Files
swift-mirror/stdlib/public/SDK/Darwin/tgmath.swift.gyb
Doug Gregor 793b3326af Implement the new rules for argument label defaults.
The rule changes are as follows:
  * All functions (introduced with the 'func' keyword) have argument
  labels for arguments beyond the first, by default. Methods are no
  longer special in this regard.
  * The presence of a default argument no longer implies an argument
  label.

The actual changes to the parser and printer are fairly simple; the
rest of the noise is updating the standard library, overlays, tests,
etc.

With the standard library, this change is intended to be API neutral:
I've added/removed #'s and _'s as appropriate to keep the user
interface the same. If we want to separately consider using argument
labels for more free functions now that the defaults in the language
have shifted, we can tackle that separately.

Fixes rdar://problem/17218256.

Swift SVN r27704
2015-04-24 19:03:30 +00:00

303 lines
8.0 KiB
Swift

//===--- tgmath.swift.gyb -------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
%{
# Don't need 64-bit (Double/CDouble) overlays. The ordinary C imports work fine.
# FIXME: need 80-bit (Float80/long double) versions when long double is imported
overlayFloatBits = [32] # 80
allFloatBits = [32, 64] # 80
def floatName(bits):
if bits == 32:
return 'Float'
if bits == 64:
return 'Double'
if bits == 80:
return 'Float80'
def cFloatName(bits):
if bits == 32:
return 'CFloat'
if bits == 64:
return 'CDouble'
if bits == 80:
return 'CLongDouble'
def cFuncSuffix(bits):
if bits == 32:
return 'f'
if bits == 64:
return ''
if bits == 80:
return 'l'
# Each of the following lists is ordered to match math.h
# (T) -> T
# These functions do not have a corresponding LLVM intrinsic
UnaryFunctions = ['acos', 'asin', 'atan', 'tan',
'acosh', 'asinh', 'atanh', 'cosh', 'sinh', 'tanh',
'expm1',
'log1p', 'logb',
'cbrt', 'sqrt', 'erf', 'erfc', 'tgamma',
]
# These functions have a corresponding LLVM intrinsic
# We call this intrinsic via the Builtin method so keep this list in
# sync with core/BuiltinMath.swift.gyb
UnaryIntrinsicFunctions = ['cos', 'sin',
'exp', 'exp2',
'log', 'log10', 'log2',
'fabs',
'ceil', 'floor', 'nearbyint', 'rint', 'round', 'trunc',
]
# (T, T) -> T
BinaryFunctions = ['atan2', 'hypot', 'pow', 'fmod',
'remainder', 'copysign', 'nextafter', 'fdim', 'fmax', 'fmin']
# These functions have special implementations.
OtherFunctions = ['fpclassify',
'isnormal', 'isfinite', 'isinf', 'isnan', 'signbit',
'modf', 'ldexp', 'frexp', 'ilogb', 'scalbn', 'lgamma',
'remquo', 'nan', 'fma',
'jn', 'yn']
# These functions are imported correctly as-is.
OkayFunctions = ['j0', 'j1', 'y0', 'y1']
# These functions are not supported for various reasons.
UnhandledFunctions = ['math_errhandling', 'scalbln',
'lrint', 'lround', 'llrint', 'llround', 'nexttoward',
'isgreater', 'isgreaterequal', 'isless', 'islessequal',
'islessgreater', 'isunordered', '__exp10',
'__sincos', '__cospi', '__sinpi', '__tanpi', '__sincospi']
def AllFloatTypes():
for bits in allFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def OverlayFloatTypes():
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def TypedUnaryFunctions():
for ufunc in UnaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), ufunc
def TypedUnaryIntrinsicFunctions():
for ufunc in UnaryIntrinsicFunctions:
for bits in allFloatBits:
yield floatName(bits), ufunc
def TypedBinaryFunctions():
for bfunc in BinaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), bfunc
}%
// Unary functions
// Note these do not have a corresponding LLVM intrinsic
% for T, CT, f, ufunc in TypedUnaryFunctions():
@transparent
public func ${ufunc}(x: ${T}) -> ${T} {
return ${T}(${ufunc}${f}(${CT}(x)))
}
% end
// Unary intrinsic functions
// Note these have a corresponding LLVM intrinsic
% for T, ufunc in TypedUnaryIntrinsicFunctions():
@transparent
public func ${ufunc}(x: ${T}) -> ${T} {
return _${ufunc}(x)
}
% end
// Binary functions
% for T, CT, f, bfunc in TypedBinaryFunctions():
@transparent
public func ${bfunc}(lhs: ${T}, _ rhs: ${T}) -> ${T} {
return ${T}(${bfunc}${f}(${CT}(lhs), ${CT}(rhs)))
}
% end
// Other functions
% # These are AllFloatTypes not OverlayFloatTypes because of the Int return.
% for T, CT, f in AllFloatTypes():
% if f == '':
% f = 'd'
@transparent
public func fpclassify(x: ${T}) -> Int {
return Int(__fpclassify${f}(${CT}(x)))
}
% end
% # These are AllFloatTypes not OverlayFloatTypes because we need to cover
% # them all because C's declarations are compiler builtins.
% for T, CT, f in AllFloatTypes():
@transparent
public func isnormal(value: ${T}) -> Bool {
return value.isNormal
}
@transparent
public func isfinite(value: ${T}) -> Bool {
return value.isFinite
}
@transparent
public func isinf(value: ${T}) -> Bool {
return value.isInfinite
}
@transparent
public func isnan(value: ${T}) -> Bool {
return value.isNaN
}
@transparent
public func signbit(value: ${T}) -> Int {
return value.isSignMinus ? 1 : 0
}
% end
% # These are AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@transparent
public func modf(value: ${T}) -> (${T}, ${T}) {
var ipart = ${CT}(0)
let fpart = modf${f}(${CT}(value), &ipart)
return (${T}(ipart), ${T}(fpart))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the Int parameter.
% for T, CT, f in AllFloatTypes():
@transparent
public func ldexp(x: ${T}, _ n: Int) -> ${T} {
return ${T}(ldexp${f}(${CT}(x), CInt(n)))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@transparent
public func frexp(value: ${T}) -> (${T}, Int) {
var exp = CInt(0)
let frac = frexp${f}(${CT}(value), &exp)
return (${T}(frac), Int(exp))
}
% end
% # This would be AllFloatTypes not OverlayFloatTypes because of the Int return.
% # ... except we need an asmname to avoid an overload ambiguity.
% for T, CT, f in OverlayFloatTypes():
@transparent
public func ilogb(x: ${T}) -> Int {
return Int(ilogb${f}(${CT}(x)))
}
% end
@asmname("ilogb")
func _swift_Darwin_ilogb(value: CDouble) -> CInt
@transparent
public func ilogb(x: Double) -> Int {
return Int(_swift_Darwin_ilogb(CDouble(x)))
}
% # This is AllFloatTypes not OverlayFloatTypes because of the Int parameter.
% for T, CT, f in AllFloatTypes():
@transparent
public func scalbn(x: ${T}, _ n: Int) -> ${T} {
return ${T}(scalbn${f}(${CT}(x), CInt(n)))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
% # The real lgamma_r is not imported because it hides behind macro _REENTRANT.
@asmname("lgamma${f}_r")
func _swift_Darwin_lgamma${f}_r(${CT}, UnsafeMutablePointer<CInt>) -> ${CT}
@transparent
public func lgamma(x: ${T}) -> (${T}, Int) {
var sign = CInt(0)
let value = withUnsafeMutablePointer(&sign) {
(signp: UnsafeMutablePointer<CInt>) -> ${CT} in
return _swift_Darwin_lgamma${f}_r(${CT}(x), signp)
}
return (${T}(value), Int(sign))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@transparent
public func remquo(x: ${T}, _ y: ${T}) -> (${T}, Int) {
var quo = CInt(0)
let rem = remquo${f}(${CT}(x), ${CT}(y), &quo)
return (${T}(rem), Int(quo))
}
% end
% for T, CT, f in OverlayFloatTypes():
@transparent
public func nan(tag: String) -> ${T} {
return ${T}(nan${f}(tag))
}
% end
% for T, CT, f in OverlayFloatTypes():
@transparent
public func fma(x: ${T}, _ y: ${T}, _ z: ${T}) -> ${T} {
return ${T}(fma${f}(${CT}(x), ${CT}(y), ${CT}(z)))
}
% end
% # These C functions only support double. The overlay fixes the Int parameter.
@transparent
public func jn(n: Int, _ x: Double) -> Double {
return jn(CInt(n), x)
}
@transparent
public func yn(n: Int, _ x: Double) -> Double {
return yn(CInt(n), x)
}
% end
// ${'Local Variables'}:
// eval: (read-only-mode 1)
// End: