mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
2128 lines
77 KiB
C++
2128 lines
77 KiB
C++
//===--- GenDecl.cpp - IR Generation for Declarations ---------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements IR generation for local and global
|
|
// declarations in Swift.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Attr.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/DiagnosticEngine.h"
|
|
#include "swift/AST/DiagnosticsIRGen.h"
|
|
#include "swift/AST/IRGenOptions.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/TypeMemberVisitor.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "swift/SIL/FormalLinkage.h"
|
|
#include "swift/SIL/SILDebugScope.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/TypeBuilder.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
|
|
#include "CallingConvention.h"
|
|
#include "Explosion.h"
|
|
#include "FormalType.h"
|
|
#include "GenClass.h"
|
|
#include "GenObjC.h"
|
|
#include "GenMeta.h"
|
|
#include "GenType.h"
|
|
#include "IRGenDebugInfo.h"
|
|
#include "IRGenFunction.h"
|
|
#include "IRGenModule.h"
|
|
#include "Linking.h"
|
|
#include "TypeInfo.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
static bool isTypeMetadataEmittedLazily(CanType type) {
|
|
// All classes have eagerly-emitted metadata (at least for now).
|
|
if (type.getClassOrBoundGenericClass()) return false;
|
|
|
|
// Non-nominal metadata (e.g. for builtins) is provided by the runtime and
|
|
// doesn't need lazy instantiation.
|
|
auto nom = type->getAnyNominal();
|
|
if (!nom)
|
|
return false;
|
|
|
|
switch (getDeclLinkage(nom)) {
|
|
case FormalLinkage::PublicUnique:
|
|
case FormalLinkage::HiddenUnique:
|
|
case FormalLinkage::Private:
|
|
// Maybe this *should* be lazy for private types?
|
|
return false;
|
|
case FormalLinkage::PublicNonUnique:
|
|
case FormalLinkage::HiddenNonUnique:
|
|
return true;
|
|
}
|
|
llvm_unreachable("bad formal linkage");
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Add methods, properties, and protocol conformances from a JITed extension
|
|
/// to an ObjC class using the ObjC runtime.
|
|
///
|
|
/// This must happen after ObjCProtocolInitializerVisitor if any @objc protocols
|
|
/// were defined in the TU.
|
|
class CategoryInitializerVisitor
|
|
: public ClassMemberVisitor<CategoryInitializerVisitor>
|
|
{
|
|
IRGenFunction &IGF;
|
|
IRGenModule &IGM = IGF.IGM;
|
|
IRBuilder &Builder = IGF.Builder;
|
|
|
|
llvm::Constant *class_replaceMethod;
|
|
llvm::Constant *class_addProtocol;
|
|
|
|
llvm::Constant *classMetadata;
|
|
llvm::Constant *metaclassMetadata;
|
|
|
|
public:
|
|
CategoryInitializerVisitor(IRGenFunction &IGF, ExtensionDecl *ext)
|
|
: IGF(IGF)
|
|
{
|
|
class_replaceMethod = IGM.getClassReplaceMethodFn();
|
|
class_addProtocol = IGM.getClassAddProtocolFn();
|
|
|
|
CanType origTy = ext->getDeclaredTypeOfContext()->getCanonicalType();
|
|
classMetadata = tryEmitConstantHeapMetadataRef(IGM, origTy);
|
|
assert(classMetadata &&
|
|
"extended objc class doesn't have constant metadata?!");
|
|
classMetadata = llvm::ConstantExpr::getBitCast(classMetadata,
|
|
IGM.ObjCClassPtrTy);
|
|
metaclassMetadata = IGM.getAddrOfMetaclassObject(
|
|
origTy.getClassOrBoundGenericClass(),
|
|
NotForDefinition);
|
|
metaclassMetadata = llvm::ConstantExpr::getBitCast(metaclassMetadata,
|
|
IGM.ObjCClassPtrTy);
|
|
|
|
// We need to make sure the Objective C runtime has initialized our
|
|
// class. If you try to add or replace a method to a class that isn't
|
|
// initialized yet, the Objective C runtime will crash in the calls
|
|
// to class_replaceMethod or class_addProtocol.
|
|
Builder.CreateCall(IGM.getGetInitializedObjCClassFn(), classMetadata);
|
|
|
|
// Register ObjC protocol conformances.
|
|
for (auto *p : ext->getLocalProtocols()) {
|
|
if (!p->isObjC())
|
|
continue;
|
|
|
|
llvm::Value *protoRef = IGM.getAddrOfObjCProtocolRef(p, NotForDefinition);
|
|
auto proto = Builder.CreateLoad(protoRef, IGM.getPointerAlignment());
|
|
Builder.CreateCall2(class_addProtocol, classMetadata, proto);
|
|
}
|
|
}
|
|
|
|
void visitMembers(ExtensionDecl *ext) {
|
|
for (Decl *member : ext->getMembers())
|
|
visit(member);
|
|
}
|
|
|
|
void visitTypeDecl(TypeDecl *type) {
|
|
// We'll visit nested types separately if necessary.
|
|
}
|
|
|
|
void visitFuncDecl(FuncDecl *method) {
|
|
if (!requiresObjCMethodDescriptor(method)) return;
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCMethodDescriptorParts(IGM, method,
|
|
/*extended*/false,
|
|
/*concrete*/true,
|
|
name, types, imp);
|
|
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
|
|
llvm::Value *args[] = {
|
|
method->isStatic() ? metaclassMetadata : classMetadata,
|
|
sel,
|
|
imp,
|
|
types
|
|
};
|
|
|
|
Builder.CreateCall(class_replaceMethod, args);
|
|
}
|
|
|
|
// Can't be added in an extension.
|
|
void visitDestructorDecl(DestructorDecl *dtor) {}
|
|
|
|
void visitConstructorDecl(ConstructorDecl *constructor) {
|
|
if (!requiresObjCMethodDescriptor(constructor)) return;
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCMethodDescriptorParts(IGM, constructor, /*extended*/false,
|
|
/*concrete*/true,
|
|
name, types, imp);
|
|
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
|
|
llvm::Value *args[] = {
|
|
classMetadata,
|
|
sel,
|
|
imp,
|
|
types
|
|
};
|
|
|
|
Builder.CreateCall(class_replaceMethod, args);
|
|
}
|
|
|
|
void visitPatternBindingDecl(PatternBindingDecl *binding) {
|
|
// Ignore the PBD and just handle the individual vars.
|
|
}
|
|
|
|
void visitVarDecl(VarDecl *prop) {
|
|
if (!requiresObjCPropertyDescriptor(IGM, prop)) return;
|
|
|
|
// FIXME: register property metadata in addition to the methods.
|
|
|
|
// Don't emit getters/setters for @NSManagedAttr properties.
|
|
if (prop->getAttrs().hasAttribute<NSManagedAttr>())
|
|
return;
|
|
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCGetterDescriptorParts(IGM, prop,
|
|
name, types, imp);
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
llvm::Value *getterArgs[] = {classMetadata, sel, imp, types};
|
|
Builder.CreateCall(class_replaceMethod, getterArgs);
|
|
|
|
if (prop->isSettable(prop->getDeclContext())) {
|
|
emitObjCSetterDescriptorParts(IGM, prop,
|
|
name, types, imp);
|
|
sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
llvm::Value *setterArgs[] = {classMetadata, sel, imp, types};
|
|
|
|
Builder.CreateCall(class_replaceMethod, setterArgs);
|
|
}
|
|
}
|
|
|
|
void visitSubscriptDecl(SubscriptDecl *subscript) {
|
|
if (!requiresObjCSubscriptDescriptor(IGM, subscript)) return;
|
|
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCGetterDescriptorParts(IGM, subscript,
|
|
name, types, imp);
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
llvm::Value *getterArgs[] = {classMetadata, sel, imp, types};
|
|
Builder.CreateCall(class_replaceMethod, getterArgs);
|
|
|
|
if (subscript->isSettable()) {
|
|
emitObjCSetterDescriptorParts(IGM, subscript,
|
|
name, types, imp);
|
|
sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
llvm::Value *setterArgs[] = {classMetadata, sel, imp, types};
|
|
|
|
Builder.CreateCall(class_replaceMethod, setterArgs);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Create a descriptor for JITed @objc protocol using the ObjC runtime.
|
|
class ObjCProtocolInitializerVisitor
|
|
: public ClassMemberVisitor<ObjCProtocolInitializerVisitor>
|
|
{
|
|
IRGenFunction &IGF;
|
|
IRGenModule &IGM = IGF.IGM;
|
|
IRBuilder &Builder = IGF.Builder;
|
|
|
|
llvm::Constant *objc_getProtocol,
|
|
*objc_allocateProtocol,
|
|
*objc_registerProtocol,
|
|
*protocol_addMethodDescription,
|
|
*protocol_addProtocol;
|
|
|
|
llvm::Value *NewProto = nullptr;
|
|
|
|
public:
|
|
ObjCProtocolInitializerVisitor(IRGenFunction &IGF)
|
|
: IGF(IGF)
|
|
{
|
|
objc_getProtocol = IGM.getGetObjCProtocolFn();
|
|
objc_allocateProtocol = IGM.getAllocateObjCProtocolFn();
|
|
objc_registerProtocol = IGM.getRegisterObjCProtocolFn();
|
|
protocol_addMethodDescription = IGM.getProtocolAddMethodDescriptionFn();
|
|
protocol_addProtocol = IGM.getProtocolAddProtocolFn();
|
|
}
|
|
|
|
void visitMembers(ProtocolDecl *proto) {
|
|
// Check if the ObjC runtime already has a descriptor for this
|
|
// protocol. If so, use it.
|
|
SmallString<32> buf;
|
|
auto protocolName
|
|
= IGM.getAddrOfGlobalString(proto->getObjCRuntimeName(buf));
|
|
|
|
auto existing = Builder.CreateCall(objc_getProtocol, protocolName);
|
|
auto isNull = Builder.CreateICmpEQ(existing,
|
|
llvm::ConstantPointerNull::get(IGM.ProtocolDescriptorPtrTy));
|
|
|
|
auto existingBB = IGF.createBasicBlock("existing_protocol");
|
|
auto newBB = IGF.createBasicBlock("new_protocol");
|
|
auto contBB = IGF.createBasicBlock("cont");
|
|
Builder.CreateCondBr(isNull, newBB, existingBB);
|
|
|
|
// Nothing to do if there's already a descriptor.
|
|
Builder.emitBlock(existingBB);
|
|
Builder.CreateBr(contBB);
|
|
|
|
Builder.emitBlock(newBB);
|
|
|
|
// Allocate the protocol descriptor.
|
|
NewProto = Builder.CreateCall(objc_allocateProtocol, protocolName);
|
|
|
|
// Add the parent protocols.
|
|
for (auto inherited : proto->getInherited()) {
|
|
SmallVector<ProtocolDecl*, 4> protocols;
|
|
if (!inherited.getType()->isAnyExistentialType(protocols))
|
|
continue;
|
|
for (auto parentProto : protocols) {
|
|
if (!parentProto->isObjC())
|
|
continue;
|
|
llvm::Value *parentRef
|
|
= IGM.getAddrOfObjCProtocolRef(parentProto, NotForDefinition);
|
|
parentRef = IGF.Builder.CreateBitCast(parentRef,
|
|
IGM.ProtocolDescriptorPtrTy->getPointerTo());
|
|
auto parent = Builder.CreateLoad(parentRef,
|
|
IGM.getPointerAlignment());
|
|
Builder.CreateCall2(protocol_addProtocol, NewProto, parent);
|
|
}
|
|
}
|
|
|
|
// Add the members.
|
|
for (Decl *member : proto->getMembers())
|
|
visit(member);
|
|
|
|
// Register it.
|
|
Builder.CreateCall(objc_registerProtocol, NewProto);
|
|
Builder.CreateBr(contBB);
|
|
|
|
// Store the reference to the runtime's idea of the protocol descriptor.
|
|
Builder.emitBlock(contBB);
|
|
auto result = Builder.CreatePHI(IGM.ProtocolDescriptorPtrTy, 2);
|
|
result->addIncoming(existing, existingBB);
|
|
result->addIncoming(NewProto, newBB);
|
|
|
|
llvm::Value *ref = IGM.getAddrOfObjCProtocolRef(proto, NotForDefinition);
|
|
ref = IGF.Builder.CreateBitCast(ref,
|
|
IGM.ProtocolDescriptorPtrTy->getPointerTo());
|
|
|
|
Builder.CreateStore(result, ref, IGM.getPointerAlignment());
|
|
}
|
|
|
|
void visitTypeDecl(TypeDecl *type) {
|
|
// We'll visit nested types separately if necessary.
|
|
}
|
|
|
|
void visitAbstractFunctionDecl(AbstractFunctionDecl *method) {
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCMethodDescriptorParts(IGM, method, /*extended*/true,
|
|
/*concrete*/false,
|
|
name, types, imp);
|
|
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(), name);
|
|
|
|
llvm::Value *args[] = {
|
|
NewProto, sel, types,
|
|
// required?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
!method->getAttrs().hasAttribute<OptionalAttr>()),
|
|
// instance?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
isa<ConstructorDecl>(method) || method->isInstanceMember()),
|
|
};
|
|
|
|
Builder.CreateCall(protocol_addMethodDescription, args);
|
|
}
|
|
|
|
void visitPatternBindingDecl(PatternBindingDecl *binding) {
|
|
// Ignore the PBD and just handle the individual vars.
|
|
}
|
|
|
|
void visitAbstractStorageDecl(AbstractStorageDecl *prop) {
|
|
// TODO: Add properties to protocol.
|
|
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCGetterDescriptorParts(IGM, prop,
|
|
name, types, imp);
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(), name);
|
|
llvm::Value *getterArgs[] = {
|
|
NewProto, sel, types,
|
|
// required?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
!prop->getAttrs().hasAttribute<OptionalAttr>()),
|
|
// instance?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
prop->isInstanceMember()),
|
|
};
|
|
Builder.CreateCall(protocol_addMethodDescription, getterArgs);
|
|
|
|
if (prop->isSettable(nullptr)) {
|
|
emitObjCSetterDescriptorParts(IGM, prop, name, types, imp);
|
|
sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(), name);
|
|
llvm::Value *setterArgs[] = {
|
|
NewProto, sel, types,
|
|
// required?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
!prop->getAttrs().hasAttribute<OptionalAttr>()),
|
|
// instance?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
prop->isInstanceMember()),
|
|
};
|
|
Builder.CreateCall(protocol_addMethodDescription, setterArgs);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
class PrettySourceFileEmission : public llvm::PrettyStackTraceEntry {
|
|
const SourceFile &SF;
|
|
public:
|
|
explicit PrettySourceFileEmission(const SourceFile &SF) : SF(SF) {}
|
|
|
|
virtual void print(raw_ostream &os) const override {
|
|
os << "While emitting IR for source file " << SF.getFilename() << '\n';
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Emit all the top-level code in the source file.
|
|
void IRGenModule::emitSourceFile(SourceFile &SF, unsigned StartElem) {
|
|
PrettySourceFileEmission StackEntry(SF);
|
|
|
|
// Emit types and other global decls.
|
|
for (unsigned i = StartElem, e = SF.Decls.size(); i != e; ++i)
|
|
emitGlobalDecl(SF.Decls[i]);
|
|
for (auto *localDecl : SF.LocalTypeDecls)
|
|
emitGlobalDecl(localDecl);
|
|
|
|
SF.forAllVisibleModules([&](swift::Module::ImportedModule import) {
|
|
swift::Module *next = import.second;
|
|
if (Opts.HasUnderlyingModule && next->Name == SF.getParentModule()->Name)
|
|
return;
|
|
|
|
next->collectLinkLibraries([this](LinkLibrary linkLib) {
|
|
this->addLinkLibrary(linkLib);
|
|
if (ObjCInterop)
|
|
if (linkLib.getName().equals("swiftCore"))
|
|
this->addLinkLibrary(LinkLibrary("objc", LibraryKind::Library));
|
|
});
|
|
});
|
|
}
|
|
|
|
/// Emit a global list, i.e. a global constant array holding all of a
|
|
/// list of values. Generally these lists are for various LLVM
|
|
/// metadata or runtime purposes.
|
|
static llvm::GlobalVariable *
|
|
emitGlobalList(IRGenModule &IGM, ArrayRef<llvm::WeakVH> handles,
|
|
StringRef name, StringRef section,
|
|
llvm::GlobalValue::LinkageTypes linkage,
|
|
llvm::Type *eltTy,
|
|
bool isConstant) {
|
|
// Do nothing if the list is empty.
|
|
if (handles.empty()) return nullptr;
|
|
|
|
// For global lists that actually get linked (as opposed to notional
|
|
// ones like @llvm.used), it's important to set an explicit alignment
|
|
// so that the linker doesn't accidentally put padding in the list.
|
|
Alignment alignment = IGM.getPointerAlignment();
|
|
|
|
// We have an array of value handles, but we need an array of constants.
|
|
SmallVector<llvm::Constant*, 8> elts;
|
|
elts.reserve(handles.size());
|
|
for (auto &handle : handles) {
|
|
auto elt = cast<llvm::Constant>(&*handle);
|
|
if (elt->getType() != eltTy)
|
|
elt = llvm::ConstantExpr::getBitCast(elt, eltTy);
|
|
elts.push_back(elt);
|
|
}
|
|
|
|
auto varTy = llvm::ArrayType::get(eltTy, elts.size());
|
|
auto init = llvm::ConstantArray::get(varTy, elts);
|
|
auto var = new llvm::GlobalVariable(IGM.Module, varTy, isConstant, linkage,
|
|
init, name);
|
|
var->setSection(section);
|
|
var->setAlignment(alignment.getValue());
|
|
|
|
// Mark the variable as used if doesn't have external linkage.
|
|
// (Note that we'd specifically like to not put @llvm.used in itself.)
|
|
if (llvm::GlobalValue::isLocalLinkage(linkage))
|
|
IGM.addUsedGlobal(var);
|
|
return var;
|
|
}
|
|
|
|
/// Emit the protocol conformance list and return it
|
|
llvm::Constant *IRGenModule::emitProtocolConformances() {
|
|
std::string sectionName;
|
|
switch (TargetInfo.OutputObjectFormat) {
|
|
case llvm::Triple::MachO:
|
|
sectionName = "__DATA, __swift1_proto, regular, no_dead_strip";
|
|
break;
|
|
case llvm::Triple::ELF:
|
|
sectionName = ".swift1_protocol_conformances";
|
|
break;
|
|
default:
|
|
llvm_unreachable("Don't know how to emit protocol conformances for "
|
|
"the selected object format.");
|
|
}
|
|
|
|
return emitGlobalList(*this, ProtocolConformanceRecords,
|
|
"protocol_conformances", sectionName,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
ProtocolConformanceRecordTy, true);
|
|
}
|
|
|
|
void IRGenModule::emitRuntimeRegistration() {
|
|
// Duck out early if we have nothing to register.
|
|
if (ProtocolConformanceRecords.empty()
|
|
&& (!ObjCInterop || (ObjCProtocols.empty() &&
|
|
ObjCClasses.empty() &&
|
|
ObjCCategoryDecls.empty())))
|
|
return;
|
|
|
|
// Find the entry point.
|
|
SILFunction *EntryPoint = SILMod->lookUpFunction(SWIFT_ENTRY_POINT_FUNCTION);
|
|
|
|
// If we're debugging, we probably don't have a main. Find a
|
|
// function marked with the LLDBDebuggerFunction attribute instead.
|
|
if (!EntryPoint && Context.LangOpts.DebuggerSupport) {
|
|
for (SILFunction &SF : *SILMod) {
|
|
if (SF.hasLocation()) {
|
|
if (Decl* D = SF.getLocation().getAsASTNode<Decl>()) {
|
|
if (FuncDecl *FD = dyn_cast<FuncDecl>(D)) {
|
|
if (FD->getAttrs().hasAttribute<LLDBDebuggerFunctionAttr>()) {
|
|
EntryPoint = &SF;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!EntryPoint)
|
|
return;
|
|
|
|
llvm::Function *EntryFunction = Module.getFunction(EntryPoint->getName());
|
|
if (!EntryFunction)
|
|
return;
|
|
|
|
// Create a new function to contain our logic.
|
|
auto fnTy = llvm::FunctionType::get(VoidTy, /*varArg*/ false);
|
|
auto RegistrationFunction = llvm::Function::Create(fnTy,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
"runtime_registration",
|
|
getModule());
|
|
RegistrationFunction->setAttributes(constructInitialAttributes());
|
|
|
|
// Insert a call into the entry function.
|
|
{
|
|
llvm::BasicBlock *EntryBB = &EntryFunction->getEntryBlock();
|
|
llvm::BasicBlock::iterator IP = EntryBB->getFirstInsertionPt();
|
|
IRBuilder Builder(getLLVMContext());
|
|
Builder.llvm::IRBuilderBase::SetInsertPoint(EntryBB, IP);
|
|
Builder.CreateCall(RegistrationFunction);
|
|
}
|
|
|
|
IRGenFunction RegIGF(*this, RegistrationFunction);
|
|
|
|
// Register ObjC protocols, classes, and extensions we added.
|
|
if (ObjCInterop) {
|
|
if (!ObjCProtocols.empty()) {
|
|
// We need to initialize ObjC protocols in inheritance order, parents
|
|
// first.
|
|
|
|
llvm::DenseSet<ProtocolDecl*> protos;
|
|
for (auto &proto : ObjCProtocols)
|
|
protos.insert(proto.first);
|
|
|
|
llvm::SmallVector<ProtocolDecl*, 4> protoInitOrder;
|
|
|
|
std::function<void(ProtocolDecl*)> orderProtocol
|
|
= [&](ProtocolDecl *proto) {
|
|
// Recursively put parents first.
|
|
for (auto &inherited : proto->getInherited()) {
|
|
SmallVector<ProtocolDecl*, 4> parents;
|
|
if (!inherited.getType()->isAnyExistentialType(parents))
|
|
continue;
|
|
for (auto parent : parents)
|
|
orderProtocol(parent);
|
|
}
|
|
// Skip if we don't need to reify this protocol.
|
|
auto found = protos.find(proto);
|
|
if (found == protos.end())
|
|
return;
|
|
protos.erase(found);
|
|
protoInitOrder.push_back(proto);
|
|
};
|
|
|
|
while (!protos.empty()) {
|
|
orderProtocol(*protos.begin());
|
|
}
|
|
|
|
// Visit the protocols in the order we established.
|
|
for (auto *proto : protoInitOrder) {
|
|
ObjCProtocolInitializerVisitor(RegIGF)
|
|
.visitMembers(proto);
|
|
}
|
|
}
|
|
|
|
for (llvm::WeakVH &ObjCClass : ObjCClasses) {
|
|
RegIGF.Builder.CreateCall(getInstantiateObjCClassFn(), ObjCClass);
|
|
}
|
|
|
|
for (ExtensionDecl *ext : ObjCCategoryDecls) {
|
|
CategoryInitializerVisitor(RegIGF, ext).visitMembers(ext);
|
|
}
|
|
}
|
|
// Register Swift protocol conformances if we added any.
|
|
if (!ProtocolConformanceRecords.empty()) {
|
|
|
|
llvm::Constant *conformances = emitProtocolConformances();
|
|
|
|
llvm::Constant *beginIndices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
};
|
|
auto begin = llvm::ConstantExpr::getGetElementPtr(conformances,
|
|
beginIndices);
|
|
llvm::Constant *endIndices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, ProtocolConformanceRecords.size()),
|
|
};
|
|
auto end = llvm::ConstantExpr::getGetElementPtr(conformances, endIndices);
|
|
|
|
RegIGF.Builder.CreateCall2(getRegisterProtocolConformancesFn(), begin, end);
|
|
}
|
|
RegIGF.Builder.CreateRetVoid();
|
|
}
|
|
|
|
/// Add the given global value to @llvm.used.
|
|
///
|
|
/// This value must have a definition by the time the module is finalized.
|
|
void IRGenModule::addUsedGlobal(llvm::GlobalValue *global) {
|
|
LLVMUsed.push_back(global);
|
|
}
|
|
|
|
/// Add the given global value to the Objective-C class list.
|
|
void IRGenModule::addObjCClass(llvm::Constant *classPtr, bool nonlazy) {
|
|
ObjCClasses.push_back(classPtr);
|
|
if (nonlazy)
|
|
ObjCNonLazyClasses.push_back(classPtr);
|
|
}
|
|
|
|
/// Add the given protocol conformance record to the protocol conformances list.
|
|
void IRGenModule::addProtocolConformanceRecord(llvm::Constant *conformanceRec) {
|
|
ProtocolConformanceRecords.push_back(conformanceRec);
|
|
}
|
|
|
|
void IRGenModule::emitGlobalLists() {
|
|
if (ObjCInterop) {
|
|
assert(TargetInfo.OutputObjectFormat == llvm::Triple::MachO);
|
|
// Objective-C class references go in a variable with a meaningless
|
|
// name but a magic section.
|
|
emitGlobalList(*this, ObjCClasses, "objc_classes",
|
|
"__DATA, __objc_classlist, regular, no_dead_strip",
|
|
llvm::GlobalValue::InternalLinkage,
|
|
Int8PtrTy,
|
|
false);
|
|
// So do categories.
|
|
emitGlobalList(*this, ObjCCategories, "objc_categories",
|
|
"__DATA, __objc_catlist, regular, no_dead_strip",
|
|
llvm::GlobalValue::InternalLinkage,
|
|
Int8PtrTy,
|
|
false);
|
|
|
|
// Emit nonlazily realized class references in a second magic section to make
|
|
// sure they are realized by the Objective-C runtime before any instances
|
|
// are allocated.
|
|
emitGlobalList(*this, ObjCNonLazyClasses, "objc_non_lazy_classes",
|
|
"__DATA, __objc_nlclslist, regular, no_dead_strip",
|
|
llvm::GlobalValue::InternalLinkage,
|
|
Int8PtrTy,
|
|
false);
|
|
}
|
|
|
|
// Emit protocol conformances into a section we can recognize at runtime.
|
|
// In JIT mode we need to manually register these conformances later.
|
|
if (!Opts.UseJIT) {
|
|
emitProtocolConformances();
|
|
}
|
|
|
|
// @llvm.used
|
|
assert(std::all_of(LLVMUsed.begin(), LLVMUsed.end(),
|
|
[](const llvm::WeakVH &global) {
|
|
return !isa<llvm::GlobalValue>(global) ||
|
|
!cast<llvm::GlobalValue>(global)->isDeclaration();
|
|
}) && "all globals in the 'used' list must be definitions");
|
|
emitGlobalList(*this, LLVMUsed, "llvm.used", "llvm.metadata",
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
Int8PtrTy,
|
|
false);
|
|
}
|
|
|
|
void IRGenModuleDispatcher::emitGlobalTopLevel() {
|
|
// Generate order numbers for the functions in the SIL module that
|
|
// correspond to definitions in the LLVM module.
|
|
unsigned nextOrderNumber = 0;
|
|
for (auto &silFn : PrimaryIGM->SILMod->getFunctions()) {
|
|
// Don't bother adding external declarations to the function order.
|
|
if (!silFn.isDefinition()) continue;
|
|
FunctionOrder.insert(std::make_pair(&silFn, nextOrderNumber++));
|
|
}
|
|
|
|
for (SILGlobalVariable &v : PrimaryIGM->SILMod->getSILGlobals()) {
|
|
Decl *decl = v.getDecl();
|
|
CurrentIGMPtr IGM = getGenModule(decl ? decl->getDeclContext() : nullptr);
|
|
IGM->emitSILGlobalVariable(&v);
|
|
}
|
|
PrimaryIGM->emitCoverageMapping();
|
|
|
|
// Emit SIL functions.
|
|
bool isWholeModule = PrimaryIGM->SILMod->isWholeModule();
|
|
for (SILFunction &f : *PrimaryIGM->SILMod) {
|
|
// Only eagerly emit functions that are externally visible.
|
|
if (!isPossiblyUsedExternally(f.getLinkage(), isWholeModule))
|
|
continue;
|
|
|
|
CurrentIGMPtr IGM = getGenModule(&f);
|
|
IGM->emitSILFunction(&f);
|
|
}
|
|
|
|
// Emit static initializers.
|
|
for (auto Iter : *this) {
|
|
IRGenModule *IGM = Iter.second;
|
|
IGM->emitSILStaticInitializer();
|
|
}
|
|
|
|
// Emit witness tables.
|
|
for (SILWitnessTable &wt : PrimaryIGM->SILMod->getWitnessTableList()) {
|
|
CurrentIGMPtr IGM = getGenModule(wt.getConformance()->getDeclContext());
|
|
IGM->emitSILWitnessTable(&wt);
|
|
}
|
|
|
|
for (auto Iter : *this) {
|
|
IRGenModule *IGM = Iter.second;
|
|
IGM->finishEmitAfterTopLevel();
|
|
}
|
|
}
|
|
|
|
void IRGenModule::finishEmitAfterTopLevel() {
|
|
// Emit the implicit import of the swift standard libary.
|
|
if (DebugInfo) {
|
|
std::pair<swift::Identifier, swift::SourceLoc> AccessPath[] = {
|
|
{ Context.StdlibModuleName, swift::SourceLoc() }
|
|
};
|
|
|
|
auto Imp = ImportDecl::create(Context,
|
|
SILMod->getSwiftModule(),
|
|
SourceLoc(),
|
|
ImportKind::Module, SourceLoc(),
|
|
AccessPath);
|
|
DebugInfo->emitImport(Imp);
|
|
}
|
|
|
|
// Emit external definitions used by this module.
|
|
for (auto def : Context.ExternalDefinitions) {
|
|
emitExternalDefinition(def);
|
|
}
|
|
}
|
|
|
|
static void emitLazyTypeMetadata(IRGenModule &IGM, CanType type) {
|
|
auto decl = type.getAnyNominal();
|
|
assert(decl);
|
|
|
|
if (auto sd = dyn_cast<StructDecl>(decl)) {
|
|
return emitStructMetadata(IGM, sd);
|
|
} else if (auto ed = dyn_cast<EnumDecl>(decl)) {
|
|
emitEnumMetadata(IGM, ed);
|
|
} else if (auto pd = dyn_cast<ProtocolDecl>(decl)) {
|
|
IGM.emitProtocolDecl(pd);
|
|
} else {
|
|
llvm_unreachable("should not have enqueued a class decl here!");
|
|
}
|
|
}
|
|
|
|
/// Emit any lazy definitions (of globals or functions or whatever
|
|
/// else) that we require.
|
|
void IRGenModuleDispatcher::emitLazyDefinitions() {
|
|
while (!LazyTypeMetadata.empty() ||
|
|
!LazyFunctionDefinitions.empty() ||
|
|
!LazyFieldTypeAccessors.empty()) {
|
|
|
|
// Emit any lazy type metadata we require.
|
|
while (!LazyTypeMetadata.empty()) {
|
|
CanType type = LazyTypeMetadata.pop_back_val();
|
|
assert(isTypeMetadataEmittedLazily(type));
|
|
auto nom = type->getAnyNominal();
|
|
CurrentIGMPtr IGM = getGenModule(nom->getDeclContext());
|
|
emitLazyTypeMetadata(*IGM.get(), type);
|
|
}
|
|
while (!LazyFieldTypeAccessors.empty()) {
|
|
auto accessor = LazyFieldTypeAccessors.pop_back_val();
|
|
emitFieldTypeAccessor(*accessor.IGM, accessor.type, accessor.fn,
|
|
accessor.fieldTypes);
|
|
}
|
|
|
|
// Emit any lazy function definitions we require.
|
|
while (!LazyFunctionDefinitions.empty()) {
|
|
SILFunction *f = LazyFunctionDefinitions.pop_back_val();
|
|
CurrentIGMPtr IGM = getGenModule(f);
|
|
assert(!isPossiblyUsedExternally(f->getLinkage(),
|
|
IGM->SILMod->isWholeModule())
|
|
&& "function with externally-visible linkage emitted lazily?");
|
|
IGM->emitSILFunction(f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emit symbols for eliminated dead methods, which can still be referenced
|
|
/// from other modules. This happens e.g. if a public class contains a (dead)
|
|
/// private method.
|
|
void IRGenModule::emitVTableStubs() {
|
|
llvm::Function *stub = nullptr;
|
|
for (auto I = SILMod->zombies_begin(); I != SILMod->zombies_end(); ++I) {
|
|
const SILFunction &F = *I;
|
|
if (! F.isExternallyUsedSymbol())
|
|
continue;
|
|
|
|
if (!stub) {
|
|
// Create a single stub function which calls swift_reportMissingMethod().
|
|
stub = llvm::Function::Create(llvm::FunctionType::get(VoidTy, false),
|
|
llvm::GlobalValue::LinkOnceODRLinkage,
|
|
"_swift_dead_method_stub");
|
|
stub->setAttributes(constructInitialAttributes());
|
|
Module.getFunctionList().push_back(stub);
|
|
stub->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
stub->setCallingConv(RuntimeCC);
|
|
auto *entry = llvm::BasicBlock::Create(getLLVMContext(), "entry", stub);
|
|
auto *errorFunc = getDeadMethodErrorFn();
|
|
llvm::CallInst::Create(errorFunc, ArrayRef<llvm::Value *>(), "", entry);
|
|
new llvm::UnreachableInst(getLLVMContext(), entry);
|
|
}
|
|
// For each eliminated method symbol create an alias to the stub.
|
|
llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, F.getName(),
|
|
stub);
|
|
}
|
|
}
|
|
|
|
void IRGenModule::emitTypeVerifier() {
|
|
// Look up the types to verify.
|
|
|
|
SmallVector<CanType, 4> TypesToVerify;
|
|
for (auto name : Opts.VerifyTypeLayoutNames) {
|
|
// Look up the name in the module.
|
|
SmallVector<ValueDecl*, 1> lookup;
|
|
swift::Module *M = SILMod->getSwiftModule();
|
|
M->lookupMember(lookup, M, DeclName(Context.getIdentifier(name)),
|
|
Identifier());
|
|
if (lookup.empty()) {
|
|
Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_not_found,
|
|
name);
|
|
continue;
|
|
}
|
|
|
|
TypeDecl *typeDecl = nullptr;
|
|
for (auto decl : lookup) {
|
|
if (auto td = dyn_cast<TypeDecl>(decl)) {
|
|
if (typeDecl) {
|
|
Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_ambiguous,
|
|
name);
|
|
goto next;
|
|
}
|
|
typeDecl = td;
|
|
break;
|
|
}
|
|
}
|
|
if (!typeDecl) {
|
|
Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_not_found, name);
|
|
continue;
|
|
}
|
|
|
|
{
|
|
auto type = typeDecl->getDeclaredInterfaceType();
|
|
if (type->isDependentType()) {
|
|
Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_dependent,
|
|
name);
|
|
continue;
|
|
}
|
|
|
|
TypesToVerify.push_back(type->getCanonicalType());
|
|
}
|
|
next:;
|
|
}
|
|
if (TypesToVerify.empty())
|
|
return;
|
|
|
|
// Find the entry point.
|
|
SILFunction *EntryPoint = SILMod->lookUpFunction(SWIFT_ENTRY_POINT_FUNCTION);
|
|
|
|
if (!EntryPoint)
|
|
return;
|
|
|
|
llvm::Function *EntryFunction = Module.getFunction(EntryPoint->getName());
|
|
if (!EntryFunction)
|
|
return;
|
|
|
|
// Create a new function to contain our logic.
|
|
auto fnTy = llvm::FunctionType::get(VoidTy, /*varArg*/ false);
|
|
auto VerifierFunction = llvm::Function::Create(fnTy,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
"type_verifier",
|
|
getModule());
|
|
VerifierFunction->setAttributes(constructInitialAttributes());
|
|
|
|
// Insert a call into the entry function.
|
|
{
|
|
llvm::BasicBlock *EntryBB = &EntryFunction->getEntryBlock();
|
|
llvm::BasicBlock::iterator IP = EntryBB->getFirstInsertionPt();
|
|
IRBuilder Builder(getLLVMContext());
|
|
Builder.llvm::IRBuilderBase::SetInsertPoint(EntryBB, IP);
|
|
Builder.CreateCall(VerifierFunction);
|
|
}
|
|
|
|
IRGenFunction VerifierIGF(*this, VerifierFunction);
|
|
emitTypeLayoutVerifier(VerifierIGF, TypesToVerify);
|
|
VerifierIGF.Builder.CreateRetVoid();
|
|
}
|
|
|
|
/// Get SIL-linkage for something that's not required to be visible
|
|
/// and doesn't actually need to be uniqued.
|
|
static SILLinkage getNonUniqueSILLinkage(FormalLinkage linkage,
|
|
ForDefinition_t forDefinition) {
|
|
switch (linkage) {
|
|
case FormalLinkage::PublicUnique:
|
|
case FormalLinkage::PublicNonUnique:
|
|
return (forDefinition ? SILLinkage::Shared : SILLinkage::PublicExternal);
|
|
|
|
case FormalLinkage::HiddenUnique:
|
|
case FormalLinkage::HiddenNonUnique:
|
|
return (forDefinition ? SILLinkage::Shared : SILLinkage::HiddenExternal);
|
|
|
|
case FormalLinkage::Private:
|
|
return SILLinkage::Private;
|
|
}
|
|
llvm_unreachable("bad formal linkage");
|
|
}
|
|
|
|
SILLinkage LinkEntity::getLinkage(ForDefinition_t forDefinition) const {
|
|
switch (getKind()) {
|
|
// Most type metadata depend on the formal linkage of their type.
|
|
case Kind::ValueWitnessTable:
|
|
case Kind::TypeMetadata:
|
|
case Kind::TypeMangling:
|
|
return getSILLinkage(getTypeLinkage(getType()), forDefinition);
|
|
|
|
// ...but we don't actually expose individual value witnesses (right now).
|
|
case Kind::ValueWitness:
|
|
return getNonUniqueSILLinkage(getTypeLinkage(getType()), forDefinition);
|
|
|
|
// Foreign type metadata candidates are always shared; the runtime
|
|
// does the uniquing.
|
|
case Kind::ForeignTypeMetadataCandidate:
|
|
return SILLinkage::Shared;
|
|
|
|
case Kind::TypeMetadataAccessFunction:
|
|
case Kind::TypeMetadataLazyCacheVariable:
|
|
switch (getTypeMetadataAccessStrategy(getType())) {
|
|
case TypeMetadataAccessStrategy::PublicUniqueAccessor:
|
|
return getSILLinkage(FormalLinkage::PublicUnique, forDefinition);
|
|
case TypeMetadataAccessStrategy::HiddenUniqueAccessor:
|
|
return getSILLinkage(FormalLinkage::HiddenUnique, forDefinition);
|
|
case TypeMetadataAccessStrategy::PrivateAccessor:
|
|
return getSILLinkage(FormalLinkage::Private, forDefinition);
|
|
case TypeMetadataAccessStrategy::NonUniqueAccessor:
|
|
return SILLinkage::Shared;
|
|
case TypeMetadataAccessStrategy::Direct:
|
|
llvm_unreachable("metadata accessor for type with direct access?");
|
|
}
|
|
llvm_unreachable("bad metadata access kind");
|
|
|
|
case Kind::WitnessTableOffset:
|
|
case Kind::Function:
|
|
case Kind::Other:
|
|
case Kind::ObjCClass:
|
|
case Kind::ObjCMetaclass:
|
|
case Kind::SwiftMetaclassStub:
|
|
case Kind::FieldOffset:
|
|
case Kind::NominalTypeDescriptor:
|
|
case Kind::ProtocolDescriptor:
|
|
return getSILLinkage(getDeclLinkage(getDecl()), forDefinition);
|
|
|
|
case Kind::DirectProtocolWitnessTable:
|
|
case Kind::LazyProtocolWitnessTableAccessor:
|
|
case Kind::DependentProtocolWitnessTableGenerator:
|
|
return getProtocolConformanceLinkage();
|
|
|
|
case Kind::LazyProtocolWitnessTableTemplate:
|
|
case Kind::DependentProtocolWitnessTableTemplate:
|
|
return SILLinkage::Private;
|
|
|
|
case Kind::SILFunction:
|
|
return getSILFunction()->getEffectiveSymbolLinkage();
|
|
|
|
case Kind::SILGlobalVariable:
|
|
return getSILGlobalVariable()->getLinkage();
|
|
}
|
|
llvm_unreachable("bad link entity kind");
|
|
}
|
|
|
|
bool LinkEntity::isFragile() const {
|
|
switch (getKind()) {
|
|
case Kind::SILFunction:
|
|
return getSILFunction()->isFragile();
|
|
|
|
case Kind::SILGlobalVariable:
|
|
return getSILGlobalVariable()->isFragile();
|
|
|
|
case Kind::DirectProtocolWitnessTable:
|
|
case Kind::LazyProtocolWitnessTableAccessor:
|
|
case Kind::DependentProtocolWitnessTableGenerator:
|
|
return isProtocolConformanceFragile();
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
static std::pair<llvm::GlobalValue::LinkageTypes,
|
|
llvm::GlobalValue::VisibilityTypes>
|
|
getIRLinkage(IRGenModule &IGM,
|
|
SILLinkage linkage, bool isFragile, ForDefinition_t isDefinition,
|
|
bool isWeakImported) {
|
|
|
|
#define RESULT(LINKAGE, VISIBILITY) \
|
|
{ llvm::GlobalValue::LINKAGE##Linkage, \
|
|
llvm::GlobalValue::VISIBILITY##Visibility }
|
|
|
|
if (isFragile) {
|
|
// Fragile functions/globals must be visible from outside, regardless of
|
|
// their accessibility. If a caller is also fragile and inlined into another
|
|
// module it must be able to access this (not-inlined) function/global.
|
|
switch (linkage) {
|
|
case SILLinkage::Hidden:
|
|
case SILLinkage::Private:
|
|
linkage = SILLinkage::Public;
|
|
break;
|
|
|
|
case SILLinkage::Public:
|
|
case SILLinkage::Shared:
|
|
case SILLinkage::HiddenExternal:
|
|
case SILLinkage::PrivateExternal:
|
|
case SILLinkage::PublicExternal:
|
|
case SILLinkage::SharedExternal:
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (linkage) {
|
|
case SILLinkage::Public: return RESULT(External, Default);
|
|
case SILLinkage::Shared:
|
|
case SILLinkage::SharedExternal: return RESULT(LinkOnceODR, Hidden);
|
|
case SILLinkage::Hidden: return RESULT(External, Hidden);
|
|
case SILLinkage::Private:
|
|
if (IGM.dispatcher.hasMultipleIGMs()) {
|
|
// In case of multiple llvm modules (in multi-threaded compilation) all
|
|
// private decls must be visible from other files.
|
|
return RESULT(External, Hidden);
|
|
}
|
|
return RESULT(Internal, Default);
|
|
case SILLinkage::PublicExternal:
|
|
if (isDefinition) {
|
|
return RESULT(AvailableExternally, Default);
|
|
}
|
|
|
|
if (isWeakImported)
|
|
return RESULT(ExternalWeak, Default);
|
|
return RESULT(External, Default);
|
|
case SILLinkage::HiddenExternal:
|
|
case SILLinkage::PrivateExternal: {
|
|
auto visibility = isFragile ? llvm::GlobalValue::DefaultVisibility
|
|
: llvm::GlobalValue::HiddenVisibility;
|
|
if (isDefinition) {
|
|
return {llvm::GlobalValue::AvailableExternallyLinkage, visibility};
|
|
}
|
|
return {llvm::GlobalValue::ExternalLinkage, visibility};
|
|
}
|
|
}
|
|
llvm_unreachable("bad SIL linkage");
|
|
}
|
|
|
|
/// Given that we're going to define a global value but already have a
|
|
/// forward-declaration of it, update its linkage.
|
|
static void updateLinkageForDefinition(IRGenModule &IGM,
|
|
llvm::GlobalValue *global,
|
|
const LinkEntity &entity) {
|
|
// TODO: there are probably cases where we can avoid redoing the
|
|
// entire linkage computation.
|
|
auto linkage = getIRLinkage(
|
|
IGM,
|
|
entity.getLinkage(ForDefinition), entity.isFragile(),
|
|
ForDefinition,
|
|
entity.isWeakImported(IGM.SILMod->getSwiftModule()));
|
|
global->setLinkage(linkage.first);
|
|
global->setVisibility(linkage.second);
|
|
|
|
// Everything externally visible is considered used in Swift.
|
|
// That mostly means we need to be good at not marking things external.
|
|
//
|
|
// Exclude "main", because it should naturally be used, and because adding it
|
|
// to llvm.used leaves a dangling use when the REPL attempts to discard
|
|
// intermediate mains.
|
|
if (linkage.first == llvm::GlobalValue::ExternalLinkage &&
|
|
linkage.second == llvm::GlobalValue::DefaultVisibility &&
|
|
global->getName() != SWIFT_ENTRY_POINT_FUNCTION) {
|
|
IGM.addUsedGlobal(global);
|
|
}
|
|
}
|
|
|
|
LinkInfo LinkInfo::get(IRGenModule &IGM, const LinkEntity &entity,
|
|
ForDefinition_t isDefinition) {
|
|
LinkInfo result;
|
|
|
|
entity.mangle(result.Name);
|
|
|
|
std::tie(result.Linkage, result.Visibility) =
|
|
getIRLinkage(IGM, entity.getLinkage(isDefinition), entity.isFragile(),
|
|
isDefinition,
|
|
entity.isWeakImported(IGM.SILMod->getSwiftModule()));
|
|
|
|
result.ForDefinition = isDefinition;
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool isPointerTo(llvm::Type *ptrTy, llvm::Type *objTy) {
|
|
return cast<llvm::PointerType>(ptrTy)->getElementType() == objTy;
|
|
}
|
|
|
|
/// Get or create an LLVM function with these linkage rules.
|
|
llvm::Function *LinkInfo::createFunction(IRGenModule &IGM,
|
|
llvm::FunctionType *fnType,
|
|
llvm::CallingConv::ID cc,
|
|
const llvm::AttributeSet &attrs,
|
|
llvm::Function *insertBefore) {
|
|
llvm::Function *existing = IGM.Module.getFunction(getName());
|
|
if (existing) {
|
|
if (isPointerTo(existing->getType(), fnType))
|
|
return cast<llvm::Function>(existing);
|
|
|
|
IGM.error(SourceLoc(),
|
|
"program too clever: function collides with existing symbol "
|
|
+ getName());
|
|
|
|
// Note that this will implicitly unique if the .unique name is also taken.
|
|
existing->setName(getName() + ".unique");
|
|
}
|
|
|
|
llvm::Function *fn
|
|
= llvm::Function::Create(fnType, getLinkage(), getName());
|
|
if (insertBefore) {
|
|
IGM.Module.getFunctionList().insert(insertBefore, fn);
|
|
} else {
|
|
IGM.Module.getFunctionList().push_back(fn);
|
|
}
|
|
fn->setVisibility(getVisibility());
|
|
fn->setCallingConv(cc);
|
|
|
|
auto initialAttrs = IGM.constructInitialAttributes();
|
|
// Merge initialAttrs with attrs.
|
|
auto updatedAttrs = attrs.addAttributes(IGM.getLLVMContext(),
|
|
llvm::AttributeSet::FunctionIndex, initialAttrs);
|
|
if (!updatedAttrs.isEmpty())
|
|
fn->setAttributes(updatedAttrs);
|
|
|
|
// Everything externally visible is considered used in Swift.
|
|
// That mostly means we need to be good at not marking things external.
|
|
//
|
|
// Exclude "main", because it should naturally be used, and because adding it
|
|
// to llvm.used leaves a dangling use when the REPL attempts to discard
|
|
// intermediate mains.
|
|
if (ForDefinition &&
|
|
Linkage == llvm::GlobalValue::ExternalLinkage &&
|
|
Visibility == llvm::GlobalValue::DefaultVisibility &&
|
|
getName() != SWIFT_ENTRY_POINT_FUNCTION) {
|
|
IGM.addUsedGlobal(fn);
|
|
}
|
|
|
|
return fn;
|
|
}
|
|
|
|
/// Get or create an LLVM global variable with these linkage rules.
|
|
llvm::GlobalVariable *LinkInfo::createVariable(IRGenModule &IGM,
|
|
llvm::Type *storageType,
|
|
DebugTypeInfo DebugType,
|
|
Optional<SILLocation> DebugLoc,
|
|
StringRef DebugName) {
|
|
llvm::GlobalVariable *existing = IGM.Module.getNamedGlobal(getName());
|
|
if (existing) {
|
|
if (isPointerTo(existing->getType(), storageType))
|
|
return existing;
|
|
|
|
IGM.error(SourceLoc(),
|
|
"program too clever: variable collides with existing symbol "
|
|
+ getName());
|
|
|
|
// Note that this will implicitly unique if the .unique name is also taken.
|
|
existing->setName(getName() + ".unique");
|
|
}
|
|
|
|
llvm::GlobalVariable *var
|
|
= new llvm::GlobalVariable(IGM.Module, storageType, /*constant*/ false,
|
|
getLinkage(), /*initializer*/ nullptr,
|
|
getName());
|
|
var->setVisibility(getVisibility());
|
|
|
|
// Everything externally visible is considered used in Swift.
|
|
// That mostly means we need to be good at not marking things external.
|
|
if (ForDefinition &&
|
|
Linkage == llvm::GlobalValue::ExternalLinkage &&
|
|
Visibility == llvm::GlobalValue::DefaultVisibility) {
|
|
IGM.addUsedGlobal(var);
|
|
}
|
|
|
|
if (IGM.DebugInfo && ForDefinition)
|
|
IGM.DebugInfo->
|
|
emitGlobalVariableDeclaration(var,
|
|
DebugName.empty() ? getName() : DebugName,
|
|
getName(), DebugType, DebugLoc);
|
|
|
|
return var;
|
|
}
|
|
|
|
/// Emit a global declaration.
|
|
void IRGenModule::emitGlobalDecl(Decl *D) {
|
|
switch (D->getKind()) {
|
|
case DeclKind::Extension:
|
|
return emitExtension(cast<ExtensionDecl>(D));
|
|
|
|
case DeclKind::Protocol:
|
|
return emitProtocolDecl(cast<ProtocolDecl>(D));
|
|
|
|
case DeclKind::PatternBinding:
|
|
// The global initializations are in SIL.
|
|
return;
|
|
|
|
case DeclKind::Param:
|
|
llvm_unreachable("there are no global function parameters");
|
|
|
|
case DeclKind::Subscript:
|
|
llvm_unreachable("there are no global subscript operations");
|
|
|
|
case DeclKind::EnumCase:
|
|
case DeclKind::EnumElement:
|
|
llvm_unreachable("there are no global enum elements");
|
|
|
|
case DeclKind::Constructor:
|
|
llvm_unreachable("there are no global constructor");
|
|
|
|
case DeclKind::Destructor:
|
|
llvm_unreachable("there are no global destructor");
|
|
|
|
case DeclKind::TypeAlias:
|
|
case DeclKind::GenericTypeParam:
|
|
case DeclKind::AssociatedType:
|
|
case DeclKind::IfConfig:
|
|
return;
|
|
|
|
case DeclKind::Enum:
|
|
return emitEnumDecl(cast<EnumDecl>(D));
|
|
|
|
case DeclKind::Struct:
|
|
return emitStructDecl(cast<StructDecl>(D));
|
|
|
|
case DeclKind::Class:
|
|
return emitClassDecl(cast<ClassDecl>(D));
|
|
|
|
// These declarations are only included in the debug info.
|
|
case DeclKind::Import:
|
|
if (DebugInfo)
|
|
DebugInfo->emitImport(cast<ImportDecl>(D));
|
|
return;
|
|
|
|
// We emit these as part of the PatternBindingDecl.
|
|
case DeclKind::Var:
|
|
return;
|
|
|
|
case DeclKind::Func:
|
|
// Handled in SIL.
|
|
return;
|
|
|
|
case DeclKind::TopLevelCode:
|
|
// All the top-level code will be lowered separately.
|
|
return;
|
|
|
|
// Operator decls aren't needed for IRGen.
|
|
case DeclKind::InfixOperator:
|
|
case DeclKind::PrefixOperator:
|
|
case DeclKind::PostfixOperator:
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("bad decl kind!");
|
|
}
|
|
|
|
void IRGenModule::emitExternalDefinition(Decl *D) {
|
|
switch (D->getKind()) {
|
|
case DeclKind::Extension:
|
|
case DeclKind::PatternBinding:
|
|
case DeclKind::EnumCase:
|
|
case DeclKind::EnumElement:
|
|
case DeclKind::TopLevelCode:
|
|
case DeclKind::TypeAlias:
|
|
case DeclKind::GenericTypeParam:
|
|
case DeclKind::AssociatedType:
|
|
case DeclKind::Import:
|
|
case DeclKind::Subscript:
|
|
case DeclKind::Destructor:
|
|
case DeclKind::InfixOperator:
|
|
case DeclKind::PrefixOperator:
|
|
case DeclKind::PostfixOperator:
|
|
case DeclKind::IfConfig:
|
|
case DeclKind::Param:
|
|
llvm_unreachable("Not a valid external definition for IRgen");
|
|
|
|
case DeclKind::Var:
|
|
assert(D->getClangDecl() && "Not a valid external var for IRGen");
|
|
return emitClangDecl(const_cast<clang::Decl *>(D->getClangDecl()));
|
|
|
|
case DeclKind::Func:
|
|
if (auto *clangDecl = D->getClangDecl())
|
|
emitClangDecl(const_cast<clang::Decl *>(clangDecl));
|
|
break;
|
|
|
|
case DeclKind::Constructor:
|
|
// Do nothing.
|
|
break;
|
|
|
|
// No need to eagerly emit Swift metadata for external types.
|
|
case DeclKind::Struct:
|
|
case DeclKind::Enum:
|
|
case DeclKind::Class:
|
|
case DeclKind::Protocol:
|
|
break;
|
|
}
|
|
}
|
|
|
|
Address IRGenModule::getAddrOfSILGlobalVariable(SILGlobalVariable *var,
|
|
ForDefinition_t forDefinition) {
|
|
LinkEntity entity = LinkEntity::forSILGlobalVariable(var);
|
|
|
|
// Check whether we've created the global variable already.
|
|
// FIXME: We should integrate this into the LinkEntity cache more cleanly.
|
|
auto gvar = Module.getGlobalVariable(var->getName(), /*allowInternal*/ true);
|
|
if (gvar) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, gvar, entity);
|
|
return Address(gvar, Alignment(gvar->getAlignment()));
|
|
}
|
|
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
auto &ti = getTypeInfo(var->getLoweredType());
|
|
if (var->getDecl()) {
|
|
// If we have the VarDecl, use it for more accurate debugging information.
|
|
DebugTypeInfo DbgTy(var->getDecl(),
|
|
var->getLoweredType().getSwiftType(), ti);
|
|
gvar = link.createVariable(*this, ti.StorageType, DbgTy,
|
|
SILLocation(var->getDecl()),
|
|
var->getDecl()->getName().str());
|
|
} else {
|
|
// There is no VarDecl for a SILGlobalVariable, and thus also no context.
|
|
DeclContext *DeclCtx = nullptr;
|
|
DebugTypeInfo DbgTy(var->getLoweredType().getSwiftRValueType(), ti,
|
|
DeclCtx);
|
|
|
|
Optional<SILLocation> loc;
|
|
if (var->hasLocation())
|
|
loc = var->getLocation();
|
|
gvar = link.createVariable(*this, ti.StorageType, DbgTy, loc,
|
|
var->getName());
|
|
}
|
|
|
|
// Set the alignment from the TypeInfo.
|
|
Address gvarAddr = ti.getAddressForPointer(gvar);
|
|
gvar->setAlignment(gvarAddr.getAlignment().getValue());
|
|
|
|
return gvarAddr;
|
|
}
|
|
|
|
/// Find the entry point for a SIL function.
|
|
llvm::Function *IRGenModule::getAddrOfSILFunction(SILFunction *f,
|
|
ForDefinition_t forDefinition) {
|
|
LinkEntity entity = LinkEntity::forSILFunction(f);
|
|
|
|
// Check whether we've created the function already.
|
|
// FIXME: We should integrate this into the LinkEntity cache more cleanly.
|
|
llvm::Function *fn = Module.getFunction(f->getName());
|
|
if (fn) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, fn, entity);
|
|
return fn;
|
|
}
|
|
|
|
bool hasOrderNumber = f->isDefinition();
|
|
unsigned orderNumber = ~0U;
|
|
llvm::Function *insertBefore = nullptr;
|
|
|
|
// If the SIL function has a definition, we should have an order
|
|
// number for it; make sure to insert it in that position relative
|
|
// to other ordered functions.
|
|
if (hasOrderNumber) {
|
|
orderNumber = dispatcher.getFunctionOrder(f);
|
|
if (auto emittedFunctionIterator
|
|
= EmittedFunctionsByOrder.findLeastUpperBound(orderNumber))
|
|
insertBefore = *emittedFunctionIterator;
|
|
|
|
// Also, if we have a lazy definition for it, be sure to queue that up.
|
|
if (!forDefinition &&
|
|
!isPossiblyUsedExternally(f->getLinkage(), SILMod->isWholeModule()))
|
|
dispatcher.addLazyFunction(f);
|
|
}
|
|
|
|
llvm::AttributeSet attrs;
|
|
llvm::FunctionType *fnType = getFunctionType(f->getLoweredFunctionType(),
|
|
attrs);
|
|
|
|
auto cc = expandCallingConv(*this, f->getRepresentation());
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
|
|
if (f->getInlineStrategy() == NoInline) {
|
|
attrs = attrs.addAttribute(fnType->getContext(),
|
|
llvm::AttributeSet::FunctionIndex, llvm::Attribute::NoInline);
|
|
}
|
|
fn = link.createFunction(*this, fnType, cc, attrs, insertBefore);
|
|
|
|
// If we have an order number for this function, set it up as appropriate.
|
|
if (hasOrderNumber) {
|
|
EmittedFunctionsByOrder.insert(orderNumber, fn);
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
/// Get or create a llvm::GlobalVariable.
|
|
///
|
|
/// If a definition type is given, the result will always be an
|
|
/// llvm::GlobalVariable of that type. Otherwise, the result will
|
|
/// have type pointerToDefaultType and may involve bitcasts.
|
|
static llvm::Constant *getAddrOfLLVMVariable(IRGenModule &IGM,
|
|
llvm::DenseMap<LinkEntity, llvm::Constant*> &globals,
|
|
LinkEntity entity,
|
|
llvm::Type *definitionType,
|
|
llvm::Type *defaultType,
|
|
llvm::Type *pointerToDefaultType,
|
|
DebugTypeInfo debugType) {
|
|
// This function assumes that 'globals' only contains GlobalVariable
|
|
// values for the entities that it will look up.
|
|
|
|
auto &entry = globals[entity];
|
|
if (entry) {
|
|
auto existing = cast<llvm::GlobalVariable>(entry);
|
|
|
|
// If we're looking to define something, we may need to replace a
|
|
// forward declaration.
|
|
if (definitionType) {
|
|
assert(existing->isDeclaration() && "already defined");
|
|
assert(entry->getType() == pointerToDefaultType);
|
|
updateLinkageForDefinition(IGM, existing, entity);
|
|
|
|
// If the type is right, we're done.
|
|
if (definitionType == defaultType)
|
|
return entry;
|
|
|
|
// Fall out to the case below, clearing the name so that
|
|
// createVariable doesn't detect a collision.
|
|
entry->setName("");
|
|
|
|
// Otherwise, we have a previous declaration or definition which
|
|
// we need to ensure has the right type.
|
|
} else {
|
|
return llvm::ConstantExpr::getBitCast(entry, pointerToDefaultType);
|
|
}
|
|
}
|
|
|
|
ForDefinition_t forDefinition = (ForDefinition_t) (definitionType != nullptr);
|
|
|
|
// If we're not defining the object now
|
|
if (!definitionType) definitionType = defaultType;
|
|
|
|
// Create the variable.
|
|
LinkInfo link = LinkInfo::get(IGM, entity, forDefinition);
|
|
auto var = link.createVariable(IGM, definitionType, debugType);
|
|
|
|
// If we have an existing entry, destroy it, replacing it with the
|
|
// new variable.
|
|
if (entry) {
|
|
auto existing = cast<llvm::GlobalVariable>(entry);
|
|
auto castVar = llvm::ConstantExpr::getBitCast(var, pointerToDefaultType);
|
|
existing->replaceAllUsesWith(castVar);
|
|
existing->eraseFromParent();
|
|
}
|
|
|
|
// Cache and return.
|
|
entry = var;
|
|
return var;
|
|
}
|
|
|
|
static llvm::Constant *getAddrOfLLVMVariable(IRGenModule &IGM,
|
|
llvm::DenseMap<LinkEntity, llvm::Constant*> &globals,
|
|
LinkEntity entity,
|
|
ForDefinition_t forDefinition,
|
|
llvm::Type *defaultType,
|
|
llvm::Type *pointerToDefaultType,
|
|
DebugTypeInfo debugType) {
|
|
llvm::Type *definitionType = (forDefinition ? defaultType : nullptr);
|
|
return getAddrOfLLVMVariable(IGM, globals, entity, definitionType,
|
|
defaultType, pointerToDefaultType, debugType);
|
|
}
|
|
|
|
/// Fetch a global reference to the given Objective-C class. The
|
|
/// result is of type ObjCClassPtrTy.
|
|
llvm::Constant *IRGenModule::getAddrOfObjCClass(ClassDecl *theClass,
|
|
ForDefinition_t forDefinition) {
|
|
assert(ObjCInterop && "getting address of ObjC class in no-interop mode");
|
|
LinkEntity entity = LinkEntity::forObjCClass(theClass);
|
|
DebugTypeInfo DbgTy(theClass, ObjCClassPtrTy,
|
|
getPointerSize(), getPointerAlignment());
|
|
auto addr = getAddrOfLLVMVariable(*this, GlobalVars, entity,
|
|
forDefinition, ObjCClassStructTy,
|
|
ObjCClassPtrTy, DbgTy);
|
|
return addr;
|
|
}
|
|
|
|
/// Fetch a global reference to the given Objective-C metaclass.
|
|
/// The result is always a GlobalVariable of ObjCClassPtrTy.
|
|
llvm::Constant *IRGenModule::getAddrOfObjCMetaclass(ClassDecl *theClass,
|
|
ForDefinition_t forDefinition) {
|
|
assert(ObjCInterop && "getting address of ObjC metaclass in no-interop mode");
|
|
LinkEntity entity = LinkEntity::forObjCMetaclass(theClass);
|
|
DebugTypeInfo DbgTy(theClass, ObjCClassPtrTy,
|
|
getPointerSize(), getPointerAlignment());
|
|
auto addr = getAddrOfLLVMVariable(*this, GlobalVars, entity,
|
|
forDefinition, ObjCClassStructTy,
|
|
ObjCClassPtrTy, DbgTy);
|
|
return addr;
|
|
}
|
|
|
|
/// Fetch the declaration of the metaclass stub for the given class type.
|
|
/// The result is always a GlobalVariable of ObjCClassPtrTy.
|
|
llvm::Constant *IRGenModule::getAddrOfSwiftMetaclassStub(ClassDecl *theClass,
|
|
ForDefinition_t forDefinition) {
|
|
assert(ObjCInterop && "getting address of metaclass stub in no-interop mode");
|
|
LinkEntity entity = LinkEntity::forSwiftMetaclassStub(theClass);
|
|
DebugTypeInfo DbgTy(theClass, ObjCClassPtrTy,
|
|
getPointerSize(), getPointerAlignment());
|
|
auto addr = getAddrOfLLVMVariable(*this, GlobalVars, entity,
|
|
forDefinition, ObjCClassStructTy,
|
|
ObjCClassPtrTy, DbgTy);
|
|
return addr;
|
|
}
|
|
|
|
/// Fetch the declaration of a metaclass object. This performs either
|
|
/// getAddrOfSwiftMetaclassStub or getAddrOfObjCMetaclass, depending
|
|
/// on whether the class is published as an ObjC class.
|
|
llvm::Constant *IRGenModule::getAddrOfMetaclassObject(ClassDecl *decl,
|
|
ForDefinition_t forDefinition) {
|
|
assert(!decl->isGenericContext()
|
|
&& "generic classes do not have a static metaclass object");
|
|
if (decl->isObjC() || decl->hasClangNode()) {
|
|
return getAddrOfObjCMetaclass(decl, forDefinition);
|
|
} else {
|
|
return getAddrOfSwiftMetaclassStub(decl, forDefinition);
|
|
}
|
|
}
|
|
|
|
/// Fetch the type metadata access function for a non-generic type.
|
|
llvm::Function *
|
|
IRGenModule::getAddrOfTypeMetadataAccessFunction(CanType type,
|
|
ForDefinition_t forDefinition) {
|
|
assert(!type->hasArchetype() && !type->isDependentType());
|
|
LinkEntity entity = LinkEntity::forTypeMetadataAccessFunction(type);
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
auto fnType = llvm::FunctionType::get(TypeMetadataPtrTy, false);
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = link.createFunction(*this, fnType, RuntimeCC, llvm::AttributeSet());
|
|
return entry;
|
|
}
|
|
|
|
/// Get or create a type metadata cache variable. These are an
|
|
/// implementation detail of type metadata access functions.
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfTypeMetadataLazyCacheVariable(CanType type,
|
|
ForDefinition_t forDefinition) {
|
|
assert(!type->hasArchetype() && !type->isDependentType());
|
|
LinkEntity entity = LinkEntity::forTypeMetadataLazyCacheVariable(type);
|
|
llvm::Constant *&entry = GlobalVars[entity];
|
|
if (entry) {
|
|
if (forDefinition)
|
|
updateLinkageForDefinition(*this, cast<llvm::GlobalVariable>(entry),
|
|
entity);
|
|
return entry;
|
|
}
|
|
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = link.createVariable(*this, TypeMetadataPtrTy);
|
|
return entry;
|
|
}
|
|
|
|
/// Fetch the declaration of the metadata (or metadata template) for a
|
|
/// class.
|
|
///
|
|
/// If the definition type is specified, the result will always be a
|
|
/// GlobalVariable of the given type, which may not be at the
|
|
/// canonical address point for a type metadata.
|
|
///
|
|
/// If the definition type is not specified, then:
|
|
/// - if the metadata is indirect, then the result will not be adjusted
|
|
/// and it will have the type pointer-to-T, where T is the type
|
|
/// of a direct metadata;
|
|
/// - if the metadata is a pattern, then the result will not be
|
|
/// adjusted and it will have TypeMetadataPatternPtrTy;
|
|
/// - otherwise it will be adjusted to the canonical address point
|
|
/// for a type metadata and it will have type TypeMetadataPtrTy.
|
|
llvm::Constant *IRGenModule::getAddrOfTypeMetadata(CanType concreteType,
|
|
bool isIndirect,
|
|
bool isPattern,
|
|
llvm::Type *definitionType) {
|
|
assert(isPattern || !isa<UnboundGenericType>(concreteType));
|
|
|
|
llvm::Type *defaultVarTy;
|
|
llvm::Type *defaultVarPtrTy;
|
|
unsigned adjustmentIndex;
|
|
ClassDecl *ObjCClass = nullptr;
|
|
|
|
// Patterns use the pattern type and no adjustment.
|
|
if (isPattern) {
|
|
defaultVarTy = TypeMetadataPatternStructTy;
|
|
defaultVarPtrTy = TypeMetadataPatternPtrTy;
|
|
adjustmentIndex = MetadataAdjustmentIndex::None;
|
|
|
|
// Objective-C classes use the generic metadata type and need no adjustment.
|
|
} else if (isa<ClassType>(concreteType) &&
|
|
!hasKnownSwiftMetadata(*this,
|
|
cast<ClassType>(concreteType)->getDecl())) {
|
|
defaultVarTy = TypeMetadataStructTy;
|
|
defaultVarPtrTy = TypeMetadataPtrTy;
|
|
adjustmentIndex = MetadataAdjustmentIndex::None;
|
|
ObjCClass = cast<ClassType>(concreteType)->getDecl();
|
|
// Class direct metadata use the heap type and require a two-word
|
|
// adjustment (due to the heap-metadata header).
|
|
} else if (isa<ClassType>(concreteType) ||
|
|
isa<BoundGenericClassType>(concreteType)) {
|
|
assert(!concreteType->getClassOrBoundGenericClass()->isForeign()
|
|
&& "metadata for foreign classes should be emitted as "
|
|
"foreign candidate");
|
|
defaultVarTy = FullHeapMetadataStructTy;
|
|
defaultVarPtrTy = FullHeapMetadataPtrTy;
|
|
adjustmentIndex = MetadataAdjustmentIndex::Class;
|
|
|
|
// All other non-pattern direct metadata use the full type and
|
|
// require an adjustment.
|
|
} else {
|
|
auto nom = concreteType->getNominalOrBoundGenericNominal();
|
|
assert((!nom || !nom->hasClangNode())
|
|
&& "metadata for foreign type should be emitted as "
|
|
"foreign candidate");
|
|
(void)nom;
|
|
|
|
defaultVarTy = FullTypeMetadataStructTy;
|
|
defaultVarPtrTy = FullTypeMetadataPtrTy;
|
|
adjustmentIndex = MetadataAdjustmentIndex::ValueType;
|
|
}
|
|
|
|
// If this is a use, and the type metadata is emitted lazily,
|
|
// trigger lazy emission of the metadata.
|
|
if (!definitionType && isTypeMetadataEmittedLazily(concreteType)) {
|
|
dispatcher.addLazyTypeMetadata(concreteType);
|
|
}
|
|
|
|
// When indirect, this is always a pointer variable and has no
|
|
// adjustment.
|
|
if (isIndirect) {
|
|
defaultVarTy = defaultVarPtrTy;
|
|
defaultVarPtrTy = defaultVarTy->getPointerTo();
|
|
adjustmentIndex = MetadataAdjustmentIndex::None;
|
|
}
|
|
|
|
LinkEntity entity
|
|
= ObjCClass? LinkEntity::forObjCClass(ObjCClass)
|
|
: LinkEntity::forTypeMetadata(concreteType, isIndirect,
|
|
isPattern);
|
|
|
|
auto DbgTy = ObjCClass
|
|
? DebugTypeInfo(ObjCClass, ObjCClassPtrTy,
|
|
getPointerSize(), getPointerAlignment())
|
|
: DebugTypeInfo(MetatypeType::get(concreteType), defaultVarPtrTy,
|
|
0, 1, nullptr);
|
|
|
|
auto addr = getAddrOfLLVMVariable(*this, GlobalVars, entity,
|
|
definitionType, defaultVarTy,
|
|
defaultVarPtrTy, DbgTy);
|
|
|
|
// Do an adjustment if necessary.
|
|
if (adjustmentIndex && !definitionType) {
|
|
llvm::Constant *indices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, adjustmentIndex)
|
|
};
|
|
addr = llvm::ConstantExpr::getInBoundsGetElementPtr(addr, indices);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
/// Return the address of a foreign-type metadata candidate. There is no
|
|
/// single translation unit which can uniquely emit foreign-type metadata,
|
|
/// and we don't want to force the dynamic linker to eagerly unique them
|
|
/// by symbol name, so instead we emit a "candidate" metadata and ask
|
|
/// the runtime to unique them.
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfForeignTypeMetadataCandidate(CanType type) {
|
|
// What we save in GlobalVars is actually the offsetted value.
|
|
auto entity = LinkEntity::forForeignTypeMetadataCandidate(type);
|
|
if (auto entry = GlobalVars[entity])
|
|
return entry;
|
|
|
|
// Compute the constant initializer and the offset of the type
|
|
// metadata candidate within it.
|
|
Size addressPoint;
|
|
auto init = emitForeignTypeMetadataInitializer(*this, type, addressPoint);
|
|
|
|
// Create the global variable.
|
|
LinkInfo link = LinkInfo::get(*this, entity, ForDefinition);
|
|
auto var = link.createVariable(*this, init->getType());
|
|
var->setInitializer(init);
|
|
|
|
// Apply the offset.
|
|
llvm::Constant *result = var;
|
|
result = llvm::ConstantExpr::getBitCast(result, Int8PtrTy);
|
|
result = llvm::ConstantExpr::getInBoundsGetElementPtr(result,
|
|
getSize(addressPoint));
|
|
result = llvm::ConstantExpr::getBitCast(result, TypeMetadataPtrTy);
|
|
|
|
// Only remember the offset.
|
|
GlobalVars[entity] = result;
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Return the address of a nominal type descriptor. Right now, this
|
|
/// must always be for purposes of defining it.
|
|
llvm::Constant *IRGenModule::getAddrOfNominalTypeDescriptor(NominalTypeDecl *D,
|
|
llvm::Type *definitionType) {
|
|
assert(definitionType && "not defining nominal type descriptor?");
|
|
auto entity = LinkEntity::forNominalTypeDescriptor(D);
|
|
return getAddrOfLLVMVariable(*this, GlobalVars, entity,
|
|
definitionType, definitionType,
|
|
definitionType->getPointerTo(),
|
|
DebugTypeInfo());
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::getAddrOfProtocolDescriptor(ProtocolDecl *D,
|
|
ForDefinition_t forDefinition) {
|
|
if (D->isObjC())
|
|
return getAddrOfObjCProtocolRecord(D, forDefinition);
|
|
|
|
auto entity = LinkEntity::forProtocolDescriptor(D);
|
|
auto ty = ProtocolDescriptorStructTy;
|
|
return getAddrOfLLVMVariable(*this, GlobalVars, entity,
|
|
forDefinition, ty, ty->getPointerTo(),
|
|
DebugTypeInfo());
|
|
}
|
|
|
|
/// Fetch the declaration of the ivar initializer for the given class.
|
|
Optional<llvm::Function*> IRGenModule::getAddrOfObjCIVarInitDestroy(
|
|
ClassDecl *cd,
|
|
bool isDestroyer,
|
|
ForDefinition_t forDefinition) {
|
|
SILDeclRef silRef(cd,
|
|
isDestroyer? SILDeclRef::Kind::IVarDestroyer
|
|
: SILDeclRef::Kind::IVarInitializer,
|
|
ResilienceExpansion::Minimal,
|
|
SILDeclRef::ConstructAtNaturalUncurryLevel,
|
|
/*isForeign=*/true);
|
|
|
|
llvm::SmallString<64> ivarInitDestroyNameBuffer;
|
|
auto name = silRef.mangle(ivarInitDestroyNameBuffer);
|
|
// Find the SILFunction for the ivar initializer or destroyer.
|
|
if (auto silFn = SILMod->lookUpFunction(name)) {
|
|
return getAddrOfSILFunction(silFn, forDefinition);
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
/// Returns the address of a value-witness function.
|
|
llvm::Function *IRGenModule::getAddrOfValueWitness(CanType abstractType,
|
|
ValueWitness index,
|
|
ForDefinition_t forDefinition) {
|
|
// We shouldn't emit value witness symbols for generic type instances.
|
|
assert(!isa<BoundGenericType>(abstractType) &&
|
|
"emitting value witness for generic type instance?!");
|
|
|
|
LinkEntity entity = LinkEntity::forValueWitness(abstractType, index);
|
|
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
// Find the appropriate function type.
|
|
llvm::FunctionType *fnType =
|
|
cast<llvm::FunctionType>(
|
|
cast<llvm::PointerType>(getValueWitnessTy(index))
|
|
->getElementType());
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = link.createFunction(*this, fnType, RuntimeCC, llvm::AttributeSet());
|
|
return entry;
|
|
}
|
|
|
|
/// Returns the address of a value-witness table. If a definition
|
|
/// type is provided, the table is created with that type; the return
|
|
/// value will be an llvm::GlobalVariable. Otherwise, the result will
|
|
/// have type WitnessTablePtrTy.
|
|
llvm::Constant *IRGenModule::getAddrOfValueWitnessTable(CanType concreteType,
|
|
llvm::Type *definitionType) {
|
|
LinkEntity entity = LinkEntity::forValueWitnessTable(concreteType);
|
|
DebugTypeInfo DbgTy(concreteType, WitnessTablePtrTy,
|
|
getPointerSize(), getPointerAlignment(),
|
|
nullptr);
|
|
return getAddrOfLLVMVariable(*this, GlobalVars, entity, definitionType,
|
|
WitnessTableTy, WitnessTablePtrTy, DbgTy);
|
|
}
|
|
|
|
static Address getAddrOfSimpleVariable(IRGenModule &IGM,
|
|
llvm::DenseMap<LinkEntity, llvm::Constant*> &cache,
|
|
LinkEntity entity,
|
|
llvm::Type *type,
|
|
Alignment alignment,
|
|
ForDefinition_t forDefinition) {
|
|
// Check whether it's already cached.
|
|
llvm::Constant *&entry = cache[entity];
|
|
if (entry) {
|
|
auto existing = cast<llvm::GlobalVariable>(entry);
|
|
assert(alignment == Alignment(existing->getAlignment()));
|
|
if (forDefinition) updateLinkageForDefinition(IGM, existing, entity);
|
|
return Address(entry, alignment);
|
|
}
|
|
|
|
// Otherwise, we need to create it.
|
|
LinkInfo link = LinkInfo::get(IGM, entity, forDefinition);
|
|
auto addr = link.createVariable(IGM, type);
|
|
addr->setConstant(true);
|
|
|
|
addr->setAlignment(alignment.getValue());
|
|
|
|
entry = addr;
|
|
return Address(addr, alignment);
|
|
}
|
|
|
|
/// getAddrOfWitnessTableOffset - Get the address of the global
|
|
/// variable which contains an offset within a witness table for the
|
|
/// value associated with the given function.
|
|
Address IRGenModule::getAddrOfWitnessTableOffset(SILDeclRef code,
|
|
ForDefinition_t forDefinition) {
|
|
LinkEntity entity =
|
|
LinkEntity::forWitnessTableOffset(code.getDecl(),
|
|
code.getResilienceExpansion(),
|
|
code.uncurryLevel);
|
|
return getAddrOfSimpleVariable(*this, GlobalVars, entity,
|
|
SizeTy, getPointerAlignment(),
|
|
forDefinition);
|
|
}
|
|
|
|
/// getAddrOfWitnessTableOffset - Get the address of the global
|
|
/// variable which contains an offset within a witness table for the
|
|
/// value associated with the given member variable..
|
|
Address IRGenModule::getAddrOfWitnessTableOffset(VarDecl *field,
|
|
ForDefinition_t forDefinition) {
|
|
LinkEntity entity =
|
|
LinkEntity::forWitnessTableOffset(field, ResilienceExpansion::Minimal, 0);
|
|
return ::getAddrOfSimpleVariable(*this, GlobalVars, entity,
|
|
SizeTy, getPointerAlignment(),
|
|
forDefinition);
|
|
}
|
|
|
|
/// getAddrOfFieldOffset - Get the address of the global variable
|
|
/// which contains an offset to apply to either an object (if direct)
|
|
/// or a metadata object in order to find an offset to apply to an
|
|
/// object (if indirect).
|
|
///
|
|
/// The result is always a GlobalVariable.
|
|
Address IRGenModule::getAddrOfFieldOffset(VarDecl *var, bool isIndirect,
|
|
ForDefinition_t forDefinition) {
|
|
LinkEntity entity = LinkEntity::forFieldOffset(var, isIndirect);
|
|
return getAddrOfSimpleVariable(*this, GlobalVars, entity,
|
|
SizeTy, getPointerAlignment(),
|
|
forDefinition);
|
|
}
|
|
|
|
void IRGenModule::emitNestedTypeDecls(DeclRange members) {
|
|
for (Decl *member : members) {
|
|
switch (member->getKind()) {
|
|
case DeclKind::Import:
|
|
case DeclKind::TopLevelCode:
|
|
case DeclKind::Protocol:
|
|
case DeclKind::Extension:
|
|
case DeclKind::InfixOperator:
|
|
case DeclKind::PrefixOperator:
|
|
case DeclKind::PostfixOperator:
|
|
case DeclKind::Param:
|
|
llvm_unreachable("decl not allowed in type context");
|
|
|
|
case DeclKind::IfConfig:
|
|
continue;
|
|
|
|
case DeclKind::PatternBinding:
|
|
case DeclKind::Var:
|
|
case DeclKind::Subscript:
|
|
case DeclKind::Func:
|
|
case DeclKind::Constructor:
|
|
case DeclKind::Destructor:
|
|
case DeclKind::EnumCase:
|
|
case DeclKind::EnumElement:
|
|
// Skip non-type members.
|
|
continue;
|
|
|
|
case DeclKind::AssociatedType:
|
|
case DeclKind::GenericTypeParam:
|
|
// Do nothing.
|
|
continue;
|
|
|
|
case DeclKind::TypeAlias:
|
|
// Do nothing.
|
|
continue;
|
|
|
|
case DeclKind::Enum:
|
|
emitEnumDecl(cast<EnumDecl>(member));
|
|
continue;
|
|
case DeclKind::Struct:
|
|
emitStructDecl(cast<StructDecl>(member));
|
|
continue;
|
|
case DeclKind::Class:
|
|
emitClassDecl(cast<ClassDecl>(member));
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
void IRGenModule::emitExtension(ExtensionDecl *ext) {
|
|
emitNestedTypeDecls(ext->getMembers());
|
|
|
|
// Generate a category if the extension either introduces a
|
|
// conformance to an ObjC protocol or introduces a method
|
|
// that requires an Objective-C entry point.
|
|
ClassDecl *origClass = ext->getExtendedType()->getClassOrBoundGenericClass();
|
|
if (!origClass)
|
|
return;
|
|
|
|
bool needsCategory = false;
|
|
if (!needsCategory) {
|
|
for (auto conformance : ext->getLocalConformances()) {
|
|
if (conformance->getProtocol()->isObjC()) {
|
|
needsCategory = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!needsCategory) {
|
|
for (auto member : ext->getMembers()) {
|
|
if (auto func = dyn_cast<FuncDecl>(member)) {
|
|
if (requiresObjCMethodDescriptor(func)) {
|
|
needsCategory = true;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (auto constructor = dyn_cast<ConstructorDecl>(member)) {
|
|
if (requiresObjCMethodDescriptor(constructor)) {
|
|
needsCategory = true;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (auto var = dyn_cast<VarDecl>(member)) {
|
|
if (requiresObjCPropertyDescriptor(*this, var)) {
|
|
// Don't emit getters/setters for @NSManagedAttr properties.
|
|
// FIXME: We should still emit property metadata.
|
|
if (var->getAttrs().hasAttribute<NSManagedAttr>())
|
|
break;
|
|
|
|
needsCategory = true;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (auto subscript = dyn_cast<SubscriptDecl>(member)) {
|
|
if (requiresObjCSubscriptDescriptor(*this, subscript)) {
|
|
needsCategory = true;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (needsCategory) {
|
|
assert(origClass && !origClass->isForeign() &&
|
|
"CF types cannot have categories emitted");
|
|
llvm::Constant *category = emitCategoryData(*this, ext);
|
|
category = llvm::ConstantExpr::getBitCast(category, Int8PtrTy);
|
|
ObjCCategories.push_back(category);
|
|
ObjCCategoryDecls.push_back(ext);
|
|
}
|
|
}
|
|
|
|
|
|
/// Create an allocation on the stack.
|
|
Address IRGenFunction::createAlloca(llvm::Type *type,
|
|
Alignment alignment,
|
|
const llvm::Twine &name) {
|
|
llvm::AllocaInst *alloca = new llvm::AllocaInst(type, name, AllocaIP);
|
|
alloca->setAlignment(alignment.getValue());
|
|
return Address(alloca, alignment);
|
|
}
|
|
|
|
/// Get or create a global string constant.
|
|
///
|
|
/// \returns an i8* with a null terminator; note that embedded nulls
|
|
/// are okay
|
|
llvm::Constant *IRGenModule::getAddrOfGlobalString(StringRef data) {
|
|
// Check whether this string already exists.
|
|
auto &entry = GlobalStrings[data];
|
|
if (entry) return entry;
|
|
|
|
// If not, create it. This implicitly adds a trailing null.
|
|
auto init = llvm::ConstantDataArray::getString(LLVMContext, data);
|
|
auto global = new llvm::GlobalVariable(Module, init->getType(), true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
init);
|
|
global->setUnnamedAddr(true);
|
|
|
|
// Drill down to make an i8*.
|
|
auto zero = llvm::ConstantInt::get(SizeTy, 0);
|
|
llvm::Constant *indices[] = { zero, zero };
|
|
auto address = llvm::ConstantExpr::getInBoundsGetElementPtr(global, indices);
|
|
|
|
// Cache and return.
|
|
entry = address;
|
|
return address;
|
|
}
|
|
|
|
/// Get or create a global UTF-16 string constant.
|
|
///
|
|
/// \returns an i16* with a null terminator; note that embedded nulls
|
|
/// are okay
|
|
llvm::Constant *IRGenModule::getAddrOfGlobalUTF16String(StringRef utf8) {
|
|
// Check whether this string already exists.
|
|
auto &entry = GlobalUTF16Strings[utf8];
|
|
if (entry) return entry;
|
|
|
|
// If not, first transcode it to UTF16.
|
|
SmallVector<UTF16, 128> buffer(utf8.size() + 1); // +1 for ending nulls.
|
|
const UTF8 *fromPtr = (const UTF8 *) utf8.data();
|
|
UTF16 *toPtr = &buffer[0];
|
|
(void) ConvertUTF8toUTF16(&fromPtr, fromPtr + utf8.size(),
|
|
&toPtr, toPtr + utf8.size(),
|
|
strictConversion);
|
|
|
|
// The length of the transcoded string in UTF-8 code points.
|
|
size_t utf16Length = toPtr - &buffer[0];
|
|
|
|
// Null-terminate the UTF-16 string.
|
|
*toPtr = 0;
|
|
ArrayRef<UTF16> utf16(&buffer[0], utf16Length + 1);
|
|
|
|
auto init = llvm::ConstantDataArray::get(LLVMContext, utf16);
|
|
auto global = new llvm::GlobalVariable(Module, init->getType(), true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
init);
|
|
global->setUnnamedAddr(true);
|
|
|
|
// Drill down to make an i16*.
|
|
auto zero = llvm::ConstantInt::get(SizeTy, 0);
|
|
llvm::Constant *indices[] = { zero, zero };
|
|
auto address = llvm::ConstantExpr::getInBoundsGetElementPtr(global, indices);
|
|
|
|
// Cache and return.
|
|
entry = address;
|
|
return address;
|
|
}
|
|
|
|
/// Mangle the name of a type.
|
|
StringRef IRGenModule::mangleType(CanType type, SmallVectorImpl<char> &buffer) {
|
|
LinkEntity::forTypeMangling(type).mangle(buffer);
|
|
return StringRef(buffer.data(), buffer.size());
|
|
}
|
|
|
|
/// Is the given declaration resilient?
|
|
bool IRGenModule::isResilient(Decl *theDecl, ResilienceScope scope) {
|
|
// Classes defined by Clang are resilient.
|
|
if (auto theClass = dyn_cast<ClassDecl>(theDecl)) {
|
|
return theClass->hasClangNode();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Look up the address of a witness table.
|
|
///
|
|
/// TODO: This needs to take a flag for the access mode of the witness table,
|
|
/// which may be direct, lazy, or a runtime instantiation template.
|
|
/// TODO: Use name from witness table here to lookup witness table instead of
|
|
/// recomputing it.
|
|
llvm::Constant*
|
|
IRGenModule::getAddrOfWitnessTable(const NormalProtocolConformance *C,
|
|
llvm::Type *storageTy) {
|
|
auto entity = LinkEntity::forDirectProtocolWitnessTable(
|
|
const_cast<NormalProtocolConformance*>(C), *this);
|
|
return getAddrOfLLVMVariable(*this, GlobalVars, entity,
|
|
storageTy, WitnessTableTy, WitnessTablePtrTy,
|
|
DebugTypeInfo());
|
|
}
|