mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
I keep finding reasons to want such queries and then deciding that they're unnecessary. Let's at least do this much, though.
335 lines
12 KiB
C++
335 lines
12 KiB
C++
//===--- Private.h - Private runtime declarations ---------------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Private declarations of the Swift runtime.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_RUNTIME_PRIVATE_H
|
|
#define SWIFT_RUNTIME_PRIVATE_H
|
|
|
|
#include "swift/Demangling/Demangler.h"
|
|
#include "swift/Runtime/Config.h"
|
|
#include "swift/Runtime/Metadata.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
|
|
// Opaque ISAs need to use object_getClass which is in runtime.h
|
|
#if SWIFT_HAS_OPAQUE_ISAS
|
|
#include <objc/runtime.h>
|
|
#endif
|
|
|
|
namespace swift {
|
|
|
|
class TypeReferenceOwnership {
|
|
enum : uint8_t {
|
|
Weak = 1 << 0,
|
|
Unowned = 1 << 1,
|
|
Unmanaged = 1 << 2,
|
|
};
|
|
|
|
uint8_t Data;
|
|
|
|
constexpr TypeReferenceOwnership(uint8_t Data) : Data(Data) {}
|
|
|
|
public:
|
|
constexpr TypeReferenceOwnership() : Data(0) {}
|
|
|
|
bool isWeak() const { return Data & Weak; }
|
|
bool isUnowned() const { return Data & Unowned; }
|
|
bool isUnmanaged() const { return Data & Unmanaged; }
|
|
|
|
void setWeak() { Data |= Weak; }
|
|
|
|
void setUnowned() { Data |= Unowned; }
|
|
|
|
void setUnmanaged() { Data |= Unmanaged; }
|
|
};
|
|
|
|
/// Type information consists of metadata and its ownership info,
|
|
/// such information is used by `_typeByMangledName` accessor
|
|
/// since we don't represent ownership attributes in the metadata
|
|
/// itself related info has to be bundled with it.
|
|
class TypeInfo {
|
|
const Metadata *Type;
|
|
const TypeReferenceOwnership ReferenceOwnership;
|
|
|
|
public:
|
|
TypeInfo() : Type(nullptr), ReferenceOwnership() {}
|
|
|
|
TypeInfo(const Metadata *type, TypeReferenceOwnership ownership)
|
|
: Type(type), ReferenceOwnership(ownership) {}
|
|
|
|
operator const Metadata *() { return Type; }
|
|
|
|
bool isWeak() const { return ReferenceOwnership.isWeak(); }
|
|
bool isUnowned() const { return ReferenceOwnership.isUnowned(); }
|
|
bool isUnmanaged() const { return ReferenceOwnership.isUnmanaged(); }
|
|
};
|
|
|
|
#if SWIFT_HAS_ISA_MASKING
|
|
SWIFT_RUNTIME_EXPORT
|
|
uintptr_t swift_isaMask;
|
|
#endif
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
bool objectConformsToObjCProtocol(const void *theObject,
|
|
const ProtocolDescriptor *theProtocol);
|
|
|
|
bool classConformsToObjCProtocol(const void *theClass,
|
|
const ProtocolDescriptor *theProtocol);
|
|
#endif
|
|
|
|
/// Is the given value a valid alignment mask?
|
|
static inline bool isAlignmentMask(size_t mask) {
|
|
// mask == xyz01111...
|
|
// mask+1 == xyz10000...
|
|
// mask&(mask+1) == xyz00000...
|
|
// So this is nonzero if and only if there any bits set
|
|
// other than an arbitrarily long sequence of low bits.
|
|
return (mask & (mask + 1)) == 0;
|
|
}
|
|
|
|
/// Is the given value an Objective-C tagged pointer?
|
|
static inline bool isObjCTaggedPointer(const void *object) {
|
|
#if SWIFT_OBJC_INTEROP
|
|
return (((uintptr_t) object) & heap_object_abi::ObjCReservedBitsMask);
|
|
#else
|
|
assert(!(((uintptr_t) object) & heap_object_abi::ObjCReservedBitsMask));
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static inline bool isObjCTaggedPointerOrNull(const void *object) {
|
|
return object == nullptr || isObjCTaggedPointer(object);
|
|
}
|
|
|
|
/// Return the class of an object which is known to be an allocated
|
|
/// heap object.
|
|
/// Note, in this case, the object may or may not have a non-pointer ISA.
|
|
/// Masking, or otherwise, may be required to get a class pointer.
|
|
static inline const ClassMetadata *_swift_getClassOfAllocated(const void *object) {
|
|
#if SWIFT_HAS_OPAQUE_ISAS
|
|
// The ISA is opaque so masking it will not return a pointer. We instead
|
|
// need to call the objc runtime to get the class.
|
|
return reinterpret_cast<const ClassMetadata*>(object_getClass((id)object));
|
|
#else
|
|
// Load the isa field.
|
|
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
|
|
|
|
#if SWIFT_HAS_ISA_MASKING
|
|
// Apply the mask.
|
|
bits &= swift_isaMask;
|
|
#endif
|
|
|
|
// The result is a class pointer.
|
|
return reinterpret_cast<const ClassMetadata *>(bits);
|
|
#endif
|
|
}
|
|
|
|
/// Return the class of an object which is known to be an allocated
|
|
/// heap object.
|
|
/// Note, in this case, the object is known to have a pointer ISA, and no
|
|
/// masking is required to convert from non-pointer to pointer ISA.
|
|
static inline const ClassMetadata *
|
|
_swift_getClassOfAllocatedFromPointer(const void *object) {
|
|
// Load the isa field.
|
|
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
|
|
|
|
// The result is a class pointer.
|
|
return reinterpret_cast<const ClassMetadata *>(bits);
|
|
}
|
|
|
|
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
|
|
/// Return whether this object is of a class which uses non-pointer ISAs.
|
|
static inline bool _swift_isNonPointerIsaObjCClass(const void *object) {
|
|
// Load the isa field.
|
|
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
|
|
// If the low bit is set, then we are definitely an objc object.
|
|
// FIXME: Use a variable for this.
|
|
return bits & 1;
|
|
}
|
|
#endif
|
|
|
|
LLVM_LIBRARY_VISIBILITY
|
|
const ClassMetadata *_swift_getClass(const void *object);
|
|
|
|
LLVM_LIBRARY_VISIBILITY
|
|
bool usesNativeSwiftReferenceCounting(const ClassMetadata *theClass);
|
|
|
|
static inline
|
|
bool objectUsesNativeSwiftReferenceCounting(const void *object) {
|
|
assert(!isObjCTaggedPointerOrNull(object));
|
|
#if SWIFT_HAS_OPAQUE_ISAS
|
|
// Fast path for opaque ISAs. We don't want to call
|
|
// _swift_getClassOfAllocated as that will call object_getClass.
|
|
// Instead we can look at the bits in the ISA and tell if its a
|
|
// non-pointer opaque ISA which means it is definitely an ObjC
|
|
// object and doesn't use native swift reference counting.
|
|
if (_swift_isNonPointerIsaObjCClass(object))
|
|
return false;
|
|
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocatedFromPointer(object));
|
|
#else
|
|
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocated(object));
|
|
#endif
|
|
}
|
|
|
|
/// Get the superclass pointer value used for Swift root classes.
|
|
/// Note that this function may return a nullptr on non-objc platforms,
|
|
/// where there is no common root class. rdar://problem/18987058
|
|
const ClassMetadata *getRootSuperclass();
|
|
|
|
/// Check if a class has a formal superclass in the AST.
|
|
static inline
|
|
bool classHasSuperclass(const ClassMetadata *c) {
|
|
return (c->Superclass && c->Superclass != getRootSuperclass());
|
|
}
|
|
|
|
/// Replace entries of a freshly-instantiated value witness table with more
|
|
/// efficient common implementations where applicable.
|
|
///
|
|
/// All information is taken from the passed-in layout rather than the VWT.
|
|
/// This is so that we can delay "publishing" the flags in the actual
|
|
/// value witness table until all required changes have been made.
|
|
///
|
|
/// For instance, if the value witness table represents a POD type, this will
|
|
/// insert POD value witnesses into the table. The vwtable's flags must have
|
|
/// been initialized before calling this function.
|
|
///
|
|
/// Returns true if common value witnesses were used, false otherwise.
|
|
void installCommonValueWitnesses(const TypeLayout &layout,
|
|
ValueWitnessTable *vwtable);
|
|
|
|
const Metadata *
|
|
_matchMetadataByMangledTypeName(const llvm::StringRef metadataNameRef,
|
|
const Metadata *metadata,
|
|
const TypeContextDescriptor *ntd);
|
|
|
|
bool
|
|
_contextDescriptorMatchesMangling(const ContextDescriptor *context,
|
|
Demangle::NodePointer node);
|
|
|
|
const TypeContextDescriptor *
|
|
_searchConformancesByMangledTypeName(Demangle::NodePointer node);
|
|
|
|
Demangle::NodePointer _swift_buildDemanglingForMetadata(const Metadata *type,
|
|
Demangle::Demangler &Dem);
|
|
|
|
/// Callback used to provide the substitution for a generic parameter
|
|
/// referenced by a "flat" index (where all depths have been collapsed)
|
|
/// to its metadata.
|
|
using SubstFlatGenericParameterFn =
|
|
llvm::function_ref<const Metadata *(unsigned flatIndex)>;
|
|
|
|
/// Callback used to provide the substitution of a generic parameter
|
|
/// (described by depth/index) to its metadata.
|
|
using SubstGenericParameterFn =
|
|
llvm::function_ref<const Metadata *(unsigned depth, unsigned index)>;
|
|
|
|
/// Retrieve the type metadata described by the given type name.
|
|
///
|
|
/// \p substGenericParam Function that provides generic argument metadata
|
|
/// given a particular generic parameter specified by depth/index.
|
|
TypeInfo _getTypeByMangledName(StringRef typeName,
|
|
SubstGenericParameterFn substGenericParam);
|
|
|
|
/// Gather generic parameter counts from a context descriptor.
|
|
///
|
|
/// \returns true if the innermost descriptor is generic.
|
|
bool _gatherGenericParameterCounts(const ContextDescriptor *descriptor,
|
|
std::vector<unsigned> &genericParamCounts);
|
|
|
|
/// Map depth/index to a flat index.
|
|
llvm::Optional<unsigned> _depthIndexToFlatIndex(
|
|
unsigned depth, unsigned index,
|
|
llvm::ArrayRef<unsigned> paramCounts);
|
|
|
|
/// Check the given generic requirements using the given set of generic
|
|
/// arguments, collecting the key arguments (e.g., witness tables) for
|
|
/// the caller.
|
|
///
|
|
/// \param requirements The set of requirements to evaluate.
|
|
///
|
|
/// \param extraArguments The extra arguments determined while checking
|
|
/// generic requirements (e.g., those that need to be
|
|
/// passed to an instantiation function) will be added to this vector.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool _checkGenericRequirements(
|
|
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
|
|
std::vector<const void *> &extraArguments,
|
|
SubstFlatGenericParameterFn substFlatGenericParam,
|
|
SubstGenericParameterFn substGenericParam);
|
|
|
|
/// A helper function which avoids performing a store if the destination
|
|
/// address already contains the source value. This is useful when
|
|
/// "initializing" memory that might have been initialized to the correct
|
|
/// value statically. In such a case, the compiler might have gone so far
|
|
/// as to map the entire object readonly, or we might just want to avoid
|
|
/// dirtying memory unnecessarily.
|
|
template <class T>
|
|
static void assignUnlessEqual(T &dest, T newValue) {
|
|
if (dest != newValue)
|
|
dest = newValue;
|
|
}
|
|
|
|
#if defined(__CYGWIN__)
|
|
void _swift_once_f(uintptr_t *predicate, void *context,
|
|
void (*function)(void *));
|
|
#endif
|
|
|
|
static inline const Metadata *getMetadataForClass(const ClassMetadata *c) {
|
|
#if SWIFT_OBJC_INTEROP
|
|
return swift_getObjCClassMetadata(c);
|
|
#else
|
|
return c;
|
|
#endif
|
|
}
|
|
|
|
void *allocateMetadata(size_t size, size_t align);
|
|
|
|
Demangle::NodePointer
|
|
_buildDemanglingForContext(const ContextDescriptor *context,
|
|
llvm::ArrayRef<NodePointer> demangledGenerics,
|
|
bool concretizedGenerics,
|
|
Demangle::Demangler &Dem);
|
|
|
|
/// Symbolic reference resolver that produces the demangling tree for the
|
|
/// referenced context.
|
|
class ResolveToDemanglingForContext {
|
|
Demangle::Demangler &Dem;
|
|
public:
|
|
explicit ResolveToDemanglingForContext(Demangle::Demangler &Dem)
|
|
: Dem(Dem) {}
|
|
|
|
Demangle::NodePointer operator()(int32_t offset, const void *base) {
|
|
auto descriptor =
|
|
(const ContextDescriptor *)detail::applyRelativeOffset(base, offset);
|
|
|
|
return _buildDemanglingForContext(descriptor, {}, false, Dem);
|
|
}
|
|
};
|
|
|
|
/// Check whether a type conforms to a protocol.
|
|
///
|
|
/// \param value - can be null, in which case the question should
|
|
/// be answered abstractly if possible
|
|
/// \param conformance - if non-null, and the protocol requires a
|
|
/// witness table, and the type implements the protocol, the witness
|
|
/// table will be placed here
|
|
bool _conformsToProtocol(const OpaqueValue *value,
|
|
const Metadata *type,
|
|
const ProtocolDescriptor *protocol,
|
|
const WitnessTable **conformance);
|
|
} // end namespace swift
|
|
|
|
#endif /* SWIFT_RUNTIME_PRIVATE_H */
|