Files
swift-mirror/lib/Parse/ParseExpr.cpp
Chris Lattner dfd529ce3a rename diags::foo to diag::foo
Swift SVN r779
2011-10-22 00:36:19 +00:00

601 lines
18 KiB
C++

//===--- ParseExpr.cpp - Swift Language Parser for Expressions ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Expression Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "swift/Basic/Diagnostics.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/APFloat.h"
using namespace swift;
bool Parser::isStartOfExpr(const Token &Tok, const Token &Next) {
if (Tok.is(tok::numeric_constant) || Tok.is(tok::colon) ||
Tok.is(tok::l_paren_space) || Tok.is(tok::dollarident) ||
Tok.is(tok::identifier) || Tok.is(tok::oper))
return true;
// "func(" and "func{" are func expressions. "func x" is a func declaration.
if (Tok.is(tok::kw_func) &&
(Next.is(tok::l_paren) || Next.is(tok::l_paren_space) ||
Next.is(tok::l_brace)))
return true;
return false;
}
/// parseSingleExpr
///
/// Parse an expression in a context that requires a single expression.
ParseResult<Expr> Parser::parseSingleExpr(Diag<> Message) {
ParseResult<Expr> Result = parseExpr(Message);
if (Result) return true;
// Kill all the following expressions. This is not necessarily
// good for certain kinds of recovery.
if (isStartOfExpr(Tok, peekToken())) {
diagnose(Tok, diag::expected_single_expr);
do {
ParseResult<Expr> Extra = parseExpr(Message);
if (Extra) break;
} while (isStartOfExpr(Tok, peekToken()));
}
return Result;
}
/// parseExpr
/// expr:
/// expr-unary
/// expr-unary operator expr
///
/// The sequencing here is not structural, i.e. binary operators are
/// not inherently right-associative.
ParseResult<Expr> Parser::parseExpr(Diag<> Message) {
SmallVector<Expr*, 8> SequencedExprs;
bool HasSemaError = false;
while (true) {
// Parse a primary expression.
ParseResult<Expr> Primary = parseExprUnary(Message);
if (Primary.isParseError())
return true;
if (Primary.isSemaError()) {
HasSemaError = true;
} else {
SequencedExprs.push_back(Primary.get());
}
// If the next token is not an operator, we're done.
if (Tok.isNot(tok::oper))
break;
// Parse the operator.
Expr *Operator = parseExprOperator();
SequencedExprs.push_back(Operator);
// The message is only valid for the first subexpr.
Message = diag::expected_expr_after_operator;
}
// If we had semantic errors, just fail here.
if (HasSemaError)
return ParseResult<Expr>::getSemaError();
assert(!SequencedExprs.empty());
// If we saw no operators, don't build a sequence.
if (SequencedExprs.size() == 1)
return SequencedExprs[0];
return SequenceExpr::create(Context, SequencedExprs);
}
/// parseExprUnary
///
/// expr-unary:
/// expr-postfix
/// operator expr-unary
ParseResult<Expr> Parser::parseExprUnary(Diag<> Message) {
// If the next token is not an operator, just parse this as expr-postfix
if (Tok.isNot(tok::oper))
return parseExprPostfix(Message);
// Parse the operator.
Expr *Operator = parseExprOperator();
ParseResult<Expr> SubExpr = parseExprUnary(Message);
if (!SubExpr.isSuccess()) return SubExpr;
return new (Context) UnaryExpr(Operator, SubExpr.get());
}
/// parseExprPostfix
///
/// expr-literal:
/// numeric_constant
///
/// expr-primary:
/// expr-literal
/// expr-identifier
/// ':' identifier
/// expr-paren
/// expr-func
///
/// expr-dot:
/// expr-postfix '.' identifier
/// expr-postfix '.' dollarident
///
/// expr-subscript:
/// expr-postfix '[' expr ']'
///
/// expr-call:
/// expr-postfix expr-paren
///
/// expr-postfix:
/// expr-primary
/// expr-dot
/// expr-subscript
/// expr-call
///
ParseResult<Expr> Parser::parseExprPostfix(Diag<> ID) {
ParseResult<Expr> Result;
switch (Tok.getKind()) {
case tok::numeric_constant:
Result = parseExprNumericConstant();
break;
case tok::dollarident: // $1
Result = parseExprDollarIdentifier();
break;
case tok::identifier: // foo and foo::bar
Result = parseExprIdentifier();
break;
case tok::colon: { // :foo
SourceLoc ColonLoc = consumeToken(tok::colon);
Identifier Name;
SourceLoc NameLoc = Tok.getLoc();
if (parseIdentifier(Name, diag::expected_identifier_after_colon_expr))
return true;
// Handle :foo by just making an AST node.
Result = new (Context) UnresolvedMemberExpr(ColonLoc, NameLoc, Name);
break;
}
// A spaced left parenthesis can generally start a tuple expression.
// What it can't do is start a call.
case tok::l_paren:
case tok::l_paren_space:
Result = parseExprParen();
break;
case tok::kw_func:
Result = parseExprFunc();
break;
default:
diagnose(Tok.getLoc(), ID);
return true;
}
// If we had a parse error, don't attempt to parse suffixes. Do keep going if
// we had semantic errors though.
if (Result.isParseError())
return true;
// Handle suffix expressions.
while (1) {
// Check for a .foo suffix.
SourceLoc TokLoc = Tok.getLoc();
if (consumeIf(tok::period)) {
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::dollarident)) {
diagnose(Tok, diag::expected_field_name);
return true;
}
if (!Result.isSemaError()) {
Identifier Name = Context.getIdentifier(Tok.getText());
Result = new (Context) UnresolvedDotExpr(Result.get(), TokLoc, Name,
Tok.getLoc());
}
if (Tok.is(tok::identifier))
consumeToken(tok::identifier);
else
consumeToken(tok::dollarident);
continue;
}
// Check for a () suffix, which indicates a call.
// Note that this cannot be a l_paren_space.
if (Tok.is(tok::l_paren)) {
ParseResult<Expr> Arg = parseExprParen();
if (Arg.isParseError())
return true;
if (Arg.isSemaError())
Result = ParseResult<Expr>::getSemaError();
else if (!Result.isSemaError())
Result = new (Context) CallExpr(Result.get(), Arg.get(),
TypeJudgement());
continue;
}
// Check for a [expr] suffix.
if (consumeIf(tok::l_square)) {
ParseResult<Expr> Idx;
if ((Idx = parseSingleExpr(diag::expected_expr_subscript_value)))
return true;
SourceLoc RLoc = Tok.getLoc();
// FIXME: helper for matching punctuation.
if (parseToken(tok::r_square, diag::expected_bracket_array_subscript)) {
diagnose(TokLoc, diag::opening_bracket);
return true;
}
if (!Result.isSemaError() && !Idx.isSemaError()) {
// FIXME: Implement. This should modify Result like the cases
// above.
Result = Result;
}
}
break;
}
return Result;
}
ParseResult<Expr> Parser::parseExprNumericConstant() {
StringRef Text = Tok.getText();
SourceLoc Loc = consumeToken(tok::numeric_constant);
// Check to see if we have an integer constant.
size_t DotPos = Text.find('.');
if (DotPos == StringRef::npos) {
// The integer literal must fit in 64-bits.
unsigned long long Val;
if (Text.getAsInteger(0, Val)) {
diagnose(Loc, diag::int_literal_too_large);
return ParseResult<Expr>::getSemaError();
}
// The type of an integer literal is always "integer_literal_type", which
// should be defined by the library.
Identifier TyName = Context.getIdentifier("integer_literal_type");
Type Ty = ScopeInfo.lookupOrInsertTypeName(TyName, Loc);
return new (Context) IntegerLiteralExpr(Text, Loc, Ty);
}
// Okay, we have a floating point constant. Verify we have a single dot.
DotPos = Text.find('.', DotPos+1);
if (DotPos != StringRef::npos) {
diagnose(Loc.getAdvancedLoc(DotPos), diag::float_literal_multi_decimal);
return ParseResult<Expr>::getSemaError();
}
llvm::APFloat Val(llvm::APFloat::IEEEdouble);
switch (Val.convertFromString(Text, llvm::APFloat::rmNearestTiesToEven)) {
default: break;
case llvm::APFloat::opOverflow: {
llvm::SmallString<20> Buffer;
llvm::APFloat::getLargest(Val.getSemantics()).toString(Buffer);
diagnose(Loc, diag::float_literal_overflow, Buffer);
break;
}
case llvm::APFloat::opUnderflow: {
// Denormals are ok, but reported as underflow by APFloat.
if (!Val.isZero()) break;
llvm::SmallString<20> Buffer;
llvm::APFloat::getSmallest(Val.getSemantics()).toString(Buffer);
diagnose(Loc, diag::float_literal_underflow, Buffer);
break;
}
}
// The type of a float literal is always "float_literal_type", which
// should be defined by the library.
Identifier TyName = Context.getIdentifier("float_literal_type");
Type Ty = ScopeInfo.lookupOrInsertTypeName(TyName, Loc);
return new (Context) FloatLiteralExpr(Val.convertToDouble(), Loc, Ty);
}
/// expr-identifier:
/// dollarident
ParseResult<Expr> Parser::parseExprDollarIdentifier() {
StringRef Name = Tok.getText();
SourceLoc Loc = consumeToken(tok::dollarident);
assert(Name[0] == '$' && "Not a dollarident");
bool AllNumeric = true;
for (unsigned i = 1, e = Name.size(); i != e; ++i)
AllNumeric &= isdigit(Name[i]);
if (Name.size() == 1 || !AllNumeric) {
diagnose(Loc.getAdvancedLoc(1), diag::expected_dollar_numeric);
return ParseResult<Expr>::getSemaError();
}
unsigned ArgNo = 0;
if (Name.substr(1).getAsInteger(10, ArgNo)) {
diagnose(Loc.getAdvancedLoc(1), diag::dollar_numeric_too_large);
return ParseResult<Expr>::getSemaError();
}
return new (Context) AnonClosureArgExpr(ArgNo, Loc);
}
/// parseExprOperator - Parse an operator reference expression. These
/// are not "proper" expressions; they can only appear interlaced in
/// SequenceExprs.
Expr *Parser::parseExprOperator() {
assert(Tok.is(tok::oper));
SourceLoc Loc = Tok.getLoc();
Identifier Name = Context.getIdentifier(Tok.getText());
consumeToken(tok::oper);
return actOnIdentifierExpr(Name, Loc);
}
/// parseExprIdentifier - Parse an identifier expression:
///
/// expr-identifier:
/// identifier
/// scope-qualifier identifier
ParseResult<Expr> Parser::parseExprIdentifier() {
assert(Tok.is(tok::identifier));
SourceLoc Loc = Tok.getLoc();
Identifier Name = Context.getIdentifier(Tok.getText());
consumeToken(tok::identifier);
if (Tok.isNot(tok::coloncolon))
return actOnIdentifierExpr(Name, Loc);
SourceLoc ColonColonLoc = consumeToken(tok::coloncolon);
SourceLoc Loc2 = Tok.getLoc();
Identifier Name2;
if (parseIdentifier(Name2, diag::expected_identifier_after_coloncolon_expr,
Name))
return true;
TypeAliasDecl *TypeDeclFromScope = ScopeInfo.lookupScopeName(Name, Loc);
return new (Context) UnresolvedScopedIdentifierExpr(TypeDeclFromScope,
Name, Loc,
ColonColonLoc,
Name2, Loc2);
}
Expr *Parser::actOnIdentifierExpr(Identifier Text, SourceLoc Loc) {
ValueDecl *D = ScopeInfo.lookupValueName(Text);
if (D == 0)
return new (Context) UnresolvedDeclRefExpr(Text, Loc);
return new (Context) DeclRefExpr(D, Loc);
}
/// parseExprParen - Parse a tuple expression.
///
/// expr-paren:
/// '(' ')'
/// '(' expr-paren-element (',' expr-paren-element)* ')'
///
/// expr-paren-element:
/// ('.' identifier '=')? expr
///
ParseResult<Expr> Parser::parseExprParen() {
SourceLoc LPLoc = consumeToken();
SmallVector<Expr*, 8> SubExprs;
SmallVector<Identifier, 8> SubExprNames;
bool AnySubExprSemaErrors = false;
if (Tok.isNot(tok::r_paren)) {
do {
Identifier FieldName;
// Check to see if there is a field specifier.
if (consumeIf(tok::period)) {
if (parseIdentifier(FieldName,
diag::expected_field_spec_name_tuple_expr) ||
parseToken(tok::equal, diag::expected_equal_in_tuple_expr))
return true;
}
if (!SubExprNames.empty())
SubExprNames.push_back(FieldName);
else if (FieldName.get()) {
SubExprNames.resize(SubExprs.size());
SubExprNames.push_back(FieldName);
}
ParseResult<Expr> SubExpr;
if ((SubExpr = parseSingleExpr(diag::expected_expr_parentheses)))
return true;
if (SubExpr.isSemaError())
AnySubExprSemaErrors = true;
else
SubExprs.push_back(SubExpr.get());
} while (consumeIf(tok::comma));
}
SourceLoc RPLoc = Tok.getLoc();
if (parseToken(tok::r_paren, diag::expected_rparen_parenthesis_expr)) {
diagnose(LPLoc, diag::opening_paren);
return true;
}
if (AnySubExprSemaErrors)
return ParseResult<Expr>::getSemaError();
Expr **NewSubExprs =
Context.AllocateCopy<Expr*>(SubExprs.data(),
SubExprs.data()+SubExprs.size());
Identifier *NewSubExprsNames = 0;
if (!SubExprNames.empty())
NewSubExprsNames =
Context.AllocateCopy<Identifier>(SubExprNames.data(),
SubExprNames.data()+SubExprs.size());
bool IsGrouping = false;
if (SubExprs.size() == 1 &&
(SubExprNames.empty() || SubExprNames[0].empty()))
IsGrouping = true;
return new (Context) TupleExpr(LPLoc, NewSubExprs, NewSubExprsNames,
SubExprs.size(), RPLoc, IsGrouping);
}
/// parseExprFunc - Parse a func expression.
///
/// expr-func:
/// 'func' type? stmt-brace
///
/// The type must start with '(' if present.
///
ParseResult<Expr> Parser::parseExprFunc() {
SourceLoc FuncLoc = consumeToken(tok::kw_func);
Type Ty;
if (Tok.is(tok::l_brace)) {
Ty = TupleType::getEmpty(Context);
} else if (!Tok.is(tok::l_paren) && !Tok.is(tok::l_paren_space)) {
diagnose(Tok, diag::func_decl_without_paren);
return true;
} else if (parseType(Ty)) {
return true;
}
// If the parsed type is not spelled as a function type (i.e., has no '->' in
// it), then it is implicitly a function that returns ().
if (!isa<FunctionType>(Ty.getPointer()))
Ty = FunctionType::get(Ty, TupleType::getEmpty(Context), Context);
// The arguments to the func are defined in their own scope.
Scope FuncBodyScope(this);
FuncExpr *FE = actOnFuncExprStart(FuncLoc, Ty);
// Establish the new context.
ContextChange CC(*this, FE);
// Then parse the expression.
ParseResult<BraceStmt> Body;
if ((Body = parseStmtBrace(diag::expected_lbrace_func_expr)))
return true;
if (Body.isSemaError())
return ParseResult<Expr>::getSemaError();
FE->setBody(Body.get());
return FE;
}
/// FuncTypePiece - This little enum is used by AddFuncArgumentsToScope to keep
/// track of where in a function type it is currently looking. This affects how
/// the decls are processed and created.
enum class FuncTypePiece {
Function, // Looking at the initial functiontype itself.
Input, // Looking at the input to the function type
Output // Looking at the output to the function type.
};
/// AddFuncArgumentsToScope - Walk the type specified for a Func object (which
/// is known to be a FunctionType on the outer level) creating and adding named
/// arguments to the current scope. This causes redefinition errors to be
/// emitted.
static void AddFuncArgumentsToScope(Type Ty,
FuncTypePiece Mode,
SourceLoc FuncLoc,
SmallVectorImpl<ArgDecl*> &ArgDecls,
Parser &P) {
// Handle the function case first.
if (Mode == FuncTypePiece::Function) {
FunctionType *FT = cast<FunctionType>(Ty.getPointer());
AddFuncArgumentsToScope(FT->Input, FuncTypePiece::Input,
FuncLoc, ArgDecls, P);
// If this is a->b->c then we treat b as an input, not (b->c) as an output.
if (isa<FunctionType>(FT->Result.getPointer()))
AddFuncArgumentsToScope(FT->Result, FuncTypePiece::Function, FuncLoc,
ArgDecls, P);
else
AddFuncArgumentsToScope(FT->Result, FuncTypePiece::Output, FuncLoc,
ArgDecls, P);
return;
}
// Otherwise, we're looking at an input or output to the func. The only type
// we currently dive into is the humble tuple, which can be recursive. This
// should dive in syntactically.
///
/// Note that we really *do* want dyn_cast here, not getAs, because we do not
/// want to look through type aliases or other sugar, we want to see what the
/// user wrote in the func declaration.
TupleType *TT = dyn_cast<TupleType>(Ty.getPointer());
if (TT == 0) return;
// For tuples, recursively processes their elements (to handle cases like:
// (x : (a : int, b : int), y : int) -> ...
// and create decls for any named elements.
for (unsigned i = 0, e = TT->Fields.size(); i != e; ++i) {
AddFuncArgumentsToScope(TT->Fields[i].Ty, Mode, FuncLoc, ArgDecls, P);
// If this field is named, create the argument decl for it.
Identifier Name = TT->Fields[i].Name;
// Ignore unnamed fields.
if (Name.get() == 0) continue;
// Create the argument decl for this named argument.
ArgDecl *AD = new (P.Context) ArgDecl(FuncLoc, Name, TT->Fields[i].Ty,
P.CurDeclContext);
ArgDecls.push_back(AD);
// Eventually we should mark the input/outputs as readonly vs writeonly.
//bool isInput = Mode == FuncTypePiece::Input;
P.ScopeInfo.addToScope(AD);
}
}
FuncExpr *Parser::actOnFuncExprStart(SourceLoc FuncLoc, Type FuncTy) {
SmallVector<ArgDecl*, 8> ArgDecls;
AddFuncArgumentsToScope(FuncTy, FuncTypePiece::Function,
FuncLoc, ArgDecls, *this);
ArrayRef<ArgDecl*> Args = ArgDecls;
FuncExpr *FE = new (Context) FuncExpr(FuncLoc, FuncTy,
Context.AllocateCopy(Args), 0,
CurDeclContext);
// Reparent all the arguments.
for (ArgDecl *Arg : Args)
Arg->Context = FE;
return FE;
}