Files
swift-mirror/stdlib/public/SDK/simd/simd.swift.gyb
Dave Abrahams 5c55682d8b [stdlib] Capitalize keywords in doc comments
Again, the text is a lot more readable that way.

Swift SVN r28472
2015-05-12 16:59:13 +00:00

735 lines
23 KiB
Swift

//===----------------------------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// simd.h overlays for Swift
//===----------------------------------------------------------------------===//
import Darwin
import simd
% component = ['x','y','z','w']
% scalar_types = ['Float','Double','Int32']
% ctype = { 'Float':'float', 'Double':'double', 'Int32':'int' }
% floating_types = ['Float','Double']
% cardinal = { 2:'two', 3:'three', 4:'four'}
% hash_scales = ['1', '3', '5', '11']
% one_minus_ulp = { 'Float':'0x1.fffffep-1', 'Double':'0x1.fffffffffffffp-1' }
% for type in scalar_types:
% for size in [2, 3, 4]:
// Workaround <rdar://problem/18900352>
% vectype = ctype[type] + str(size)
% vecsize = (8 if type == 'Double' else 4)*(2 if size == 2 else 4)
/// A vector of ${cardinal[size]} `${type}`. This corresponds to the C and
/// Obj-C type `vector_${vectype}` and the C++ type `simd::${vectype}`.
@_alignment(${vecsize})
public struct ${vectype} :
ArrayLiteralConvertible, CustomDebugStringConvertible {
public var ${', '.join(component[:size])}: ${type}
% if size == 3:
/// Three-element vectors require padding so that their size is the same as
/// the size of the corresponding C, Obj-C, and C++ types.
internal let _padding: ${type} = 0
% end
/// Initialize to the zero vector.
public init() { self.init(0) }
/// Initialize a vector with the specified elements.
public init(${', '.join(map(lambda c: c + ': ' + type, component[:size]))}) {
% for c in component[:size]:
self.${c} = ${c}
% end
}
/// Initialize to a vector with all elements equal to `scalar`.
public init(_ scalar: ${type}) {
self.init(${', '.join(map(lambda c: c + ': scalar', component[:size]))})
}
/// Initialize to a vector with elements taken from `array`.
///
/// - Precondition: `array` must have exactly ${cardinal[size]} elements.
public init(_ array: [${type}]) {
_precondition(array.count == ${size},
"${vectype} requires a ${cardinal[size]}-element array")
self.init(${', '.join(map(lambda i:
component[i] + ': array[' + str(i) + ']',
range(size)))})
}
/// Initialize using `arrayLiteral`.
///
/// - Precondition: the array literal must exactly ${cardinal[size]} elements.
public init(arrayLiteral elements: ${type}...) { self.init(elements) }
/// Access individual elements of the vector via subscript.
public subscript(index: Int) -> ${type} {
get {
switch index {
% for i in range(size):
case ${i}: return ${component[i]}
% end
default: _preconditionFailure("Vector index out of range")
}
}
set(value) {
switch index {
% for i in range(size):
case ${i}: ${component[i]} = value
% end
default: _preconditionFailure("Vector index out of range")
}
}
}
/// Debug string representation
public var debugDescription: String {
return "${vectype}(\(self._descriptionAsArray))"
}
/// Helper function for vector and matrix debug representations
internal var _descriptionAsArray: String {
get {
return "[${', '.join(map(lambda c:
'\\(' + c + ')',
component[:size]))}]"
}
}
}
/// Vector sum of `lhs` and `rhs`.
@inline(__always)
public func +(lhs: ${vectype}, rhs: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ':lhs.' + c + '+rhs.' + c,
component[:size]))})
}
/// Vector difference of `lhs` and `rhs`.
@inline(__always)
public func -(lhs: ${vectype}, rhs: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ':lhs.' + c + '-rhs.' + c,
component[:size]))})
}
/// Negation of `rhs`.
@inline(__always)
public prefix func -(rhs: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ':-rhs.' + c,
component[:size]))})
}
/// Elementwise product of `lhs` and `rhs`. A.k.a. the Hadamard or Schur
/// product of the two vectors.
@inline(__always)
public func *(lhs: ${vectype}, rhs: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ':lhs.' + c + '*rhs.' + c,
component[:size]))})
}
/// Elementwise quotient of `lhs` and `rhs`. This is the inverse operation
/// of the elementwise product.
@inline(__always)
public func /(lhs: ${vectype}, rhs: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ':lhs.' + c + '/rhs.' + c,
component[:size]))})
}
/// Add `rhs` to `lhs`.
@inline(__always)
public func +=(inout lhs: ${vectype}, rhs: ${vectype}) -> Void {
lhs = lhs + rhs
}
/// Subtract `rhs` from `lhs`.
@inline(__always)
public func -=(inout lhs: ${vectype}, rhs: ${vectype}) -> Void {
lhs = lhs - rhs
}
/// Multiply `lhs` by `rhs` (elementwise).
@inline(__always)
public func *=(inout lhs: ${vectype}, rhs: ${vectype}) -> Void {
lhs = lhs * rhs
}
/// Divide `lhs` by `rhs` (elementwise).
@inline(__always)
public func /=(inout lhs: ${vectype}, rhs: ${vectype}) -> Void {
lhs = lhs / rhs
}
/// Scalar-Vector product.
@inline(__always)
public func *(lhs: ${type}, rhs: ${vectype}) -> ${vectype} {
return ${vectype}(lhs) * rhs
}
/// Scalar-Vector product.
@inline(__always)
public func *(lhs: ${vectype}, rhs: ${type}) -> ${vectype} {
return lhs * ${vectype}(rhs)
}
/// Scales `lhs` by `rhs`.
@inline(__always)
public func *=(inout lhs: ${vectype}, rhs: ${type}) -> Void {
lhs = lhs * rhs
}
/// Elementwise absolute value of a vector. The result is a vector of the same
/// length with all elements positive.
@inline(__always)
public func abs(x: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ': abs(x.' + c + ')', \
component[:size]))})
}
/// Elementwise minimum of two vectors. Each component of the result is the
/// smaller of the corresponding component of the inputs.
@inline(__always)
public func min(x: ${vectype}, _ y: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ': min(x.' + c + ',y.' + c + ')', \
component[:size]))})
}
/// Elementwise maximum of two vectors. Each component of the result is the
/// larger of the corresponding component of the inputs.
@inline(__always)
public func max(x: ${vectype}, _ y: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ': max(x.' + c + ',y.' + c + ')', \
component[:size]))})
}
/// Vector-scalar minimum. Each component of the result is the minimum of the
/// corresponding element of the input vector and the scalar.
@inline(__always)
public func min(vector: ${vectype}, _ scalar: ${type}) -> ${vectype} {
return min(vector, ${vectype}(scalar))
}
/// Vector-scalar maximum. Each component of the result is the maximum of the
/// corresponding element of the input vector and the scalar.
@inline(__always)
public func max(vector: ${vectype}, _ scalar: ${type}) -> ${vectype} {
return max(vector, ${vectype}(scalar))
}
/// Each component of the result is the corresponding element of `x` clamped to
/// the range formed by the corresponding elements of `min` and `max`. Any
/// lanes of `x` that contain NaN will end up with the `min` value.
@inline(__always)
public func clamp(x: ${vectype},
min: ${vectype},
max: ${vectype})
-> ${vectype} {
return simd.min(simd.max(x, min), max)
}
/// Clamp each element of `x` to the range [`min`, max]. If any lane of `x` is
/// NaN, the corresponding lane of the result is `min`.
@inline(__always)
public func clamp(x: ${vectype},
min: ${type},
max: ${type})
-> ${vectype} {
return simd.min(simd.max(x, min), max)
}
/// Sum of the elements of the vector.
@inline(__always)
public func reduce_add(x: ${vectype}) -> ${type} {
return ${' + '.join(map(lambda x:'x.'+x, component[:size]))}
}
/// Minimum element of the vector.
@inline(__always)
public func reduce_min(x: ${vectype}) -> ${type} {
return min(${', '.join(map(lambda x:'x.'+x, component[:size]))})
}
/// Maximum element of the vector.
@inline(__always)
public func reduce_max(x: ${vectype}) -> ${type} {
return max(${', '.join(map(lambda x:'x.'+x, component[:size]))})
}
% if type in floating_types:
/// Sign of a vector. Each lane contains -1 if the corresponding lane of `x`
/// is less than zero, +1 if the corresponding lane of `x` is greater than
/// zero, and 0 otherwise.
@inline(__always)
public func sign(x: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ': sign(x.' + c + ')', \
component[:size]))})
}
/// Linear interpolation between `x` (at `t=0`) and `y` (at `t=1`). May be
/// used with `t` outside of [0, 1] as well.
@inline(__always)
public func mix(x: ${vectype}, _ y: ${vectype}, t: ${vectype}) -> ${vectype} {
return x + t*(y-x)
}
/// Linear interpolation between `x` (at `t=0`) and `y` (at `t=1`). May be
/// used with `t` outside of [0, 1] as well.
@inline(__always)
public func mix(x: ${vectype}, _ y: ${vectype}, t: ${type}) -> ${vectype} {
return x + t*(y-x)
}
/// Elementwise reciprocal.
@inline(__always)
public func recip(x: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ': recip(x.' + c + ')', \
component[:size]))})
}
/// Elementwise reciprocal square root.
@inline(__always)
public func rsqrt(x: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ': rsqrt(x.' + c + ')', \
component[:size]))})
}
/// Alternate name for minimum of two floating-point vectors.
@inline(__always)
public func fmin(x: ${vectype}, _ y: ${vectype}) -> ${vectype} {
return min(x, y)
}
/// Alternate name for maximum of two floating-point vectors.
@inline(__always)
public func fmax(x: ${vectype}, _ y: ${vectype}) -> ${vectype} {
return max(x, y)
}
/// Each element of the result is the smallest integral value greater than or
/// equal to the corresponding element of the input.
@inline(__always)
public func ceil(x: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ': ceil(x.' + c + ')', \
component[:size]))})
}
/// Each element of the result is the largest integral value less than or equal
/// to the corresponding element of the input.
@inline(__always)
public func floor(x: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ': floor(x.' + c + ')', \
component[:size]))})
}
/// Each element of the result is the closest integral value with magnitude
/// less than or equal to that of the corresponding element of the input.
@inline(__always)
public func trunc(x: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ': trunc(x.' + c + ')', \
component[:size]))})
}
/// `x - floor(x)`, clamped to lie in the range [0,1). Without this clamp step,
/// the result would be 1.0 when `x` is a very small negative number, which may
/// result in out-of-bounds table accesses in common usage.
@inline(__always)
public func fract(x: ${vectype}) -> ${vectype} {
return fmin(x - floor(x), ${vectype}(${one_minus_ulp[type]}))
}
/// 0.0 if `x < edge`, and 1.0 otherwise.
@inline(__always)
public func step(x: ${vectype}, edge: ${vectype}) -> ${vectype} {
return ${vectype}(${', '.join(map(lambda c: \
c + ': step(x.' + c + ', edge: edge.' + c + ')', \
component[:size]))})
}
/// 0.0 if `x < edge0`, 1.0 if `x > edge1`, and cubic interpolation between
/// 0 and 1 in the interval [edge0, edge1].
@inline(__always)
public func smoothstep(x: ${vectype},
edge0: ${vectype},
edge1: ${vectype})
-> ${vectype} {
let t = clamp((x-edge0)/(edge1-edge0), min: 0, max: 1)
return t*t*(${vectype}(3) - 2*t)
}
/// Dot product of `x` and `y`.
@inline(__always)
public func dot(x: ${vectype}, _ y: ${vectype}) -> ${type} {
return reduce_add(x*y)
}
/// Projection of `x` onto `y`.
@inline(__always)
public func project(x: ${vectype}, _ y: ${vectype}) -> ${vectype} {
return dot(x,y)/dot(y,y)*y
}
/// Length of `x`, squared. This is more efficient to compute than the length,
/// so you should use it if you only need to compare lengths to each other.
/// I.e. instead of writing:
///
/// if (length(x) < length(y)) { ... }
///
/// use:
///
/// if (length_squared(x) < length_squared(y)) { ... }
///
/// Doing it this way avoids one or two square roots, which is a fairly costly
/// operation.
@inline(__always)
public func length_squared(x: ${vectype}) -> ${type} {
return dot(x,x)
}
/// Length (two-norm or "Euclidean norm") of `x`.
@inline(__always)
public func length(x: ${vectype}) -> ${type} {
return sqrt(length_squared(x))
}
/// The one-norm (or "taxicab norm") of `x`.
@inline(__always)
public func norm_one(x: ${vectype}) -> ${type} {
return reduce_add(abs(x))
}
/// The infinity-norm (or "sup norm") of `x`.
@inline(__always)
public func norm_inf(x: ${vectype}) -> ${type} {
return reduce_max(abs(x))
}
/// Distance between `x` and `y`, squared.
@inline(__always)
public func distance_squared(x: ${vectype}, y: ${vectype}) -> ${type} {
return length_squared(x - y)
}
/// Distance between `x` and `y`.
@inline(__always)
public func distance(x: ${vectype}, y: ${vectype}) -> ${type} {
return length(x - y)
}
/// Unit vector pointing in the same direction as `x`. normalize(0) is 0.
@inline(__always)
public func normalize(x: ${vectype}) -> ${vectype} {
return x * rsqrt(length_squared(x))
}
/// `x` reflected through the hyperplane with unit normal vector `n`, passing
/// through the origin. E.g. if `x` is [1,2,3] and `n` is [0,0,1], the result
/// is [1,2,-3].
@inline(__always)
public func reflect(x: ${vectype}, n: ${vectype}) -> ${vectype} {
return x - 2*dot(x,n)*n
}
/// The refraction direction given unit incident vector `x`, unit surface
/// normal `n`, and index of refraction `eta`. If the angle between the
/// incident vector and the surface is so small that total internal reflection
/// occurs, zero is returned.
@inline(__always)
public func refract(x: ${vectype},
n: ${vectype},
eta: ${type})
-> ${vectype} {
let k = 1 - eta*eta*(1 - dot(x,n)*dot(x,n))
if k >= 0 { return eta*x - (eta*dot(x,n) + sqrt(k))*n }
return ${vectype}(0)
}
% end # if type in floating_types
% end # for size in [2, 3, 4]
% if type in floating_types:
// Scalar versions of common operations:
/// Returns -1 if `x < 0`, +1 if `x > 0`, and 0 otherwise (`sign(NaN)` is 0).
@inline(__always)
public func sign(x: ${type}) -> ${type} {
return x < 0 ? -1 : (x > 0 ? 1 : 0)
}
/// Reciprocal.
@inline(__always)
public func recip(x: ${type}) -> ${type} { return 1/x }
/// Reciprocal square root.
@inline(__always)
public func rsqrt(x: ${type}) -> ${type} { return 1/sqrt(x) }
/// Returns 0.0 if `x < edge`, and 1.0 otherwise.
@inline(__always)
public func step(x: ${type}, edge: ${type}) -> ${type} {
return x < edge ? 0.0 : 1.0
}
/// Interprets two two-dimensional vectors as three-dimensional vectors in the
/// xy-plane and computes their cross product, which lies along the z-axis.
@inline(__always)
public func cross(x: ${ctype[type]}2,
_ y: ${ctype[type]}2)
-> ${ctype[type]}3 {
return ${ctype[type]}3(x: 0, y: 0, z: x.x*y.y - x.y*y.x)
}
/// Cross-product of two three-dimensional vectors. The resulting vector is
/// perpendicular to the plane determined by `x` and `y`, with length equal to
/// the oriented area of the parallelogram they determine.
@inline(__always)
public func cross(x: ${ctype[type]}3,
_ y: ${ctype[type]}3)
-> ${ctype[type]}3 {
return ${ctype[type]}3(x: x.y*y.z - x.z*y.y,
y: x.z*y.x - x.x*y.z,
z: x.x*y.y - x.y*y.x)
}
% end # type in floating_types
% end # for type in scalar_types
% for type in floating_types:
% for rows in [2,3,4]:
// Workaround <rdar://problem/18900352>
% for cols in [2,3,4]:
// Workaround <rdar://problem/18900352>
% mattype = ctype[type] + str(cols) + 'x' + str(rows)
% diagsize = rows if rows < cols else cols
% coltype = ctype[type] + str(rows)
% rowtype = ctype[type] + str(cols)
% diagtype = ctype[type] + str(diagsize)
% transtype = ctype[type] + str(rows) + 'x' + str(cols)
% cmatrix = 'matrix_' + mattype
public struct ${mattype} : CustomDebugStringConvertible {
internal var _columns: (${', '.join([coltype]*cols)})
/// Initialize matrix to zero.
public init() {
% for i in range(cols):
_columns.${i} = ${coltype}()
% end
}
/// Initialize matrix to have `scalar` on main diagonal, zeros elsewhere.
public init(_ scalar: ${type}) {
self.init(diagonal: ${diagtype}(scalar))
}
/// Initialize matrix to have specified `diagonal`, and zeros elsewhere.
public init(diagonal: ${diagtype}) {
% for i in range(cols):
self._columns.${i} = ${coltype}()
% end
% for i in range(diagsize):
self._columns.${i}.${component[i]} = diagonal.${component[i]}
% end
}
/// Initialize matrix to have specified `columns`.
public init(_ columns: [${coltype}]) {
_precondition(columns.count == ${cols}, "Requires array of ${cols} vectors")
% for i in range(cols):
self._columns.${i} = columns[${i}]
% end
}
/// Initialize matrix to have specified `rows`.
public init(rows: [${rowtype}]) {
_precondition(rows.count == ${rows}, "Requires array of ${rows} vectors")
% for i in range(cols):
self._columns.${i} = [${', '.join(map(lambda j:
'rows[' + str(j) + '].' + component[i],
range(rows)))}]
% end
}
/// Initialize matrix to have specified `columns`.
internal init(${', '.join(map(lambda i:
'_ col' + str(i) + ': ' + coltype,
range(cols)))}) {
% for i in range(cols):
self._columns.${i} = col${i}
% end
}
/// Initialize matrix from corresponding C matrix type.
public init(_ cmatrix: ${cmatrix}) {
self = unsafeBitCast(cmatrix, ${mattype}.self)
}
/// Get the matrix as the corresponding C matrix type.
public var cmatrix: ${cmatrix} {
get { return unsafeBitCast(self, ${cmatrix}.self) }
}
/// Access to individual columns.
public subscript(column: Int) -> ${coltype} {
get {
switch(column) {
% for i in range(cols):
case ${i}: return _columns.${i}
% end
default: _preconditionFailure("Column index out of range")
}
}
set (value) {
switch(column) {
% for i in range(cols):
case ${i}: _columns.${i} = value
% end
default: _preconditionFailure("Column index out of range")
}
}
}
/// Access to individual elements.
public subscript(column: Int, row: Int) -> ${type} {
get { return self[column][row] }
set (value) { self[column][row] = value }
}
public var debugDescription: String {
return "${mattype}([${', '.join(map(lambda i: \
'\(_columns.' + str(i) + '._descriptionAsArray)',
range(cols)))}])"
}
/// Transpose of the matrix.
public var transpose: ${transtype} {
get {
return ${transtype}([
% for i in range(rows):
[${', '.join(map(lambda j: \
'self[' + str(j) + ',' + str(i) + ']', \
range(cols)))}],
% end # for i in range(rows)
])
}
}
% if rows == cols:
/// Inverse of the matrix if it exists, otherwise the contents of the
/// resulting matrix are undefined.
public var inverse: ${mattype} {
get {
% inverse_func = '__invert_' + ('f' if type == 'Float' else 'd') + str(cols)
return ${mattype}(${inverse_func}(self.cmatrix))
}
}
% end
}
/// Sum of two matrices.
public func +(lhs: ${mattype}, rhs: ${mattype}) -> ${mattype} {
return ${mattype}(${', '.join(map(lambda i: \
'lhs._columns.'+str(i)+' + rhs._columns.'+str(i), \
range(cols)))})
}
/// Negation of a matrix.
public prefix func -(rhs: ${mattype}) -> ${mattype} {
return ${mattype}(${', '.join(map(lambda i: \
'-rhs._columns.'+str(i), \
range(cols)))})
}
/// Difference of two matrices.
public func -(lhs: ${mattype}, rhs: ${mattype}) -> ${mattype} {
return ${mattype}(${', '.join(map(lambda i: \
'lhs._columns.'+str(i)+' - rhs._columns.'+str(i), \
range(cols)))})
}
public func +=(inout lhs: ${mattype}, rhs: ${mattype}) -> Void {
lhs = lhs + rhs
}
public func -=(inout lhs: ${mattype}, rhs: ${mattype}) -> Void {
lhs = lhs - rhs;
}
/// Scalar-Matrix multiplication.
public func *(lhs: ${type}, rhs: ${mattype}) -> ${mattype} {
return ${mattype}(${', '.join(map(lambda i: \
'lhs*rhs._columns.'+str(i), \
range(cols)))})
}
/// Matrix-Scalar multiplication.
public func *(lhs: ${mattype}, rhs: ${type}) -> ${mattype} {
return rhs*lhs
}
public func *=(inout lhs: ${mattype}, rhs: ${type}) -> Void {
lhs = lhs*rhs
}
/// Matrix-Vector multiplication. Keep in mind that matrix types are named
/// `${type}NxM` where `N` is the number of *columns* and `M` is the number of
/// *rows*, so we multiply a `${type}3x2 * ${type}3` to get a `${type}2`, for
/// example.
public func *(lhs: ${mattype}, rhs: ${rowtype}) -> ${coltype} {
return ${' + '.join(map(lambda i: \
'lhs._columns.'+str(i)+'*rhs.'+component[i], \
range(cols)))}
}
/// Vector-Matrix multiplication.
public func *(lhs: ${coltype}, rhs: ${mattype}) -> ${rowtype} {
return ${rowtype}(${', '.join(map(lambda i: \
component[i]+': dot(lhs, rhs._columns.'+str(i)+')', \
range(cols)))})
}
% for k in [2,3,4]:
/// Matrix multiplication (the "usual" matrix product, not the elementwise
/// product).
% lhstype = ctype[type] + str(k) + 'x' + str(rows)
% rhstype = ctype[type] + str(cols) + 'x' + str(k)
public func *(lhs: ${lhstype}, rhs: ${rhstype}) -> ${mattype} {
return ${mattype}(${', '.join(map(lambda i: \
'lhs*rhs._columns.'+str(i), \
range(cols)))})
}
% end # for k in [2,3,4]
% rhstype = ctype[type] + str(cols) + 'x' + str(cols)
/// Matrix multiplication (the "usual" matrix product, not the elementwise
/// product).
public func *=(inout lhs: ${mattype}, rhs: ${rhstype}) -> Void {
lhs = lhs*rhs
}
% end # for cols in [2,3,4]
% end # for rows in [2,3,4]
% end # for type in floating_types