Files
swift-mirror/lib/AST/Builtins.cpp
Joe Groff db5fe95abb AST: Add a Builtin.condfail function.
Lowered by SILGen into a cond_fail instruction.

Swift SVN r9591
2013-10-22 15:53:11 +00:00

1051 lines
39 KiB
C++

//===--- Builtins.cpp - Swift Language Builtin ASTs -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface to the Builtin APIs.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Builtins.h"
#include "swift/AST/AST.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include <cstring>
#include <tuple>
using namespace swift;
struct BuiltinExtraInfoTy {
const char *Attributes;
};
static const BuiltinExtraInfoTy BuiltinExtraInfo[] = {
{0},
#define BUILTIN(Id, Name, Attrs) {Attrs},
#include "swift/AST/Builtins.def"
};
bool BuiltinInfo::isReadNone() const {
return strchr(BuiltinExtraInfo[(unsigned)ID].Attributes, 'n') != 0;
}
bool IntrinsicInfo::hasAttribute(llvm::Attribute::AttrKind Kind) const {
// FIXME: We should not be relying on the global LLVM context.
llvm::AttributeSet attrs
= llvm::Intrinsic::getAttributes(llvm::getGlobalContext(), ID);
return (attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, Kind));
}
Type swift::getBuiltinType(ASTContext &Context, StringRef Name) {
// Vectors are VecNxT, where "N" is the number of elements and
// T is the element type.
if (Name.startswith("Vec")) {
Name = Name.substr(3);
StringRef::size_type xPos = Name.find('x');
if (xPos == StringRef::npos)
return Type();
unsigned numElements;
if (Name.substr(0, xPos).getAsInteger(10, numElements) ||
numElements == 0 || numElements > 1024)
return Type();
Type elementType = getBuiltinType(Context, Name.substr(xPos + 1));
if (!elementType)
return Type();
return BuiltinVectorType::get(Context, elementType, numElements);
}
if (Name == "RawPointer")
return Context.TheRawPointerType;
if (Name == "ObjectPointer")
return Context.TheObjectPointerType;
if (Name == "ObjCPointer")
return Context.TheObjCPointerType;
if (Name == "FPIEEE32")
return Context.TheIEEE32Type;
if (Name == "FPIEEE64")
return Context.TheIEEE64Type;
// Handle 'int8' and friends.
if (Name.substr(0, 3) == "Int") {
unsigned BitWidth;
if (!Name.substr(3).getAsInteger(10, BitWidth) &&
BitWidth <= 2048 && BitWidth != 0) // Cap to prevent insane things.
return BuiltinIntegerType::get(BitWidth, Context);
}
// Target specific FP types.
if (Name == "FPIEEE16")
return Context.TheIEEE16Type;
if (Name == "FPIEEE80")
return Context.TheIEEE80Type;
if (Name == "FPIEEE128")
return Context.TheIEEE128Type;
if (Name == "FPPPC128")
return Context.ThePPC128Type;
return Type();
}
/// getBuiltinBaseName - Decode the type list of a builtin (e.g. mul_Int32) and
/// return the base name (e.g. "mul").
StringRef swift::getBuiltinBaseName(ASTContext &C, StringRef Name,
SmallVectorImpl<Type> &Types) {
// builtin-id ::= operation-id ('_' type-id)*
for (StringRef::size_type Underscore = Name.find_last_of('_');
Underscore != StringRef::npos; Underscore = Name.find_last_of('_')) {
// Check that the type parameter is well-formed and set it up for returning.
// This allows operations with underscores in them, like "icmp_eq".
Type Ty = getBuiltinType(C, Name.substr(Underscore + 1));
if (Ty.isNull()) break;
Types.push_back(Ty);
Name = Name.substr(0, Underscore);
}
std::reverse(Types.begin(), Types.end());
return Name;
}
/// Build a builtin function declaration.
static FuncDecl *
getBuiltinFunction(ASTContext &Context, Identifier Id,
ArrayRef<TupleTypeElt> ArgTypes,
Type ResType,
FunctionType::ExtInfo Info = FunctionType::ExtInfo()) {
Type ArgType = TupleType::get(ArgTypes, Context);
Type FnType;
FnType = FunctionType::get(ArgType, ResType, Info, Context);
SmallVector<TuplePatternElt, 4> ArgPatternElts;
for (auto &ArgTupleElt : ArgTypes) {
ArgPatternElts.push_back(TuplePatternElt(
new (Context) TypedPattern(
new (Context) AnyPattern(SourceLoc()),
TypeLoc::withoutLoc(ArgTupleElt.getType()))));
}
Pattern *ArgPattern = TuplePattern::createSimple(
Context, SourceLoc(), ArgPatternElts, SourceLoc());
return FuncDecl::create(Context, SourceLoc(), SourceLoc(), Id, SourceLoc(),
/*GenericParams=*/nullptr, FnType, ArgPattern,
ArgPattern, TypeLoc::withoutLoc(ResType),
Context.TheBuiltinModule);
}
/// Build a builtin function declaration.
static FuncDecl *
getBuiltinGenericFunction(ASTContext &Context, Identifier Id,
ArrayRef<TupleTypeElt> ArgParamTypes,
ArrayRef<TupleTypeElt> ArgBodyTypes,
Type ResType,
Type ResBodyType,
GenericParamList *GenericParams,
FunctionType::ExtInfo Info = FunctionType::ExtInfo()) {
assert(GenericParams && "Missing generic parameters");
Type ArgParamType = TupleType::get(ArgParamTypes, Context);
Type ArgBodyType = TupleType::get(ArgBodyTypes, Context);
// Compute the function type.
Type FnType = PolymorphicFunctionType::get(ArgBodyType, ResBodyType,
GenericParams, Info, Context);
// Compute the interface type.
SmallVector<GenericTypeParamType *, 2> GenericParamTypes;
for (auto gp : *GenericParams) {
GenericParamTypes.push_back(gp.getAsTypeParam()->getDeclaredType()
->castTo<GenericTypeParamType>());
}
Type InterfaceType = GenericFunctionType::get(GenericParamTypes, { },
ArgParamType, ResType,
Info, Context);
SmallVector<TuplePatternElt, 4> ArgPatternElts;
for (auto &ArgTupleElt : ArgBodyTypes) {
ArgPatternElts.push_back(TuplePatternElt(
new (Context) TypedPattern(
new (Context) AnyPattern(SourceLoc()),
TypeLoc::withoutLoc(ArgTupleElt.getType()))));
}
Pattern *ArgPattern = TuplePattern::createSimple(
Context, SourceLoc(), ArgPatternElts, SourceLoc());
auto func = FuncDecl::create(Context, SourceLoc(), SourceLoc(), Id,
SourceLoc(), GenericParams, FnType, ArgPattern,
ArgPattern, TypeLoc::withoutLoc(ResBodyType),
Context.TheBuiltinModule);
func->setInterfaceType(InterfaceType);
return func;
}
/// Build a getelementptr operation declaration.
static ValueDecl *getGepOperation(ASTContext &Context, Identifier Id,
Type ArgType) {
// This is always "(i8*, IntTy) -> i8*"
TupleTypeElt ArgElts[] = { Context.TheRawPointerType, ArgType };
Type ResultTy = Context.TheRawPointerType;
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
/// Build a binary operation declaration.
static ValueDecl *getBinaryOperation(ASTContext &Context, Identifier Id,
Type ArgType) {
TupleTypeElt ArgElts[] = { ArgType, ArgType };
Type ResultTy = ArgType;
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
/// Build a declaration for a binary operation with overflow.
static ValueDecl *getBinaryOperationWithOverflow(ASTContext &Context,
Identifier Id,
Type ArgType) {
Type ShouldCheckForOverflowTy = BuiltinIntegerType::get(1, Context);
TupleTypeElt ArgElts[] = { ArgType, ArgType, ShouldCheckForOverflowTy };
Type OverflowBitTy = BuiltinIntegerType::get(1, Context);
TupleTypeElt ResultElts[] = { ArgType, OverflowBitTy };
Type ResultTy = TupleType::get(ResultElts, Context);
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
static ValueDecl *getUnaryOperation(ASTContext &Context, Identifier Id,
Type ArgType) {
TupleTypeElt ArgElts[] = { ArgType };
Type ResultTy = ArgType;
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
/// Build a binary predicate declaration.
static ValueDecl *getBinaryPredicate(ASTContext &Context, Identifier Id,
Type ArgType) {
TupleTypeElt ArgElts[] = { ArgType, ArgType };
Type ResultTy = BuiltinIntegerType::get(1, Context);
if (auto VecTy = ArgType->getAs<BuiltinVectorType>()) {
ResultTy = BuiltinVectorType::get(Context, ResultTy,
VecTy->getNumElements());
}
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
/// Build a cast. There is some custom type checking here.
static ValueDecl *getCastOperation(ASTContext &Context, Identifier Id,
BuiltinValueKind VK,
ArrayRef<Type> Types) {
if (Types.size() == 0 || Types.size() > 2) return nullptr;
Type Input = Types[0];
Type Output = Types.size() == 2 ? Types[1] : Type();
// If both types are vectors, look through the vectors.
Type CheckInput = Input;
Type CheckOutput = Output;
bool UnwrappedVector = false;
auto InputVec = Input->getAs<BuiltinVectorType>();
auto OutputVec = Output.isNull()? nullptr :Output->getAs<BuiltinVectorType>();
if (InputVec && OutputVec &&
InputVec->getNumElements() == OutputVec->getNumElements()) {
UnwrappedVector = true;
CheckInput = InputVec->getElementType();
CheckOutput = OutputVec->getElementType();
}
// Custom type checking. We know the one or two types have been subjected to
// the "isBuiltinTypeOverloaded" predicate successfully.
switch (VK) {
default: assert(0 && "Not a cast operation");
case BuiltinValueKind::Trunc:
if (CheckOutput.isNull() ||
!CheckInput->is<BuiltinIntegerType>() ||
!CheckOutput->is<BuiltinIntegerType>() ||
CheckInput->castTo<BuiltinIntegerType>()->getBitWidth() <=
CheckOutput->castTo<BuiltinIntegerType>()->getBitWidth())
return nullptr;
break;
case BuiltinValueKind::ZExt:
case BuiltinValueKind::SExt: {
if (CheckOutput.isNull() ||
!CheckInput->is<BuiltinIntegerType>() ||
!CheckOutput->is<BuiltinIntegerType>() ||
CheckInput->castTo<BuiltinIntegerType>()->getBitWidth() >=
CheckOutput->castTo<BuiltinIntegerType>()->getBitWidth())
return nullptr;
break;
}
case BuiltinValueKind::FPToUI:
case BuiltinValueKind::FPToSI:
if (CheckOutput.isNull() || !CheckInput->is<BuiltinFloatType>() ||
!CheckOutput->is<BuiltinIntegerType>())
return nullptr;
break;
case BuiltinValueKind::UIToFP:
case BuiltinValueKind::SIToFP:
if (CheckOutput.isNull() || !CheckInput->is<BuiltinIntegerType>() ||
!CheckOutput->is<BuiltinFloatType>())
return nullptr;
break;
case BuiltinValueKind::FPTrunc:
if (CheckOutput.isNull() ||
!CheckInput->is<BuiltinFloatType>() ||
!CheckOutput->is<BuiltinFloatType>() ||
CheckInput->castTo<BuiltinFloatType>()->getFPKind() <=
CheckOutput->castTo<BuiltinFloatType>()->getFPKind())
return nullptr;
break;
case BuiltinValueKind::FPExt:
if (CheckOutput.isNull() ||
!CheckInput->is<BuiltinFloatType>() ||
!CheckOutput->is<BuiltinFloatType>() ||
CheckInput->castTo<BuiltinFloatType>()->getFPKind() >=
CheckOutput->castTo<BuiltinFloatType>()->getFPKind())
return nullptr;
break;
case BuiltinValueKind::PtrToInt:
// FIXME: Do we care about vectors of pointers?
if (!CheckOutput.isNull() || !CheckInput->is<BuiltinIntegerType>() ||
UnwrappedVector)
return nullptr;
Output = Input;
Input = Context.TheRawPointerType;
break;
case BuiltinValueKind::IntToPtr:
// FIXME: Do we care about vectors of pointers?
if (!CheckOutput.isNull() || !CheckInput->is<BuiltinIntegerType>() ||
UnwrappedVector)
return nullptr;
Output = Context.TheRawPointerType;
break;
case BuiltinValueKind::BitCast:
if (CheckOutput.isNull()) return nullptr;
// Support float <-> int bitcast where the types are the same widths.
if (auto *BIT = CheckInput->getAs<BuiltinIntegerType>())
if (auto *BFT = CheckOutput->getAs<BuiltinFloatType>())
if (BIT->getBitWidth() == BFT->getBitWidth())
break;
if (auto *BFT = CheckInput->getAs<BuiltinFloatType>())
if (auto *BIT = CheckOutput->getAs<BuiltinIntegerType>())
if (BIT->getBitWidth() == BFT->getBitWidth())
break;
// FIXME: Implement bitcast typechecking.
assert(0 && "Bitcast not supported yet!");
return nullptr;
}
TupleTypeElt ArgElts[] = { Input };
return getBuiltinFunction(Context, Id, ArgElts, Output);
}
/// Create a generic parameter list with a single generic parameter.
///
/// \returns a tuple (interface type, body type, parameter list) that contains
/// the interface type for the generic parameter (i.e.,
/// a GenericTypeParamType*), the body type for the generic parameter (i.e.,
/// an ArchetypeType*), and the generic parameter list.
static std::tuple<Type, Type, GenericParamList*>
getGenericParam(ASTContext &Context) {
Identifier GenericName = Context.getIdentifier("T");
ArchetypeType *Archetype
= ArchetypeType::getNew(Context, nullptr,
static_cast<AssociatedTypeDecl *>(nullptr),
GenericName,
ArrayRef<Type>(), Type(), 0);
auto GenericTyDecl =
new (Context) GenericTypeParamDecl(Context.TheBuiltinModule, GenericName,
SourceLoc(), 0, 0);
GenericTyDecl->setArchetype(Archetype);
GenericParam Param = GenericTyDecl;
auto ParamList = GenericParamList::create(Context, SourceLoc(), Param,
SourceLoc());
ParamList->setAllArchetypes(
Context.AllocateCopy(ArrayRef<ArchetypeType *>(&Archetype, 1)));
return std::make_tuple(GenericTyDecl->getDeclaredType(), Archetype,
ParamList);
}
static ValueDecl *getLoadOperation(ASTContext &Context, Identifier Id) {
Type GenericTy;
Type ArchetypeTy;
GenericParamList *ParamList;
std::tie(GenericTy, ArchetypeTy, ParamList) = getGenericParam(Context);
TupleTypeElt ArgElts[] = { Context.TheRawPointerType };
Type ResultTy = GenericTy;
Type BodyResultTy = ArchetypeTy;
return getBuiltinGenericFunction(Context, Id, ArgElts, ArgElts,
ResultTy, BodyResultTy, ParamList);
}
static ValueDecl *getStoreOperation(ASTContext &Context, Identifier Id) {
Type GenericTy;
Type ArchetypeTy;
GenericParamList *ParamList;
std::tie(GenericTy, ArchetypeTy, ParamList) = getGenericParam(Context);
TupleTypeElt ArgParamElts[] = { GenericTy, Context.TheRawPointerType };
TupleTypeElt ArgBodyElts[] = { ArchetypeTy, Context.TheRawPointerType };
Type ResultTy = TupleType::getEmpty(Context);
return getBuiltinGenericFunction(Context, Id, ArgParamElts, ArgBodyElts,
ResultTy, ResultTy, ParamList);
}
static ValueDecl *getDestroyOperation(ASTContext &Context, Identifier Id) {
Type GenericTy;
Type ArchetypeTy;
GenericParamList *ParamList;
std::tie(GenericTy, ArchetypeTy, ParamList) = getGenericParam(Context);
TupleTypeElt ArgParamElts[] = { MetaTypeType::get(GenericTy, Context),
Context.TheRawPointerType };
TupleTypeElt ArgBodyElts[] = { MetaTypeType::get(ArchetypeTy, Context),
Context.TheRawPointerType };
Type ResultTy = TupleType::getEmpty(Context);
return getBuiltinGenericFunction(Context, Id, ArgParamElts, ArgBodyElts,
ResultTy, ResultTy, ParamList);
}
static Type getPointerSizeType(ASTContext &Context) {
// FIXME: Size of a pointer here?
return BuiltinIntegerType::get(64, Context);
}
static ValueDecl *getSizeOrAlignOfOperation(ASTContext &Context,
Identifier Id) {
Type GenericTy;
Type ArchetypeTy;
GenericParamList *ParamList;
std::tie(GenericTy, ArchetypeTy, ParamList) = getGenericParam(Context);
TupleTypeElt ArgParamElts[] = { MetaTypeType::get(GenericTy, Context) };
TupleTypeElt ArgBodyElts[] = { MetaTypeType::get(ArchetypeTy, Context) };
Type ResultTy = getPointerSizeType(Context);
return getBuiltinGenericFunction(Context, Id, ArgParamElts, ArgBodyElts,
ResultTy, ResultTy, ParamList);
}
static ValueDecl *getAllocOperation(ASTContext &Context, Identifier Id) {
Type PtrSizeTy = getPointerSizeType(Context);
TupleTypeElt ArgElts[] = { PtrSizeTy, PtrSizeTy };
Type ResultTy = Context.TheRawPointerType;
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
static ValueDecl *getDeallocOperation(ASTContext &Context, Identifier Id) {
TupleTypeElt ArgElts[] = { Context.TheRawPointerType,
getPointerSizeType(Context) };
Type ResultTy = TupleType::getEmpty(Context);
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
static ValueDecl *getFenceOperation(ASTContext &Context, Identifier Id) {
Type ResultTy = TupleType::getEmpty(Context);
return getBuiltinFunction(Context, Id, {}, ResultTy);
}
static ValueDecl *getCmpXChgOperation(ASTContext &Context, Identifier Id,
Type T) {
TupleTypeElt ArgElts[] = { Context.TheRawPointerType, T, T };
Type ResultTy = T;
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
static ValueDecl *getAtomicRMWOperation(ASTContext &Context, Identifier Id,
Type T) {
TupleTypeElt ArgElts[] = { Context.TheRawPointerType, T };
Type ResultTy = T;
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
static ValueDecl *getObjectPointerCast(ASTContext &Context, Identifier Id,
BuiltinValueKind BV) {
Type GenericTy;
Type ArchetypeTy;
GenericParamList *ParamList;
std::tie(GenericTy, ArchetypeTy, ParamList) = getGenericParam(Context);
Type BuiltinTy;
if (BV == BuiltinValueKind::BridgeToRawPointer ||
BV == BuiltinValueKind::BridgeFromRawPointer)
BuiltinTy = Context.TheRawPointerType;
else
BuiltinTy = Context.TheObjectPointerType;
Type ArgParam, ArgBody, ResultTy, BodyResultTy;
if (BV == BuiltinValueKind::CastToObjectPointer ||
BV == BuiltinValueKind::BridgeToRawPointer) {
ArgParam = GenericTy;
ArgBody = ArchetypeTy;
ResultTy = BuiltinTy;
BodyResultTy = BuiltinTy;
} else {
ArgParam = BuiltinTy;
ArgBody = BuiltinTy;
ResultTy = GenericTy;
BodyResultTy = ArchetypeTy;
}
TupleTypeElt ArgParamElts[] = { ArgParam };
TupleTypeElt ArgBodyElts[] = { ArgBody };
return getBuiltinGenericFunction(Context, Id, ArgParamElts, ArgBodyElts,
ResultTy, BodyResultTy, ParamList);
}
static ValueDecl *getAddressOfOperation(ASTContext &Context, Identifier Id) {
// <T> ([inout] T) -> RawPointer
Type GenericTy;
Type ArchetypeTy;
GenericParamList *ParamList;
std::tie(GenericTy, ArchetypeTy, ParamList) = getGenericParam(Context);
TupleTypeElt ArgParamElts[] = {
LValueType::get(GenericTy, LValueType::Qual::DefaultForType, Context)
};
TupleTypeElt ArgBodyElts[] = {
LValueType::get(ArchetypeTy, LValueType::Qual::DefaultForType, Context)
};
Type ResultTy = Context.TheRawPointerType;
return getBuiltinGenericFunction(Context, Id, ArgParamElts, ArgBodyElts,
ResultTy, ResultTy, ParamList);
}
static ValueDecl *getTypeOfOperation(ASTContext &Context, Identifier Id) {
// <T> T -> T.metatype
Type GenericTy;
Type ArchetypeTy;
GenericParamList *ParamList;
std::tie(GenericTy, ArchetypeTy, ParamList) = getGenericParam(Context);
TupleTypeElt ArgParamElts[] = { GenericTy };
TupleTypeElt ArgBodyElts[] = { ArchetypeTy };
Type ResultTy = MetaTypeType::get(GenericTy, Context);
Type BodyResultTy = MetaTypeType::get(ArchetypeTy, Context);
return getBuiltinGenericFunction(Context, Id, ArgParamElts, ArgBodyElts,
ResultTy, BodyResultTy, ParamList);
}
static ValueDecl *getCondFailOperation(ASTContext &C, Identifier Id) {
// Int1 -> ()
auto CondTy = BuiltinIntegerType::get(1, C);
auto VoidTy = TupleType::getEmpty(C);
TupleTypeElt CondElt(CondTy);
return getBuiltinFunction(C, Id, CondElt, VoidTy);
}
static ValueDecl *getExtractElementOperation(ASTContext &Context, Identifier Id,
Type FirstTy, Type SecondTy) {
// (Vector<N, T>, Int32) -> T
auto VecTy = FirstTy->getAs<BuiltinVectorType>();
if (!VecTy)
return nullptr;
auto IndexTy = SecondTy->getAs<BuiltinIntegerType>();
if (!IndexTy || IndexTy->getBitWidth() != 32)
return nullptr;
TupleTypeElt ArgElts[] = { VecTy, IndexTy };
Type ResultTy = VecTy->getElementType();
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
static ValueDecl *getInsertElementOperation(ASTContext &Context, Identifier Id,
Type FirstTy, Type SecondTy,
Type ThirdTy) {
// (Vector<N, T>, T, Int32) -> Vector<N, T>
auto VecTy = FirstTy->getAs<BuiltinVectorType>();
if (!VecTy)
return nullptr;
auto ElementTy = VecTy->getElementType();
if (!SecondTy->isEqual(ElementTy))
return nullptr;
auto IndexTy = ThirdTy->getAs<BuiltinIntegerType>();
if (!IndexTy || IndexTy->getBitWidth() != 32)
return nullptr;
TupleTypeElt ArgElts[] = { VecTy, ElementTy, IndexTy };
Type ResultTy = VecTy;
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
static ValueDecl *getStaticReportOperation(ASTContext &Context, Identifier Id) {
auto BoolTy = BuiltinIntegerType::get(1, Context);
auto MessageTy = Context.TheRawPointerType;
TupleTypeElt ArgElts[] = { BoolTy, BoolTy, MessageTy };
Type ResultTy = TupleType::getEmpty(Context);
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
static ValueDecl *getTruncWithOverflowOperation(ASTContext &Context,
Identifier Id,
Type InputTy,
Type OutputTy) {
auto InTy = InputTy->getAs<BuiltinIntegerType>();
auto OutTy = OutputTy->getAs<BuiltinIntegerType>();
if (!InTy || !OutTy)
return nullptr;
if (InTy->getBitWidth() < OutTy->getBitWidth())
return nullptr;
TupleTypeElt ArgElts[] = { InTy };
Type ResultTy = OutTy;
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
static ValueDecl *getIntToFPWithOverflowOperation(ASTContext &Context,
Identifier Id, Type InputTy,
Type OutputTy) {
auto InTy = InputTy->getAs<BuiltinIntegerType>();
auto OutTy = OutputTy->getAs<BuiltinFloatType>();
if (!InTy || !OutTy)
return nullptr;
TupleTypeElt ArgElts[] = { InTy };
Type ResultTy = OutTy;
return getBuiltinFunction(Context, Id, ArgElts, ResultTy);
}
/// An array of the overloaded builtin kinds.
static const OverloadedBuiltinKind OverloadedBuiltinKinds[] = {
OverloadedBuiltinKind::None,
// There's deliberately no BUILTIN clause here so that we'll blow up
// if new builtin categories are added there and not here.
#define BUILTIN_CAST_OPERATION(id, attrs, name) OverloadedBuiltinKind::Special,
#define BUILTIN_BINARY_OPERATION(id, name, attrs, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, attrs, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_UNARY_OPERATION(id, name, attrs, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_SIL_OPERATION(id, name, overload) \
OverloadedBuiltinKind::overload,
#define BUILTIN_MISC_OPERATION(id, name, attrs, overload) \
OverloadedBuiltinKind::overload,
#include "swift/AST/Builtins.def"
};
/// Determines if a builtin type falls within the given category.
inline bool isBuiltinTypeOverloaded(Type T, OverloadedBuiltinKind OK) {
switch (OK) {
case OverloadedBuiltinKind::None:
return false; // always fail.
case OverloadedBuiltinKind::Integer:
return T->is<BuiltinIntegerType>();
case OverloadedBuiltinKind::IntegerOrVector:
return T->is<BuiltinIntegerType>() ||
(T->is<BuiltinVectorType>() &&
T->castTo<BuiltinVectorType>()->getElementType()
->is<BuiltinIntegerType>());
case OverloadedBuiltinKind::IntegerOrRawPointer:
return T->is<BuiltinIntegerType>() || T->is<BuiltinRawPointerType>();
case OverloadedBuiltinKind::IntegerOrRawPointerOrVector:
return T->is<BuiltinIntegerType>() || T->is<BuiltinRawPointerType>() ||
(T->is<BuiltinVectorType>() &&
T->castTo<BuiltinVectorType>()->getElementType()
->is<BuiltinIntegerType>());
case OverloadedBuiltinKind::Float:
return T->is<BuiltinFloatType>();
case OverloadedBuiltinKind::FloatOrVector:
return T->is<BuiltinFloatType>() ||
(T->is<BuiltinVectorType>() &&
T->castTo<BuiltinVectorType>()->getElementType()
->is<BuiltinFloatType>());
case OverloadedBuiltinKind::Special:
return true;
}
llvm_unreachable("bad overloaded builtin kind");
}
/// getLLVMIntrinsicID - Given an LLVM IR intrinsic name with argument types
/// removed (e.g. like "bswap") return the LLVM IR IntrinsicID for the intrinsic
/// or 0 if the intrinsic name doesn't match anything.
unsigned swift::getLLVMIntrinsicID(StringRef InName, bool hasArgTypes) {
using namespace llvm;
// Swift intrinsic names start with int_.
if (!InName.startswith("int_"))
return llvm::Intrinsic::not_intrinsic;
InName = InName.drop_front(strlen("int_"));
// Prepend "llvm." and change _ to . in name.
SmallString<128> NameS;
NameS.append("llvm.");
for (char C : InName)
NameS.push_back(C == '_' ? '.' : C);
if (hasArgTypes)
NameS.push_back('.');
const char *Name = NameS.c_str();
unsigned Len = NameS.size();
#define GET_FUNCTION_RECOGNIZER
#include "llvm/IR/Intrinsics.gen"
#undef GET_FUNCTION_RECOGNIZER
return llvm::Intrinsic::not_intrinsic;
}
llvm::Intrinsic::ID
swift::getLLVMIntrinsicIDForBuiltinWithOverflow(BuiltinValueKind ID) {
switch (ID) {
default: break;
case BuiltinValueKind::SAddOver:
return llvm::Intrinsic::sadd_with_overflow;
case BuiltinValueKind::UAddOver:
return llvm::Intrinsic::uadd_with_overflow;
case BuiltinValueKind::SSubOver:
return llvm::Intrinsic::ssub_with_overflow;
case BuiltinValueKind::USubOver:
return llvm::Intrinsic::usub_with_overflow;
case BuiltinValueKind::SMulOver:
return llvm::Intrinsic::smul_with_overflow;
case BuiltinValueKind::UMulOver:
return llvm::Intrinsic::umul_with_overflow;
}
llvm_unreachable("Cannot convert the overflow builtin to llvm intrinsic.");
}
static Type DecodeIntrinsicType(ArrayRef<llvm::Intrinsic::IITDescriptor> &Table,
ArrayRef<Type> Tys, ASTContext &Context) {
typedef llvm::Intrinsic::IITDescriptor IITDescriptor;
IITDescriptor D = Table.front();
Table = Table.slice(1);
switch (D.Kind) {
case IITDescriptor::Half:
case IITDescriptor::MMX:
case IITDescriptor::Metadata:
case IITDescriptor::Vector:
case IITDescriptor::ExtendVecArgument:
case IITDescriptor::TruncVecArgument:
// These types cannot be expressed in swift yet.
return Type();
case IITDescriptor::Void: return TupleType::getEmpty(Context);
case IITDescriptor::Float: return Context.TheIEEE32Type;
case IITDescriptor::Double: return Context.TheIEEE64Type;
case IITDescriptor::Integer:
return BuiltinIntegerType::get(D.Integer_Width, Context);
case IITDescriptor::Pointer:
if (D.Pointer_AddressSpace)
return Type(); // Reject non-default address space pointers.
// Decode but ignore the pointee. Just decode all IR pointers to unsafe
// pointer type.
(void)DecodeIntrinsicType(Table, Tys, Context);
return Context.TheRawPointerType;
case IITDescriptor::Argument:
if (D.getArgumentNumber() >= Tys.size())
return Type();
return Tys[D.getArgumentNumber()];
case IITDescriptor::Struct: {
SmallVector<TupleTypeElt, 5> Elts;
for (unsigned i = 0; i != D.Struct_NumElements; ++i) {
Type T = DecodeIntrinsicType(Table, Tys, Context);
if (!T) return Type();
Elts.push_back(T);
}
return TupleType::get(Elts, Context);
}
}
llvm_unreachable("unhandled");
}
/// \returns true on success, false on failure.
static bool
getSwiftFunctionTypeForIntrinsic(unsigned iid, ArrayRef<Type> TypeArgs,
ASTContext &Context,
SmallVectorImpl<TupleTypeElt> &ArgElts,
Type &ResultTy, FunctionType::ExtInfo &Info) {
llvm::Intrinsic::ID ID = (llvm::Intrinsic::ID)iid;
typedef llvm::Intrinsic::IITDescriptor IITDescriptor;
SmallVector<IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(ID, Table);
ArrayRef<IITDescriptor> TableRef = Table;
// Decode the intrinsic's LLVM IR type, and map it to swift builtin types.
ResultTy = DecodeIntrinsicType(TableRef, TypeArgs, Context);
if (!ResultTy)
return false;
while (!TableRef.empty()) {
Type ArgTy = DecodeIntrinsicType(TableRef, TypeArgs, Context);
if (!ArgTy)
return false;
ArgElts.push_back(ArgTy);
}
// Translate LLVM function attributes to Swift function attributes.
llvm::AttributeSet attrs
= llvm::Intrinsic::getAttributes(llvm::getGlobalContext(), ID);
Info = FunctionType::ExtInfo();
if (attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoReturn))
Info = Info.withIsNoReturn(true);
return true;
}
static bool isValidFenceOrdering(StringRef Ordering) {
return Ordering == "acquire" || Ordering == "release" ||
Ordering == "acqrel" || Ordering == "seqcst";
}
static bool isValidAtomicOrdering(StringRef Ordering) {
return Ordering == "unordered" || Ordering == "monotonic" ||
Ordering == "acquire" || Ordering == "release" ||
Ordering == "acqrel" || Ordering == "seqcst";
}
ValueDecl *swift::getBuiltinValue(ASTContext &Context, Identifier Id) {
SmallVector<Type, 4> Types;
StringRef OperationName = getBuiltinBaseName(Context, Id.str(), Types);
// If this is the name of an LLVM intrinsic, cons up a swift function with a
// type that matches the IR types.
if (unsigned ID = getLLVMIntrinsicID(OperationName, !Types.empty())) {
SmallVector<TupleTypeElt, 8> ArgElts;
Type ResultTy;
FunctionType::ExtInfo Info;
if (getSwiftFunctionTypeForIntrinsic(ID, Types, Context, ArgElts, ResultTy,
Info))
return getBuiltinFunction(Context, Id, ArgElts, ResultTy, Info);
}
// If this starts with fence, we have special suffixes to handle.
if (OperationName.startswith("fence_")) {
OperationName = OperationName.drop_front(strlen("fence_"));
// Verify we have a single integer, floating point, or pointer type.
if (!Types.empty()) return nullptr;
// Get and validate the ordering argument, which is required.
auto Underscore = OperationName.find('_');
if (!isValidFenceOrdering(OperationName.substr(0, Underscore)))
return nullptr;
OperationName = OperationName.substr(Underscore);
// Accept singlethread if present.
if (OperationName.startswith("_singlethread"))
OperationName = OperationName.drop_front(strlen("_singlethread"));
// Nothing else is allowed in the name.
if (!OperationName.empty())
return nullptr;
return getFenceOperation(Context, Id);
}
// If this starts with cmpxchg, we have special suffixes to handle.
if (OperationName.startswith("cmpxchg_")) {
OperationName = OperationName.drop_front(strlen("cmpxchg_"));
// Verify we have a single integer, floating point, or pointer type.
if (Types.size() != 1) return nullptr;
Type T = Types[0];
if (!T->is<BuiltinIntegerType>() && !T->is<BuiltinRawPointerType>() &&
!T->is<BuiltinFloatType>())
return nullptr;
// Get and validate the ordering argument, which is required.
auto Underscore = OperationName.find('_');
if (!isValidAtomicOrdering(OperationName.substr(0, Underscore)))
return nullptr;
OperationName = OperationName.substr(Underscore);
// Accept volatile and singlethread if present.
if (OperationName.startswith("_volatile"))
OperationName = OperationName.drop_front(strlen("_volatile"));
if (OperationName.startswith("_singlethread"))
OperationName = OperationName.drop_front(strlen("_singlethread"));
// Nothing else is allowed in the name.
if (!OperationName.empty())
return nullptr;
return getCmpXChgOperation(Context, Id, T);
}
// If this starts with atomicrmw, we have special suffixes to handle.
if (OperationName.startswith("atomicrmw_")) {
OperationName = OperationName.drop_front(strlen("atomicrmw_"));
// Verify we have a single integer, floating point, or pointer type.
if (Types.size() != 1) return nullptr;
Type Ty = Types[0];
if (!Ty->is<BuiltinIntegerType>() && !Ty->is<BuiltinRawPointerType>())
return nullptr;
// Get and validate the suboperation name, which is required.
auto Underscore = OperationName.find('_');
if (Underscore == StringRef::npos) return nullptr;
StringRef SubOp = OperationName.substr(0, Underscore);
if (SubOp != "xchg" && SubOp != "add" && SubOp != "sub" && SubOp != "and" &&
SubOp != "nand" && SubOp != "or" && SubOp != "xor" && SubOp != "max" &&
SubOp != "min" && SubOp != "umax" && SubOp != "umin")
return nullptr;
OperationName = OperationName.drop_front(Underscore+1);
// Get and validate the ordering argument, which is required.
Underscore = OperationName.find('_');
if (!isValidAtomicOrdering(OperationName.substr(0, Underscore)))
return nullptr;
OperationName = OperationName.substr(Underscore);
// Accept volatile and singlethread if present.
if (OperationName.startswith("_volatile"))
OperationName = OperationName.drop_front(strlen("_volatile"));
if (OperationName.startswith("_singlethread"))
OperationName = OperationName.drop_front(strlen("_singlethread"));
// Nothing else is allowed in the name.
if (!OperationName.empty())
return nullptr;
return getAtomicRMWOperation(Context, Id, Ty);
}
BuiltinValueKind BV = llvm::StringSwitch<BuiltinValueKind>(OperationName)
#define BUILTIN(id, name, Attrs) \
.Case(name, BuiltinValueKind::id)
#include "swift/AST/Builtins.def"
.Default(BuiltinValueKind::None);
// Filter out inappropriate overloads.
OverloadedBuiltinKind OBK = OverloadedBuiltinKinds[unsigned(BV)];
// Verify that all types match the overload filter.
for (Type T : Types)
if (!isBuiltinTypeOverloaded(T, OBK))
return nullptr;
switch (BV) {
case BuiltinValueKind::Fence:
case BuiltinValueKind::CmpXChg:
case BuiltinValueKind::AtomicRMW:
assert(0 && "Handled above");
case BuiltinValueKind::None: return nullptr;
case BuiltinValueKind::Gep:
if (Types.size() != 1) return nullptr;
return getGepOperation(Context, Id, Types[0]);
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION(id, name, attrs, overload) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
if (Types.size() != 1) return nullptr;
return getBinaryOperation(Context, Id, Types[0]);
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, attrs, overload) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
if (Types.size() != 1) return nullptr;
return getBinaryOperationWithOverflow(Context, Id, Types[0]);
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
if (Types.size() != 1) return nullptr;
return getBinaryPredicate(Context, Id, Types[0]);
#define BUILTIN(id, name, Attrs)
#define BUILTIN_UNARY_OPERATION(id, name, attrs, overload) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
if (Types.size() != 1) return nullptr;
return getUnaryOperation(Context, Id, Types[0]);
#define BUILTIN(id, name, Attrs)
#define BUILTIN_CAST_OPERATION(id, name, attrs) case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
return getCastOperation(Context, Id, BV, Types);
case BuiltinValueKind::Load:
case BuiltinValueKind::Move:
if (!Types.empty()) return nullptr;
return getLoadOperation(Context, Id);
case BuiltinValueKind::Destroy:
if (!Types.empty()) return nullptr;
return getDestroyOperation(Context, Id);
case BuiltinValueKind::Assign:
case BuiltinValueKind::Init:
if (!Types.empty()) return nullptr;
return getStoreOperation(Context, Id);
case BuiltinValueKind::Sizeof:
case BuiltinValueKind::Strideof:
case BuiltinValueKind::Alignof:
return getSizeOrAlignOfOperation(Context, Id);
case BuiltinValueKind::AllocRaw:
return getAllocOperation(Context, Id);
case BuiltinValueKind::DeallocRaw:
return getDeallocOperation(Context, Id);
case BuiltinValueKind::CastToObjectPointer:
case BuiltinValueKind::CastFromObjectPointer:
case BuiltinValueKind::BridgeToRawPointer:
case BuiltinValueKind::BridgeFromRawPointer:
if (!Types.empty()) return nullptr;
return getObjectPointerCast(Context, Id, BV);
case BuiltinValueKind::AddressOf:
if (!Types.empty()) return nullptr;
return getAddressOfOperation(Context, Id);
case BuiltinValueKind::TypeOf:
if (!Types.empty()) return nullptr;
return getTypeOfOperation(Context, Id);
case BuiltinValueKind::CondFail:
return getCondFailOperation(Context, Id);
case BuiltinValueKind::ExtractElement:
if (Types.size() != 2) return nullptr;
return getExtractElementOperation(Context, Id, Types[0], Types[1]);
case BuiltinValueKind::InsertElement:
if (Types.size() != 3) return nullptr;
return getInsertElementOperation(Context, Id, Types[0], Types[1], Types[2]);
case BuiltinValueKind::StaticReport:
if (!Types.empty()) return nullptr;
return getStaticReportOperation(Context, Id);
case BuiltinValueKind::STruncWithOverflow:
case BuiltinValueKind::UTruncWithOverflow:
if (Types.size() != 2) return nullptr;
return getTruncWithOverflowOperation(Context, Id, Types[0], Types[1]);
case BuiltinValueKind::IntToFPWithOverflow:
if (Types.size() != 2) return nullptr;
return getIntToFPWithOverflowOperation(Context, Id, Types[0], Types[1]);
}
llvm_unreachable("bad builtin value!");
}