Files
swift-mirror/lib/Sema/DerivedConformanceRawRepresentable.cpp
Slava Pestov c360c82850 AST: Automatically create the 'self' parameter when needed
Parsed declarations would create an untyped 'self' parameter;
synthesized, imported and deserialized declarations would get a
typed one.

In reality the type, if any, depends completely on the properties
of the function in question, so we can just lazily create the
'self' parameter when needed.

If the function already has a type, we give it a type right there;
otherwise, we check if a 'self' was already created when we
compute a function's type and set the type of 'self' then.
2018-08-25 10:44:55 -07:00

445 lines
16 KiB
C++

//===--- DerivedConformanceRawRepresentable.cpp - Derived RawRepresentable ===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements implicit derivation of the RawRepresentable protocol
// for an enum.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/APInt.h"
#include "DerivedConformances.h"
using namespace swift;
static LiteralExpr *cloneRawLiteralExpr(ASTContext &C, LiteralExpr *expr) {
LiteralExpr *clone;
if (auto intLit = dyn_cast<IntegerLiteralExpr>(expr)) {
clone = new (C) IntegerLiteralExpr(intLit->getDigitsText(), expr->getLoc(),
/*implicit*/ true);
if (intLit->isNegative())
cast<IntegerLiteralExpr>(clone)->setNegative(expr->getLoc());
} else if (isa<NilLiteralExpr>(expr)) {
clone = new (C) NilLiteralExpr(expr->getLoc());
} else if (auto stringLit = dyn_cast<StringLiteralExpr>(expr)) {
clone = new (C) StringLiteralExpr(stringLit->getValue(), expr->getLoc());
} else if (auto floatLit = dyn_cast<FloatLiteralExpr>(expr)) {
clone = new (C) FloatLiteralExpr(floatLit->getDigitsText(), expr->getLoc(),
/*implicit*/ true);
if (floatLit->isNegative())
cast<FloatLiteralExpr>(clone)->setNegative(expr->getLoc());
} else {
llvm_unreachable("invalid raw literal expr");
}
clone->setImplicit();
return clone;
}
static Type deriveRawRepresentable_Raw(DerivedConformance &derived) {
// enum SomeEnum : SomeType {
// @derived
// typealias Raw = SomeType
// }
auto rawInterfaceType = cast<EnumDecl>(derived.Nominal)->getRawType();
return derived.getConformanceContext()->mapTypeIntoContext(rawInterfaceType);
}
static void deriveBodyRawRepresentable_raw(AbstractFunctionDecl *toRawDecl) {
// enum SomeEnum : SomeType {
// case A = 111, B = 222
// @derived
// var raw: SomeType {
// switch self {
// case A:
// return 111
// case B:
// return 222
// }
// }
// }
auto parentDC = toRawDecl->getDeclContext();
ASTContext &C = parentDC->getASTContext();
auto enumDecl = parentDC->getSelfEnumDecl();
Type rawTy = enumDecl->getRawType();
assert(rawTy);
rawTy = toRawDecl->mapTypeIntoContext(rawTy);
#ifndef NDEBUG
for (auto elt : enumDecl->getAllElements()) {
assert(elt->getTypeCheckedRawValueExpr() &&
"Enum element has no literal - missing a call to checkEnumRawValues()");
assert(elt->getTypeCheckedRawValueExpr()->getType()->isEqual(rawTy));
}
#endif
if (enumDecl->isObjC()) {
// Special case: ObjC enums are represented by their raw value, so just use
// a bitcast.
// return unsafeBitCast(self, to: RawType.self)
DeclName name(C, C.getIdentifier("unsafeBitCast"), {Identifier(), C.Id_to});
auto functionRef = new (C) UnresolvedDeclRefExpr(name,
DeclRefKind::Ordinary,
DeclNameLoc());
auto selfRef = DerivedConformance::createSelfDeclRef(toRawDecl);
auto bareTypeExpr = TypeExpr::createImplicit(rawTy, C);
auto typeExpr = new (C) DotSelfExpr(bareTypeExpr, SourceLoc(), SourceLoc());
auto call = CallExpr::createImplicit(C, functionRef, {selfRef, typeExpr},
{Identifier(), C.Id_to});
auto returnStmt = new (C) ReturnStmt(SourceLoc(), call);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(returnStmt),
SourceLoc());
toRawDecl->setBody(body);
return;
}
Type enumType = parentDC->getDeclaredTypeInContext();
SmallVector<ASTNode, 4> cases;
for (auto elt : enumDecl->getAllElements()) {
auto pat = new (C) EnumElementPattern(TypeLoc::withoutLoc(enumType),
SourceLoc(), SourceLoc(),
Identifier(), elt, nullptr);
pat->setImplicit();
auto labelItem = CaseLabelItem(pat);
auto returnExpr = cloneRawLiteralExpr(C, elt->getRawValueExpr());
auto returnStmt = new (C) ReturnStmt(SourceLoc(), returnExpr);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(returnStmt), SourceLoc());
cases.push_back(CaseStmt::create(C, SourceLoc(), labelItem,
/*HasBoundDecls=*/false, SourceLoc(),
SourceLoc(), body));
}
auto selfRef = DerivedConformance::createSelfDeclRef(toRawDecl);
auto switchStmt = SwitchStmt::create(LabeledStmtInfo(), SourceLoc(), selfRef,
SourceLoc(), cases, SourceLoc(), C);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(switchStmt),
SourceLoc());
toRawDecl->setBody(body);
}
static void maybeMarkAsInlinable(DerivedConformance &derived,
AbstractFunctionDecl *afd) {
ASTContext &C = derived.TC.Context;
auto parentDC = derived.getConformanceContext();
if (parentDC->getParentModule()->getResilienceStrategy() !=
ResilienceStrategy::Resilient) {
AccessScope access =
afd->getFormalAccessScope(nullptr,
/*treatUsableFromInlineAsPublic*/true);
if (auto *attr = afd->getAttrs().getAttribute<UsableFromInlineAttr>())
attr->setInvalid();
if (access.isPublic())
afd->getAttrs().add(new (C) InlinableAttr(/*implicit*/false));
}
}
static VarDecl *deriveRawRepresentable_raw(DerivedConformance &derived) {
ASTContext &C = derived.TC.Context;
auto enumDecl = cast<EnumDecl>(derived.Nominal);
auto parentDC = derived.getConformanceContext();
auto rawInterfaceType = enumDecl->getRawType();
auto rawType = parentDC->mapTypeIntoContext(rawInterfaceType);
// Define the property.
VarDecl *propDecl;
PatternBindingDecl *pbDecl;
std::tie(propDecl, pbDecl) = derived.declareDerivedProperty(
C.Id_rawValue, rawInterfaceType, rawType, /*isStatic=*/false,
/*isFinal=*/false);
// Define the getter.
auto getterDecl = DerivedConformance::addGetterToReadOnlyDerivedProperty(
derived.TC, propDecl, rawType);
getterDecl->setBodySynthesizer(&deriveBodyRawRepresentable_raw);
// If the containing module is not resilient, make sure clients can get at
// the raw value without function call overhead.
maybeMarkAsInlinable(derived, getterDecl);
derived.addMembersToConformanceContext({getterDecl, propDecl, pbDecl});
return propDecl;
}
static void
deriveBodyRawRepresentable_init(AbstractFunctionDecl *initDecl) {
// enum SomeEnum : SomeType {
// case A = 111, B = 222
// @derived
// init?(rawValue: SomeType) {
// switch rawValue {
// case 111:
// self = .A
// case 222:
// self = .B
// default:
// return nil
// }
// }
// }
auto parentDC = initDecl->getDeclContext();
ASTContext &C = parentDC->getASTContext();
auto nominalTypeDecl = parentDC->getSelfNominalTypeDecl();
auto enumDecl = cast<EnumDecl>(nominalTypeDecl);
Type rawTy = enumDecl->getRawType();
assert(rawTy);
rawTy = initDecl->mapTypeIntoContext(rawTy);
#ifndef NDEBUG
for (auto elt : enumDecl->getAllElements()) {
assert(elt->getTypeCheckedRawValueExpr() &&
"Enum element has no literal - missing a call to checkEnumRawValues()");
assert(elt->getTypeCheckedRawValueExpr()->getType()->isEqual(rawTy));
}
#endif
bool isStringEnum =
(rawTy->getNominalOrBoundGenericNominal() == C.getStringDecl());
llvm::SmallVector<Expr *, 16> stringExprs;
Type enumType = parentDC->getDeclaredTypeInContext();
auto selfDecl = cast<ConstructorDecl>(initDecl)->getImplicitSelfDecl();
SmallVector<ASTNode, 4> cases;
unsigned Idx = 0;
for (auto elt : enumDecl->getAllElements()) {
LiteralExpr *litExpr = cloneRawLiteralExpr(C, elt->getRawValueExpr());
if (isStringEnum) {
// In case of a string enum we are calling the _findStringSwitchCase
// function from the library and switching on the returned Int value.
stringExprs.push_back(litExpr);
litExpr = IntegerLiteralExpr::createFromUnsigned(C, Idx);
}
auto litPat = new (C) ExprPattern(litExpr, /*isResolved*/ true,
nullptr, nullptr);
litPat->setImplicit();
auto labelItem = CaseLabelItem(litPat);
auto eltRef = new (C) DeclRefExpr(elt, DeclNameLoc(), /*implicit*/true);
auto metaTyRef = TypeExpr::createImplicit(enumType, C);
auto valueExpr = new (C) DotSyntaxCallExpr(eltRef, SourceLoc(), metaTyRef);
auto selfRef = new (C) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/true,
AccessSemantics::DirectToStorage);
auto assignment = new (C) AssignExpr(selfRef, SourceLoc(), valueExpr,
/*implicit*/ true);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(assignment), SourceLoc());
cases.push_back(CaseStmt::create(C, SourceLoc(), labelItem,
/*HasBoundDecls=*/false, SourceLoc(),
SourceLoc(), body));
Idx++;
}
auto anyPat = new (C) AnyPattern(SourceLoc());
anyPat->setImplicit();
auto dfltLabelItem = CaseLabelItem::getDefault(anyPat);
auto dfltReturnStmt = new (C) FailStmt(SourceLoc(), SourceLoc());
auto dfltBody = BraceStmt::create(C, SourceLoc(),
ASTNode(dfltReturnStmt), SourceLoc());
cases.push_back(CaseStmt::create(C, SourceLoc(), dfltLabelItem,
/*HasBoundDecls=*/false, SourceLoc(),
SourceLoc(), dfltBody));
auto rawDecl = initDecl->getParameters()->get(0);
auto rawRef = new (C) DeclRefExpr(rawDecl, DeclNameLoc(), /*implicit*/true);
Expr *switchArg = rawRef;
if (isStringEnum) {
// Call _findStringSwitchCase with an array of strings as argument.
auto *Fun = new (C) UnresolvedDeclRefExpr(
C.getIdentifier("_findStringSwitchCase"),
DeclRefKind::Ordinary, DeclNameLoc());
auto *strArray = ArrayExpr::create(C, SourceLoc(), stringExprs, {},
SourceLoc());;
Identifier tableId = C.getIdentifier("cases");
Identifier strId = C.getIdentifier("string");
auto *Args = TupleExpr::createImplicit(C, {strArray, rawRef},
{tableId, strId});
auto *CallExpr = CallExpr::create(C, Fun, Args, {}, {}, false, false);
switchArg = CallExpr;
}
auto switchStmt = SwitchStmt::create(LabeledStmtInfo(), SourceLoc(), switchArg,
SourceLoc(), cases, SourceLoc(), C);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(switchStmt),
SourceLoc());
initDecl->setBody(body);
}
static ConstructorDecl *
deriveRawRepresentable_init(DerivedConformance &derived) {
auto &tc = derived.TC;
ASTContext &C = tc.Context;
auto enumDecl = cast<EnumDecl>(derived.Nominal);
auto parentDC = derived.getConformanceContext();
auto rawInterfaceType = enumDecl->getRawType();
auto rawType = parentDC->mapTypeIntoContext(rawInterfaceType);
auto equatableProto = tc.getProtocol(enumDecl->getLoc(),
KnownProtocolKind::Equatable);
assert(equatableProto);
assert(tc.conformsToProtocol(rawType, equatableProto, enumDecl, None));
(void)equatableProto;
(void)rawType;
auto *rawDecl = new (C)
ParamDecl(VarDecl::Specifier::Default, SourceLoc(), SourceLoc(),
C.Id_rawValue, SourceLoc(), C.Id_rawValue, parentDC);
rawDecl->setInterfaceType(rawInterfaceType);
rawDecl->setImplicit();
auto paramList = ParameterList::createWithoutLoc(rawDecl);
DeclName name(C, DeclBaseName::createConstructor(), paramList);
auto initDecl =
new (C) ConstructorDecl(name, SourceLoc(),
/*Failability=*/ OTK_Optional,
/*FailabilityLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
paramList,
/*GenericParams=*/nullptr, parentDC);
initDecl->setImplicit();
initDecl->setBodySynthesizer(&deriveBodyRawRepresentable_init);
// Compute the interface type of the initializer.
if (auto env = parentDC->getGenericEnvironmentOfContext())
initDecl->setGenericEnvironment(env);
initDecl->computeType();
initDecl->copyFormalAccessFrom(enumDecl, /*sourceIsParentContext*/true);
initDecl->setValidationToChecked();
// If the containing module is not resilient, make sure clients can construct
// an instance without function call overhead.
maybeMarkAsInlinable(derived, initDecl);
C.addSynthesizedDecl(initDecl);
derived.addMembersToConformanceContext({initDecl});
return initDecl;
}
static bool canSynthesizeRawRepresentable(DerivedConformance &derived) {
auto enumDecl = cast<EnumDecl>(derived.Nominal);
auto &tc = derived.TC;
// Validate the enum and its raw type.
tc.validateDecl(enumDecl);
// It must have a valid raw type.
Type rawType = enumDecl->getRawType();
if (!rawType)
return false;
auto parentDC = cast<DeclContext>(derived.ConformanceDecl);
rawType = parentDC->mapTypeIntoContext(rawType);
auto inherited = enumDecl->getInherited();
if (!inherited.empty() && inherited.front().wasValidated() &&
inherited.front().isError())
return false;
// The raw type must be Equatable, so that we have a suitable ~= for
// synthesized switch statements.
auto equatableProto =
tc.getProtocol(enumDecl->getLoc(), KnownProtocolKind::Equatable);
if (!equatableProto)
return false;
if (!tc.conformsToProtocol(rawType, equatableProto, enumDecl, None))
return false;
// There must be enum elements.
if (enumDecl->getAllElements().empty())
return false;
// Have the type-checker validate that:
// - the enum elements all have the same type
// - they all match the enum type
for (auto elt : enumDecl->getAllElements()) {
tc.validateDecl(elt);
if (elt->isInvalid()) {
return false;
}
}
// If it meets all of those requirements, we can synthesize RawRepresentable conformance.
return true;
}
ValueDecl *DerivedConformance::deriveRawRepresentable(ValueDecl *requirement) {
// We can only synthesize RawRepresentable for enums.
if (!isa<EnumDecl>(Nominal))
return nullptr;
// Check other preconditions for synthesized conformance.
if (!canSynthesizeRawRepresentable(*this))
return nullptr;
if (requirement->getBaseName() == TC.Context.Id_rawValue)
return deriveRawRepresentable_raw(*this);
if (requirement->getBaseName() == DeclBaseName::createConstructor())
return deriveRawRepresentable_init(*this);
TC.diagnose(requirement->getLoc(),
diag::broken_raw_representable_requirement);
return nullptr;
}
Type DerivedConformance::deriveRawRepresentable(AssociatedTypeDecl *assocType) {
// We can only synthesize RawRepresentable for enums.
if (!isa<EnumDecl>(Nominal))
return nullptr;
// Check other preconditions for synthesized conformance.
if (!canSynthesizeRawRepresentable(*this))
return nullptr;
if (assocType->getName() == TC.Context.Id_RawValue) {
return deriveRawRepresentable_Raw(*this);
}
TC.diagnose(assocType->getLoc(), diag::broken_raw_representable_requirement);
return nullptr;
}