scratch, IID, rawOpKind);
Identifier opName = getIdentifier(IID);
pathTrace.addOperator(opName);
switch (rawOpKind) {
case OperatorKind::Infix:
return baseModule->lookupInfixOperator(opName);
case OperatorKind::Prefix:
return baseModule->lookupPrefixOperator(opName);
case OperatorKind::Postfix:
return baseModule->lookupPostfixOperator(opName);
case OperatorKind::PrecedenceGroup:
return baseModule->lookupPrecedenceGroup(opName);
default:
// Unknown operator kind.
error();
return nullptr;
}
}
case XREF_GENERIC_PARAM_PATH_PIECE:
case XREF_INITIALIZER_PATH_PIECE:
llvm_unreachable("only in a nominal or function");
default:
// Unknown xref kind.
pathTrace.addUnknown(recordID);
error();
return nullptr;
}
auto getXRefDeclNameForError = [&]() -> DeclName {
DeclName result = pathTrace.getLastName();
while (--pathLen) {
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
return Identifier();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
switch (recordID) {
case XREF_TYPE_PATH_PIECE: {
IdentifierID IID;
XRefTypePathPieceLayout::readRecord(scratch, IID, None, None, None);
result = getIdentifier(IID);
break;
}
case XREF_VALUE_PATH_PIECE: {
IdentifierID IID;
XRefValuePathPieceLayout::readRecord(scratch, None, IID, None, None,
None);
result = getIdentifier(IID);
break;
}
case XREF_INITIALIZER_PATH_PIECE:
result = DeclBaseName::createConstructor();
break;
case XREF_EXTENSION_PATH_PIECE:
case XREF_OPERATOR_OR_ACCESSOR_PATH_PIECE:
break;
case XREF_GENERIC_PARAM_PATH_PIECE:
// Can't get the name without deserializing.
result = Identifier();
break;
default:
// Unknown encoding.
return Identifier();
}
}
return result;
};
if (values.empty()) {
return llvm::make_error<XRefError>("top-level value not found", pathTrace,
getXRefDeclNameForError());
}
// Filters for values discovered in the remaining path pieces.
ModuleDecl *M = nullptr;
CanGenericSignature genericSig = nullptr;
// For remaining path pieces, filter or drill down into the results we have.
while (--pathLen) {
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
scratch.clear();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
switch (recordID) {
case XREF_TYPE_PATH_PIECE: {
if (values.size() == 1 && isa<NominalTypeDecl>(values.front())) {
// Fast path for nested types that avoids deserializing all
// members of the parent type.
IdentifierID IID;
IdentifierID privateDiscriminator;
bool importedFromClang = false;
XRefTypePathPieceLayout::readRecord(scratch, IID, privateDiscriminator,
/*inProtocolExt*/None,
importedFromClang);
if (privateDiscriminator)
goto giveUpFastPath;
Identifier memberName = getIdentifier(IID);
pathTrace.addValue(memberName);
llvm::PrettyStackTraceString message{
"If you're seeing a crash here, try passing "
"-Xfrontend -disable-serialization-nested-type-lookup-table"};
auto *baseType = cast<NominalTypeDecl>(values.front());
ModuleDecl *extensionModule = M;
if (!extensionModule)
extensionModule = baseType->getModuleContext();
// FIXME: If 'importedFromClang' is true but 'extensionModule' is an
// overlay module, the search below will fail and we'll fall back to
// the slow path.
// Fault in extensions, then ask every file in the module.
(void)baseType->getExtensions();
TypeDecl *nestedType = nullptr;
for (FileUnit *file : extensionModule->getFiles()) {
if (file == getFile())
continue;
nestedType = file->lookupNestedType(memberName, baseType);
if (nestedType)
break;
}
if (nestedType) {
values.clear();
values.push_back(nestedType);
++NumNestedTypeShortcuts;
break;
}
pathTrace.removeLast();
}
giveUpFastPath:
LLVM_FALLTHROUGH;
}
case XREF_VALUE_PATH_PIECE:
case XREF_INITIALIZER_PATH_PIECE: {
TypeID TID = 0;
DeclBaseName memberName;
Identifier privateDiscriminator;
Optional<swift::CtorInitializerKind> ctorInit;
bool isType = false;
bool inProtocolExt = false;
bool importedFromClang = false;
bool isStatic = false;
switch (recordID) {
case XREF_TYPE_PATH_PIECE: {
IdentifierID IID, discriminatorID;
XRefTypePathPieceLayout::readRecord(scratch, IID, discriminatorID,
inProtocolExt, importedFromClang);
memberName = getDeclBaseName(IID);
privateDiscriminator = getIdentifier(discriminatorID);
isType = true;
break;
}
case XREF_VALUE_PATH_PIECE: {
IdentifierID IID;
XRefValuePathPieceLayout::readRecord(scratch, TID, IID, inProtocolExt,
importedFromClang, isStatic);
memberName = getDeclBaseName(IID);
break;
}
case XREF_INITIALIZER_PATH_PIECE: {
uint8_t kind;
XRefInitializerPathPieceLayout::readRecord(scratch, TID, inProtocolExt,
importedFromClang, kind);
memberName = DeclBaseName::createConstructor();
ctorInit = getActualCtorInitializerKind(kind);
break;
}
default:
llvm_unreachable("Unhandled path piece");
}
pathTrace.addValue(memberName);
if (!privateDiscriminator.empty())
pathTrace.addPrivateDiscriminator(privateDiscriminator);
Type filterTy;
if (!isType) {
auto maybeType = getTypeChecked(TID);
if (!maybeType) {
// FIXME: Don't throw away the inner error's information.
llvm::consumeError(maybeType.takeError());
return llvm::make_error<XRefError>("couldn't decode type",
pathTrace, memberName);
}
filterTy = maybeType.get();
pathTrace.addType(filterTy);
}
if (values.size() != 1) {
return llvm::make_error<XRefError>("multiple matching base values",
pathTrace,
getXRefDeclNameForError());
}
auto nominal = dyn_cast<NominalTypeDecl>(values.front());
values.clear();
if (!nominal) {
return llvm::make_error<XRefError>("base is not a nominal type",
pathTrace,
getXRefDeclNameForError());
}
if (!privateDiscriminator.empty()) {
ModuleDecl *searchModule = M;
if (!searchModule)
searchModule = nominal->getModuleContext();
searchModule->lookupMember(values, nominal, memberName,
privateDiscriminator);
} else {
auto members = nominal->lookupDirect(memberName);
values.append(members.begin(), members.end());
}
filterValues(filterTy, M, genericSig, isType, inProtocolExt,
importedFromClang, isStatic, ctorInit, values);
break;
}
case XREF_EXTENSION_PATH_PIECE: {
ModuleID ownerID;
GenericSignatureID rawGenericSig;
XRefExtensionPathPieceLayout::readRecord(scratch, ownerID, rawGenericSig);
M = getModule(ownerID);
pathTrace.addExtension(M);
// Read the generic signature, if we have one.
genericSig = CanGenericSignature(getGenericSignature(rawGenericSig));
continue;
}
case XREF_OPERATOR_OR_ACCESSOR_PATH_PIECE: {
uint8_t rawKind;
XRefOperatorOrAccessorPathPieceLayout::readRecord(scratch, None,
rawKind);
if (values.empty())
break;
if (!values.front()->getBaseName().isOperator()) {
pathTrace.addAccessor(rawKind);
if (auto storage = dyn_cast<AbstractStorageDecl>(values.front())) {
switch (rawKind) {
case Get:
values.front() = storage->getGetter();
break;
case Set:
values.front() = storage->getSetter();
break;
case MaterializeForSet:
values.front() = storage->getMaterializeForSetFunc();
break;
case Address:
values.front() = storage->getAddressor();
break;
case MutableAddress:
values.front() = storage->getMutableAddressor();
break;
case WillSet:
case DidSet:
llvm_unreachable("invalid XREF accessor kind");
default:
// Unknown accessor kind.
error();
return nullptr;
}
}
break;
}
pathTrace.addOperatorFilter(rawKind);
auto newEnd = std::remove_if(values.begin(), values.end(),
[=](ValueDecl *value) {
auto fn = dyn_cast<FuncDecl>(value);
if (!fn)
return true;
if (!fn->getOperatorDecl())
return true;
if (getStableFixity(fn->getOperatorDecl()->getKind()) != rawKind)
return true;
return false;
});
values.erase(newEnd, values.end());
break;
}
case XREF_GENERIC_PARAM_PATH_PIECE: {
if (values.size() != 1) {
return llvm::make_error<XRefError>("multiple matching base values",
pathTrace,
getXRefDeclNameForError());
}
uint32_t paramIndex;
XRefGenericParamPathPieceLayout::readRecord(scratch, paramIndex);
pathTrace.addGenericParam(paramIndex);
ValueDecl *base = values.front();
GenericParamList *paramList = nullptr;
if (auto nominal = dyn_cast<NominalTypeDecl>(base)) {
if (genericSig) {
// Find an extension in the requested module that has the
// correct generic signature.
for (auto ext : nominal->getExtensions()) {
if (ext->getModuleContext() == M &&
ext->getGenericSignature()->getCanonicalSignature()
== genericSig) {
paramList = ext->getGenericParams();
break;
}
}
assert(paramList && "Couldn't find constrained extension");
} else {
// Simple case: use the nominal type's generic parameters.
paramList = nominal->getGenericParams();
}
} else if (auto alias = dyn_cast<TypeAliasDecl>(base)) {
paramList = alias->getGenericParams();
} else if (auto fn = dyn_cast<AbstractFunctionDecl>(base)) {
paramList = fn->getGenericParams();
} else if (auto subscript = dyn_cast<SubscriptDecl>(base)) {
paramList = subscript->getGenericParams();
}
if (!paramList) {
return llvm::make_error<XRefError>(
"cross-reference to generic param for non-generic type",
pathTrace, getXRefDeclNameForError());
}
if (paramIndex >= paramList->size()) {
return llvm::make_error<XRefError>(
"generic argument index out of bounds",
pathTrace, getXRefDeclNameForError());
}
values.clear();
values.push_back(paramList->getParams()[paramIndex]);
assert(values.back());
break;
}
default:
// Unknown xref path piece.
pathTrace.addUnknown(recordID);
error();
return nullptr;
}
Optional<PrettyStackTraceModuleFile> traceMsg;
if (M != getAssociatedModule()) {
traceMsg.emplace("If you're seeing a crash here, check that your SDK "
"and dependencies match the versions used to build",
*this);
}
if (values.empty()) {
return llvm::make_error<XRefError>("result not found", pathTrace,
getXRefDeclNameForError());
}
// Reset the module filter.
M = nullptr;
genericSig = nullptr;
}
// Make sure we /used/ the last module filter we got.
// This catches the case where the last path piece we saw was an Extension
// path piece, which is not a valid way to end a path. (Cross-references to
// extensions are not allowed because they cannot be uniquely named.)
if (M) {
error();
return nullptr;
}
// When all is said and done, we should have a single value here to return.
if (values.size() != 1) {
return llvm::make_error<XRefError>("result is ambiguous", pathTrace,
getXRefDeclNameForError());
}
return values.front();
}
DeclBaseName ModuleFile::getDeclBaseName(IdentifierID IID) {
if (IID == 0)
return Identifier();
if (IID < NUM_SPECIAL_IDS) {
switch (static_cast<SpecialIdentifierID>(static_cast<uint8_t>(IID))) {
case BUILTIN_MODULE_ID:
case CURRENT_MODULE_ID:
case OBJC_HEADER_MODULE_ID:
llvm_unreachable("Cannot get DeclBaseName of special module id");
case SUBSCRIPT_ID:
return DeclBaseName::createSubscript();
case serialization::CONSTRUCTOR_ID:
return DeclBaseName::createConstructor();
case serialization::DESTRUCTOR_ID:
return DeclBaseName::createDestructor();
case NUM_SPECIAL_IDS:
llvm_unreachable("implementation detail only");
}
}
size_t rawID = IID - NUM_SPECIAL_IDS;
assert(rawID < Identifiers.size() && "invalid identifier ID");
auto identRecord = Identifiers[rawID];
if (identRecord.Offset == 0)
return identRecord.Ident;
assert(!IdentifierData.empty() && "no identifier data in module");
StringRef rawStrPtr = IdentifierData.substr(identRecord.Offset);
size_t terminatorOffset = rawStrPtr.find('\0');
assert(terminatorOffset != StringRef::npos &&
"unterminated identifier string data");
return getContext().getIdentifier(rawStrPtr.slice(0, terminatorOffset));
}
Identifier ModuleFile::getIdentifier(IdentifierID IID) {
auto name = getDeclBaseName(IID);
assert(!name.isSpecial());
return name.getIdentifier();
}
DeclContext *ModuleFile::getLocalDeclContext(DeclContextID DCID) {
assert(DCID != 0 && "invalid local DeclContext ID 0");
auto &declContextOrOffset = LocalDeclContexts[DCID-1];
if (declContextOrOffset.isComplete())
return declContextOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(declContextOrOffset);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
ASTContext &ctx = getContext();
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
switch(recordID) {
case decls_block::ABSTRACT_CLOSURE_EXPR_CONTEXT: {
TypeID closureTypeID;
unsigned discriminator = 0;
bool implicit = false;
DeclContextID parentID;
decls_block::AbstractClosureExprLayout::readRecord(scratch,
closureTypeID,
implicit,
discriminator,
parentID);
DeclContext *parent = getDeclContext(parentID);
auto type = getType(closureTypeID);
declContextOrOffset = new (ctx)
SerializedAbstractClosureExpr(type, implicit, discriminator, parent);
break;
}
case decls_block::TOP_LEVEL_CODE_DECL_CONTEXT: {
DeclContextID parentID;
decls_block::TopLevelCodeDeclContextLayout::readRecord(scratch,
parentID);
DeclContext *parent = getDeclContext(parentID);
declContextOrOffset = new (ctx) SerializedTopLevelCodeDeclContext(parent);
break;
}
case decls_block::PATTERN_BINDING_INITIALIZER_CONTEXT: {
DeclID bindingID;
uint32_t bindingIndex;
decls_block::PatternBindingInitializerLayout::readRecord(scratch,
bindingID,
bindingIndex);
auto decl = getDecl(bindingID);
PatternBindingDecl *binding = cast<PatternBindingDecl>(decl);
if (!declContextOrOffset.isComplete())
declContextOrOffset = new (ctx)
SerializedPatternBindingInitializer(binding, bindingIndex);
break;
}
case decls_block::DEFAULT_ARGUMENT_INITIALIZER_CONTEXT: {
DeclContextID parentID;
unsigned index = 0;
decls_block::DefaultArgumentInitializerLayout::readRecord(scratch,
parentID,
index);
DeclContext *parent = getDeclContext(parentID);
declContextOrOffset = new (ctx)
SerializedDefaultArgumentInitializer(index, parent);
break;
}
default:
llvm_unreachable("Unknown record ID found when reading local DeclContext.");
}
return declContextOrOffset;
}
DeclContext *ModuleFile::getDeclContext(DeclContextID DCID) {
if (DCID == 0)
return FileContext;
assert(DCID <= DeclContexts.size() && "invalid DeclContext ID");
auto &declContextOrOffset = DeclContexts[DCID-1];
if (declContextOrOffset.isComplete())
return declContextOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(declContextOrOffset);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
if (recordID != decls_block::DECL_CONTEXT)
llvm_unreachable("Expected a DECL_CONTEXT record");
DeclContextID declOrDeclContextId;
bool isDecl;
decls_block::DeclContextLayout::readRecord(scratch, declOrDeclContextId,
isDecl);
if (!isDecl)
return getLocalDeclContext(declOrDeclContextId);
auto D = getDecl(declOrDeclContextId);
if (auto ND = dyn_cast<NominalTypeDecl>(D)) {
declContextOrOffset = ND;
} else if (auto ED = dyn_cast<ExtensionDecl>(D)) {
declContextOrOffset = ED;
} else if (auto AFD = dyn_cast<AbstractFunctionDecl>(D)) {
declContextOrOffset = AFD;
} else if (auto SD = dyn_cast<SubscriptDecl>(D)) {
declContextOrOffset = SD;
} else if (auto TAD = dyn_cast<TypeAliasDecl>(D)) {
declContextOrOffset = TAD;
} else {
llvm_unreachable("Unknown Decl : DeclContext kind");
}
return declContextOrOffset;
}
ModuleDecl *ModuleFile::getModule(ModuleID MID) {
if (MID < NUM_SPECIAL_IDS) {
switch (static_cast<SpecialIdentifierID>(static_cast<uint8_t>(MID))) {
case BUILTIN_MODULE_ID:
return getContext().TheBuiltinModule;
case CURRENT_MODULE_ID:
return FileContext->getParentModule();
case OBJC_HEADER_MODULE_ID: {
auto clangImporter =
static_cast<ClangImporter *>(getContext().getClangModuleLoader());
return clangImporter->getImportedHeaderModule();
}
case SUBSCRIPT_ID:
case CONSTRUCTOR_ID:
case DESTRUCTOR_ID:
llvm_unreachable("Modules cannot be named with special names");
case NUM_SPECIAL_IDS:
llvm_unreachable("implementation detail only");
}
}
return getModule(getIdentifier(MID));
}
ModuleDecl *ModuleFile::getModule(ArrayRef<Identifier> name) {
if (name.empty() || name.front().empty())
return getContext().TheBuiltinModule;
// FIXME: duplicated from NameBinder::getModule
if (name.size() == 1 &&
name.front() == FileContext->getParentModule()->getName()) {
if (!ShadowedModule) {
auto importer = getContext().getClangModuleLoader();
assert(importer && "no way to import shadowed module");
ShadowedModule = importer->loadModule(SourceLoc(),
{ { name.front(), SourceLoc() } });
}
return ShadowedModule;
}
SmallVector<ImportDecl::AccessPathElement, 4> importPath;
for (auto pathElem : name)
importPath.push_back({ pathElem, SourceLoc() });
return getContext().getModule(importPath);
}
/// Translate from the Serialization associativity enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::Associativity> getActualAssociativity(uint8_t assoc) {
switch (assoc) {
case serialization::Associativity::LeftAssociative:
return swift::Associativity::Left;
case serialization::Associativity::RightAssociative:
return swift::Associativity::Right;
case serialization::Associativity::NonAssociative:
return swift::Associativity::None;
default:
return None;
}
}
static Optional<swift::StaticSpellingKind>
getActualStaticSpellingKind(uint8_t raw) {
switch (serialization::StaticSpellingKind(raw)) {
case serialization::StaticSpellingKind::None:
return swift::StaticSpellingKind::None;
case serialization::StaticSpellingKind::KeywordStatic:
return swift::StaticSpellingKind::KeywordStatic;
case serialization::StaticSpellingKind::KeywordClass:
return swift::StaticSpellingKind::KeywordClass;
}
return None;
}
static bool isDeclAttrRecord(unsigned ID) {
using namespace decls_block;
switch (ID) {
#define DECL_ATTR(NAME, CLASS, ...) case CLASS##_DECL_ATTR: return true;
#include "swift/Serialization/DeclTypeRecordNodes.def"
default: return false;
}
}
static Optional<swift::AccessLevel> getActualAccessLevel(uint8_t raw) {
switch (serialization::AccessLevel(raw)) {
#define CASE(NAME) \
case serialization::AccessLevel::NAME: \
return swift::AccessLevel::NAME;
CASE(Private)
CASE(FilePrivate)
CASE(Internal)
CASE(Public)
CASE(Open)
#undef CASE
}
return None;
}
static Optional<swift::OptionalTypeKind>
getActualOptionalTypeKind(uint8_t raw) {
switch (serialization::OptionalTypeKind(raw)) {
case serialization::OptionalTypeKind::None:
return OTK_None;
case serialization::OptionalTypeKind::Optional:
return OTK_Optional;
case serialization::OptionalTypeKind::ImplicitlyUnwrappedOptional:
return OTK_ImplicitlyUnwrappedOptional;
}
return None;
}
static Optional<swift::AccessorKind>
getActualAccessorKind(uint8_t raw) {
switch (serialization::AccessorKind(raw)) {
#define ACCESSOR(ID) \
case serialization::AccessorKind::ID: return swift::AccessorKind::ID;
#include "swift/AST/AccessorKinds.def"
}
return None;
}
static Optional<swift::AddressorKind>
getActualAddressorKind(uint8_t raw) {
switch (serialization::AddressorKind(raw)) {
case serialization::AddressorKind::NotAddressor:
return swift::AddressorKind::NotAddressor;
case serialization::AddressorKind::Unsafe:
return swift::AddressorKind::Unsafe;
case serialization::AddressorKind::Owning:
return swift::AddressorKind::Owning;
case serialization::AddressorKind::NativeOwning:
return swift::AddressorKind::NativeOwning;
case serialization::AddressorKind::NativePinning:
return swift::AddressorKind::NativePinning;
}
return None;
}
static Optional<swift::SelfAccessKind>
getActualSelfAccessKind(uint8_t raw) {
switch (serialization::SelfAccessKind(raw)) {
case serialization::SelfAccessKind::NonMutating:
return swift::SelfAccessKind::NonMutating;
case serialization::SelfAccessKind::Mutating:
return swift::SelfAccessKind::Mutating;
case serialization::SelfAccessKind::__Consuming:
return swift::SelfAccessKind::__Consuming;
}
return None;
}
static
Optional<swift::ResilienceExpansion> getActualResilienceExpansion(uint8_t raw) {
switch (serialization::ResilienceExpansion(raw)) {
case serialization::ResilienceExpansion::Minimal:
return swift::ResilienceExpansion::Minimal;
case serialization::ResilienceExpansion::Maximal:
return swift::ResilienceExpansion::Maximal;
}
return None;
}
/// Translate from the serialization VarDeclSpecifier enumerators, which are
/// guaranteed to be stable, to the AST ones.
static Optional<swift::VarDecl::Specifier>
getActualVarDeclSpecifier(serialization::VarDeclSpecifier raw) {
switch (raw) {
#define CASE(ID) \
case serialization::VarDeclSpecifier::ID: \
return swift::VarDecl::Specifier::ID;
CASE(Let)
CASE(Var)
CASE(InOut)
CASE(Shared)
CASE(Owned)
}
#undef CASE
return None;
}
static Optional<swift::ReadImplKind>
getActualReadImplKind(unsigned rawKind) {
switch (serialization::ReadImplKind(rawKind)) {
#define CASE(KIND) \
case serialization::ReadImplKind::KIND: \
return swift::ReadImplKind::KIND;
CASE(Stored)
CASE(Get)
CASE(Inherited)
CASE(Address)
CASE(Read)
#undef CASE
}
return None;
}
static Optional<swift::WriteImplKind>
getActualWriteImplKind(unsigned rawKind) {
switch (serialization::WriteImplKind(rawKind)) {
#define CASE(KIND) \
case serialization::WriteImplKind::KIND: \
return swift::WriteImplKind::KIND;
CASE(Immutable)
CASE(Stored)
CASE(Set)
CASE(StoredWithObservers)
CASE(InheritedWithObservers)
CASE(MutableAddress)
CASE(Modify)
#undef CASE
}
return None;
}
static Optional<swift::ReadWriteImplKind>
getActualReadWriteImplKind(unsigned rawKind) {
switch (serialization::ReadWriteImplKind(rawKind)) {
#define CASE(KIND) \
case serialization::ReadWriteImplKind::KIND: \
return swift::ReadWriteImplKind::KIND;
CASE(Immutable)
CASE(Stored)
CASE(MaterializeForSet)
CASE(MutableAddress)
CASE(MaterializeToTemporary)
CASE(Modify)
#undef CASE
}
return None;
}
void ModuleFile::configureStorage(AbstractStorageDecl *decl,
uint8_t rawReadImplKind,
uint8_t rawWriteImplKind,
uint8_t rawReadWriteImplKind,
AccessorRecord &rawIDs) {
auto readImpl = getActualReadImplKind(rawReadImplKind);
if (!readImpl) return;
auto writeImpl = getActualWriteImplKind(rawWriteImplKind);
if (!writeImpl) return;
auto readWriteImpl = getActualReadWriteImplKind(rawReadWriteImplKind);
if (!readWriteImpl) return;
SmallVector<AccessorDecl*, 8> accessors;
for (DeclID id : rawIDs.IDs) {
auto accessor = dyn_cast_or_null<AccessorDecl>(getDecl(id));
if (!accessor) return;
accessors.push_back(accessor);
}
auto implInfo = StorageImplInfo(*readImpl, *writeImpl, *readWriteImpl);
if (implInfo.isSimpleStored() && accessors.empty())
return;
// We currently don't serialize these locations.
SourceLoc beginLoc, endLoc;
decl->setAccessors(implInfo, beginLoc, accessors, endLoc);
}
template <typename T, typename ...Args>
T *ModuleFile::createDecl(Args &&... args) {
// Note that this method is not used for all decl kinds.
static_assert(std::is_base_of<Decl, T>::value, "not a Decl");
T *result = new (getContext()) T(std::forward<Args>(args)...);
result->setEarlyAttrValidation(true);
return result;
}
static const uint64_t lazyConformanceContextDataPositionMask = 0xFFFFFFFFFFFF;
/// Decode the context data for lazily-loaded conformances.
static std::pair<uint64_t, uint64_t> decodeLazyConformanceContextData(
uint64_t contextData) {
return std::make_pair(contextData >> 48,
contextData & lazyConformanceContextDataPositionMask);
}
/// Encode the context data for lazily-loaded conformances.
static uint64_t encodeLazyConformanceContextData(uint64_t numProtocols,
uint64_t bitPosition) {
assert(numProtocols < 0xFFFF);
assert(bitPosition < lazyConformanceContextDataPositionMask);
return (numProtocols << 48) | bitPosition;
}
Decl *ModuleFile::getDecl(DeclID DID, Optional<DeclContext *> ForcedContext) {
Expected<Decl *> deserialized = getDeclChecked(DID, ForcedContext);
if (!deserialized) {
fatal(deserialized.takeError());
}
return deserialized.get();
}
Expected<Decl *>
ModuleFile::getDeclChecked(DeclID DID, Optional<DeclContext *> ForcedContext) {
// Tag every deserialized ValueDecl coming out of getDeclChecked with its ID.
Expected<Decl *> deserialized = getDeclCheckedImpl(DID, ForcedContext);
if (deserialized && deserialized.get()) {
if (auto *IDC = dyn_cast<IterableDeclContext>(deserialized.get())) {
// Only set the DeclID on the returned Decl if it's one that was loaded
// and _wasn't_ one that had its DeclID set elsewhere (a followed XREF).
if (IDC->wasDeserialized() &&
static_cast<uint32_t>(IDC->getDeclID()) == 0) {
IDC->setDeclID(DID);
}
}
}
return deserialized;
}
Expected<Decl *>
ModuleFile::getDeclCheckedImpl(DeclID DID, Optional<DeclContext *> ForcedContext) {
if (DID == 0)
return nullptr;
assert(DID <= Decls.size() && "invalid decl ID");
auto &declOrOffset = Decls[DID-1];
if (declOrOffset.isComplete())
return declOrOffset;
++NumDeclsLoaded;
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(declOrOffset);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize decls represented by sub-blocks.
error();
return nullptr;
}
ASTContext &ctx = getContext();
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
if (auto s = ctx.Stats)
s->getFrontendCounters().NumDeclsDeserialized++;
// Read the attributes (if any).
// This isn't just using DeclAttributes because that would result in the
// attributes getting reversed.
// FIXME: If we reverse them at serialization time we could get rid of this.
DeclAttribute *DAttrs = nullptr;
DeclAttribute **AttrsNext = &DAttrs;
auto AddAttribute = [&](DeclAttribute *Attr) {
// Advance the linked list.
*AttrsNext = Attr;
AttrsNext = Attr->getMutableNext();
};
unsigned recordID;
class PrivateDiscriminatorRAII {
ModuleFile &moduleFile;
Serialized<Decl *> &declOrOffset;
public:
Identifier discriminator;
PrivateDiscriminatorRAII(ModuleFile &moduleFile,
Serialized<Decl *> &declOrOffset)
: moduleFile(moduleFile), declOrOffset(declOrOffset) {}
~PrivateDiscriminatorRAII() {
if (!discriminator.empty() && declOrOffset.isComplete())
if (auto value = dyn_cast_or_null<ValueDecl>(declOrOffset.get()))
moduleFile.PrivateDiscriminatorsByValue[value] = discriminator;
}
};
class LocalDiscriminatorRAII {
Serialized<Decl *> &declOrOffset;
public:
unsigned discriminator;
LocalDiscriminatorRAII(Serialized<Decl *> &declOrOffset)
: declOrOffset(declOrOffset), discriminator(0) {}
~LocalDiscriminatorRAII() {
if (discriminator != 0 && declOrOffset.isComplete())
if (auto value = dyn_cast<ValueDecl>(declOrOffset.get()))
value->setLocalDiscriminator(discriminator);
}
};
PrivateDiscriminatorRAII privateDiscriminatorRAII{*this, declOrOffset};
LocalDiscriminatorRAII localDiscriminatorRAII(declOrOffset);
DeserializingEntityRAII deserializingEntity(*this);
// Local function that handles the "inherited" list for a type.
auto handleInherited
= [&](TypeDecl *nominal, ArrayRef<uint64_t> rawInheritedIDs) {
auto inheritedTypes = ctx.Allocate<TypeLoc>(rawInheritedIDs.size());
for_each(inheritedTypes, rawInheritedIDs,
[this](TypeLoc &tl, uint64_t rawID) {
tl = TypeLoc::withoutLoc(getType(rawID));
});
nominal->setInherited(inheritedTypes);
};
while (true) {
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize decls represented by sub-blocks.
error();
return nullptr;
}
recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
if (isDeclAttrRecord(recordID)) {
DeclAttribute *Attr = nullptr;
switch (recordID) {
case decls_block::SILGenName_DECL_ATTR: {
bool isImplicit;
serialization::decls_block::SILGenNameDeclAttrLayout::readRecord(
scratch, isImplicit);
Attr = new (ctx) SILGenNameAttr(blobData, isImplicit);
break;
}
case decls_block::CDecl_DECL_ATTR: {
bool isImplicit;
serialization::decls_block::CDeclDeclAttrLayout::readRecord(
scratch, isImplicit);
Attr = new (ctx) CDeclAttr(blobData, isImplicit);
break;
}
case decls_block::Alignment_DECL_ATTR: {
bool isImplicit;
unsigned alignment;
serialization::decls_block::AlignmentDeclAttrLayout::readRecord(
scratch, isImplicit, alignment);
Attr = new (ctx) AlignmentAttr(alignment, SourceLoc(), SourceRange(),
isImplicit);
break;
}
case decls_block::SwiftNativeObjCRuntimeBase_DECL_ATTR: {
bool isImplicit;
IdentifierID nameID;
serialization::decls_block::SwiftNativeObjCRuntimeBaseDeclAttrLayout
::readRecord(scratch, isImplicit, nameID);
auto name = getIdentifier(nameID);
Attr = new (ctx) SwiftNativeObjCRuntimeBaseAttr(name, SourceLoc(),
SourceRange(),
isImplicit);
break;
}
case decls_block::Semantics_DECL_ATTR: {
bool isImplicit;
serialization::decls_block::SemanticsDeclAttrLayout::readRecord(
scratch, isImplicit);
Attr = new (ctx) SemanticsAttr(blobData, isImplicit);
break;
}
case decls_block::Inline_DECL_ATTR: {
unsigned kind;
serialization::decls_block::InlineDeclAttrLayout::readRecord(
scratch, kind);
Attr = new (ctx) InlineAttr((InlineKind)kind);
break;
}
case decls_block::Optimize_DECL_ATTR: {
unsigned kind;
serialization::decls_block::OptimizeDeclAttrLayout::readRecord(
scratch, kind);
Attr = new (ctx) OptimizeAttr((OptimizationMode)kind);
break;
}
case decls_block::Effects_DECL_ATTR: {
unsigned kind;
serialization::decls_block::EffectsDeclAttrLayout::readRecord(scratch,
kind);
Attr = new (ctx) EffectsAttr((EffectsKind)kind);
break;
}
case decls_block::Available_DECL_ATTR: {
#define LIST_VER_TUPLE_PIECES(X)\
X##_Major, X##_Minor, X##_Subminor, X##_HasMinor, X##_HasSubminor
#define DEF_VER_TUPLE_PIECES(X) unsigned LIST_VER_TUPLE_PIECES(X)
#define DECODE_VER_TUPLE(X)\
if (X##_HasMinor) {\
if (X##_HasSubminor)\
X = clang::VersionTuple(X##_Major, X##_Minor, X##_Subminor);\
else\
X = clang::VersionTuple(X##_Major, X##_Minor);\
}\
else X = clang::VersionTuple(X##_Major);
bool isImplicit;
bool isUnavailable;
bool isDeprecated;
DEF_VER_TUPLE_PIECES(Introduced);
DEF_VER_TUPLE_PIECES(Deprecated);
DEF_VER_TUPLE_PIECES(Obsoleted);
unsigned platform, messageSize, renameSize;
// Decode the record, pulling the version tuple information.
serialization::decls_block::AvailableDeclAttrLayout::readRecord(
scratch, isImplicit, isUnavailable, isDeprecated,
LIST_VER_TUPLE_PIECES(Introduced),
LIST_VER_TUPLE_PIECES(Deprecated),
LIST_VER_TUPLE_PIECES(Obsoleted),
platform, messageSize, renameSize);
StringRef message = blobData.substr(0, messageSize);
blobData = blobData.substr(messageSize);
StringRef rename = blobData.substr(0, renameSize);
clang::VersionTuple Introduced, Deprecated, Obsoleted;
DECODE_VER_TUPLE(Introduced)
DECODE_VER_TUPLE(Deprecated)
DECODE_VER_TUPLE(Obsoleted)
PlatformAgnosticAvailabilityKind platformAgnostic;
if (isUnavailable)
platformAgnostic = PlatformAgnosticAvailabilityKind::Unavailable;
else if (isDeprecated)
platformAgnostic = PlatformAgnosticAvailabilityKind::Deprecated;
else if (((PlatformKind)platform) == PlatformKind::none &&
(!Introduced.empty() ||
!Deprecated.empty() ||
!Obsoleted.empty()))
platformAgnostic =
PlatformAgnosticAvailabilityKind::SwiftVersionSpecific;
else
platformAgnostic = PlatformAgnosticAvailabilityKind::None;
Attr = new (ctx) AvailableAttr(
SourceLoc(), SourceRange(),
(PlatformKind)platform, message, rename,
Introduced, SourceRange(),
Deprecated, SourceRange(),
Obsoleted, SourceRange(),
platformAgnostic, isImplicit);
break;
#undef DEF_VER_TUPLE_PIECES
#undef LIST_VER_TUPLE_PIECES
#undef DECODE_VER_TUPLE
}
case decls_block::ObjC_DECL_ATTR: {
bool isImplicit;
bool isImplicitName;
bool isSwift3Inferred;
uint64_t numArgs;
ArrayRef<uint64_t> rawPieceIDs;
serialization::decls_block::ObjCDeclAttrLayout::readRecord(
scratch, isImplicit, isSwift3Inferred, isImplicitName, numArgs,
rawPieceIDs);
SmallVector<Identifier, 4> pieces;
for (auto pieceID : rawPieceIDs)
pieces.push_back(getIdentifier(pieceID));
if (numArgs == 0)
Attr = ObjCAttr::create(ctx, None, isImplicitName);
else
Attr = ObjCAttr::create(ctx, ObjCSelector(ctx, numArgs-1, pieces),
isImplicitName);
Attr->setImplicit(isImplicit);
cast<ObjCAttr>(Attr)->setSwift3Inferred(isSwift3Inferred);
break;
}
case decls_block::Specialize_DECL_ATTR: {
unsigned exported;
SpecializeAttr::SpecializationKind specializationKind;
unsigned specializationKindVal;
SmallVector<Requirement, 8> requirements;
serialization::decls_block::SpecializeDeclAttrLayout::readRecord(
scratch, exported, specializationKindVal);
specializationKind = specializationKindVal
? SpecializeAttr::SpecializationKind::Partial
: SpecializeAttr::SpecializationKind::Full;
readGenericRequirements(requirements, DeclTypeCursor);
Attr = SpecializeAttr::create(ctx, SourceLoc(), SourceRange(),
requirements, exported != 0,
specializationKind);
break;
}
#define SIMPLE_DECL_ATTR(NAME, CLASS, ...) \
case decls_block::CLASS##_DECL_ATTR: { \
bool isImplicit; \
serialization::decls_block::CLASS##DeclAttrLayout::readRecord( \
scratch, isImplicit); \
Attr = new (ctx) CLASS##Attr(isImplicit); \
break; \
}
#include "swift/AST/Attr.def"
default:
// We don't know how to deserialize this kind of attribute.
error();
return nullptr;
}
if (!Attr)
return nullptr;
AddAttribute(Attr);
} else if (recordID == decls_block::PRIVATE_DISCRIMINATOR) {
IdentifierID discriminatorID;
decls_block::PrivateDiscriminatorLayout::readRecord(scratch,
discriminatorID);
privateDiscriminatorRAII.discriminator = getIdentifier(discriminatorID);
} else if (recordID == decls_block::LOCAL_DISCRIMINATOR) {
unsigned discriminator;
decls_block::LocalDiscriminatorLayout::readRecord(scratch, discriminator);
localDiscriminatorRAII.discriminator = discriminator;
} else {
break;
}
// Advance bitstream cursor to the next record.
entry = DeclTypeCursor.advance();
// Prepare to read the next record.
scratch.clear();
}
PrettyDeclDeserialization stackTraceEntry(
this, declOrOffset, DID, static_cast<decls_block::RecordKind>(recordID));
switch (recordID) {
case decls_block::TYPE_ALIAS_DECL: {
IdentifierID nameID;
DeclContextID contextID;
TypeID underlyingTypeID, interfaceTypeID;
bool isImplicit;
GenericEnvironmentID genericEnvID;
uint8_t rawAccessLevel;
ArrayRef<uint64_t> dependencyIDs;
decls_block::TypeAliasLayout::readRecord(scratch, nameID, contextID,
underlyingTypeID, interfaceTypeID,
isImplicit, genericEnvID,
rawAccessLevel, dependencyIDs);
Identifier name = getIdentifier(nameID);
for (TypeID dependencyID : dependencyIDs) {
auto dependency = getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()));
}
}
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
auto genericParams = maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto alias = createDecl<TypeAliasDecl>(SourceLoc(), SourceLoc(), name,
SourceLoc(), genericParams, DC);
declOrOffset = alias;
configureGenericEnvironment(alias, genericEnvID);
alias->setUnderlyingType(getType(underlyingTypeID));
if (auto accessLevel = getActualAccessLevel(rawAccessLevel)) {
alias->setAccess(*accessLevel);
} else {
error();
return nullptr;
}
if (isImplicit)
alias->setImplicit();
break;
}
case decls_block::GENERIC_TYPE_PARAM_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit;
unsigned depth;
unsigned index;
decls_block::GenericTypeParamDeclLayout::readRecord(scratch, nameID,
contextID,
isImplicit,
depth,
index);
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto genericParam = createDecl<GenericTypeParamDecl>(DC,
getIdentifier(nameID),
SourceLoc(),
depth,
index);
declOrOffset = genericParam;
if (isImplicit)
genericParam->setImplicit();
break;
}
case decls_block::ASSOCIATED_TYPE_DECL: {
IdentifierID nameID;
DeclContextID contextID;
TypeID defaultDefinitionID;
bool isImplicit;
ArrayRef<uint64_t> rawOverriddenIDs;
decls_block::AssociatedTypeDeclLayout::readRecord(scratch, nameID,
contextID,
defaultDefinitionID,
isImplicit,
rawOverriddenIDs);
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
// The where-clause information is pushed up into the protocol
// (specifically, into its requirement signature) and
// serialized/deserialized there, so the actual Decl doesn't need to store
// it.
TrailingWhereClause *trailingWhere = nullptr;
auto assocType = createDecl<AssociatedTypeDecl>(
DC, SourceLoc(), getIdentifier(nameID), SourceLoc(), trailingWhere,
this, defaultDefinitionID);
declOrOffset = assocType;
assocType->computeType();
assert(!assocType->getDeclaredInterfaceType()->hasError() &&
"erroneous associated type");
AccessLevel parentAccess = cast<ProtocolDecl>(DC)->getFormalAccess();
assocType->setAccess(std::max(parentAccess, AccessLevel::Internal));
if (isImplicit)
assocType->setImplicit();
// Overridden associated types.
SmallVector<ValueDecl *, 2> overriddenAssocTypes;
for (auto overriddenID : rawOverriddenIDs) {
if (auto overriddenAssocType =
dyn_cast_or_null<AssociatedTypeDecl>(getDecl(overriddenID))) {
overriddenAssocTypes.push_back(overriddenAssocType);
}
}
assocType->setOverriddenDecls(overriddenAssocTypes);
break;
}
case decls_block::STRUCT_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit;
bool isObjC;
GenericEnvironmentID genericEnvID;
uint8_t rawAccessLevel;
unsigned numConformances;
ArrayRef<uint64_t> rawInheritedIDs;
decls_block::StructLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC, genericEnvID,
rawAccessLevel,
numConformances,
rawInheritedIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto genericParams = maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto theStruct = createDecl<StructDecl>(SourceLoc(), getIdentifier(nameID),
SourceLoc(), None, genericParams,
DC);
declOrOffset = theStruct;
// Read the generic environment.
configureGenericEnvironment(theStruct, genericEnvID);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel)) {
theStruct->setAccess(*accessLevel);
} else {
error();
return nullptr;
}
if (isImplicit)
theStruct->setImplicit();
theStruct->setIsObjC(isObjC);
theStruct->computeType();
handleInherited(theStruct, rawInheritedIDs);
theStruct->setMemberLoader(this, DeclTypeCursor.GetCurrentBitNo());
skipRecord(DeclTypeCursor, decls_block::MEMBERS);
theStruct->setConformanceLoader(
this,
encodeLazyConformanceContextData(numConformances,
DeclTypeCursor.GetCurrentBitNo()));
break;
}
case decls_block::CONSTRUCTOR_DECL: {
DeclContextID contextID;
uint8_t rawFailability;
bool isImplicit, isObjC, hasStubImplementation, throws;
GenericEnvironmentID genericEnvID;
uint8_t storedInitKind, rawAccessLevel;
TypeID interfaceID;
DeclID overriddenID;
bool needsNewVTableEntry, firstTimeRequired;
uint8_t rawDefaultArgumentResilienceExpansion;
unsigned numArgNames;
ArrayRef<uint64_t> argNameAndDependencyIDs;
decls_block::ConstructorLayout::readRecord(scratch, contextID,
rawFailability, isImplicit,
isObjC, hasStubImplementation,
throws, storedInitKind,
genericEnvID, interfaceID,
overriddenID,
rawAccessLevel,
needsNewVTableEntry,
rawDefaultArgumentResilienceExpansion,
firstTimeRequired,
numArgNames,
argNameAndDependencyIDs);
// Resolve the name ids.
SmallVector<Identifier, 2> argNames;
for (auto argNameID : argNameAndDependencyIDs.slice(0, numArgNames))
argNames.push_back(getIdentifier(argNameID));
DeclName name(ctx, DeclBaseName::createConstructor(), argNames);
Optional<swift::CtorInitializerKind> initKind =
getActualCtorInitializerKind(storedInitKind);
DeclDeserializationError::Flags errorFlags;
if (initKind == CtorInitializerKind::Designated)
errorFlags |= DeclDeserializationError::DesignatedInitializer;
if (needsNewVTableEntry) {
errorFlags |= DeclDeserializationError::NeedsVTableEntry;
DeclAttributes attrs;
attrs.setRawAttributeChain(DAttrs);
if (attrs.hasAttribute<RequiredAttr>())
errorFlags |= DeclDeserializationError::NeedsAllocatingVTableEntry;
}
if (firstTimeRequired)
errorFlags |= DeclDeserializationError::NeedsAllocatingVTableEntry;
auto overridden = getDeclChecked(overriddenID);
if (!overridden) {
llvm::consumeError(overridden.takeError());
return llvm::make_error<OverrideError>(name, errorFlags);
}
for (auto dependencyID : argNameAndDependencyIDs.slice(numArgNames)) {
auto dependency = getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()), errorFlags);
}
}
auto parent = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto *genericParams = maybeReadGenericParams(parent);
if (declOrOffset.isComplete())
return declOrOffset;
OptionalTypeKind failability = OTK_None;
if (auto actualFailability = getActualOptionalTypeKind(rawFailability))
failability = *actualFailability;
auto ctor =
createDecl<ConstructorDecl>(name, SourceLoc(),
failability, /*FailabilityLoc=*/SourceLoc(),
/*Throws=*/throws, /*ThrowsLoc=*/SourceLoc(),
/*BodyParams=*/nullptr, nullptr,
genericParams, parent);
declOrOffset = ctor;
configureGenericEnvironment(ctor, genericEnvID);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel)) {
ctor->setAccess(*accessLevel);
} else {
error();
return nullptr;
}
bool mutating = parent->getDeclaredInterfaceType()->hasReferenceSemantics();
auto *selfDecl = ParamDecl::createSelf(SourceLoc(), parent,
/*static*/ false,
/*mutating*/ mutating);
selfDecl->setImplicit();
auto *bodyParams = readParameterList();
assert(bodyParams && "missing parameters for constructor");
ctor->setParameters(selfDecl, bodyParams);
auto interfaceType = getType(interfaceID);
ctor->setInterfaceType(interfaceType);
// Set the initializer interface type of the constructor.
auto allocType = ctor->getInterfaceType();
auto selfParam = computeSelfParam(ctor, /*isInitializingCtor=*/true);
if (auto polyFn = allocType->getAs<GenericFunctionType>()) {
ctor->setInitializerInterfaceType(
GenericFunctionType::get(polyFn->getGenericSignature(),
{selfParam}, polyFn->getResult(),
polyFn->getExtInfo()));
} else {
auto fn = allocType->castTo<FunctionType>();
ctor->setInitializerInterfaceType(FunctionType::get({selfParam},
fn->getResult(),
fn->getExtInfo()));
}
if (auto errorConvention = maybeReadForeignErrorConvention())
ctor->setForeignErrorConvention(*errorConvention);
if (isImplicit)
ctor->setImplicit();
ctor->setIsObjC(isObjC);
if (hasStubImplementation)
ctor->setStubImplementation(true);
if (initKind.hasValue())
ctor->setInitKind(initKind.getValue());
if (auto overriddenCtor = cast_or_null<ConstructorDecl>(overridden.get()))
ctor->setOverriddenDecl(overriddenCtor);
ctor->setNeedsNewVTableEntry(needsNewVTableEntry);
if (auto defaultArgumentResilienceExpansion = getActualResilienceExpansion(
rawDefaultArgumentResilienceExpansion)) {
ctor->setDefaultArgumentResilienceExpansion(
*defaultArgumentResilienceExpansion);
} else {
error();
return nullptr;
}
break;
}
case decls_block::VAR_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit, isObjC, isStatic, hasNonPatternBindingInit;
bool isGetterMutating, isSetterMutating;
unsigned rawSpecifier, numAccessors;
uint8_t readImpl, writeImpl, readWriteImpl;
uint8_t rawAccessLevel, rawSetterAccessLevel;
TypeID interfaceTypeID;
AccessorRecord accessors;
DeclID overriddenID;
ArrayRef<uint64_t> accessorAndDependencyIDs;
decls_block::VarLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC, isStatic, rawSpecifier,
hasNonPatternBindingInit,
isGetterMutating, isSetterMutating,
readImpl, writeImpl, readWriteImpl,
numAccessors,
interfaceTypeID,
overriddenID,
rawAccessLevel, rawSetterAccessLevel,
accessorAndDependencyIDs);
Identifier name = getIdentifier(nameID);
Expected<Decl *> overridden = getDeclChecked(overriddenID);
if (!overridden) {
llvm::consumeError(overridden.takeError());
return llvm::make_error<OverrideError>(name);
}
// Exctract the accessor IDs.
for (DeclID accessorID : accessorAndDependencyIDs.slice(0, numAccessors)) {
accessors.IDs.push_back(accessorID);
}
accessorAndDependencyIDs = accessorAndDependencyIDs.slice(numAccessors);
for (TypeID dependencyID : accessorAndDependencyIDs) {
auto dependency = getTypeChecked(dependencyID);
if (!dependency) {
// Stored properties in classes still impact class object layout because
// their offset is computed and stored in the field offset vector.
DeclDeserializationError::Flags flags;
if (!isStatic) {
auto actualReadImpl = getActualReadImplKind(readImpl);
if (actualReadImpl && *actualReadImpl == ReadImplKind::Stored) {
flags |= DeclDeserializationError::Flag::NeedsFieldOffsetVectorEntry;
}
}
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()), flags);
}
}
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto specifier = getActualVarDeclSpecifier(
(serialization::VarDeclSpecifier)rawSpecifier);
if (!specifier) {
error();
return nullptr;
}
auto var = createDecl<VarDecl>(/*IsStatic*/ isStatic, *specifier,
/*IsCaptureList*/ false, SourceLoc(), name,
Type(), DC);
var->setHasNonPatternBindingInit(hasNonPatternBindingInit);
var->setIsGetterMutating(isGetterMutating);
var->setIsSetterMutating(isSetterMutating);
declOrOffset = var;
Type interfaceType = getType(interfaceTypeID);
var->setInterfaceType(interfaceType);
if (auto referenceStorage = interfaceType->getAs<ReferenceStorageType>())
AddAttribute(
new (ctx) ReferenceOwnershipAttr(referenceStorage->getOwnership()));
configureStorage(var, readImpl, writeImpl, readWriteImpl, accessors);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel)) {
var->setAccess(*accessLevel);
} else {
error();
return nullptr;
}
if (var->isSettable(nullptr)) {
if (auto setterAccess = getActualAccessLevel(rawSetterAccessLevel)) {
var->setSetterAccess(*setterAccess);
} else {
error();
return nullptr;
}
}
if (isImplicit)
var->setImplicit();
var->setIsObjC(isObjC);
if (auto overriddenVar = cast_or_null<VarDecl>(overridden.get())) {
var->setOverriddenDecl(overriddenVar);
AddAttribute(new (ctx) OverrideAttr(SourceLoc()));
}
break;
}
case decls_block::PARAM_DECL: {
IdentifierID argNameID, paramNameID;
DeclContextID contextID;
unsigned rawSpecifier;
TypeID interfaceTypeID;
decls_block::ParamLayout::readRecord(scratch, argNameID, paramNameID,
contextID, rawSpecifier,
interfaceTypeID);
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto specifier = getActualVarDeclSpecifier(
(serialization::VarDeclSpecifier)rawSpecifier);
if (!specifier) {
error();
return nullptr;
}
auto param = createDecl<ParamDecl>(*specifier, SourceLoc(), SourceLoc(),
getIdentifier(argNameID), SourceLoc(),
getIdentifier(paramNameID), Type(), DC);
declOrOffset = param;
auto paramTy = getType(interfaceTypeID);
if (paramTy->hasError()) {
// FIXME: This should never happen, because we don't serialize
// error types.
DC->dumpContext();
paramTy->dump();
error();
return nullptr;
}
param->setInterfaceType(paramTy->getInOutObjectType());
break;
}
case decls_block::FUNC_DECL:
case decls_block::ACCESSOR_DECL: {
bool isAccessor = (recordID == decls_block::ACCESSOR_DECL);
DeclContextID contextID;
bool isImplicit;
bool isStatic;
uint8_t rawStaticSpelling, rawAccessLevel, rawMutModifier;
uint8_t rawAccessorKind, rawAddressorKind;
bool isObjC, hasDynamicSelf, hasForcedStaticDispatch, throws;
unsigned numNameComponentsBiased;
GenericEnvironmentID genericEnvID;
TypeID interfaceTypeID;
DeclID associatedDeclID;
DeclID overriddenID;
DeclID accessorStorageDeclID;
bool needsNewVTableEntry;
uint8_t rawDefaultArgumentResilienceExpansion;
ArrayRef<uint64_t> nameAndDependencyIDs;
if (!isAccessor) {
decls_block::FuncLayout::readRecord(scratch, contextID, isImplicit,
isStatic, rawStaticSpelling, isObjC,
rawMutModifier, hasDynamicSelf,
hasForcedStaticDispatch, throws,
genericEnvID,
interfaceTypeID,
associatedDeclID, overriddenID,
numNameComponentsBiased,
rawAccessLevel,
needsNewVTableEntry,
rawDefaultArgumentResilienceExpansion,
nameAndDependencyIDs);
} else {
decls_block::AccessorLayout::readRecord(scratch, contextID, isImplicit,
isStatic, rawStaticSpelling, isObjC,
rawMutModifier, hasDynamicSelf,
hasForcedStaticDispatch, throws,
genericEnvID,
interfaceTypeID,
overriddenID,
accessorStorageDeclID,
rawAccessorKind, rawAddressorKind,
rawAccessLevel,
needsNewVTableEntry,
rawDefaultArgumentResilienceExpansion,
nameAndDependencyIDs);
}
DeclDeserializationError::Flags errorFlags;
if (needsNewVTableEntry)
errorFlags |= DeclDeserializationError::NeedsVTableEntry;
// Parse the accessor-specific fields.
AbstractStorageDecl *storage = nullptr;
AccessorKind accessorKind;
AddressorKind addressorKind;
if (isAccessor) {
auto storageResult = getDeclChecked(accessorStorageDeclID);
if (!storageResult ||
!(storage =
dyn_cast_or_null<AbstractStorageDecl>(storageResult.get()))) {
// FIXME: "TypeError" isn't exactly correct for this.
return llvm::make_error<TypeError>(
DeclName(), takeErrorInfo(storageResult.takeError()), errorFlags);
}
if (auto accessorKindResult = getActualAccessorKind(rawAccessorKind)) {
accessorKind = *accessorKindResult;
} else {
error();
return nullptr;
}
if (auto addressorKindResult = getActualAddressorKind(rawAddressorKind)) {
addressorKind = *addressorKindResult;
} else {
error();
return nullptr;
}
// Deserializing the storage declaration will cause a recurrence
// into this code. When we come out, don't create the accessor twice.
// TODO: find some better way of breaking this cycle, like lazily
// deserializing the accessors.
if (auto accessor = storage->getAccessor(accessorKind))
return accessor;
}
// Resolve the name ids.
DeclName name;
ArrayRef<uint64_t> dependencyIDs;
if (isAccessor) {
dependencyIDs = nameAndDependencyIDs;
} else {
Identifier baseName = getIdentifier(nameAndDependencyIDs.front());
if (numNameComponentsBiased != 0) {
SmallVector<Identifier, 2> names;
for (auto nameID : nameAndDependencyIDs.slice(1,
numNameComponentsBiased-1)){
names.push_back(getIdentifier(nameID));
}
name = DeclName(ctx, baseName, names);
dependencyIDs = nameAndDependencyIDs.slice(numNameComponentsBiased);
} else {
name = baseName;
dependencyIDs = nameAndDependencyIDs.drop_front();
}
}
Expected<Decl *> overridden = getDeclChecked(overriddenID);
if (!overridden) {
llvm::consumeError(overridden.takeError());
return llvm::make_error<OverrideError>(name, errorFlags);
}
for (TypeID dependencyID : dependencyIDs) {
auto dependency = getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()), errorFlags);
}
}
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
// Read generic params before reading the type, because the type may
// reference generic parameters, and we want them to have a dummy
// DeclContext for now.
GenericParamList *genericParams = maybeReadGenericParams(DC);
auto staticSpelling = getActualStaticSpellingKind(rawStaticSpelling);
if (!staticSpelling.hasValue()) {
error();
return nullptr;
}
if (declOrOffset.isComplete())
return declOrOffset;
bool hasImplicitSelfDecl = DC->isTypeContext();
FuncDecl *fn;
if (!isAccessor) {
fn = FuncDecl::createDeserialized(
ctx, /*StaticLoc=*/SourceLoc(), staticSpelling.getValue(),
/*FuncLoc=*/SourceLoc(), name, /*NameLoc=*/SourceLoc(),
/*Throws=*/throws, /*ThrowsLoc=*/SourceLoc(),
genericParams, hasImplicitSelfDecl, DC);
} else {
fn = AccessorDecl::createDeserialized(
ctx, /*FuncLoc=*/SourceLoc(), /*AccessorKeywordLoc=*/SourceLoc(),
accessorKind, addressorKind, storage,
/*StaticLoc=*/SourceLoc(), staticSpelling.getValue(),
/*Throws=*/throws, /*ThrowsLoc=*/SourceLoc(),
genericParams, hasImplicitSelfDecl, DC);
}
fn->setEarlyAttrValidation();
declOrOffset = fn;
configureGenericEnvironment(fn, genericEnvID);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel)) {
fn->setAccess(*accessLevel);
} else {
error();
return nullptr;
}
if (auto SelfAccessKind = getActualSelfAccessKind(rawMutModifier)) {
fn->setSelfAccessKind(*SelfAccessKind);
} else {
error();
return nullptr;
}
if (!isAccessor) {
if (Decl *associated = getDecl(associatedDeclID)) {
if (auto op = dyn_cast<OperatorDecl>(associated)) {
fn->setOperatorDecl(op);
if (isa<PrefixOperatorDecl>(op))
fn->getAttrs().add(new (ctx) PrefixAttr(/*implicit*/false));
else if (isa<PostfixOperatorDecl>(op))
fn->getAttrs().add(new (ctx) PostfixAttr(/*implicit*/false));
// Note that an explicit 'infix' is not required.
}
// Otherwise, unknown associated decl kind.
}
}
// Set the interface type.
auto interfaceType = getType(interfaceTypeID);
fn->setInterfaceType(interfaceType);
ParamDecl *selfDecl = nullptr;
if (DC->isTypeContext()) {
selfDecl = ParamDecl::createSelf(SourceLoc(), DC,
fn->isStatic(),
fn->isMutating());
selfDecl->setImplicit();
}
ParameterList *paramList = readParameterList();
fn->setParameters(selfDecl, paramList);
if (auto errorConvention = maybeReadForeignErrorConvention())
fn->setForeignErrorConvention(*errorConvention);
if (auto overriddenFunc = cast_or_null<FuncDecl>(overridden.get())) {
fn->setOverriddenDecl(overriddenFunc);
AddAttribute(new (ctx) OverrideAttr(SourceLoc()));
}
fn->setStatic(isStatic);
if (isImplicit)
fn->setImplicit();
fn->setIsObjC(isObjC);
fn->setDynamicSelf(hasDynamicSelf);
fn->setForcedStaticDispatch(hasForcedStaticDispatch);
fn->setNeedsNewVTableEntry(needsNewVTableEntry);
if (auto defaultArgumentResilienceExpansion = getActualResilienceExpansion(
rawDefaultArgumentResilienceExpansion)) {
fn->setDefaultArgumentResilienceExpansion(
*defaultArgumentResilienceExpansion);
} else {
error();
return nullptr;
}
break;
}
case decls_block::PATTERN_BINDING_DECL: {
DeclContextID contextID;
bool isImplicit;
bool isStatic;
uint8_t RawStaticSpelling;
unsigned numPatterns;
ArrayRef<uint64_t> initContextIDs;
decls_block::PatternBindingLayout::readRecord(scratch, contextID,
isImplicit,
isStatic,
RawStaticSpelling,
numPatterns,
initContextIDs);
auto StaticSpelling = getActualStaticSpellingKind(RawStaticSpelling);
if (!StaticSpelling.hasValue()) {
error();
return nullptr;
}
auto dc = getDeclContext(contextID);
SmallVector<std::pair<Pattern *, DeclContextID>, 4> patterns;
for (unsigned i = 0; i != numPatterns; ++i) {
auto pattern = readPattern(dc);
if (!pattern) {
// Silently drop the pattern...
llvm::consumeError(pattern.takeError());
// ...but continue to read any further patterns we're expecting.
continue;
}
patterns.emplace_back(pattern.get(), DeclContextID());
if (!initContextIDs.empty())
patterns.back().second = initContextIDs[i];
}
auto binding =
PatternBindingDecl::createDeserialized(ctx, SourceLoc(),
StaticSpelling.getValue(),
SourceLoc(), patterns.size(), dc);
binding->setEarlyAttrValidation(true);
declOrOffset = binding;
binding->setStatic(isStatic);
if (isImplicit)
binding->setImplicit();
for (unsigned i = 0; i != patterns.size(); ++i) {
DeclContext *initContext = getDeclContext(patterns[i].second);
binding->setPattern(i, patterns[i].first, initContext);
}
break;
}
case decls_block::PROTOCOL_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit, isClassBounded, isObjC, existentialTypeSupported;
GenericEnvironmentID genericEnvID;
TypeID superclassID;
uint8_t rawAccessLevel;
ArrayRef<uint64_t> rawInheritedIDs;
decls_block::ProtocolLayout::readRecord(scratch, nameID, contextID,
isImplicit, isClassBounded, isObjC,
existentialTypeSupported,
genericEnvID, superclassID,
rawAccessLevel, rawInheritedIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto proto = createDecl<ProtocolDecl>(DC, SourceLoc(), SourceLoc(),
getIdentifier(nameID), None,
/*TrailingWhere=*/nullptr);
declOrOffset = proto;
proto->setSuperclass(getType(superclassID));
proto->setRequiresClass(isClassBounded);
proto->setExistentialTypeSupported(existentialTypeSupported);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel)) {
proto->setAccess(*accessLevel);
} else {
error();
return nullptr;
}
auto genericParams = maybeReadGenericParams(DC);
assert(genericParams && "protocol with no generic parameters?");
proto->setGenericParams(genericParams);
handleInherited(proto, rawInheritedIDs);
configureGenericEnvironment(proto, genericEnvID);
if (isImplicit)
proto->setImplicit();
proto->setIsObjC(isObjC);
proto->computeType();
proto->setCircularityCheck(CircularityCheck::Checked);
// Establish the requirement signature.
{
SmallVector<Requirement, 4> requirements;
readGenericRequirements(requirements, DeclTypeCursor);
proto->setRequirementSignature(requirements);
}
proto->setMemberLoader(this, DeclTypeCursor.GetCurrentBitNo());
break;
}
case decls_block::PREFIX_OPERATOR_DECL: {
IdentifierID nameID;
DeclContextID contextID;
decls_block::PrefixOperatorLayout::readRecord(scratch, nameID,
contextID);
auto DC = getDeclContext(contextID);
declOrOffset = createDecl<PrefixOperatorDecl>(DC, SourceLoc(),
getIdentifier(nameID),
SourceLoc());
break;
}
case decls_block::POSTFIX_OPERATOR_DECL: {
IdentifierID nameID;
DeclContextID contextID;
decls_block::PostfixOperatorLayout::readRecord(scratch, nameID,
contextID);
auto DC = getDeclContext(contextID);
declOrOffset = createDecl<PostfixOperatorDecl>(DC, SourceLoc(),
getIdentifier(nameID),
SourceLoc());
break;
}
case decls_block::INFIX_OPERATOR_DECL: {
IdentifierID nameID;
DeclContextID contextID;
DeclID precedenceGroupID;
decls_block::InfixOperatorLayout::readRecord(scratch, nameID, contextID,
precedenceGroupID);
PrecedenceGroupDecl *precedenceGroup = nullptr;
Identifier precedenceGroupName;
if (precedenceGroupID) {
precedenceGroup =
dyn_cast_or_null<PrecedenceGroupDecl>(getDecl(precedenceGroupID));
if (precedenceGroup) {
precedenceGroupName = precedenceGroup->getName();
}
}
auto DC = getDeclContext(contextID);
auto result = createDecl<InfixOperatorDecl>(DC, SourceLoc(),
getIdentifier(nameID),
SourceLoc(), SourceLoc(),
precedenceGroupName,
SourceLoc());
result->setPrecedenceGroup(precedenceGroup);
declOrOffset = result;
break;
}
case decls_block::PRECEDENCE_GROUP_DECL: {
IdentifierID nameID;
DeclContextID contextID;
uint8_t rawAssociativity;
bool assignment;
unsigned numHigherThan;
ArrayRef<uint64_t> rawRelations;
decls_block::PrecedenceGroupLayout::readRecord(scratch, nameID, contextID,
rawAssociativity,
assignment, numHigherThan,
rawRelations);
auto DC = getDeclContext(contextID);
auto associativity = getActualAssociativity(rawAssociativity);
if (!associativity.hasValue()) {
error();
return nullptr;
}
if (numHigherThan > rawRelations.size()) {
error();
return nullptr;
}
SmallVector<PrecedenceGroupDecl::Relation, 4> higherThan;
for (auto relID : rawRelations.slice(0, numHigherThan)) {
PrecedenceGroupDecl *rel = nullptr;
if (relID)
rel = dyn_cast_or_null<PrecedenceGroupDecl>(getDecl(relID));
if (!rel) {
error();
return nullptr;
}
higherThan.push_back({SourceLoc(), rel->getName(), rel});
}
SmallVector<PrecedenceGroupDecl::Relation, 4> lowerThan;
for (auto relID : rawRelations.slice(numHigherThan)) {
PrecedenceGroupDecl *rel = nullptr;
if (relID)
rel = dyn_cast_or_null<PrecedenceGroupDecl>(getDecl(relID));
if (!rel) {
error();
return nullptr;
}
lowerThan.push_back({SourceLoc(), rel->getName(), rel});
}
declOrOffset = PrecedenceGroupDecl::create(DC, SourceLoc(), SourceLoc(),
getIdentifier(nameID),
SourceLoc(),
SourceLoc(), SourceLoc(),
*associativity,
SourceLoc(), SourceLoc(),
assignment,
SourceLoc(), higherThan,
SourceLoc(), lowerThan,
SourceLoc());
break;
}
case decls_block::CLASS_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit, isObjC, requiresStoredPropertyInits;
bool inheritsSuperclassInitializers;
GenericEnvironmentID genericEnvID;
TypeID superclassID;
uint8_t rawAccessLevel;
unsigned numConformances;
ArrayRef<uint64_t> rawInheritedIDs;
decls_block::ClassLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC,
requiresStoredPropertyInits,
inheritsSuperclassInitializers,
genericEnvID, superclassID,
rawAccessLevel, numConformances,
rawInheritedIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto genericParams = maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto theClass = createDecl<ClassDecl>(SourceLoc(), getIdentifier(nameID),
SourceLoc(), None, genericParams, DC);
declOrOffset = theClass;
configureGenericEnvironment(theClass, genericEnvID);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel)) {
theClass->setAccess(*accessLevel);
} else {
error();
return nullptr;
}
theClass->setAddedImplicitInitializers();
if (isImplicit)
theClass->setImplicit();
theClass->setIsObjC(isObjC);
theClass->setSuperclass(getType(superclassID));
if (requiresStoredPropertyInits)
theClass->setRequiresStoredPropertyInits(true);
if (inheritsSuperclassInitializers)
theClass->setInheritsSuperclassInitializers();
theClass->computeType();
handleInherited(theClass, rawInheritedIDs);
theClass->setMemberLoader(this, DeclTypeCursor.GetCurrentBitNo());
theClass->setHasDestructor();
skipRecord(DeclTypeCursor, decls_block::MEMBERS);
theClass->setConformanceLoader(
this,
encodeLazyConformanceContextData(numConformances,
DeclTypeCursor.GetCurrentBitNo()));
theClass->setCircularityCheck(CircularityCheck::Checked);
break;
}
case decls_block::ENUM_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit;
bool isObjC;
GenericEnvironmentID genericEnvID;
TypeID rawTypeID;
uint8_t rawAccessLevel;
unsigned numConformances, numInheritedTypes;
ArrayRef<uint64_t> rawInheritedAndDependencyIDs;
decls_block::EnumLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC, genericEnvID,
rawTypeID, rawAccessLevel,
numConformances, numInheritedTypes,
rawInheritedAndDependencyIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
Identifier name = getIdentifier(nameID);
for (TypeID dependencyID :
rawInheritedAndDependencyIDs.slice(numInheritedTypes)) {
auto dependency = getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()));
}
}
auto genericParams = maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto theEnum = createDecl<EnumDecl>(SourceLoc(), name, SourceLoc(), None,
genericParams, DC);
declOrOffset = theEnum;
configureGenericEnvironment(theEnum, genericEnvID);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel)) {
theEnum->setAccess(*accessLevel);
} else {
error();
return nullptr;
}
if (isImplicit)
theEnum->setImplicit();
theEnum->setIsObjC(isObjC);
theEnum->setRawType(getType(rawTypeID));
theEnum->computeType();
handleInherited(theEnum,
rawInheritedAndDependencyIDs.slice(0, numInheritedTypes));
theEnum->setMemberLoader(this, DeclTypeCursor.GetCurrentBitNo());
skipRecord(DeclTypeCursor, decls_block::MEMBERS);
theEnum->setConformanceLoader(
this,
encodeLazyConformanceContextData(numConformances,
DeclTypeCursor.GetCurrentBitNo()));
break;
}
case decls_block::ENUM_ELEMENT_DECL: {
DeclContextID contextID;
TypeID interfaceTypeID;
bool isImplicit; bool hasPayload; bool isNegative;
unsigned rawValueKindID;
IdentifierID blobData;
uint8_t rawResilienceExpansion;
unsigned numArgNames;
ArrayRef<uint64_t> argNameAndDependencyIDs;
decls_block::EnumElementLayout::readRecord(scratch, contextID,
interfaceTypeID,
isImplicit, hasPayload,
rawValueKindID, isNegative,
blobData,
rawResilienceExpansion,
numArgNames,
argNameAndDependencyIDs);
// Resolve the name ids.
Identifier baseName = getIdentifier(argNameAndDependencyIDs.front());
SmallVector<Identifier, 2> argNames;
for (auto argNameID : argNameAndDependencyIDs.slice(1, numArgNames-1))
argNames.push_back(getIdentifier(argNameID));
DeclName compoundName(ctx, baseName, argNames);
DeclName name = argNames.empty() ? baseName : compoundName;
for (TypeID dependencyID : argNameAndDependencyIDs.slice(numArgNames+1)) {
auto dependency = getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()));
}
}
// Read payload parameter list, if it exists.
ParameterList *paramList = nullptr;
if (hasPayload) {
paramList = readParameterList();
}
DeclContext *DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto elem = createDecl<EnumElementDecl>(SourceLoc(),
name,
paramList,
SourceLoc(),
nullptr,
DC);
declOrOffset = elem;
// Deserialize the literal raw value, if any.
switch ((EnumElementRawValueKind)rawValueKindID) {
case EnumElementRawValueKind::None:
break;
case EnumElementRawValueKind::IntegerLiteral: {
auto literalText = getIdentifier(blobData);
auto literal = new (getContext()) IntegerLiteralExpr(literalText.get(),
SourceLoc(),
/*implicit*/ true);
if (isNegative)
literal->setNegative(SourceLoc());
elem->setRawValueExpr(literal);
}
}
auto interfaceType = getType(interfaceTypeID);
elem->setInterfaceType(interfaceType);
if (isImplicit)
elem->setImplicit();
elem->setAccess(std::max(cast<EnumDecl>(DC)->getFormalAccess(),
AccessLevel::Internal));
if (auto resilienceExpansion = getActualResilienceExpansion(
rawResilienceExpansion)) {
elem->setDefaultArgumentResilienceExpansion(*resilienceExpansion);
} else {
error();
return nullptr;
}
break;
}
case decls_block::SUBSCRIPT_DECL: {
DeclContextID contextID;
bool isImplicit, isObjC, isGetterMutating, isSetterMutating;
GenericEnvironmentID genericEnvID;
TypeID interfaceTypeID;
AccessorRecord accessors;
DeclID overriddenID;
uint8_t rawAccessLevel, rawSetterAccessLevel;
uint8_t readImpl, writeImpl, readWriteImpl;
unsigned numArgNames, numAccessors;
ArrayRef<uint64_t> argNameAndDependencyIDs;
decls_block::SubscriptLayout::readRecord(scratch, contextID,
isImplicit, isObjC,
isGetterMutating, isSetterMutating,
readImpl, writeImpl, readWriteImpl,
numAccessors,
genericEnvID,
interfaceTypeID,
overriddenID, rawAccessLevel,
rawSetterAccessLevel, numArgNames,
argNameAndDependencyIDs);
// Resolve the name ids.
SmallVector<Identifier, 2> argNames;
for (auto argNameID : argNameAndDependencyIDs.slice(0, numArgNames))
argNames.push_back(getIdentifier(argNameID));
DeclName name(ctx, DeclBaseName::createSubscript(), argNames);
argNameAndDependencyIDs = argNameAndDependencyIDs.slice(numArgNames);
// Exctract the accessor IDs.
for (DeclID accessorID : argNameAndDependencyIDs.slice(0, numAccessors)) {
accessors.IDs.push_back(accessorID);
}
argNameAndDependencyIDs = argNameAndDependencyIDs.slice(numAccessors);
Expected<Decl *> overridden = getDeclChecked(overriddenID);
if (!overridden) {
llvm::consumeError(overridden.takeError());
return llvm::make_error<OverrideError>(name);
}
for (TypeID dependencyID : argNameAndDependencyIDs) {
auto dependency = getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()));
}
}
auto parent = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto *genericParams = maybeReadGenericParams(parent);
if (declOrOffset.isComplete())
return declOrOffset;
auto subscript = createDecl<SubscriptDecl>(name, SourceLoc(), nullptr,
SourceLoc(), TypeLoc(),
parent, genericParams);
subscript->setIsGetterMutating(isGetterMutating);
subscript->setIsSetterMutating(isSetterMutating);
declOrOffset = subscript;
configureGenericEnvironment(subscript, genericEnvID);
subscript->setIndices(readParameterList());
configureStorage(subscript, readImpl, writeImpl, readWriteImpl, accessors);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel)) {
subscript->setAccess(*accessLevel);
} else {
error();
return nullptr;
}
if (subscript->isSettable()) {
if (auto setterAccess = getActualAccessLevel(rawSetterAccessLevel)) {
subscript->setSetterAccess(*setterAccess);
} else {
error();
return nullptr;
}
}
auto interfaceType = getType(interfaceTypeID);
subscript->setInterfaceType(interfaceType);
if (isImplicit)
subscript->setImplicit();
subscript->setIsObjC(isObjC);
if (auto overriddenSub = cast_or_null<SubscriptDecl>(overridden.get())) {
subscript->setOverriddenDecl(overriddenSub);
AddAttribute(new (ctx) OverrideAttr(SourceLoc()));
}
break;
}
case decls_block::EXTENSION_DECL: {
TypeID baseID;
DeclContextID contextID;
bool isImplicit;
GenericEnvironmentID genericEnvID;
unsigned numConformances, numInherited;
ArrayRef<uint64_t> inheritedAndDependencyIDs;
decls_block::ExtensionLayout::readRecord(scratch, baseID, contextID,
isImplicit, genericEnvID,
numConformances, numInherited,
inheritedAndDependencyIDs);
auto DC = getDeclContext(contextID);
for (TypeID dependencyID : inheritedAndDependencyIDs.slice(numInherited)) {
auto dependency = getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<ExtensionError>(
takeErrorInfo(dependency.takeError()));
}
}
if (declOrOffset.isComplete())
return declOrOffset;
auto extension = ExtensionDecl::create(ctx, SourceLoc(), TypeLoc(), { },
DC, nullptr);
extension->setEarlyAttrValidation();
declOrOffset = extension;
// Generic parameter lists are written from outermost to innermost.
// Keep reading until we run out of generic parameter lists.
GenericParamList *outerParams = nullptr;
while (auto *genericParams = maybeReadGenericParams(DC, outerParams))
outerParams = genericParams;
extension->setGenericParams(outerParams);
configureGenericEnvironment(extension, genericEnvID);
auto baseTy = getType(baseID);
auto nominal = baseTy->getAnyNominal();
assert(!baseTy->hasUnboundGenericType());
extension->getExtendedTypeLoc().setType(baseTy);
if (isImplicit)
extension->setImplicit();
auto inheritedTypes = ctx.Allocate<TypeLoc>(numInherited);
for_each(inheritedTypes, inheritedAndDependencyIDs.slice(0, numInherited),
[this](TypeLoc &tl, uint64_t rawID) {
tl = TypeLoc::withoutLoc(getType(rawID));
});
extension->setInherited(inheritedTypes);
extension->setMemberLoader(this, DeclTypeCursor.GetCurrentBitNo());
skipRecord(DeclTypeCursor, decls_block::MEMBERS);
extension->setConformanceLoader(
this,
encodeLazyConformanceContextData(numConformances,
DeclTypeCursor.GetCurrentBitNo()));
nominal->addExtension(extension);
#ifndef NDEBUG
if (outerParams) {
unsigned paramCount = 0;
for (auto *paramList = outerParams;
paramList != nullptr;
paramList = paramList->getOuterParameters()) {
paramCount += paramList->size();
}
assert(paramCount ==
extension->getGenericSignature()->getGenericParams().size());
}
#endif
break;
}
case decls_block::DESTRUCTOR_DECL: {
DeclContextID contextID;
bool isImplicit, isObjC;
GenericEnvironmentID genericEnvID;
TypeID interfaceID;
decls_block::DestructorLayout::readRecord(scratch, contextID,
isImplicit, isObjC,
genericEnvID,
interfaceID);
DeclContext *DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto dtor = createDecl<DestructorDecl>(SourceLoc(), /*selfpat*/nullptr, DC);
declOrOffset = dtor;
configureGenericEnvironment(dtor, genericEnvID);
dtor->setAccess(std::max(cast<ClassDecl>(DC)->getFormalAccess(),
AccessLevel::Internal));
auto *selfDecl = ParamDecl::createSelf(SourceLoc(), DC,
/*static*/ false,
/*mutating*/ false);
selfDecl->setImplicit();
dtor->setParameters(selfDecl, ParameterList::createEmpty(ctx));
auto interfaceType = getType(interfaceID);
dtor->setInterfaceType(interfaceType);
if (isImplicit)
dtor->setImplicit();
dtor->setIsObjC(isObjC);
break;
}
case decls_block::XREF: {
assert(DAttrs == nullptr);
ModuleID baseModuleID;
uint32_t pathLen;
decls_block::XRefLayout::readRecord(scratch, baseModuleID, pathLen);
auto resolved = resolveCrossReference(getModule(baseModuleID), pathLen);
if (!resolved)
return resolved;
declOrOffset = resolved.get();
break;
}
default:
// We don't know how to deserialize this kind of decl.
error();
return nullptr;
}
// Record the attributes.
if (DAttrs)
declOrOffset.get()->getAttrs().setRawAttributeChain(DAttrs);
auto decl = declOrOffset.get();
decl->setValidationToChecked();
return decl;
}
/// Translate from the Serialization function type repr enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::FunctionType::Representation>
getActualFunctionTypeRepresentation(uint8_t rep) {
switch (rep) {
#define CASE(THE_CC) \
case (uint8_t)serialization::FunctionTypeRepresentation::THE_CC: \
return swift::FunctionType::Representation::THE_CC;
CASE(Swift)
CASE(Block)
CASE(Thin)
CASE(CFunctionPointer)
#undef CASE
default:
return None;
}
}
/// Translate from the Serialization function type repr enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::SILFunctionType::Representation>
getActualSILFunctionTypeRepresentation(uint8_t rep) {
switch (rep) {
#define CASE(THE_CC) \
case (uint8_t)serialization::SILFunctionTypeRepresentation::THE_CC: \
return swift::SILFunctionType::Representation::THE_CC;
CASE(Thick)
CASE(Block)
CASE(Thin)
CASE(CFunctionPointer)
CASE(Method)
CASE(ObjCMethod)
CASE(WitnessMethod)
#undef CASE
default:
return None;
}
}
/// Translate from the Serialization coroutine kind enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::SILCoroutineKind>
getActualSILCoroutineKind(uint8_t rep) {
switch (rep) {
#define CASE(KIND) \
case (uint8_t)serialization::SILCoroutineKind::KIND: \
return swift::SILCoroutineKind::KIND;
CASE(None)
CASE(YieldOnce)
CASE(YieldMany)
#undef CASE
default:
return None;
}
}
/// Translate from the serialization ReferenceOwnership enumerators, which are
/// guaranteed to be stable, to the AST ones.
static Optional<swift::ReferenceOwnership>
getActualReferenceOwnership(serialization::ReferenceOwnership raw) {
switch (raw) {
case serialization::ReferenceOwnership::Strong:
return swift::ReferenceOwnership::Strong;
#define REF_STORAGE(Name, ...) \
case serialization::ReferenceOwnership::Name: \
return swift::ReferenceOwnership::Name;
#include "swift/AST/ReferenceStorage.def"
}
return None;
}
/// Translate from the serialization ValueOwnership enumerators, which are
/// guaranteed to be stable, to the AST ones.
static Optional<swift::ValueOwnership>
getActualValueOwnership(serialization::ValueOwnership raw) {
switch (raw) {
#define CASE(ID) \
case serialization::ValueOwnership::ID: \
return swift::ValueOwnership::ID;
CASE(Default)
CASE(InOut)
CASE(Shared)
CASE(Owned)
#undef CASE
}
return None;
}
/// Translate from the serialization ParameterConvention enumerators,
/// which are guaranteed to be stable, to the AST ones.
static
Optional<swift::ParameterConvention> getActualParameterConvention(uint8_t raw) {
switch (serialization::ParameterConvention(raw)) {
#define CASE(ID) \
case serialization::ParameterConvention::ID: \
return swift::ParameterConvention::ID;
CASE(Indirect_In)
CASE(Indirect_Inout)
CASE(Indirect_InoutAliasable)
CASE(Indirect_In_Guaranteed)
CASE(Indirect_In_Constant)
CASE(Direct_Owned)
CASE(Direct_Unowned)
CASE(Direct_Guaranteed)
#undef CASE
}
return None;
}
/// Translate from the serialization ResultConvention enumerators,
/// which are guaranteed to be stable, to the AST ones.
static
Optional<swift::ResultConvention> getActualResultConvention(uint8_t raw) {
switch (serialization::ResultConvention(raw)) {
#define CASE(ID) \
case serialization::ResultConvention::ID: return swift::ResultConvention::ID;
CASE(Indirect)
CASE(Owned)
CASE(Unowned)
CASE(UnownedInnerPointer)
CASE(Autoreleased)
#undef CASE
}
return None;
}
Type ModuleFile::getType(TypeID TID) {
Expected<Type> deserialized = getTypeChecked(TID);
if (!deserialized) {
fatal(deserialized.takeError());
}
return deserialized.get();
}
Expected<Type> ModuleFile::getTypeChecked(TypeID TID) {
if (TID == 0)
return Type();
assert(TID <= Types.size() && "invalid type ID");
auto &typeOrOffset = Types[TID-1];
if (typeOrOffset.isComplete())
return typeOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(typeOrOffset);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize types represented by sub-blocks.
error();
return nullptr;
}
ASTContext &ctx = getContext();
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
if (auto s = ctx.Stats)
s->getFrontendCounters().NumTypesDeserialized++;
switch (recordID) {
case decls_block::BUILTIN_ALIAS_TYPE: {
DeclID underlyingID;
TypeID canonicalTypeID;
decls_block::BuiltinAliasTypeLayout::readRecord(scratch, underlyingID,
canonicalTypeID);
auto aliasOrError = getDeclChecked(underlyingID);
if (!aliasOrError)
return aliasOrError.takeError();
auto alias = dyn_cast<TypeAliasDecl>(aliasOrError.get());
if (ctx.LangOpts.EnableDeserializationRecovery) {
Expected<Type> expectedType = getTypeChecked(canonicalTypeID);
if (!expectedType)
return expectedType.takeError();
if (expectedType.get()) {
if (!alias ||
!alias->getDeclaredInterfaceType()->isEqual(expectedType.get())) {
// Fall back to the canonical type.
typeOrOffset = expectedType.get();
break;
}
}
}
// Look through compatibility aliases that are now unavailable.
if (alias->getAttrs().isUnavailable(ctx) &&
alias->isCompatibilityAlias()) {
typeOrOffset = alias->getUnderlyingTypeLoc().getType();
break;
}
typeOrOffset = alias->getDeclaredInterfaceType();
break;
}
case decls_block::NAME_ALIAS_TYPE: {
DeclID typealiasID;
TypeID parentTypeID;
TypeID underlyingTypeID;
SubstitutionMapID substitutionsID;
decls_block::NameAliasTypeLayout::readRecord(scratch, typealiasID,
parentTypeID,
underlyingTypeID,
substitutionsID);
auto aliasOrError = getDeclChecked(typealiasID);
if (!aliasOrError)
return aliasOrError.takeError();
auto alias = dyn_cast<TypeAliasDecl>(aliasOrError.get());
Type underlyingType;
if (ctx.LangOpts.EnableDeserializationRecovery) {
Expected<Type> expectedType = getTypeChecked(underlyingTypeID);
if (!expectedType)
return expectedType.takeError();
if (expectedType.get()) {
if (!alias ||
!alias->getDeclaredInterfaceType()->isEqual(expectedType.get())) {
// Fall back to the canonical type.
typeOrOffset = expectedType.get()->getCanonicalType();
break;
}
}
underlyingType = expectedType.get();
} else {
underlyingType = getType(underlyingTypeID);
}
Type parentType = getType(parentTypeID);
// Read the substitutions.
SubstitutionMap subMap = getSubstitutionMap(substitutionsID);
// Look through compatibility aliases that are now unavailable.
if (alias->getAttrs().isUnavailable(ctx) &&
alias->isCompatibilityAlias()) {
typeOrOffset = alias->getUnderlyingTypeLoc().getType();
break;
}
typeOrOffset = NameAliasType::get(alias, parentType, subMap,
underlyingType);
break;
}
case decls_block::NOMINAL_TYPE: {
DeclID declID;
TypeID parentID;
decls_block::NominalTypeLayout::readRecord(scratch, declID, parentID);
Expected<Type> parentTy = getTypeChecked(parentID);
if (!parentTy)
return parentTy.takeError();
auto nominalOrError = getDeclChecked(declID);
if (!nominalOrError)
return nominalOrError.takeError();
// Look through compatibility aliases.
if (auto *alias = dyn_cast<TypeAliasDecl>(nominalOrError.get())) {
// Reminder: TypeBase::getAs will look through sugar. But we don't want to
// do that here, so we do isa<> checks on the TypeBase itself instead of
// using the Type wrapper.
const TypeBase *underlyingTy = nullptr;
while (alias->isCompatibilityAlias()) {
underlyingTy = alias->getUnderlyingTypeLoc().getType().getPointer();
// If the underlying type is itself a typealias, it might be another
// compatibility alias, meaning we need to go around the loop again.
auto aliasTy = dyn_cast<NameAliasType>(underlyingTy);
if (!aliasTy)
break;
alias = aliasTy->getDecl();
}
// We only want to use the type we found if it's a simple non-generic
// nominal type.
if (auto simpleNominalTy = dyn_cast_or_null<NominalType>(underlyingTy)) {
nominalOrError = simpleNominalTy->getDecl();
(void)!nominalOrError; // "Check" the llvm::Expected<> value.
}
}
auto nominal = dyn_cast<NominalTypeDecl>(nominalOrError.get());
if (!nominal) {
XRefTracePath tinyTrace{*nominalOrError.get()->getModuleContext()};
DeclName fullName = cast<ValueDecl>(nominalOrError.get())->getFullName();
tinyTrace.addValue(fullName.getBaseIdentifier());
return llvm::make_error<XRefError>("declaration is not a nominal type",
tinyTrace, fullName);
}
typeOrOffset = NominalType::get(nominal, parentTy.get(), ctx);
assert(typeOrOffset.isComplete());
break;
}
case decls_block::PAREN_TYPE: {
TypeID underlyingID;
bool isVariadic, isAutoClosure, isEscaping;
unsigned rawOwnership;
decls_block::ParenTypeLayout::readRecord(scratch, underlyingID, isVariadic,
isAutoClosure, isEscaping,
rawOwnership);
auto ownership =
getActualValueOwnership((serialization::ValueOwnership)rawOwnership);
if (!ownership) {
error();
return nullptr;
}
auto underlyingTy = getTypeChecked(underlyingID);
if (!underlyingTy)
return underlyingTy.takeError();
typeOrOffset = ParenType::get(
ctx, underlyingTy.get()->getInOutObjectType(),
ParameterTypeFlags(isVariadic, isAutoClosure, isEscaping, *ownership));
break;
}
case decls_block::TUPLE_TYPE: {
// The tuple record itself is empty. Read all trailing elements.
SmallVector<TupleTypeElt, 8> elements;
while (true) {
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
if (recordID != decls_block::TUPLE_TYPE_ELT)
break;
IdentifierID nameID;
TypeID typeID;
bool isVariadic, isAutoClosure, isEscaping;
unsigned rawOwnership;
decls_block::TupleTypeEltLayout::readRecord(scratch, nameID, typeID,
isVariadic, isAutoClosure,
isEscaping, rawOwnership);
auto ownership =
getActualValueOwnership((serialization::ValueOwnership)rawOwnership);
if (!ownership) {
error();
return nullptr;
}
auto elementTy = getTypeChecked(typeID);
if (!elementTy)
return elementTy.takeError();
elements.emplace_back(elementTy.get()->getInOutObjectType(),
getIdentifier(nameID),
ParameterTypeFlags(isVariadic, isAutoClosure,
isEscaping, *ownership));
}
typeOrOffset = TupleType::get(elements, ctx);
break;
}
case decls_block::FUNCTION_TYPE: {
TypeID inputID;
TypeID resultID;
uint8_t rawRepresentation;
bool autoClosure, noescape, throws;
decls_block::FunctionTypeLayout::readRecord(scratch, inputID, resultID,
rawRepresentation,
autoClosure,
noescape,
throws);
auto representation = getActualFunctionTypeRepresentation(rawRepresentation);
if (!representation.hasValue()) {
error();
return nullptr;
}
auto info = FunctionType::ExtInfo(*representation, autoClosure, noescape,
throws);
auto inputTy = getTypeChecked(inputID);
if (!inputTy)
return inputTy.takeError();
auto resultTy = getTypeChecked(resultID);
if (!resultTy)
return resultTy.takeError();
typeOrOffset = FunctionType::get(inputTy.get(), resultTy.get(), info);
break;
}
case decls_block::EXISTENTIAL_METATYPE_TYPE: {
TypeID instanceID;
uint8_t repr;
decls_block::ExistentialMetatypeTypeLayout::readRecord(scratch,
instanceID, repr);
auto instanceType = getTypeChecked(instanceID);
if (!instanceType)
return instanceType.takeError();
switch (repr) {
case serialization::MetatypeRepresentation::MR_None:
typeOrOffset = ExistentialMetatypeType::get(instanceType.get());
break;
case serialization::MetatypeRepresentation::MR_Thin:
error();
break;
case serialization::MetatypeRepresentation::MR_Thick:
typeOrOffset = ExistentialMetatypeType::get(instanceType.get(),
MetatypeRepresentation::Thick);
break;
case serialization::MetatypeRepresentation::MR_ObjC:
typeOrOffset = ExistentialMetatypeType::get(instanceType.get(),
MetatypeRepresentation::ObjC);
break;
default:
error();
break;
}
break;
}
case decls_block::METATYPE_TYPE: {
TypeID instanceID;
uint8_t repr;
decls_block::MetatypeTypeLayout::readRecord(scratch, instanceID, repr);
auto instanceType = getTypeChecked(instanceID);
if (!instanceType)
return instanceType.takeError();
switch (repr) {
case serialization::MetatypeRepresentation::MR_None:
typeOrOffset = MetatypeType::get(instanceType.get());
break;
case serialization::MetatypeRepresentation::MR_Thin:
typeOrOffset = MetatypeType::get(instanceType.get(),
MetatypeRepresentation::Thin);
break;
case serialization::MetatypeRepresentation::MR_Thick:
typeOrOffset = MetatypeType::get(instanceType.get(),
MetatypeRepresentation::Thick);
break;
case serialization::MetatypeRepresentation::MR_ObjC:
typeOrOffset = MetatypeType::get(instanceType.get(),
MetatypeRepresentation::ObjC);
break;
default:
error();
break;
}
break;
}
case decls_block::DYNAMIC_SELF_TYPE: {
TypeID selfID;
decls_block::DynamicSelfTypeLayout::readRecord(scratch, selfID);
typeOrOffset = DynamicSelfType::get(getType(selfID), ctx);
break;
}
case decls_block::INOUT_TYPE: {
TypeID objectTypeID;
decls_block::InOutTypeLayout::readRecord(scratch, objectTypeID);
auto objectTy = getTypeChecked(objectTypeID);
if (!objectTy)
return objectTy.takeError();
typeOrOffset = InOutType::get(objectTy.get());
break;
}
case decls_block::REFERENCE_STORAGE_TYPE: {
uint8_t rawOwnership;
TypeID objectTypeID;
decls_block::ReferenceStorageTypeLayout::readRecord(scratch, rawOwnership,
objectTypeID);
auto ownership = getActualReferenceOwnership(
(serialization::ReferenceOwnership)rawOwnership);
if (!ownership.hasValue()) {
error();
break;
}
auto objectTy = getTypeChecked(objectTypeID);
if (!objectTy)
return objectTy.takeError();
typeOrOffset = ReferenceStorageType::get(objectTy.get(),
ownership.getValue(), ctx);
break;
}
case decls_block::ARCHETYPE_TYPE: {
GenericEnvironmentID envID;
TypeID interfaceTypeID;
decls_block::ArchetypeTypeLayout::readRecord(scratch, envID,
interfaceTypeID);
auto env = getGenericEnvironment(envID);
if (!env) {
error();
break;
}
Type interfaceType = getType(interfaceTypeID);
Type contextType = env->mapTypeIntoContext(interfaceType);
typeOrOffset = contextType;
if (contextType->hasError()) {
error();
break;
}
break;
}
case decls_block::OPENED_EXISTENTIAL_TYPE: {
TypeID existentialID;
decls_block::OpenedExistentialTypeLayout::readRecord(scratch,
existentialID);
typeOrOffset = ArchetypeType::getOpened(getType(existentialID));
break;
}
case decls_block::GENERIC_TYPE_PARAM_TYPE: {
DeclID declIDOrDepth;
unsigned indexPlusOne;
decls_block::GenericTypeParamTypeLayout::readRecord(scratch, declIDOrDepth,
indexPlusOne);
if (indexPlusOne == 0) {
auto genericParam
= dyn_cast_or_null<GenericTypeParamDecl>(getDecl(declIDOrDepth));
if (!genericParam) {
error();
return nullptr;
}
// See if we triggered deserialization through our conformances.
if (typeOrOffset.isComplete())
break;
typeOrOffset = genericParam->getDeclaredInterfaceType();
break;
}
typeOrOffset = GenericTypeParamType::get(declIDOrDepth,indexPlusOne-1,ctx);
break;
}
case decls_block::PROTOCOL_COMPOSITION_TYPE: {
bool hasExplicitAnyObject;
ArrayRef<uint64_t> rawProtocolIDs;
decls_block::ProtocolCompositionTypeLayout::readRecord(scratch,
hasExplicitAnyObject,
rawProtocolIDs);
SmallVector<Type, 4> protocols;
for (TypeID protoID : rawProtocolIDs) {
auto protoTy = getTypeChecked(protoID);
if (!protoTy)
return protoTy.takeError();
protocols.push_back(protoTy.get());
}
typeOrOffset = ProtocolCompositionType::get(ctx, protocols,
hasExplicitAnyObject);
break;
}
case decls_block::DEPENDENT_MEMBER_TYPE: {
TypeID baseID;
DeclID assocTypeID;
decls_block::DependentMemberTypeLayout::readRecord(scratch, baseID,
assocTypeID);
typeOrOffset = DependentMemberType::get(
getType(baseID),
cast<AssociatedTypeDecl>(getDecl(assocTypeID)));
break;
}
case decls_block::BOUND_GENERIC_TYPE: {
DeclID declID;
TypeID parentID;
ArrayRef<uint64_t> rawArgumentIDs;
decls_block::BoundGenericTypeLayout::readRecord(scratch, declID, parentID,
rawArgumentIDs);
auto nominalOrError = getDeclChecked(declID);
if (!nominalOrError)
return nominalOrError.takeError();
auto nominal = cast<NominalTypeDecl>(nominalOrError.get());
// FIXME: Check this?
auto parentTy = getType(parentID);
SmallVector<Type, 8> genericArgs;
for (TypeID ID : rawArgumentIDs) {
auto argTy = getTypeChecked(ID);
if (!argTy)
return argTy.takeError();
genericArgs.push_back(argTy.get());
}
auto boundTy = BoundGenericType::get(nominal, parentTy, genericArgs);
typeOrOffset = boundTy;
break;
}
case decls_block::GENERIC_FUNCTION_TYPE: {
TypeID inputID;
TypeID resultID;
uint8_t rawRep;
bool throws = false;
GenericSignatureID rawGenericSig;
decls_block::GenericFunctionTypeLayout::readRecord(scratch,
inputID,
resultID,
rawRep,
throws,
rawGenericSig);
auto rep = getActualFunctionTypeRepresentation(rawRep);
if (!rep.hasValue()) {
error();
return nullptr;
}
auto sig = getGenericSignature(rawGenericSig);
auto info = GenericFunctionType::ExtInfo(*rep, throws);
auto inputTy = getTypeChecked(inputID);
if (!inputTy)
return inputTy.takeError();
auto resultTy = getTypeChecked(resultID);
if (!resultTy)
return resultTy.takeError();
typeOrOffset = GenericFunctionType::get(sig, inputTy.get(), resultTy.get(),
info);
break;
}
case decls_block::SIL_BLOCK_STORAGE_TYPE: {
TypeID captureID;
decls_block::SILBlockStorageTypeLayout::readRecord(scratch, captureID);
typeOrOffset = SILBlockStorageType::get(getType(captureID)
->getCanonicalType());
break;
}
case decls_block::SIL_BOX_TYPE: {
SILLayoutID layoutID;
SubstitutionMapID subMapID;
decls_block::SILBoxTypeLayout::readRecord(scratch, layoutID, subMapID);
// Get the layout.
auto getLayout = [&]() -> SILLayout * {
assert(layoutID > 0 && layoutID <= SILLayouts.size()
&& "invalid layout ID");
auto &layoutOrOffset = SILLayouts[layoutID - 1];
if (layoutOrOffset.isComplete()) {
return layoutOrOffset;
}
BCOffsetRAII saveOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(layoutOrOffset);
auto layout = readSILLayout(DeclTypeCursor);
if (!layout) {
error();
return nullptr;
}
layoutOrOffset = layout;
return layout;
};
auto layout = getLayout();
if (!layout)
return nullptr;
auto subMap = getSubstitutionMap(subMapID);
typeOrOffset = SILBoxType::get(getContext(), layout, subMap);
break;
}
case decls_block::SIL_FUNCTION_TYPE: {
uint8_t rawCoroutineKind;
uint8_t rawCalleeConvention;
uint8_t rawRepresentation;
bool pseudogeneric = false;
bool noescape;
bool hasErrorResult;
unsigned numParams;
unsigned numYields;
unsigned numResults;
GenericSignatureID rawGenericSig;
ArrayRef<uint64_t> variableData;
decls_block::SILFunctionTypeLayout::readRecord(scratch,
rawCoroutineKind,
rawCalleeConvention,
rawRepresentation,
pseudogeneric,
noescape,
hasErrorResult,
numParams,
numYields,
numResults,
rawGenericSig,
variableData);
// Process the ExtInfo.
auto representation
= getActualSILFunctionTypeRepresentation(rawRepresentation);
if (!representation.hasValue()) {
error();
return nullptr;
}
SILFunctionType::ExtInfo extInfo(*representation, pseudogeneric, noescape);
// Process the coroutine kind.
auto coroutineKind = getActualSILCoroutineKind(rawCoroutineKind);
if (!coroutineKind.hasValue()) {
error();
return nullptr;
}
// Process the callee convention.
auto calleeConvention = getActualParameterConvention(rawCalleeConvention);
if (!calleeConvention.hasValue()) {
error();
return nullptr;
}
auto processParameter = [&](TypeID typeID, uint64_t rawConvention)
-> llvm::Expected<SILParameterInfo> {
auto convention = getActualParameterConvention(rawConvention);
if (!convention) {
error();
llvm_unreachable("an error is a fatal exit at this point");
}
auto type = getTypeChecked(typeID);
if (!type)
return type.takeError();
return SILParameterInfo(type.get()->getCanonicalType(), *convention);
};
auto processYield = [&](TypeID typeID, uint64_t rawConvention)
-> llvm::Expected<SILYieldInfo> {
auto convention = getActualParameterConvention(rawConvention);
if (!convention) {
error();
llvm_unreachable("an error is a fatal exit at this point");
}
auto type = getTypeChecked(typeID);
if (!type)
return type.takeError();
return SILYieldInfo(type.get()->getCanonicalType(), *convention);
};
auto processResult = [&](TypeID typeID, uint64_t rawConvention)
-> llvm::Expected<SILResultInfo> {
auto convention = getActualResultConvention(rawConvention);
if (!convention) {
error();
llvm_unreachable("an error is a fatal exit at this point");
}
auto type = getTypeChecked(typeID);
if (!type)
return type.takeError();
return SILResultInfo(type.get()->getCanonicalType(), *convention);
};
// Bounds check. FIXME: overflow
if (2 * numParams + 2 * numResults + 2 * unsigned(hasErrorResult)
> variableData.size()) {
error();
return nullptr;
}
unsigned nextVariableDataIndex = 0;
// Process the parameters.
SmallVector<SILParameterInfo, 8> allParams;
allParams.reserve(numParams);
for (unsigned i = 0; i != numParams; ++i) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
auto param = processParameter(typeID, rawConvention);
if (!param)
return param.takeError();
allParams.push_back(param.get());
}
// Process the yields.
SmallVector<SILYieldInfo, 8> allYields;
allYields.reserve(numYields);
for (unsigned i = 0; i != numYields; ++i) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
auto yield = processYield(typeID, rawConvention);
if (!yield)
return yield.takeError();
allYields.push_back(yield.get());
}
// Process the results.
SmallVector<SILResultInfo, 8> allResults;
allParams.reserve(numResults);
for (unsigned i = 0; i != numResults; ++i) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
auto result = processResult(typeID, rawConvention);
if (!result)
return result.takeError();
allResults.push_back(result.get());
}
// Process the error result.
Optional<SILResultInfo> errorResult;
if (hasErrorResult) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
auto maybeErrorResult = processResult(typeID, rawConvention);
if (!maybeErrorResult)
return maybeErrorResult.takeError();
errorResult = maybeErrorResult.get();
}
Optional<ProtocolConformanceRef> witnessMethodConformance;
if (*representation == SILFunctionTypeRepresentation::WitnessMethod) {
witnessMethodConformance = readConformance(DeclTypeCursor);
}
GenericSignature *genericSig = getGenericSignature(rawGenericSig);
typeOrOffset = SILFunctionType::get(genericSig, extInfo,
coroutineKind.getValue(),
calleeConvention.getValue(),
allParams, allYields, allResults,
errorResult,
ctx, witnessMethodConformance);
break;
}
case decls_block::ARRAY_SLICE_TYPE: {
TypeID baseID;
decls_block::ArraySliceTypeLayout::readRecord(scratch, baseID);
auto baseTy = getTypeChecked(baseID);
if (!baseTy)
return baseTy.takeError();
typeOrOffset = ArraySliceType::get(baseTy.get());
break;
}
case decls_block::DICTIONARY_TYPE: {
TypeID keyID, valueID;
decls_block::DictionaryTypeLayout::readRecord(scratch, keyID, valueID);
auto keyTy = getTypeChecked(keyID);
if (!keyTy)
return keyTy.takeError();
auto valueTy = getTypeChecked(valueID);
if (!valueTy)
return valueTy.takeError();
typeOrOffset = DictionaryType::get(keyTy.get(), valueTy.get());
break;
}
case decls_block::OPTIONAL_TYPE: {
TypeID baseID;
decls_block::OptionalTypeLayout::readRecord(scratch, baseID);
auto baseTy = getTypeChecked(baseID);
if (!baseTy)
return baseTy.takeError();
typeOrOffset = OptionalType::get(baseTy.get());
break;
}
case decls_block::UNBOUND_GENERIC_TYPE: {
DeclID genericID;
TypeID parentID;
decls_block::UnboundGenericTypeLayout::readRecord(scratch,
genericID, parentID);
auto nominalOrError = getDeclChecked(genericID);
if (!nominalOrError)
return nominalOrError.takeError();
auto genericDecl = cast<GenericTypeDecl>(nominalOrError.get());
// FIXME: Check this?
auto parentTy = getType(parentID);
typeOrOffset = UnboundGenericType::get(genericDecl, parentTy, ctx);
break;
}
default:
// We don't know how to deserialize this kind of type.
error();
return nullptr;
}
#ifndef NDEBUG
PrettyStackTraceType trace(ctx, "deserializing", typeOrOffset.get());
if (typeOrOffset.get()->hasError()) {
typeOrOffset.get()->dump();
llvm_unreachable("deserialization produced an invalid type "
"(rdar://problem/30382791)");
}
#endif
// Invoke the callback on the deserialized type.
DeserializedTypeCallback(typeOrOffset);
return typeOrOffset;
}
Decl *handleErrorAndSupplyMissingClassMember(ASTContext &context,
llvm::Error &&error,
ClassDecl *containingClass) {
Decl *suppliedMissingMember = nullptr;
auto handleMissingClassMember = [&](const DeclDeserializationError &error) {
if (error.isDesignatedInitializer())
containingClass->setHasMissingDesignatedInitializers();
if (error.needsVTableEntry() || error.needsAllocatingVTableEntry())
containingClass->setHasMissingVTableEntries();
if (error.getName().getBaseName() == DeclBaseName::createConstructor()) {
suppliedMissingMember = MissingMemberDecl::forInitializer(
context, containingClass, error.getName(), error.needsVTableEntry(),
error.needsAllocatingVTableEntry());
} else if (error.needsVTableEntry()) {
suppliedMissingMember = MissingMemberDecl::forMethod(
context, containingClass, error.getName(), error.needsVTableEntry());
} else if (error.needsFieldOffsetVectorEntry()) {
suppliedMissingMember = MissingMemberDecl::forStoredProperty(
context, containingClass, error.getName());
}
// FIXME: Handle other kinds of missing members: properties,
// subscripts, and methods that don't need vtable entries.
};
llvm::handleAllErrors(std::move(error), handleMissingClassMember);
return suppliedMissingMember;
}
Decl *handleErrorAndSupplyMissingProtoMember(ASTContext &context,
llvm::Error &&error,
ProtocolDecl *containingProto) {
Decl *suppliedMissingMember = nullptr;
auto handleMissingProtocolMember =
[&](const DeclDeserializationError &error) {
assert(!error.needsAllocatingVTableEntry());
if (error.needsVTableEntry())
containingProto->setHasMissingRequirements(true);
if (error.getName().getBaseName() == DeclBaseName::createConstructor()) {
suppliedMissingMember = MissingMemberDecl::forInitializer(
context, containingProto, error.getName(),
error.needsVTableEntry(), error.needsAllocatingVTableEntry());
return;
}
if (error.needsVTableEntry()) {
suppliedMissingMember = MissingMemberDecl::forMethod(
context, containingProto, error.getName(),
error.needsVTableEntry());
}
// FIXME: Handle other kinds of missing members: properties,
// subscripts, and methods that don't need vtable entries.
};
llvm::handleAllErrors(std::move(error), handleMissingProtocolMember);
return suppliedMissingMember;
}
Decl *handleErrorAndSupplyMissingMiscMember(llvm::Error &&error) {
llvm::consumeError(std::move(error));
return nullptr;
}
Decl *handleErrorAndSupplyMissingMember(ASTContext &context, Decl *container,
llvm::Error &&error) {
// Drop the member if it had a problem.
// FIXME: Handle overridable members in class extensions too, someday.
if (auto *containingClass = dyn_cast<ClassDecl>(container)) {
return handleErrorAndSupplyMissingClassMember(context, std::move(error),
containingClass);
}
if (auto *containingProto = dyn_cast<ProtocolDecl>(container)) {
return handleErrorAndSupplyMissingProtoMember(context, std::move(error),
containingProto);
}
return handleErrorAndSupplyMissingMiscMember(std::move(error));
}
void ModuleFile::loadAllMembers(Decl *container, uint64_t contextData) {
PrettyStackTraceDecl trace("loading members for", container);
++NumMemberListsLoaded;
IterableDeclContext *IDC;
if (auto *nominal = dyn_cast<NominalTypeDecl>(container))
IDC = nominal;
else
IDC = cast<ExtensionDecl>(container);
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(contextData);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return;
}
SmallVector<uint64_t, 16> memberIDBuffer;
unsigned kind = DeclTypeCursor.readRecord(entry.ID, memberIDBuffer);
assert(kind == decls_block::MEMBERS);
(void)kind;
ArrayRef<uint64_t> rawMemberIDs;
decls_block::MembersLayout::readRecord(memberIDBuffer, rawMemberIDs);
if (rawMemberIDs.empty())
return;
SmallVector<Decl *, 16> members;
members.reserve(rawMemberIDs.size());
for (DeclID rawID : rawMemberIDs) {
Expected<Decl *> next = getDeclChecked(rawID);
if (next) {
assert(next.get() && "unchecked error deserializing next member");
members.push_back(next.get());
} else {
if (!getContext().LangOpts.EnableDeserializationRecovery)
fatal(next.takeError());
Decl *suppliedMissingMember = handleErrorAndSupplyMissingMember(
getContext(), container, next.takeError());
if (suppliedMissingMember)
members.push_back(suppliedMissingMember);
}
}
for (auto member : members)
IDC->addMember(member);
if (auto *proto = dyn_cast<ProtocolDecl>(container)) {
PrettyStackTraceDecl trace("reading default witness table for", proto);
bool Err = readDefaultWitnessTable(proto);
assert(!Err && "unable to read default witness table");
(void)Err;
}
}
void
ModuleFile::loadAllConformances(const Decl *D, uint64_t contextData,
SmallVectorImpl<ProtocolConformance*> &conformances) {
PrettyStackTraceDecl trace("loading conformances for", D);
uint64_t numConformances;
uint64_t bitPosition;
std::tie(numConformances, bitPosition)
= decodeLazyConformanceContextData(contextData);
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(bitPosition);
while (numConformances--) {
auto conf = readConformance(DeclTypeCursor);
if (conf.isConcrete())
conformances.push_back(conf.getConcrete());
}
}
TypeLoc
ModuleFile::loadAssociatedTypeDefault(const swift::AssociatedTypeDecl *ATD,
uint64_t contextData) {
return TypeLoc::withoutLoc(getType(contextData));
}
void ModuleFile::finishNormalConformance(NormalProtocolConformance *conformance,
uint64_t contextData) {
using namespace decls_block;
PrettyStackTraceModuleFile traceModule("While reading from", *this);
PrettyStackTraceType trace(getAssociatedModule()->getASTContext(),
"finishing conformance for",
conformance->getType());
PrettyStackTraceDecl traceTo("... to", conformance->getProtocol());
++NumNormalProtocolConformancesCompleted;
assert(conformance->isComplete());
conformance->setState(ProtocolConformanceState::Incomplete);
SWIFT_DEFER { conformance->setState(ProtocolConformanceState::Complete); };
// Find the conformance record.
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(contextData);
auto entry = DeclTypeCursor.advance();
assert(entry.Kind == llvm::BitstreamEntry::Record &&
"registered lazy loader incorrectly");
DeclID protoID;
DeclContextID contextID;
unsigned valueCount, typeCount, conformanceCount;
ArrayRef<uint64_t> rawIDs;
SmallVector<uint64_t, 16> scratch;
unsigned kind = DeclTypeCursor.readRecord(entry.ID, scratch);
(void) kind;
assert(kind == NORMAL_PROTOCOL_CONFORMANCE &&
"registered lazy loader incorrectly");
NormalProtocolConformanceLayout::readRecord(scratch, protoID,
contextID, typeCount,
valueCount, conformanceCount,
rawIDs);
// Read requirement signature conformances.
const ProtocolDecl *proto = conformance->getProtocol();
SmallVector<ProtocolConformanceRef, 4> reqConformances;
if (proto->isObjC() && getContext().LangOpts.EnableDeserializationRecovery) {
// Don't crash if inherited protocols are added or removed.
// This is limited to Objective-C protocols because we know their only
// conformance requirements are on Self. This isn't actually a /safe/ change
// even in Objective-C, but we mostly just don't want to crash.
// FIXME: DenseMap requires that its value type be default-constructible,
// which ProtocolConformanceRef is not, hence the extra Optional.
llvm::SmallDenseMap<ProtocolDecl *, Optional<ProtocolConformanceRef>, 16>
conformancesForProtocols;
while (conformanceCount--) {
ProtocolConformanceRef nextConformance = readConformance(DeclTypeCursor);
ProtocolDecl *confProto = nextConformance.getRequirement();
conformancesForProtocols[confProto] = nextConformance;
}
for (const auto &req : proto->getRequirementSignature()) {
if (req.getKind() != RequirementKind::Conformance)
continue;
ProtocolDecl *proto =
req.getSecondType()->castTo<ProtocolType>()->getDecl();
auto iter = conformancesForProtocols.find(proto);
if (iter != conformancesForProtocols.end()) {
reqConformances.push_back(iter->getSecond().getValue());
} else {
// Put in an abstract conformance as a placeholder. This is a lie, but
// there's not much better we can do. We're relying on the fact that
// the rest of the compiler doesn't actually need to check the
// conformance to an Objective-C protocol for anything important.
// There are no associated types and we don't emit a Swift conformance
// record.
reqConformances.push_back(ProtocolConformanceRef(proto));
}
}
} else {
auto isConformanceReq = [](const Requirement &req) {
return req.getKind() == RequirementKind::Conformance;
};
if (conformanceCount != llvm::count_if(proto->getRequirementSignature(),
isConformanceReq)) {
fatal(llvm::make_error<llvm::StringError>(
"serialized conformances do not match requirement signature",
llvm::inconvertibleErrorCode()));
}
while (conformanceCount--)
reqConformances.push_back(readConformance(DeclTypeCursor));
}
conformance->setSignatureConformances(reqConformances);
ArrayRef<uint64_t>::iterator rawIDIter = rawIDs.begin();
TypeWitnessMap typeWitnesses;
while (typeCount--) {
// FIXME: We don't actually want to allocate an archetype here; we just
// want to get an access path within the protocol.
auto first = cast<AssociatedTypeDecl>(getDecl(*rawIDIter++));
auto second = getType(*rawIDIter++);
auto third = cast_or_null<TypeDecl>(getDecl(*rawIDIter++));
if (third &&
isa<TypeAliasDecl>(third) &&
third->getModuleContext() != getAssociatedModule() &&
!third->getDeclaredInterfaceType()->isEqual(second)) {
// Conservatively drop references to typealiases in other modules
// that may have changed. This may also drop references to typealiases
// that /haven't/ changed but just happen to have generics in them, but
// in practice having a declaration here isn't actually required by the
// rest of the compiler.
third = nullptr;
}
typeWitnesses[first] = std::make_pair(second, third);
}
assert(rawIDIter <= rawIDs.end() && "read too much");
// Set type witnesses.
for (auto typeWitness : typeWitnesses) {
conformance->setTypeWitness(typeWitness.first, typeWitness.second.first,
typeWitness.second.second);
}
// An imported requirement may have changed type between Swift versions.
// In this situation we need to do a post-pass to fill in missing
// requirements with opaque witnesses.
bool needToFillInOpaqueValueWitnesses = false;
while (valueCount--) {
ValueDecl *req;
auto trySetWitness = [&](Witness w) {
if (req)
conformance->setWitness(req, w);
};
auto deserializedReq = getDeclChecked(*rawIDIter++);
if (deserializedReq) {
req = cast_or_null<ValueDecl>(*deserializedReq);
} else if (getContext().LangOpts.EnableDeserializationRecovery) {
consumeError(deserializedReq.takeError());
req = nullptr;
needToFillInOpaqueValueWitnesses = true;
} else {
fatal(deserializedReq.takeError());
}
bool isOpaque = false;
ValueDecl *witness;
auto deserializedWitness = getDeclChecked(*rawIDIter++);
if (deserializedWitness) {
witness = cast_or_null<ValueDecl>(*deserializedWitness);
// Across language compatibility versions, the witnessing decl may have
// changed its signature as seen by the current compatibility version.
// In that case, we want the conformance to still be available, but
// we can't make use of the relationship to the underlying decl.
} else if (getContext().LangOpts.EnableDeserializationRecovery) {
consumeError(deserializedWitness.takeError());
isOpaque = true;
witness = nullptr;
} else {
fatal(deserializedWitness.takeError());
}
assert(!req || isOpaque || witness ||
req->getAttrs().hasAttribute<OptionalAttr>() ||
req->getAttrs().isUnavailable(getContext()));
if (!witness && !isOpaque) {
trySetWitness(Witness());
continue;
}
// Generic environment.
GenericEnvironment *syntheticEnv = nullptr;
auto trySetOpaqueWitness = [&]{
if (!req)
return;
// We shouldn't yet need to worry about generic requirements, since
// an imported ObjC method should never be generic.
assert(syntheticEnv == nullptr &&
"opaque witness shouldn't be generic yet. when this is "
"possible, it should use forwarding substitutions");
conformance->setWitness(req, Witness::forOpaque(req));
};
// Requirement -> synthetic map.
if (auto syntheticSig = getGenericSignature(*rawIDIter++)) {
// Create the synthetic environment.
syntheticEnv = syntheticSig->createGenericEnvironment();
}
// Requirement -> synthetic substitutions.
SubstitutionMap reqToSyntheticSubs = getSubstitutionMap(*rawIDIter++);
// Witness substitutions.
SubstitutionMap witnessSubstitutions = getSubstitutionMap(*rawIDIter++);
// Handle opaque witnesses that couldn't be deserialized.
if (isOpaque) {
trySetOpaqueWitness();
continue;
}
// Set the witness.
trySetWitness(Witness(witness, witnessSubstitutions,
syntheticEnv, reqToSyntheticSubs));
}
assert(rawIDIter <= rawIDs.end() && "read too much");
// Fill in opaque value witnesses if we need to.
if (needToFillInOpaqueValueWitnesses) {
for (auto member : proto->getMembers()) {
// We only care about non-associated-type requirements.
auto valueMember = dyn_cast<ValueDecl>(member);
if (!valueMember || !valueMember->isProtocolRequirement()
|| isa<AssociatedTypeDecl>(valueMember))
continue;
if (!conformance->hasWitness(valueMember))
conformance->setWitness(valueMember, Witness::forOpaque(valueMember));
}
}
}
GenericEnvironment *ModuleFile::loadGenericEnvironment(const DeclContext *decl,
uint64_t contextData) {
return getGenericEnvironment(contextData);
}
static Optional<ForeignErrorConvention::Kind>
decodeRawStableForeignErrorConventionKind(uint8_t kind) {
switch (kind) {
case static_cast<uint8_t>(ForeignErrorConventionKind::ZeroResult):
return ForeignErrorConvention::ZeroResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::NonZeroResult):
return ForeignErrorConvention::NonZeroResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::ZeroPreservedResult):
return ForeignErrorConvention::ZeroPreservedResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::NilResult):
return ForeignErrorConvention::NilResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::NonNilError):
return ForeignErrorConvention::NonNilError;
default:
return None;
}
}
Optional<ForeignErrorConvention> ModuleFile::maybeReadForeignErrorConvention() {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
BCOffsetRAII restoreOffset(DeclTypeCursor);
auto next = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (next.Kind != llvm::BitstreamEntry::Record)
return None;
unsigned recKind = DeclTypeCursor.readRecord(next.ID, scratch);
switch (recKind) {
case FOREIGN_ERROR_CONVENTION:
restoreOffset.reset();
break;
default:
return None;
}
uint8_t rawKind;
bool isOwned;
bool isReplaced;
unsigned errorParameterIndex;
TypeID errorParameterTypeID;
TypeID resultTypeID;
ForeignErrorConventionLayout::readRecord(scratch, rawKind,
isOwned, isReplaced,
errorParameterIndex,
errorParameterTypeID,
resultTypeID);
ForeignErrorConvention::Kind kind;
if (auto optKind = decodeRawStableForeignErrorConventionKind(rawKind))
kind = *optKind;
else {
error();
return None;
}
Type errorParameterType = getType(errorParameterTypeID);
CanType canErrorParameterType;
if (errorParameterType)
canErrorParameterType = errorParameterType->getCanonicalType();
Type resultType = getType(resultTypeID);
CanType canResultType;
if (resultType)
canResultType = resultType->getCanonicalType();
auto owned = isOwned ? ForeignErrorConvention::IsOwned
: ForeignErrorConvention::IsNotOwned;
auto replaced = ForeignErrorConvention::IsReplaced_t(isOwned);
switch (kind) {
case ForeignErrorConvention::ZeroResult:
return ForeignErrorConvention::getZeroResult(errorParameterIndex,
owned, replaced,
canErrorParameterType,
canResultType);
case ForeignErrorConvention::NonZeroResult:
return ForeignErrorConvention::getNonZeroResult(errorParameterIndex,
owned, replaced,
canErrorParameterType,
canResultType);
case ForeignErrorConvention::ZeroPreservedResult:
return ForeignErrorConvention::getZeroPreservedResult(errorParameterIndex,
owned, replaced,
canErrorParameterType);
case ForeignErrorConvention::NilResult:
return ForeignErrorConvention::getNilResult(errorParameterIndex,
owned, replaced,
canErrorParameterType);
case ForeignErrorConvention::NonNilError:
return ForeignErrorConvention::getNonNilError(errorParameterIndex,
owned, replaced,
canErrorParameterType);
}
llvm_unreachable("Unhandled ForeignErrorConvention in switch.");
}