Files
swift-mirror/lib/SILAnalysis/GlobalARCSequenceDataflow.cpp
Manman Ren dd974edb3e Update mismatching debug message.
Swift SVN r19095
2014-06-23 18:58:49 +00:00

725 lines
25 KiB
C++

//===--- GlobalARCSequenceDataflow.cpp - ARC Sequence Dataflow Analysis ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-global-arc-opts"
#include "GlobalARCSequenceDataflow.h"
#include "swift/SILAnalysis/ARCAnalysis.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILSuccessor.h"
#include "swift/SIL/CFG.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace swift::arc;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
static bool isAutoreleasePoolCall(SILInstruction &I) {
ApplyInst *AI = dyn_cast<ApplyInst>(&I);
if (!AI)
return false;
FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
if (!FRI)
return false;
return llvm::StringSwitch<bool>(FRI->getReferencedFunction()->getName())
.Case("objc_autoreleasePoolPush", true)
.Case("objc_autoreleasePoolPop", true)
.Default(false);
}
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS,
BottomUpRefCountState::LatticeState S) {
using LatticeState = BottomUpRefCountState::LatticeState;
switch (S) {
case LatticeState::None:
return OS << "None";
case LatticeState::Decremented:
return OS << "Decremented";
case LatticeState::MightBeUsed:
return OS << "MightBeUsed";
case LatticeState::MightBeDecremented:
return OS << "MightBeDecremented";
}
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
TopDownRefCountState::LatticeState S) {
using LatticeState = TopDownRefCountState::LatticeState;
switch (S) {
case LatticeState::None:
return OS << "None";
case LatticeState::Incremented:
return OS << "Incremented";
case LatticeState::MightBeUsed:
return OS << "MightBeUsed";
case LatticeState::MightBeDecremented:
return OS << "MightBeDecremented";
}
}
} // end namespace llvm
/// Wrapper around SILValue::stripCasts to handle the UncheckedRefBitCastInst.
static SILValue stripCasts(SILValue V) {
while (true) {
V = V.stripCasts();
auto *BCI = dyn_cast<UncheckedRefBitCastInst>(V);
if (!BCI)
return V;
V = BCI->getOperand();
}
}
//===----------------------------------------------------------------------===//
// Lattice State Merging
//===----------------------------------------------------------------------===//
static inline BottomUpRefCountState::LatticeState
MergeBottomUpLatticeStates(BottomUpRefCountState::LatticeState L1,
BottomUpRefCountState::LatticeState L2) {
using LatticeState = BottomUpRefCountState::LatticeState;
// If both states equal, return the first.
if (L1 == L2)
return L1;
// If either are none, return None.
if (L1 == LatticeState::None || L2 == LatticeState::None)
return LatticeState::None;
// Canonicalize.
if (unsigned(L1) > unsigned(L2))
std::swap(L1, L2);
// Choose the side further along in the sequence.
if ((L1 == LatticeState::Decremented || L1 == LatticeState::MightBeUsed) ||
(L2 == LatticeState::MightBeUsed ||
L2 == LatticeState::MightBeDecremented))
return L2;
// Otherwise, we don't know what happened, be conservative and return none.
return LatticeState::None;
}
static inline TopDownRefCountState::LatticeState
MergeTopDownLatticeStates(TopDownRefCountState::LatticeState L1,
TopDownRefCountState::LatticeState L2) {
using LatticeState = TopDownRefCountState::LatticeState;
// If both states equal, return the first.
if (L1 == L2)
return L1;
// If either are none, return None.
if (L1 == LatticeState::None || L2 == LatticeState::None)
return LatticeState::None;
// Canonicalize.
if (unsigned(L1) > unsigned(L2))
std::swap(L1, L2);
// Choose the side further along in the sequence.
if ((L1 == LatticeState::Incremented ||
L1 == LatticeState::MightBeDecremented) ||
(L2 == LatticeState::MightBeDecremented ||
L2 == LatticeState::MightBeUsed))
return L2;
// Otherwise, we don't know what happened, return none.
return LatticeState::None;
}
//===----------------------------------------------------------------------===//
// ARCBBState Implementation
//===----------------------------------------------------------------------===//
/// Merge in the state of the successor basic block. This is currently a stub.
void ARCBBState::mergeSuccBottomUp(ARCBBState &SuccBB) {
// For each entry in the other set, if our set has an entry with the same key,
// merge the entires. Otherwise, copy the entry and merge it with an empty
// entry.
for (auto MI : SuccBB.getBottomupStates()) {
auto Pair = PtrToBottomUpState.insert(MI);
// If we fail to merge, bail.
if (!Pair.first->second.merge(Pair.second ? BottomUpRefCountState()
: MI.second)) {
clear();
return;
}
}
for (auto Pair : getBottomupStates()) {
if (SuccBB.PtrToBottomUpState.find(Pair.first) ==
SuccBB.PtrToBottomUpState.end())
// If we fail to merge, bail.
if (!Pair.second.merge(BottomUpRefCountState())) {
clear();
return;
}
}
}
/// Initialize this BB with the state of the successor basic block. This is
/// called on a basic block's state and then any other successors states are
/// merged in. This is currently a stub.
void ARCBBState::initSuccBottomUp(ARCBBState &SuccBB) {
PtrToBottomUpState = SuccBB.PtrToBottomUpState;
}
/// Merge in the state of the predecessor basic block. This is currently a stub.
void ARCBBState::mergePredTopDown(ARCBBState &PredBB) {
// For each entry in the other set, if our set has an entry with the same key,
// merge the entires. Otherwise, copy the entry and merge it with an empty
// entry.
for (auto MI : PredBB.getTopDownStates()) {
auto Pair = PtrToTopDownState.insert(MI);
// If we fail to merge, bail.
if (!Pair.first->second.merge(Pair.second ? TopDownRefCountState()
: MI.second)) {
clear();
return;
}
}
for (auto Pair : getTopDownStates()) {
if (PredBB.PtrToTopDownState.find(Pair.first) ==
PredBB.PtrToTopDownState.end())
// If we fail to merge, bail.
if (!Pair.second.merge(TopDownRefCountState())) {
clear();
return;
}
}
}
/// Initialize the state for this BB with the state of its predecessor
/// BB. Used to create an initial state before we merge in other
/// predecessors. This is currently a stub.
void ARCBBState::initPredTopDown(ARCBBState &PredBB) {
PtrToTopDownState = PredBB.PtrToTopDownState;
}
//===----------------------------------------------------------------------===//
// Reference Count State Implementation
//===----------------------------------------------------------------------===//
bool TopDownRefCountState::merge(const TopDownRefCountState &Other) {
auto NewState = MergeTopDownLatticeStates(LatState, Other.LatState);
DEBUG(llvm::dbgs() << " Performing TopDown Merge.\n");
DEBUG(llvm::dbgs() << " Left: " << LatState << "; Right: "
<< Other.LatState << "; Result: " << NewState << "\n");
LatState = NewState;
KnownSafe &= Other.KnownSafe;
// If we're doing a merge on a path that's previously seen a partial merge,
// conservatively drop the sequence, to avoid doing partial RR
// elimination. If the branch predicates for the two merge differ, mixing
// them is unsafe since they are not control dependent.
if (LatState == TopDownRefCountState::LatticeState::None) {
RefCountState<TopDownRefCountState>::clear();
DEBUG(llvm::dbgs() << " Found LatticeState::None. "
"Clearing State!\n");
return false;
}
// We should never have an argument path merge with a non-argument path.
if (!Argument.isNull()) {
RefCountState<TopDownRefCountState>::clear();
DEBUG(
llvm::dbgs() << " Can not merge Argument with Non-Argument "
"path... Bailing!\n");
return false;
}
Increments.insert(Other.Increments.begin(), Other.Increments.end());
Partial |= InsertPts.size() != Other.InsertPts.size();
for (auto *SI : Other.InsertPts)
Partial |= InsertPts.insert(SI);
return true;
}
bool BottomUpRefCountState::merge(const BottomUpRefCountState &Other) {
auto NewState = MergeBottomUpLatticeStates(LatState, Other.LatState);
DEBUG(llvm::dbgs() << " Performing BottomUp Merge.\n");
DEBUG(llvm::dbgs() << " Left: " << LatState << "; Right: "
<< Other.LatState << "; Result: " << NewState << "\n");
LatState = NewState;
KnownSafe &= Other.KnownSafe;
// If we're doing a merge on a path that's previously seen a partial merge,
// conservatively drop the sequence, to avoid doing partial RR
// elimination. If the branch predicates for the two merge differ, mixing
// them is unsafe since they are not control dependent.
if (LatState == BottomUpRefCountState::LatticeState::None) {
DEBUG(llvm::dbgs() << " Found LatticeState::None. "
"Clearing State!\n");
RefCountState<BottomUpRefCountState>::clear();
return false;
}
Decrements.insert(Other.Decrements.begin(), Other.Decrements.end());
Partial |= InsertPts.size() != Other.InsertPts.size();
for (auto *SI : Other.InsertPts)
Partial |= InsertPts.insert(SI);
return true;
}
//===----------------------------------------------------------------------===//
// Top Down Dataflow
//===----------------------------------------------------------------------===//
/// Analyze a single BB for refcount inc/dec instructions.
///
/// If anything was found it will be added to DecToIncStateMap.
///
/// NestingDetected will be set to indicate that the block needs to be
/// reanalyzed if code motion occurs.
static bool processBBTopDown(
ARCBBState &BBState,
BlotMapVector<SILInstruction *, TopDownRefCountState> &DecToIncStateMap,
AliasAnalysis *AA) {
DEBUG(llvm::dbgs() << ">>>> Top Down!\n");
SILBasicBlock &BB = BBState.getBB();
bool NestingDetected = false;
// If the current BB is the entry BB, initialize a state corresponding to each
// of its owned parameters.
//
// TODO: Handle gauranteed parameters.
if (&BB == &*BB.getParent()->begin()) {
auto Args = BB.getBBArgs();
auto SignatureParams =
BB.getParent()->getLoweredFunctionType()->getInterfaceParameters();
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
SILArgument *A = Args[i];
ParameterConvention P = SignatureParams[i].getConvention();
DEBUG(llvm::dbgs() << "VISITING ARGUMENT: " << *A);
if (P != ParameterConvention::Direct_Owned)
continue;
TopDownRefCountState &State = BBState.getTopDownRefCountState(Args[i]);
State.initWithArg(A);
}
}
// For each instruction I in BB...
for (auto &I : BB) {
DEBUG(llvm::dbgs() << "VISITING:\n " << I);
if (isAutoreleasePoolCall(I)) {
BBState.clear();
continue;
}
SILValue Op;
// If I is a ref count increment instruction...
if (isRefCountIncrement(I)) {
// map its operand to a newly initialized or reinitialized ref count
// state and continue...
Op = stripCasts(I.getOperand(0));
TopDownRefCountState &State = BBState.getTopDownRefCountState(Op);
NestingDetected |= State.initWithInst(&I);
DEBUG(llvm::dbgs() << " REF COUNT INCREMENT! Known Safe: "
<< (State.isKnownSafe() ? "yes" : "no") << "\n");
// Continue processing in case this increment could be a CanUse for a
// different pointer.
}
// If we have a reference count decrement...
if (isRefCountDecrement(I)) {
// Look up the state associated with its operand...
Op = stripCasts(I.getOperand(0));
TopDownRefCountState &RefCountState = BBState.getTopDownRefCountState(Op);
DEBUG(llvm::dbgs() << " REF COUNT DECREMENT!\n");
// If the state is already initialized to contain a reference count
// increment of the same type (i.e. retain_value, release_value or
// strong_retain, strong_release), then remove the state from the map
// and add the retain/release pair to the delete list and continue.
if (RefCountState.isRefCountInstMatchedToTrackedInstruction(&I)) {
// Copy the current value of ref count state into the result map.
DecToIncStateMap[&I] = RefCountState;
DEBUG(llvm::dbgs() << " MATCHING INCREMENT:\n"
<< RefCountState.getValue());
// Clear the ref count state in case we see more operations on this
// ref counted value. This is for safety reasons.
RefCountState.clear();
} else {
if (RefCountState.isTrackingRefCountInst()) {
DEBUG(llvm::dbgs() << " FAILED MATCH INCREMENT:\n"
<< RefCountState.getValue());
} else {
DEBUG(llvm::dbgs() << " FAILED MATCH. NO INCREMENT.\n");
}
}
// Otherwise we continue processing the reference count decrement to
// see if the decrement can affect any other pointers that we are
// tracking.
}
// For all other (reference counted value, ref count state) we are
// tracking...
for (auto &OtherState : BBState.getTopDownStates()) {
// If the state we are visiting is for the pointer we just visited, bail.
if (Op && OtherState.first == Op)
continue;
// If the other state is not tracking anything, bail.
if (!OtherState.second.isTrackingRefCount())
continue;
// Check if the instruction we are visiting could potentially decrement
// the reference counted value we are tracking... in a manner that could
// cause us to change states. If we do change states continue...
if (OtherState.second.handlePotentialDecrement(&I, AA)) {
DEBUG(llvm::dbgs() << " Found Potential Decrement:\n "
<< OtherState.second.getValue());
continue;
}
// Otherwise check if the reference counted value we are tracking
// could be used by the given instruction.
if (OtherState.second.handlePotentialUser(&I, AA))
DEBUG(llvm::dbgs() << " Found Potential Use:\n "
<< OtherState.second.getValue());
}
}
return NestingDetected;
}
void
swift::arc::ARCSequenceDataflowEvaluator::mergePredecessors(ARCBBState &BBState,
SILBasicBlock *BB) {
bool HasAtLeastOnePred = false;
// For each successor of BB...
for (auto Pred : BB->getPreds()) {
auto *PredBB = Pred;
// If the precessor is the head of a backedge in our traversal, clear any
// state we are tracking now and clear the state of the basic block. There
// is some sort of control flow here that we do not understand.
if (BackedgeMap[PredBB].count(BB)) {
BBState.clear();
break;
}
// Otherwise, lookup the BBState associated with the predecessor and merge
// the predecessor in.
auto I = TopDownBBStates.find(PredBB);
assert(I != TopDownBBStates.end());
if (!I->second.isTrapBB()) {
if (!HasAtLeastOnePred) {
BBState.initPredTopDown(I->second);
} else {
BBState.mergePredTopDown(I->second);
}
HasAtLeastOnePred = true;
}
}
}
bool swift::arc::ARCSequenceDataflowEvaluator::processTopDown() {
bool NestingDetected = false;
DEBUG(llvm::dbgs() << "<<<< Processing Top Down! >>>>\n");
// For each BB in our reverse post order...
for (auto *BB : reversed(PostOrder)) {
DEBUG(llvm::dbgs() << "Processing BB#: " << BBToPostOrderID[BB] << "\n");
// Grab the BBState associated with it and set it to be the current BB.
ARCBBState &BBState = TopDownBBStates[BB];
BBState.init(BB);
DEBUG(llvm::dbgs() << "Merging Predecessors!\n");
mergePredecessors(BBState, BB);
// Then perform the basic block optimization.
NestingDetected |= processBBTopDown(BBState, DecToIncStateMap, AA);
}
return NestingDetected;
}
//===----------------------------------------------------------------------===//
// Bottom Up Dataflow
//===----------------------------------------------------------------------===//
/// Analyze a single BB for refcount inc/dec instructions.
///
/// If anything was found it will be added to DecToIncStateMap.
///
/// NestingDetected will be set to indicate that the block needs to be
/// reanalyzed if code motion occurs.
static bool processBBBottomUp(
ARCBBState &BBState,
BlotMapVector<SILInstruction *, BottomUpRefCountState> &IncToDecStateMap,
AliasAnalysis *AA) {
DEBUG(llvm::dbgs() << ">>>> Bottom Up!\n");
SILBasicBlock &BB = BBState.getBB();
bool NestingDetected = false;
// For each non terminator instruction I in BB visited in reverse...
for (auto II = std::next(BB.rbegin()), IE = BB.rend(); II != IE;) {
SILInstruction &I = *II;
++II;
DEBUG(llvm::dbgs() << "VISITING:\n " << I);
if (isAutoreleasePoolCall(I)) {
BBState.clear();
continue;
}
SILValue Op;
// If I is a ref count decrement instruction...
if (isRefCountDecrement(I)) {
// map its operand to a newly initialized or reinitialized ref count
// state and continue...
Op = stripCasts(I.getOperand(0));
BottomUpRefCountState &State = BBState.getBottomUpRefCountState(Op);
NestingDetected |= State.initWithInst(&I);
DEBUG(llvm::dbgs() << " REF COUNT DECREMENT! Known Safe: "
<< (State.isKnownSafe() ? "yes" : "no") << "\n");
// Continue on to see if our reference decrement could potentially affect
// any other pointers via a use or a decrement.
}
// If we have a reference count decrement...
if (isRefCountIncrement(I)) {
// Look up the state associated with its operand...
Op = stripCasts(I.getOperand(0));
BottomUpRefCountState &RefCountState =
BBState.getBottomUpRefCountState(Op);
DEBUG(llvm::dbgs() << " REF COUNT INCREMENT!\n");
// If the state is already initialized to contain a reference count
// increment of the same type (i.e. retain_value, release_value or
// strong_retain, strong_release), then remove the state from the map
// and add the retain/release pair to the delete list and continue.
if (RefCountState.isRefCountInstMatchedToTrackedInstruction(&I)) {
// Copy the current value of ref count state into the result map.
IncToDecStateMap[&I] = RefCountState;
DEBUG(llvm::dbgs() << " MATCHING DECREMENT:"
<< RefCountState.getValue());
// Clear the ref count state in case we see more operations on this
// ref counted value. This is for safety reasons.
RefCountState.clear();
} else {
if (RefCountState.isTrackingRefCountInst()) {
DEBUG(llvm::dbgs()
<< " FAILED MATCH DECREMENT:" << RefCountState.getValue());
} else {
DEBUG(llvm::dbgs() << " FAILED MATCH DECREMENT. Not tracking a "
"decrement.\n");
}
}
// Otherwise we continue processing the reference count decrement to
// see if the increment can act as a use for other values.
}
// For all other (reference counted value, ref count state) we are
// tracking...
for (auto &OtherState : BBState.getBottomupStates()) {
// If this is the state associated with the instruction that we are
// currently visiting, bail.
if (Op && OtherState.first == Op)
continue;
// If this state is not tracking anything, skip it.
if (!OtherState.second.isTrackingRefCount())
continue;
// Check if the instruction we are visiting could potentially decrement
// the reference counted value we are tracking... in a manner that could
// cause us to change states. If we do change states continue...
if (OtherState.second.handlePotentialDecrement(&I, AA)) {
DEBUG(llvm::dbgs() << " Found Potential Decrement:\n "
<< OtherState.second.getValue());
continue;
}
// Otherwise check if the reference counted value we are tracking
// could be used by the given instruction.
if (OtherState.second.handlePotentialUser(&I, AA))
DEBUG(llvm::dbgs() << " Found Potential Use:\n "
<< OtherState.second.getValue());
}
}
return NestingDetected;
}
void
swift::arc::ARCSequenceDataflowEvaluator::mergeSuccessors(ARCBBState &BBState,
SILBasicBlock *BB) {
// Grab the backedge set for our BB.
auto &BackEdgeSet = BackedgeMap[BB];
// For each successor of BB...
ArrayRef<SILSuccessor> Succs = BB->getSuccs();
bool HasAtLeastOneSucc = false;
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
// If it does not have a basic block associated with it...
auto *SuccBB = Succs[i].getBB();
// Skip it.
if (!SuccBB)
continue;
// If the BB is the head of a backedge in our traversal, clear any state
// we are tracking now and clear the state of the basic block. There is
// some sort of control flow here that we do not understand.
if (BackEdgeSet.count(SuccBB)) {
BBState.clear();
break;
}
// Otherwise, lookup the BBState associated with the successor and merge
// the successor in.
auto I = BottomUpBBStates.find(SuccBB);
assert(I != BottomUpBBStates.end());
if (!I->second.isTrapBB()) {
if (!HasAtLeastOneSucc) {
BBState.initSuccBottomUp(I->second);
} else {
BBState.mergeSuccBottomUp(I->second);
}
HasAtLeastOneSucc = true;
}
}
}
bool swift::arc::ARCSequenceDataflowEvaluator::processBottomUp() {
bool NestingDetected = false;
DEBUG(llvm::dbgs() << "<<<< Processing Bottom Up! >>>>\n");
// For each BB in our post order...
for (auto *BB : PostOrder) {
DEBUG(llvm::dbgs() << "Processing BB#: " << BBToPostOrderID[BB] << "\n");
// Grab the BBState associated with it and set it to be the current BB.
ARCBBState &BBState = BottomUpBBStates[BB];
BBState.init(BB);
DEBUG(llvm::dbgs() << "Merging Successors!\n");
mergeSuccessors(BBState, BB);
// Then perform the basic block optimization.
NestingDetected |= processBBBottomUp(BBState, IncToDecStateMap, AA);
}
return NestingDetected;
}
//===----------------------------------------------------------------------===//
// Top Level ARC Sequence Dataflow Evaluator
//===----------------------------------------------------------------------===//
void swift::arc::ARCSequenceDataflowEvaluator::init() {
assert((F.empty() || PostOrder.empty()) &&
"This should only be called if we have not initialized our post "
"order.");
// Initialize the post order data structure.
#ifndef NDEBUG
unsigned Count = 0;
unsigned MaxSize = F.size();
#endif
for (auto PI = po_begin(&F), PE = po_end(&F); PI != PE; ++PI) {
PostOrder.push_back(*PI);
#ifndef NDEBUG
BBToPostOrderID[*PI] = MaxSize - Count++ - 1;
#endif
}
// Then iterate through it in reverse to perform the post order, looking for
// backedges.
llvm::DenseSet<SILBasicBlock *> VisitedSet;
for (int i = PostOrder.size() - 1; i >= 0; --i) {
SILBasicBlock *BB = PostOrder[i];
VisitedSet.insert(BB);
BottomUpBBStates[i].first = BB;
BottomUpBBStates[i].second.init(BB);
TopDownBBStates[i].first = BB;
TopDownBBStates[i].second.init(BB);
for (auto &Succ : BB->getSuccs())
if (SILBasicBlock *SuccBB = Succ.getBB())
if (VisitedSet.count(SuccBB))
BackedgeMap[BB].insert(SuccBB);
}
BottomUpBBStates.sort();
TopDownBBStates.sort();
}
bool swift::arc::ARCSequenceDataflowEvaluator::run() {
assert((F.empty() || PostOrder.size()) &&
"F must be empty or PostOrder must be initialized with a post order.");
bool NestingDetected = processBottomUp();
NestingDetected |= processTopDown();
return NestingDetected;
}
void swift::arc::ARCBBState::initializeTrapStatus() {
auto II = BB->begin();
auto *BFRI = dyn_cast<BuiltinFunctionRefInst>(&*II);
if (!BFRI || !BFRI->getName().str().equals("int_trap"))
return;
++II;
auto *AI = dyn_cast<ApplyInst>(&*II);
if (!AI || AI->getCallee() != SILValue(BFRI))
return;
++II;
IsTrapBB = isa<UnreachableInst>(&*II);
}