Files
swift-mirror/lib/IDE/CodeCompletionCache.cpp
Alex Hoppen daec367b46 [CodeCompletion] Don't recommend functions with async alternatives in async contexts
When an function has an async alternative, that should be preferred when we are completing in an async context. Thus, the sync method should be marked as not recommended if the current context can handle async methods.

rdar://88354910
2022-08-01 14:28:51 +02:00

568 lines
20 KiB
C++

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/IDE/CodeCompletionCache.h"
#include "swift/Basic/Cache.h"
#include "swift/Basic/StringExtras.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
using namespace swift;
using namespace ide;
namespace swift {
namespace ide {
struct CodeCompletionCacheImpl {
using Key = CodeCompletionCache::Key;
using Value = CodeCompletionCache::Value;
using ValueRefCntPtr = CodeCompletionCache::ValueRefCntPtr;
sys::Cache<Key, ValueRefCntPtr> TheCache{"swift.libIDE.CodeCompletionCache"};
};
} // end namespace ide
} // end namespace swift
namespace swift {
namespace sys {
template<>
struct CacheValueCostInfo<swift::ide::CodeCompletionCacheImpl::Value> {
static size_t
getCost(const swift::ide::CodeCompletionCacheImpl::Value &V) {
return V.Allocator->getTotalMemory();
}
};
} // namespace sys
} // namespace swift
CodeCompletionCache::ValueRefCntPtr CodeCompletionCache::createValue() {
return ValueRefCntPtr(new Value);
}
Optional<CodeCompletionCache::ValueRefCntPtr>
CodeCompletionCache::get(const Key &K) {
auto &TheCache = Impl->TheCache;
llvm::Optional<ValueRefCntPtr> V = TheCache.get(K);
if (V) {
// Check whether V is up to date.
llvm::sys::fs::file_status ModuleStatus;
if (llvm::sys::fs::status(K.ModuleFilename, ModuleStatus) ||
V.getValue()->ModuleModificationTime !=
ModuleStatus.getLastModificationTime()) {
// Cache is stale.
V = None;
TheCache.remove(K);
}
} else if (nextCache && (V = nextCache->get(K))) {
// Hit the chained cache. Update our own cache to match.
setImpl(K, *V, /*setChain*/ false);
}
return V;
}
void CodeCompletionCache::setImpl(const Key &K, ValueRefCntPtr V,
bool setChain) {
{
assert(!K.ModuleFilename.empty());
llvm::sys::fs::file_status ModuleStatus;
if (llvm::sys::fs::status(K.ModuleFilename, ModuleStatus)) {
V->ModuleModificationTime = std::chrono::system_clock::now();
return;
} else {
V->ModuleModificationTime = ModuleStatus.getLastModificationTime();
}
}
Impl->TheCache.set(K, V);
// FIXME: we could write the results to disk in the background, since they're
// immutable at this point.
if (nextCache && setChain)
nextCache->set(K, V);
}
CodeCompletionCache::CodeCompletionCache(OnDiskCodeCompletionCache *nextCache)
: Impl(new CodeCompletionCacheImpl()), nextCache(nextCache) {}
CodeCompletionCache::~CodeCompletionCache() {}
/// A version number for the format of the serialized code completion results.
///
/// This should be incremented any time we commit a change to the format of the
/// cached results. This isn't expected to change very often.
static constexpr uint32_t onDiskCompletionCacheVersion =
10; // Store if decl has an async alternative
/// Deserializes CodeCompletionResults from \p in and stores them in \p V.
/// \see writeCacheModule.
static bool readCachedModule(llvm::MemoryBuffer *in,
const CodeCompletionCache::Key &K,
CodeCompletionCache::Value &V,
bool allowOutOfDate = false) {
const char *cursor = in->getBufferStart();
const char *end = in->getBufferEnd();
auto read32le = [end](const char *&cursor) {
auto result = llvm::support::endian::read32le(cursor);
cursor += sizeof(result);
assert(cursor <= end);
(void)end;
return result;
};
// HEADER
{
auto version = read32le(cursor);
if (version != onDiskCompletionCacheVersion)
return false; // File written with different format.
auto mtime = llvm::support::endian::read64le(cursor);
cursor += sizeof(mtime);
// Check the module file's last modification time.
if (!allowOutOfDate) {
llvm::sys::fs::file_status status;
if (llvm::sys::fs::status(K.ModuleFilename, status) ||
status.getLastModificationTime().time_since_epoch().count() !=
std::chrono::nanoseconds(mtime).count()) {
return false; // Out of date, or doesn't exist.
}
}
}
// DEBUG INFO
cursor += read32le(cursor); // Skip the whole debug section.
// Get the size of the various sections.
auto resultSize = read32le(cursor);
const char *resultEnd = cursor + resultSize;
const char *chunks = resultEnd;
auto chunkSize = read32le(chunks);
const char *strings = chunks + chunkSize;
auto stringsSize = read32le(strings);
const char *types = strings + stringsSize;
auto typesSize = read32le(types);
assert(types + typesSize == end && "incorrect file size");
(void)typesSize; // so it is not seen as "unused" in release builds.
// STRINGS
llvm::DenseMap<uint32_t, NullTerminatedStringRef> knownStrings;
auto getString = [&](uint32_t index) -> NullTerminatedStringRef {
if (index == ~0u)
return "";
auto found = knownStrings.find(index);
if (found != knownStrings.end()) {
return found->second;
}
const char *p = strings + index;
size_t size = read32le(p);
auto str = NullTerminatedStringRef(StringRef(p, size), *V.Allocator);
knownStrings[index] = str;
return str;
};
// TYPES
llvm::DenseMap<uint32_t, const USRBasedType *> knownTypes;
std::function<const USRBasedType *(uint32_t)> getType =
[&](uint32_t index) -> const USRBasedType * {
auto found = knownTypes.find(index);
if (found != knownTypes.end()) {
return found->second;
}
const char *p = types + index;
auto usrLength = read32le(p);
auto usr = StringRef(p, usrLength);
p += usrLength;
auto supertypesCount = read32le(p);
std::vector<const USRBasedType *> supertypes;
supertypes.reserve(supertypesCount);
for (unsigned i = 0; i < supertypesCount; i++) {
auto supertypeIndex = read32le(p);
supertypes.push_back(getType(supertypeIndex));
}
auto customAttributeKinds = OptionSet<CustomAttributeKind, uint8_t>(*p++);
const USRBasedType *res = USRBasedType::fromUSR(
usr, supertypes, customAttributeKinds, V.USRTypeArena);
knownTypes[index] = res;
return res;
};
// CHUNKS
auto getCompletionString = [&](uint32_t chunkIndex) {
const char *p = chunks + chunkIndex;
auto len = read32le(p);
using Chunk = CodeCompletionString::Chunk;
SmallVector<Chunk, 32> chunkList;
for (unsigned j = 0; j < len; ++j) {
auto kind = static_cast<Chunk::ChunkKind>(*p++);
auto nest = *p++;
auto isAnnotation = static_cast<bool>(*p++);
auto textIndex = read32le(p);
auto text = getString(textIndex);
if (Chunk::chunkHasText(kind)) {
chunkList.push_back(
Chunk::createWithText(kind, nest, text, isAnnotation));
} else {
chunkList.push_back(Chunk::createSimple(kind, nest, isAnnotation));
}
}
return CodeCompletionString::create(*V.Allocator, chunkList);
};
// RESULTS
while (cursor != resultEnd) {
auto kind = static_cast<CodeCompletionResultKind>(*cursor++);
auto associatedKind = static_cast<uint8_t>(*cursor++);
auto opKind = static_cast<CodeCompletionOperatorKind>(*cursor++);
auto notRecommended =
static_cast<ContextFreeNotRecommendedReason>(*cursor++);
auto diagSeverity =
static_cast<CodeCompletionDiagnosticSeverity>(*cursor++);
auto isSystem = static_cast<bool>(*cursor++);
auto isAsync = static_cast<bool>(*cursor++);
auto hasAsyncAlternative = static_cast<bool>(*cursor++);
auto chunkIndex = read32le(cursor);
auto moduleIndex = read32le(cursor);
auto briefDocIndex = read32le(cursor);
auto diagMessageIndex = read32le(cursor);
auto filterNameIndex = read32le(cursor);
auto nameForDiagnosticsIndex = read32le(cursor);
auto assocUSRCount = read32le(cursor);
SmallVector<NullTerminatedStringRef, 4> assocUSRs;
for (unsigned i = 0; i < assocUSRCount; ++i) {
assocUSRs.push_back(getString(read32le(cursor)));
}
auto resultTypesCount = read32le(cursor);
SmallVector<const USRBasedType *, 1> resultTypes;
resultTypes.reserve(resultTypesCount);
for (size_t i = 0; i < resultTypesCount; i++) {
resultTypes.push_back(getType(read32le(cursor)));
}
CodeCompletionString *string = getCompletionString(chunkIndex);
auto moduleName = getString(moduleIndex);
auto briefDocComment = getString(briefDocIndex);
auto diagMessage = getString(diagMessageIndex);
auto filterName = getString(filterNameIndex);
auto nameForDiagnostics = getString(nameForDiagnosticsIndex);
ContextFreeCodeCompletionResult *result =
new (*V.Allocator) ContextFreeCodeCompletionResult(
kind, associatedKind, opKind, isSystem, isAsync,
hasAsyncAlternative, string, moduleName, briefDocComment,
makeArrayRef(assocUSRs).copy(*V.Allocator),
CodeCompletionResultType(resultTypes), notRecommended, diagSeverity,
diagMessage, filterName, nameForDiagnostics);
V.Results.push_back(result);
}
return true;
}
/// Writes the code completion results from the sink for \p V to \p out.
///
/// The high-level format is:
///
/// HEADER
/// * version, which **must be bumped** if we change the format!
/// * mtime for the module file
///
/// KEY
/// * the original CodeCompletionCache::Key, used for debugging the cache.
///
/// RESULTS
/// * A length-prefixed array of fixed size CodeCompletionResults.
/// * Contains offsets into CHUNKS and STRINGS.
///
/// CHUNKS
/// * A length-prefixed array of CodeCompletionStrings.
/// * Each CodeCompletionString is a length-prefixed array of fixed size
/// CodeCompletionString::Chunks.
///
/// STRINGS
/// * A blob of length-prefixed strings referred to in CHUNKS or RESULTS.
static void writeCachedModule(llvm::raw_ostream &out,
const CodeCompletionCache::Key &K,
CodeCompletionCache::Value &V) {
using namespace llvm::support;
endian::Writer LE(out, little);
// HEADER
// Metadata required for reading the completions.
LE.write(onDiskCompletionCacheVersion); // Version
auto mtime = V.ModuleModificationTime.time_since_epoch().count();
LE.write(mtime); // Mtime for module file
// KEY
// We don't need the stored key to load the results, but it is useful if we
// want to debug the cache itself.
{
SmallString<256> scratch;
llvm::raw_svector_ostream OSS(scratch);
OSS << K.ModuleFilename << "\0";
OSS << K.ModuleName << "\0";
endian::Writer OSSLE(OSS, little);
OSSLE.write(K.AccessPath.size());
for (StringRef p : K.AccessPath)
OSS << p << "\0";
OSSLE.write(K.ResultsHaveLeadingDot);
OSSLE.write(K.ForTestableLookup);
OSSLE.write(K.ForPrivateImportLookup);
OSSLE.write(K.AddInitsInToplevel);
OSSLE.write(K.AddCallWithNoDefaultArgs);
OSSLE.write(K.Annotated);
LE.write(static_cast<uint32_t>(OSS.tell())); // Size of debug info
out.write(OSS.str().data(), OSS.str().size()); // Debug info blob
}
// String streams for writing to the CHUNKS and STRINGS sections.
std::string results_;
llvm::raw_string_ostream results(results_);
std::string chunks_;
llvm::raw_string_ostream chunks(chunks_);
endian::Writer chunksLE(chunks, little);
std::string strings_;
llvm::raw_string_ostream strings(strings_);
llvm::StringMap<uint32_t> knownStrings;
std::string types_;
llvm::raw_string_ostream types(types_);
llvm::DenseMap<const USRBasedType *, uint32_t> knownTypes;
auto addString = [&strings, &knownStrings](StringRef str) {
if (str.empty())
return ~0u;
auto found = knownStrings.find(str);
if (found != knownStrings.end()) {
return found->second;
}
auto size = strings.tell();
endian::Writer LE(strings, little);
LE.write(static_cast<uint32_t>(str.size()));
strings << str;
knownStrings[str] = size;
return static_cast<uint32_t>(size);
};
std::function<uint32_t(const USRBasedType *)> addType =
[&types, &knownTypes, &addType](const USRBasedType *type) -> uint32_t {
auto found = knownTypes.find(type);
if (found != knownTypes.end()) {
return found->second;
}
std::vector<uint32_t> supertypeIndicies;
// IMPORTANT: To compute the supertype indicies, we might need to add
// entries to the type table by calling addType recursively. Thus, we must
// perform this calculation before writing any bytes of this type to the
// types table.
auto supertypes = type->getSupertypes();
supertypeIndicies.reserve(supertypes.size());
for (auto supertype : supertypes) {
supertypeIndicies.push_back(addType(supertype));
}
auto size = types.tell();
endian::Writer LE(types, little);
StringRef USR = type->getUSR();
LE.write(static_cast<uint32_t>(USR.size()));
types << USR;
LE.write(static_cast<uint32_t>(supertypeIndicies.size()));
for (auto supertypeIndex : supertypeIndicies) {
LE.write(static_cast<uint32_t>(supertypeIndex));
}
OptionSet<CustomAttributeKind, uint8_t> customAttributeKinds =
type->getCustomAttributeKinds();
LE.write(static_cast<uint8_t>(customAttributeKinds.toRaw()));
knownTypes[type] = size;
return static_cast<uint32_t>(size);
};
auto addCompletionString = [&](const CodeCompletionString *str) {
auto size = chunks.tell();
chunksLE.write(static_cast<uint32_t>(str->getChunks().size()));
for (auto chunk : str->getChunks()) {
chunksLE.write(static_cast<uint8_t>(chunk.getKind()));
chunksLE.write(static_cast<uint8_t>(chunk.getNestingLevel()));
chunksLE.write(static_cast<uint8_t>(chunk.isAnnotation()));
if (chunk.hasText()) {
chunksLE.write(addString(chunk.getText()));
} else {
chunksLE.write(static_cast<uint32_t>(~0u));
}
}
return static_cast<uint32_t>(size);
};
// RESULTS
{
endian::Writer LE(results, little);
for (const ContextFreeCodeCompletionResult *R : V.Results) {
// FIXME: compress bitfield
LE.write(static_cast<uint8_t>(R->getKind()));
LE.write(static_cast<uint8_t>(R->getOpaqueAssociatedKind()));
if (R->isOperator()) {
LE.write(static_cast<uint8_t>(R->getKnownOperatorKind()));
} else {
LE.write(static_cast<uint8_t>(CodeCompletionOperatorKind::None));
}
LE.write(static_cast<uint8_t>(R->getNotRecommendedReason()));
LE.write(static_cast<uint8_t>(R->getDiagnosticSeverity()));
LE.write(static_cast<uint8_t>(R->isSystem()));
LE.write(static_cast<uint8_t>(R->isAsync()));
LE.write(static_cast<uint8_t>(R->hasAsyncAlternative()));
LE.write(
static_cast<uint32_t>(addCompletionString(R->getCompletionString())));
LE.write(addString(R->getModuleName())); // index into strings
LE.write(addString(R->getBriefDocComment())); // index into strings
LE.write(addString(R->getDiagnosticMessage())); // index into strings
LE.write(addString(R->getFilterName())); // index into strings
LE.write(addString(R->getNameForDiagnostics())); // index into strings
LE.write(static_cast<uint32_t>(R->getAssociatedUSRs().size()));
for (unsigned i = 0; i < R->getAssociatedUSRs().size(); ++i) {
LE.write(addString(R->getAssociatedUSRs()[i]));
}
auto resultTypes =
R->getResultType().getUSRBasedResultTypes(V.USRTypeArena);
LE.write(static_cast<uint32_t>(resultTypes.size()));
for (auto resultType : resultTypes) {
LE.write(addType(resultType)); // index into types
}
}
}
LE.write(static_cast<uint32_t>(results.tell()));
out << results.str();
// CHUNKS
LE.write(static_cast<uint32_t>(chunks.tell()));
out << chunks.str();
// STRINGS
LE.write(static_cast<uint32_t>(strings.tell()));
out << strings.str();
// TYPES
LE.write(static_cast<uint32_t>(types.tell()));
out << types.str();
}
/// Get the name for the cached code completion results for a given key \p K in
/// \p cacheDirectory.
///
/// This name is unique (modulo hash collisions) to the key \p K.
static std::string getName(StringRef cacheDirectory,
const CodeCompletionCache::Key &K) {
SmallString<128> name(cacheDirectory);
// cacheDirectory/ModuleName
llvm::sys::path::append(name, K.ModuleName);
llvm::raw_svector_ostream OSS(name);
// name[-with-enabled-options]
OSS << (K.ResultsHaveLeadingDot ? "-dot" : "")
<< (K.ForTestableLookup ? "-testable" : "")
<< (K.ForPrivateImportLookup ? "-private" : "")
<< (K.AddInitsInToplevel ? "-inits" : "")
<< (K.AddCallWithNoDefaultArgs ? "-nodefaults" : "")
<< (K.Annotated ? "-annotated" : "");
// name[-access-path-components]
for (StringRef component : K.AccessPath)
OSS << "-" << component;
// name-<hash of module filename>
auto hash = llvm::hash_value(K.ModuleFilename);
SmallString<16> hashStr;
llvm::APInt(64, uint64_t(hash)).toStringUnsigned(hashStr, /*Radix*/ 36);
OSS << "-" << hashStr << ".completions";
return std::string(name.str());
}
Optional<CodeCompletionCache::ValueRefCntPtr>
OnDiskCodeCompletionCache::get(const Key &K) {
// Try to find the cached file.
auto bufferOrErr = llvm::MemoryBuffer::getFile(getName(cacheDirectory, K));
if (!bufferOrErr)
return None;
// Read the cached results, failing if they are out of date.
auto V = CodeCompletionCache::createValue();
if (!readCachedModule(bufferOrErr.get().get(), K, *V))
return None;
return V;
}
std::error_code OnDiskCodeCompletionCache::set(const Key &K, ValueRefCntPtr V) {
if (K.ModuleFilename.empty())
return std::make_error_code(std::errc::no_such_file_or_directory);
// Create the cache directory if it doesn't exist.
if (auto err = llvm::sys::fs::create_directories(cacheDirectory))
return err;
std::string name = getName(cacheDirectory, K);
// Create a temporary file to write the results into.
SmallString<128> tmpName(name + "-%%%%%%");
int tmpFD;
if (auto err = llvm::sys::fs::createUniqueFile(tmpName.str(), tmpFD, tmpName))
return err;
// Write the contents of the buffer.
llvm::raw_fd_ostream out(tmpFD, /*shouldClose=*/true);
writeCachedModule(out, K, *V);
out.flush();
if (out.has_error())
return std::make_error_code(std::errc::io_error);
// Atomically rename the file into its final location.
return llvm::sys::fs::rename(tmpName.str(), name);
}
Optional<CodeCompletionCache::ValueRefCntPtr>
OnDiskCodeCompletionCache::getFromFile(StringRef filename) {
// Try to find the cached file.
auto bufferOrErr = llvm::MemoryBuffer::getFile(filename);
if (!bufferOrErr)
return None;
// Make up a key for readCachedModule.
CodeCompletionCache::Key K{filename.str(), "<module-name>", {},
false, false, false,
false, false, false};
// Read the cached results.
auto V = CodeCompletionCache::createValue();
if (!readCachedModule(bufferOrErr.get().get(), K, *V,
/*allowOutOfDate*/ true))
return None;
return V;
}
OnDiskCodeCompletionCache::OnDiskCodeCompletionCache(Twine cacheDirectory)
: cacheDirectory(cacheDirectory.str()) {}
OnDiskCodeCompletionCache::~OnDiskCodeCompletionCache() {}