Files
swift-mirror/lib/Serialization/SerializeSIL.cpp
Joe Groff e004ad7df4 SIL: Carry AST types through init_existential instructions.
This is necessary to be able to properly stash values with nontrivial lowerings, such as metatypes and functions, inside existential containers. Modify SILGen to lower values to the proper abstraction level before storing them in an existential container. Part of the fix for rdar://problem/18189508, though runtime problems still remain when trying to actually dynamicCast out a metatype from an Any container.

Swift SVN r21830
2014-09-10 05:56:36 +00:00

1576 lines
64 KiB
C++

//===--- SerializeSIL.cpp - Read and write SIL ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-serialize"
#include "SILFormat.h"
#include "Serialization.h"
#include "swift/AST/Module.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/OnDiskHashTable.h"
using namespace swift;
using namespace swift::serialization;
using namespace swift::serialization::sil_block;
using namespace llvm::support;
static unsigned toStableStringEncoding(StringLiteralInst::Encoding encoding) {
switch (encoding) {
case StringLiteralInst::Encoding::UTF8: return SIL_UTF8;
case StringLiteralInst::Encoding::UTF16: return SIL_UTF16;
}
llvm_unreachable("bad string encoding");
}
static unsigned toStableSILLinkage(SILLinkage linkage) {
switch (linkage) {
case SILLinkage::Public: return SIL_LINKAGE_PUBLIC;
case SILLinkage::Hidden: return SIL_LINKAGE_HIDDEN;
case SILLinkage::Shared: return SIL_LINKAGE_SHARED;
case SILLinkage::Private: return SIL_LINKAGE_PRIVATE;
case SILLinkage::PublicExternal: return SIL_LINKAGE_PUBLIC_EXTERNAL;
case SILLinkage::HiddenExternal: return SIL_LINKAGE_HIDDEN_EXTERNAL;
case SILLinkage::SharedExternal: return SIL_LINKAGE_SHARED_EXTERNAL;
}
llvm_unreachable("bad linkage");
}
static unsigned toStableCastConsumptionKind(CastConsumptionKind kind) {
switch (kind) {
case CastConsumptionKind::TakeAlways:
return SIL_CAST_CONSUMPTION_TAKE_ALWAYS;
case CastConsumptionKind::TakeOnSuccess:
return SIL_CAST_CONSUMPTION_TAKE_ON_SUCCESS;
case CastConsumptionKind::CopyOnSuccess:
return SIL_CAST_CONSUMPTION_COPY_ON_SUCCESS;
}
llvm_unreachable("bad cast consumption kind");
}
namespace {
/// Used to serialize the on-disk func hash table.
class FuncTableInfo {
public:
using key_type = Identifier;
using key_type_ref = key_type;
using data_type = DeclID;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::HashString(key.str());
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.str().size();
uint32_t dataLength = sizeof(DeclID);
endian::Writer<little> writer(out);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key.str();
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(sizeof(DeclID) <= 32, "DeclID too large");
endian::Writer<little>(out).write<uint32_t>(data);
}
};
class SILSerializer {
Serializer &S;
ASTContext &Ctx;
llvm::BitstreamWriter &Out;
/// A reusable buffer for emitting records.
SmallVector<uint64_t, 64> ScratchRecord;
/// In case we want to encode the relative of InstID vs ValueID.
ValueID InstID = 0;
llvm::DenseMap<const ValueBase*, ValueID> ValueIDs;
ValueID addValueRef(SILValue SV) {
return addValueRef(SV.getDef());
}
ValueID addValueRef(const ValueBase *Val);
public:
using TableData = FuncTableInfo::data_type;
using Table = llvm::DenseMap<FuncTableInfo::key_type, TableData>;
private:
/// FuncTable maps function name to an ID.
Table FuncTable;
std::vector<BitOffset> Funcs;
/// The current function ID.
DeclID FuncID = 1;
/// Maps class name to a VTable ID.
Table VTableList;
/// Holds the list of VTables.
std::vector<BitOffset> VTableOffset;
DeclID VTableID = 1;
/// Maps global variable name to an ID.
Table GlobalVarList;
/// Holds the list of SIL global variables.
std::vector<BitOffset> GlobalVarOffset;
DeclID GlobalVarID = 1;
/// Maps witness table identifier to an ID.
Table WitnessTableList;
/// Holds the list of WitnessTables.
std::vector<BitOffset> WitnessTableOffset;
DeclID WitnessTableID = 1;
/// Give each SILBasicBlock a unique ID.
llvm::DenseMap<const SILBasicBlock*, unsigned> BasicBlockMap;
/// Functions that we've emitted a reference to.
llvm::SmallSet<const SILFunction *, 16> FuncsToDeclare;
std::array<unsigned, 256> SILAbbrCodes;
template <typename Layout>
void registerSILAbbr() {
using AbbrArrayTy = decltype(SILAbbrCodes);
static_assert(Layout::Code <= std::tuple_size<AbbrArrayTy>::value,
"layout has invalid record code");
SILAbbrCodes[Layout::Code] = Layout::emitAbbrev(Out);
DEBUG(llvm::dbgs() << "SIL abbre code " << SILAbbrCodes[Layout::Code]
<< " for layout " << Layout::Code << "\n");
}
bool ShouldSerializeAll;
/// Helper function to update ListOfValues for MethodInst. Format:
/// Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC), and an operand.
void handleMethodInst(const MethodInst *MI, SILValue operand,
SmallVectorImpl<ValueID> &ListOfValues);
void writeSILFunction(const SILFunction &F, bool DeclOnly = false);
void writeSILBasicBlock(const SILBasicBlock &BB);
void writeSILInstruction(const SILInstruction &SI);
void writeSILVTable(const SILVTable &vt);
void writeSILGlobalVar(const SILGlobalVariable &g);
void writeSILWitnessTable(const SILWitnessTable &wt);
void writeSILBlock(const SILModule *SILMod);
void writeIndexTables();
/// Helper function to determine if given the current state of the
/// deserialization if the function body for F should be deserialized.
bool shouldEmitFunctionBody(const SILFunction &F);
public:
SILSerializer(Serializer &S, ASTContext &Ctx,
llvm::BitstreamWriter &Out, bool serializeAll)
: S(S), Ctx(Ctx), Out(Out), ShouldSerializeAll(serializeAll) {}
void writeSILModule(const SILModule *SILMod);
};
} // end anonymous namespace
/// We enumerate all values in a SILFunction beforehand to correctly
/// handle forward references of values.
ValueID SILSerializer::addValueRef(const ValueBase *Val) {
if (!Val || isa<SILUndef>(Val))
return 0;
ValueID id = ValueIDs[Val];
assert(id != 0 && "We should have assigned a value ID to each value.");
return id;
}
void SILSerializer::writeSILFunction(const SILFunction &F, bool DeclOnly) {
ValueIDs.clear();
InstID = 0;
FuncTable[Ctx.getIdentifier(F.getName())] = FuncID++;
Funcs.push_back(Out.GetCurrentBitNo());
unsigned abbrCode = SILAbbrCodes[SILFunctionLayout::Code];
TypeID FnID = S.addTypeRef(F.getLoweredType().getSwiftType());
DEBUG(llvm::dbgs() << "SILFunction " << F.getName() << " @ BitNo "
<< Out.GetCurrentBitNo() << " abbrCode " << abbrCode
<< " FnID " << FnID << "\n");
DEBUG(llvm::dbgs() << "Serialized SIL:\n"; F.dump());
IdentifierID SemanticsID =
F.getSemanticsAttr().empty() ? (IdentifierID)0 :
S.addIdentifierRef(Ctx.getIdentifier(F.getSemanticsAttr()));
SILFunctionLayout::emitRecord(Out, ScratchRecord, abbrCode,
toStableSILLinkage(F.getLinkage()),
(unsigned)F.isTransparent(),
(unsigned)F.isGlobalInit(),
(unsigned)F.getInlineStrategy(),
(unsigned)F.getEffectsInfo(),
FnID, SemanticsID);
if (DeclOnly || F.isAvailableExternally() || F.isExternalDeclaration())
return;
// Write the body's context archetypes, unless we don't actually have a body.
if (!F.isExternalDeclaration()) {
if (auto gp = F.getContextGenericParams()) {
// To help deserializing the context generic params, we serialize the
// outer-most list first. In most cases, we do not have decls associated
// with these parameter lists, so serialize the lists directly.
std::vector<GenericParamList *> paramLists;
for (; gp; gp = gp->getOuterParameters())
paramLists.push_back(gp);
for (unsigned i = 0, e = paramLists.size(); i < e; i++)
S.writeGenericParams(paramLists.rbegin()[i], SILAbbrCodes);
}
}
// Assign a unique ID to each basic block of the SILFunction.
unsigned BasicID = 0;
BasicBlockMap.clear();
// Assign a value ID to each SILInstruction that has value and to each basic
// block argument.
unsigned ValueID = 0;
for (const SILBasicBlock &BB : F) {
BasicBlockMap.insert(std::make_pair(&BB, BasicID++));
for (auto I = BB.bbarg_begin(), E = BB.bbarg_end(); I != E; ++I)
ValueIDs[static_cast<const ValueBase*>(*I)] = ++ValueID;
for (const SILInstruction &SI : BB)
if (SI.hasValue())
ValueIDs[&SI] = ++ValueID;
}
for (const SILBasicBlock &BB : F)
writeSILBasicBlock(BB);
}
void SILSerializer::writeSILBasicBlock(const SILBasicBlock &BB) {
SmallVector<DeclID, 4> Args;
for (auto I = BB.bbarg_begin(), E = BB.bbarg_end(); I != E; ++I) {
SILArgument *SA = *I;
DeclID tId = S.addTypeRef(SA->getType().getSwiftRValueType());
DeclID vId = addValueRef(static_cast<const ValueBase*>(SA));
Args.push_back(tId);
Args.push_back((unsigned)SA->getType().getCategory());
Args.push_back(vId);
}
unsigned abbrCode = SILAbbrCodes[SILBasicBlockLayout::Code];
SILBasicBlockLayout::emitRecord(Out, ScratchRecord, abbrCode, Args);
for (const SILInstruction &SI : BB)
writeSILInstruction(SI);
}
/// Add SILDeclRef to ListOfValues, so we can reconstruct it at
/// deserialization.
static void handleSILDeclRef(Serializer &S, const SILDeclRef &Ref,
SmallVectorImpl<ValueID> &ListOfValues) {
ListOfValues.push_back(S.addDeclRef(Ref.getDecl()));
ListOfValues.push_back((unsigned)Ref.kind);
ListOfValues.push_back((unsigned)Ref.getResilienceExpansion());
ListOfValues.push_back(Ref.uncurryLevel);
ListOfValues.push_back(Ref.isForeign);
}
/// Helper function to update ListOfValues for MethodInst. Format:
/// Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC), and an operand.
void SILSerializer::handleMethodInst(const MethodInst *MI,
SILValue operand,
SmallVectorImpl<ValueID> &ListOfValues) {
ListOfValues.push_back(MI->isVolatile());
handleSILDeclRef(S, MI->getMember(), ListOfValues);
ListOfValues.push_back(
S.addTypeRef(operand.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)operand.getType().getCategory());
ListOfValues.push_back(addValueRef(operand));
ListOfValues.push_back(operand.getResultNumber());
}
void SILSerializer::writeSILInstruction(const SILInstruction &SI) {
switch (SI.getKind()) {
case ValueKind::SILArgument:
case ValueKind::SILUndef:
llvm_unreachable("not an instruction");
case ValueKind::UnreachableInst: {
unsigned abbrCode = SILAbbrCodes[SILInstNoOperandLayout::Code];
SILInstNoOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind());
break;
}
case ValueKind::InitExistentialInst:
case ValueKind::InitExistentialRefInst: {
SILValue operand;
SILType Ty;
CanType FormalConcreteType;
ArrayRef<ProtocolConformance*> conformances;
SmallVector<ProtocolDecl *, 4> protocols;
CanType existentialType;
switch (SI.getKind()) {
default: assert(0 && "out of sync with parent");
case ValueKind::InitExistentialInst: {
auto &IEI = cast<InitExistentialInst>(SI);
operand = IEI.getOperand();
Ty = IEI.getLoweredConcreteType();
FormalConcreteType = IEI.getFormalConcreteType();
conformances = IEI.getConformances();
existentialType = IEI.getOperand().getType().getSwiftRValueType();
break;
}
case ValueKind::InitExistentialRefInst: {
auto &IERI = cast<InitExistentialRefInst>(SI);
operand = IERI.getOperand();
Ty = IERI.getType();
FormalConcreteType = IERI.getFormalConcreteType();
conformances = IERI.getConformances();
existentialType = IERI.getType().getSwiftRValueType();
break;
}
}
// Retrieve the protocols.
assert(existentialType->isExistentialType() && "Not an existential type?");
existentialType->isExistentialType(protocols);
unsigned abbrCode = SILAbbrCodes[SILInitExistentialLayout::Code];
SILInitExistentialLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(),
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand),
operand.getResultNumber(),
S.addTypeRef(FormalConcreteType),
conformances.size());
for (unsigned i = 0, n = conformances.size(); i != n; ++i) {
S.writeConformance(protocols[i], conformances[i], nullptr, SILAbbrCodes);
}
break;
}
case ValueKind::DeallocBoxInst:
case ValueKind::ValueMetatypeInst:
case ValueKind::ExistentialMetatypeInst:
case ValueKind::AllocArrayInst: {
SILValue operand;
SILType Ty;
switch (SI.getKind()) {
default: assert(0 && "Out of sync with parent switch");
case ValueKind::ValueMetatypeInst:
operand = cast<ValueMetatypeInst>(&SI)->getOperand();
Ty = cast<ValueMetatypeInst>(&SI)->getType();
break;
case ValueKind::ExistentialMetatypeInst:
operand = cast<ExistentialMetatypeInst>(&SI)->getOperand();
Ty = cast<ExistentialMetatypeInst>(&SI)->getType();
break;
case ValueKind::DeallocBoxInst:
operand = cast<DeallocBoxInst>(&SI)->getOperand();
Ty = cast<DeallocBoxInst>(&SI)->getElementType();
break;
case ValueKind::AllocArrayInst:
operand = cast<AllocArrayInst>(&SI)->getNumElements();
Ty = cast<AllocArrayInst>(&SI)->getElementType();
break;
}
unsigned abbrCode = SILAbbrCodes[SILOneTypeOneOperandLayout::Code];
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(),
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand),
operand.getResultNumber());
break;
}
case ValueKind::AllocBoxInst: {
const AllocBoxInst *ABI = cast<AllocBoxInst>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneTypeLayout::Code];
SILOneTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(ABI->getElementType().getSwiftRValueType()),
(unsigned)ABI->getElementType().getCategory());
break;
}
case ValueKind::AllocRefInst: {
const AllocRefInst *ARI = cast<AllocRefInst>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneTypeValuesLayout::Code];
ValueID Args[1] = { ARI->isObjC() };
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(
ARI->getType().getSwiftRValueType()),
(unsigned)ARI->getType().getCategory(),
llvm::makeArrayRef(Args));
break;
}
case ValueKind::AllocRefDynamicInst: {
const AllocRefDynamicInst* ARD = cast<AllocRefDynamicInst>(&SI);
unsigned flags = 0;
if (ARD->isObjC())
flags = 1;
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
(unsigned)SI.getKind(), flags,
S.addTypeRef(ARD->getType().getSwiftRValueType()),
(unsigned)ARD->getType().getCategory(),
S.addTypeRef(ARD->getOperand().getType().getSwiftRValueType()),
(unsigned)ARD->getOperand().getType().getCategory(),
addValueRef(ARD->getOperand()),
ARD->getOperand().getResultNumber());
break;
}
case ValueKind::AllocStackInst: {
const AllocStackInst *ASI = cast<AllocStackInst>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneTypeLayout::Code];
SILOneTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(ASI->getElementType().getSwiftRValueType()),
(unsigned)ASI->getElementType().getCategory());
break;
}
case ValueKind::ApplyInst: {
// Format: attributes such as transparent and number of substitutions,
// the callee's substituted and unsubstituted types, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber. The record
// is followed by the substitution list.
const ApplyInst *AI = cast<ApplyInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg: AI->getArguments()) {
Args.push_back(addValueRef(Arg));
Args.push_back(Arg.getResultNumber());
}
SILInstApplyLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILInstApplyLayout::Code], 0/*PartialApply*/,
(unsigned)AI->isTransparent(),
AI->getSubstitutions().size(),
S.addTypeRef(AI->getCallee().getType().getSwiftRValueType()),
S.addTypeRef(AI->getSubstCalleeType()),
addValueRef(AI->getCallee()), AI->getCallee().getResultNumber(),
Args);
S.writeSubstitutions(AI->getSubstitutions(), SILAbbrCodes);
break;
}
case ValueKind::PartialApplyInst: {
const PartialApplyInst *PAI = cast<PartialApplyInst>(&SI);
SmallVector<ValueID, 4> Args;
for (auto Arg: PAI->getArguments()) {
Args.push_back(addValueRef(Arg));
Args.push_back(Arg.getResultNumber());
}
SILInstApplyLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILInstApplyLayout::Code], 1/*PartialApply*/,
0 /*IsTransparent*/,
PAI->getSubstitutions().size(),
S.addTypeRef(PAI->getCallee().getType().getSwiftRValueType()),
S.addTypeRef(PAI->getSubstCalleeType()),
addValueRef(PAI->getCallee()), PAI->getCallee().getResultNumber(),
Args);
S.writeSubstitutions(PAI->getSubstitutions(), SILAbbrCodes);
break;
}
case ValueKind::BuiltinFunctionRefInst: {
// Format: FuncDecl and type. Use SILOneOperandLayout.
const BuiltinFunctionRefInst *BFR = cast<BuiltinFunctionRefInst>(&SI);
SILOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
S.addTypeRef(BFR->getType().getSwiftRValueType()),
(unsigned)BFR->getType().getCategory(),
S.addIdentifierRef(BFR->getName()), 0);
break;
}
case ValueKind::GlobalAddrInst: {
// Format: VarDecl and type. Use SILOneOperandLayout.
const GlobalAddrInst *GAI = cast<GlobalAddrInst>(&SI);
SILOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
S.addTypeRef(GAI->getType().getSwiftRValueType()),
(unsigned)GAI->getType().getCategory(),
S.addDeclRef(GAI->getGlobal()), 0);
break;
}
case ValueKind::SILGlobalAddrInst: {
// Format: Name and type. Use SILOneOperandLayout.
const SILGlobalAddrInst *GAI = cast<SILGlobalAddrInst>(&SI);
SILOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
S.addTypeRef(GAI->getType().getSwiftRValueType()),
(unsigned)GAI->getType().getCategory(),
S.addIdentifierRef(
Ctx.getIdentifier(GAI->getReferencedGlobal()->getName())),
0);
break;
}
case ValueKind::BranchInst: {
// Format: destination basic block ID, a list of arguments. Use
// SILOneTypeValuesLayout.
const BranchInst *BrI = cast<BranchInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : BrI->getArgs()) {
ListOfValues.push_back(S.addTypeRef(Elt.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)Elt.getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
BasicBlockMap[BrI->getDestBB()], 0, ListOfValues);
break;
}
case ValueKind::CondBranchInst: {
// Format: condition, true basic block ID, a list of arguments, false basic
// block ID, a list of arguments. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, true basic block ID,
// false basic block ID, number of true arguments, and a list of true|false
// arguments.
const CondBranchInst *CBI = cast<CondBranchInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(CBI->getCondition()));
ListOfValues.push_back(CBI->getCondition().getResultNumber());
ListOfValues.push_back(BasicBlockMap[CBI->getTrueBB()]);
ListOfValues.push_back(BasicBlockMap[CBI->getFalseBB()]);
ListOfValues.push_back(CBI->getTrueArgs().size());
for (auto Elt : CBI->getTrueArgs()) {
ListOfValues.push_back(S.addTypeRef(Elt.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)Elt.getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
for (auto Elt : CBI->getFalseArgs()) {
ListOfValues.push_back(S.addTypeRef(Elt.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)Elt.getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(CBI->getCondition().getType().getSwiftRValueType()),
(unsigned)CBI->getCondition().getType().getCategory(),
ListOfValues);
break;
}
case ValueKind::SwitchEnumInst:
case ValueKind::SwitchEnumAddrInst: {
// Format: condition, a list of cases (EnumElementDecl + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, hasDefault, default
// basic block ID, a list of (DeclID, BasicBlock ID).
const SwitchEnumInstBase *SOI = cast<SwitchEnumInstBase>(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(SOI->getOperand()));
ListOfValues.push_back(SOI->getOperand().getResultNumber());
ListOfValues.push_back((unsigned)SOI->hasDefault());
if (SOI->hasDefault())
ListOfValues.push_back(BasicBlockMap[SOI->getDefaultBB()]);
else
ListOfValues.push_back(0);
for (unsigned i = 0, e = SOI->getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILBasicBlock *dest;
std::tie(elt, dest) = SOI->getCase(i);
ListOfValues.push_back(S.addDeclRef(elt));
ListOfValues.push_back(BasicBlockMap[dest]);
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(SOI->getOperand().getType().getSwiftRValueType()),
(unsigned)SOI->getOperand().getType().getCategory(),
ListOfValues);
break;
}
case ValueKind::SwitchIntInst: {
// Format: condition, a list of cases (APInt + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list contains value for condition, hasDefault, default
// basic block ID, a list of (APInt(Identifier ID), BasicBlock ID).
const SwitchIntInst *SII = cast<SwitchIntInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
ListOfValues.push_back(addValueRef(SII->getOperand()));
ListOfValues.push_back(SII->getOperand().getResultNumber());
ListOfValues.push_back((unsigned)SII->hasDefault());
if (SII->hasDefault())
ListOfValues.push_back(BasicBlockMap[SII->getDefaultBB()]);
else
ListOfValues.push_back(0);
for (unsigned i = 0, e = SII->getNumCases(); i < e; ++i) {
APInt value;
SILBasicBlock *dest;
std::tie(value, dest) = SII->getCase(i);
StringRef Str = value.toString(10, true);
ListOfValues.push_back(S.addIdentifierRef(Ctx.getIdentifier(Str)));
ListOfValues.push_back(BasicBlockMap[dest]);
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(SII->getOperand().getType().getSwiftRValueType()),
(unsigned)SII->getOperand().getType().getCategory(),
ListOfValues);
break;
}
case ValueKind::CondFailInst:
case ValueKind::RetainValueInst:
case ValueKind::ReleaseValueInst:
case ValueKind::AutoreleaseValueInst:
case ValueKind::DeallocStackInst:
case ValueKind::DeallocRefInst:
case ValueKind::DeinitExistentialInst:
case ValueKind::DestroyAddrInst:
case ValueKind::IsNonnullInst:
case ValueKind::LoadInst:
case ValueKind::LoadWeakInst:
case ValueKind::MarkUninitializedInst:
case ValueKind::FixLifetimeInst:
case ValueKind::CopyBlockInst:
case ValueKind::StrongReleaseInst:
case ValueKind::StrongRetainInst:
case ValueKind::StrongRetainAutoreleasedInst:
case ValueKind::AutoreleaseReturnInst:
case ValueKind::StrongRetainUnownedInst:
case ValueKind::UnownedRetainInst:
case ValueKind::UnownedReleaseInst:
case ValueKind::ReturnInst:
case ValueKind::DebugValueInst:
case ValueKind::DebugValueAddrInst: {
unsigned Attr = 0;
if (auto *LWI = dyn_cast<LoadWeakInst>(&SI))
Attr = LWI->isTake();
else if (auto *MUI = dyn_cast<MarkUninitializedInst>(&SI))
Attr = (unsigned)MUI->getKind();
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), Attr,
S.addTypeRef(SI.getOperand(0).getType().getSwiftRValueType()),
(unsigned)SI.getOperand(0).getType().getCategory(),
addValueRef(SI.getOperand(0)),
SI.getOperand(0).getResultNumber());
break;
}
case ValueKind::FunctionRefInst: {
// Use SILOneOperandLayout to specify the function type and the function
// name (IdentifierID).
const FunctionRefInst *FRI = cast<FunctionRefInst>(&SI);
SILFunction *ReferencedFunction = FRI->getReferencedFunction();
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(FRI->getType().getSwiftRValueType()),
(unsigned)FRI->getType().getCategory(),
S.addIdentifierRef(Ctx.getIdentifier(ReferencedFunction->getName())),
0);
// Make sure we declare the referenced function.
FuncsToDeclare.insert(ReferencedFunction);
break;
}
case ValueKind::IndexAddrInst:
case ValueKind::IndexRawPointerInst:
case ValueKind::UpcastExistentialInst: {
SILValue operand, operand2;
unsigned Attr = 0;
if (SI.getKind() == ValueKind::IndexRawPointerInst) {
const IndexRawPointerInst *IRP = cast<IndexRawPointerInst>(&SI);
operand = IRP->getBase();
operand2 = IRP->getIndex();
} else if (SI.getKind() == ValueKind::UpcastExistentialInst) {
Attr = cast<UpcastExistentialInst>(&SI)->isTakeOfSrc();
operand = cast<UpcastExistentialInst>(&SI)->getSrcExistential();
operand2 = cast<UpcastExistentialInst>(&SI)->getDestExistential();
} else {
const IndexAddrInst *IAI = cast<IndexAddrInst>(&SI);
operand = IAI->getBase();
operand2 = IAI->getIndex();
}
SILTwoOperandsLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTwoOperandsLayout::Code],
(unsigned)SI.getKind(), Attr,
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand), operand.getResultNumber(),
S.addTypeRef(operand2.getType().getSwiftRValueType()),
(unsigned)operand2.getType().getCategory(),
addValueRef(operand2), operand2.getResultNumber());
break;
}
case ValueKind::StringLiteralInst: {
auto SLI = cast<StringLiteralInst>(&SI);
StringRef Str = SLI->getValue();
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
unsigned encoding = toStableStringEncoding(SLI->getEncoding());
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), encoding, 0, 0,
S.addIdentifierRef(Ctx.getIdentifier(Str)),
0);
break;
}
case ValueKind::FloatLiteralInst:
case ValueKind::IntegerLiteralInst: {
// Use SILOneOperandLayout to specify the type and the literal.
std::string Str;
SILType Ty;
switch (SI.getKind()) {
default: assert(0 && "Out of sync with parent switch");
case ValueKind::IntegerLiteralInst:
Str = cast<IntegerLiteralInst>(&SI)->getValue().toString(10, true);
Ty = cast<IntegerLiteralInst>(&SI)->getType();
break;
case ValueKind::FloatLiteralInst:
Str = cast<FloatLiteralInst>(&SI)->getBits().toString(16,
/*Signed*/false);
Ty = cast<FloatLiteralInst>(&SI)->getType();
break;
}
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(),
S.addIdentifierRef(Ctx.getIdentifier(Str)),
0);
break;
}
case ValueKind::MarkFunctionEscapeInst: {
// Format: a list of typed values. A typed value is expressed by 4 IDs:
// TypeID, TypeCategory, ValueID, ValueResultNumber.
const MarkFunctionEscapeInst *MFE = cast<MarkFunctionEscapeInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : MFE->getElements()) {
ListOfValues.push_back(S.addTypeRef(Elt.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)Elt.getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(), 0, 0, ListOfValues);
break;
}
case ValueKind::MetatypeInst: {
const MetatypeInst *MI = cast<MetatypeInst>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneTypeLayout::Code];
SILOneTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(MI->getType().getSwiftRValueType()),
(unsigned)MI->getType().getCategory());
break;
}
case ValueKind::ObjCProtocolInst: {
const ObjCProtocolInst *PI = cast<ObjCProtocolInst>(&SI);
unsigned abbrCode = SILAbbrCodes[SILOneOperandLayout::Code];
SILOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), 0,
S.addTypeRef(PI->getType().getSwiftRValueType()),
(unsigned)PI->getType().getCategory(),
S.addDeclRef(PI->getProtocol()), 0);
break;
}
case ValueKind::ProjectExistentialInst: {
const ProjectExistentialInst *PEI = cast<ProjectExistentialInst>(&SI);
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
S.addTypeRef(PEI->getType().getSwiftRValueType()),
(unsigned)PEI->getType().getCategory(),
S.addTypeRef(PEI->getOperand().getType().getSwiftRValueType()),
(unsigned)PEI->getOperand().getType().getCategory(),
addValueRef(PEI->getOperand()),
PEI->getOperand().getResultNumber());
break;
}
case ValueKind::ProjectExistentialRefInst: {
const ProjectExistentialRefInst *PEI = cast<ProjectExistentialRefInst>(&SI);
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
S.addTypeRef(PEI->getType().getSwiftRValueType()),
(unsigned)PEI->getType().getCategory(),
S.addTypeRef(PEI->getOperand().getType().getSwiftRValueType()),
(unsigned)PEI->getOperand().getType().getCategory(),
addValueRef(PEI->getOperand()),
PEI->getOperand().getResultNumber());
break;
}
case ValueKind::OpenExistentialInst: {
const OpenExistentialInst *OEI = cast<OpenExistentialInst>(&SI);
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
S.addTypeRef(OEI->getType().getSwiftRValueType()),
(unsigned)OEI->getType().getCategory(),
S.addTypeRef(OEI->getOperand().getType().getSwiftRValueType()),
(unsigned)OEI->getOperand().getType().getCategory(),
addValueRef(OEI->getOperand()),
OEI->getOperand().getResultNumber());
break;
}
case ValueKind::OpenExistentialRefInst: {
const OpenExistentialRefInst *OEI = cast<OpenExistentialRefInst>(&SI);
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
S.addTypeRef(OEI->getType().getSwiftRValueType()),
(unsigned)OEI->getType().getCategory(),
S.addTypeRef(OEI->getOperand().getType().getSwiftRValueType()),
(unsigned)OEI->getOperand().getType().getCategory(),
addValueRef(OEI->getOperand()),
OEI->getOperand().getResultNumber());
break;
}
// Conversion instructions.
case ValueKind::UncheckedRefCastInst:
case ValueKind::UncheckedAddrCastInst:
case ValueKind::UncheckedTrivialBitCastInst:
case ValueKind::UncheckedRefBitCastInst:
case ValueKind::UpcastInst:
case ValueKind::AddressToPointerInst:
case ValueKind::PointerToAddressInst:
case ValueKind::RefToRawPointerInst:
case ValueKind::RawPointerToRefInst:
case ValueKind::RefToUnownedInst:
case ValueKind::UnownedToRefInst:
case ValueKind::RefToUnmanagedInst:
case ValueKind::UnmanagedToRefInst:
case ValueKind::ThinToThickFunctionInst:
case ValueKind::ThickToObjCMetatypeInst:
case ValueKind::ObjCToThickMetatypeInst:
case ValueKind::ConvertFunctionInst:
case ValueKind::UpcastExistentialRefInst:
case ValueKind::ObjCMetatypeToObjectInst:
case ValueKind::ObjCExistentialMetatypeToObjectInst:
case ValueKind::ProjectBlockStorageInst: {
SILValue operand = SI.getOperand(0);
SILType Ty = SI.getType(0);
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(),
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand), operand.getResultNumber());
break;
}
// Checked Conversion instructions.
case ValueKind::UnconditionalCheckedCastInst: {
auto CI = cast<UnconditionalCheckedCastInst>(&SI);
SILInstCastLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILInstCastLayout::Code],
(unsigned)SI.getKind(), /*attr*/ 0,
S.addTypeRef(CI->getType().getSwiftRValueType()),
(unsigned)CI->getType().getCategory(),
S.addTypeRef(CI->getOperand().getType().getSwiftRValueType()),
(unsigned)CI->getOperand().getType().getCategory(),
addValueRef(CI->getOperand()), CI->getOperand().getResultNumber());
break;
}
case ValueKind::UnconditionalCheckedCastAddrInst: {
auto CI = cast<UnconditionalCheckedCastAddrInst>(&SI);
ValueID listOfValues[] = {
toStableCastConsumptionKind(CI->getConsumptionKind()),
S.addTypeRef(CI->getSourceType()),
addValueRef(CI->getSrc()),
CI->getSrc().getResultNumber(),
S.addTypeRef(CI->getSrc().getType().getSwiftRValueType()),
(unsigned)CI->getSrc().getType().getCategory(),
S.addTypeRef(CI->getTargetType()),
addValueRef(CI->getDest()),
CI->getDest().getResultNumber()
};
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(CI->getDest().getType().getSwiftRValueType()),
(unsigned)CI->getDest().getType().getCategory(),
llvm::makeArrayRef(listOfValues));
break;
}
case ValueKind::AssignInst:
case ValueKind::CopyAddrInst:
case ValueKind::StoreInst:
case ValueKind::StoreWeakInst: {
SILValue operand, value;
unsigned Attr = 0;
if (SI.getKind() == ValueKind::StoreWeakInst) {
Attr = cast<StoreWeakInst>(&SI)->isInitializationOfDest();
operand = cast<StoreWeakInst>(&SI)->getDest();
value = cast<StoreWeakInst>(&SI)->getSrc();
} else if (SI.getKind() == ValueKind::StoreInst) {
operand = cast<StoreInst>(&SI)->getDest();
value = cast<StoreInst>(&SI)->getSrc();
} else if (SI.getKind() == ValueKind::AssignInst) {
operand = cast<AssignInst>(&SI)->getDest();
value = cast<AssignInst>(&SI)->getSrc();
} else if (SI.getKind() == ValueKind::CopyAddrInst) {
const CopyAddrInst *CAI = cast<CopyAddrInst>(&SI);
Attr = (CAI->isInitializationOfDest() << 1) | CAI->isTakeOfSrc();
operand = cast<CopyAddrInst>(&SI)->getDest();
value = cast<CopyAddrInst>(&SI)->getSrc();
} else
llvm_unreachable("switch out of sync");
unsigned abbrCode = SILAbbrCodes[SILOneValueOneOperandLayout::Code];
SILOneValueOneOperandLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(), Attr, addValueRef(value),
value.getResultNumber(),
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand),
operand.getResultNumber());
break;
}
case ValueKind::RefElementAddrInst:
case ValueKind::StructElementAddrInst:
case ValueKind::StructExtractInst:
case ValueKind::InitEnumDataAddrInst:
case ValueKind::UncheckedEnumDataInst:
case ValueKind::UncheckedTakeEnumDataAddrInst:
case ValueKind::InjectEnumAddrInst: {
// Has a typed valueref and a field decl. We use SILOneValueOneOperandLayout
// where the field decl is streamed as a ValueID.
SILValue operand;
Decl *tDecl;
switch (SI.getKind()) {
default: assert(0 && "Out of sync with parent switch");
case ValueKind::RefElementAddrInst:
operand = cast<RefElementAddrInst>(&SI)->getOperand();
tDecl = cast<RefElementAddrInst>(&SI)->getField();
break;
case ValueKind::StructElementAddrInst:
operand = cast<StructElementAddrInst>(&SI)->getOperand();
tDecl = cast<StructElementAddrInst>(&SI)->getField();
break;
case ValueKind::StructExtractInst:
operand = cast<StructExtractInst>(&SI)->getOperand();
tDecl = cast<StructExtractInst>(&SI)->getField();
break;
case ValueKind::InitEnumDataAddrInst:
operand = cast<InitEnumDataAddrInst>(&SI)->getOperand();
tDecl = cast<InitEnumDataAddrInst>(&SI)->getElement();
break;
case ValueKind::UncheckedEnumDataInst:
operand = cast<UncheckedEnumDataInst>(&SI)->getOperand();
tDecl = cast<UncheckedEnumDataInst>(&SI)->getElement();
break;
case ValueKind::UncheckedTakeEnumDataAddrInst:
operand = cast<UncheckedTakeEnumDataAddrInst>(&SI)->getOperand();
tDecl = cast<UncheckedTakeEnumDataAddrInst>(&SI)->getElement();
break;
case ValueKind::InjectEnumAddrInst:
operand = cast<InjectEnumAddrInst>(&SI)->getOperand();
tDecl = cast<InjectEnumAddrInst>(&SI)->getElement();
break;
}
SILOneValueOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneValueOneOperandLayout::Code],
(unsigned)SI.getKind(), 0, S.addDeclRef(tDecl), 0,
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand), operand.getResultNumber());
break;
}
case ValueKind::StructInst: {
// Format: a type followed by a list of typed values. A typed value is
// expressed by 4 IDs: TypeID, TypeCategory, ValueID, ValueResultNumber.
const StructInst *StrI = cast<StructInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : StrI->getElements()) {
ListOfValues.push_back(S.addTypeRef(Elt.getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)Elt.getType().getCategory());
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code],
(unsigned)SI.getKind(),
S.addTypeRef(StrI->getType().getSwiftRValueType()),
(unsigned)StrI->getType().getCategory(), ListOfValues);
break;
}
case ValueKind::TupleElementAddrInst:
case ValueKind::TupleExtractInst: {
SILValue operand;
unsigned FieldNo;
switch (SI.getKind()) {
default: assert(0 && "Out of sync with parent switch");
case ValueKind::TupleElementAddrInst:
operand = cast<TupleElementAddrInst>(&SI)->getOperand();
FieldNo = cast<TupleElementAddrInst>(&SI)->getFieldNo();
break;
case ValueKind::TupleExtractInst:
operand = cast<TupleExtractInst>(&SI)->getOperand();
FieldNo = cast<TupleExtractInst>(&SI)->getFieldNo();
break;
}
// Use OneTypeOneOperand layout where the field number is stored in TypeID.
SILOneTypeOneOperandLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeOneOperandLayout::Code],
(unsigned)SI.getKind(), 0,
FieldNo, 0,
S.addTypeRef(operand.getType().getSwiftRValueType()),
(unsigned)operand.getType().getCategory(),
addValueRef(operand), operand.getResultNumber());
break;
}
case ValueKind::TupleInst: {
// Format: a type followed by a list of values. A value is expressed by
// 2 IDs: ValueID, ValueResultNumber.
const TupleInst *TI = cast<TupleInst>(&SI);
SmallVector<ValueID, 4> ListOfValues;
for (auto Elt : TI->getElements()) {
ListOfValues.push_back(addValueRef(Elt));
ListOfValues.push_back(Elt.getResultNumber());
}
unsigned abbrCode = SILAbbrCodes[SILOneTypeValuesLayout::Code];
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord, abbrCode,
(unsigned)SI.getKind(),
S.addTypeRef(TI->getType().getSwiftRValueType()),
(unsigned)TI->getType().getCategory(),
ListOfValues);
break;
}
case ValueKind::EnumInst: {
// Format: a type, an operand and a decl ID. Use SILTwoOperandsLayout: type,
// (DeclID + hasOperand), and an operand.
const EnumInst *UI = cast<EnumInst>(&SI);
TypeID OperandTy = UI->hasOperand() ?
S.addTypeRef(UI->getOperand().getType().getSwiftRValueType()) : (TypeID)0;
unsigned OperandTyCategory = UI->hasOperand() ?
(unsigned)UI->getOperand().getType().getCategory() : 0;
SILTwoOperandsLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTwoOperandsLayout::Code], (unsigned)SI.getKind(), 0,
S.addTypeRef(UI->getType().getSwiftRValueType()),
(unsigned)UI->getType().getCategory(),
S.addDeclRef(UI->getElement()), UI->hasOperand(),
OperandTy, OperandTyCategory,
UI->hasOperand() ? addValueRef(UI->getOperand()) : (ValueID)0,
UI->hasOperand() ? UI->getOperand().getResultNumber() : 0);
break;
}
case ValueKind::EnumIsTagInst: {
// Format: a type, an operand and a decl ID. Use SILTwoOperandsLayout: type,
// (DeclID + hasOperand), and an operand.
const EnumIsTagInst *UI = cast<EnumIsTagInst>(&SI);
TypeID OperandTy = S.addTypeRef(UI->getOperand().getType().getSwiftRValueType());
unsigned OperandTyCategory = (unsigned)UI->getOperand().getType().getCategory();
SILTwoOperandsLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILTwoOperandsLayout::Code], (unsigned)SI.getKind(), 0,
S.addTypeRef(UI->getType().getSwiftRValueType()),
(unsigned)UI->getType().getCategory(),
S.addDeclRef(UI->getElement()), true /* has operand */,
OperandTy, OperandTyCategory,
addValueRef(UI->getOperand()),
UI->getOperand().getResultNumber());
break;
}
case ValueKind::WitnessMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC), and a type.
const WitnessMethodInst *AMI = cast<WitnessMethodInst>(&SI);
SILType Ty = AMI->getLookupType();
SILType Ty2 = AMI->getType(0);
SmallVector<ValueID, 7> ListOfValues;
ListOfValues.push_back(AMI->isVolatile());
handleSILDeclRef(S, AMI->getMember(), ListOfValues);
ListOfValues.push_back(S.addTypeRef(Ty2.getSwiftRValueType()));
ListOfValues.push_back((unsigned)Ty2.getCategory());
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(), ListOfValues);
if (AMI->getConformance())
S.writeConformance(
cast<ProtocolDecl>(AMI->getMember().getDecl()->getDeclContext()),
AMI->getConformance(),
nullptr,
SILAbbrCodes);
break;
}
case ValueKind::ProtocolMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC),
// and an operand.
const ProtocolMethodInst *PMI = cast<ProtocolMethodInst>(&SI);
SILType Ty = PMI->getType();
SmallVector<ValueID, 9> ListOfValues;
handleMethodInst(PMI, PMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case ValueKind::ClassMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC),
// and an operand.
const ClassMethodInst *CMI = cast<ClassMethodInst>(&SI);
SILType Ty = CMI->getType();
SmallVector<ValueID, 9> ListOfValues;
handleMethodInst(CMI, CMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case ValueKind::SuperMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC),
// and an operand.
const SuperMethodInst *SMI = cast<SuperMethodInst>(&SI);
SILType Ty = SMI->getType();
SmallVector<ValueID, 9> ListOfValues;
handleMethodInst(SMI, SMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case ValueKind::DynamicMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel, IsObjC),
// and an operand.
const DynamicMethodInst *DMI = cast<DynamicMethodInst>(&SI);
SILType Ty = DMI->getType();
SmallVector<ValueID, 9> ListOfValues;
handleMethodInst(DMI, DMI->getOperand(), ListOfValues);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(Ty.getSwiftRValueType()),
(unsigned)Ty.getCategory(), ListOfValues);
break;
}
case ValueKind::DynamicMethodBranchInst: {
// Format: a typed value, a SILDeclRef, a BasicBlock ID for method,
// a BasicBlock ID for no method. Use SILOneTypeValuesLayout.
const DynamicMethodBranchInst *DMB = cast<DynamicMethodBranchInst>(&SI);
SmallVector<ValueID, 8> ListOfValues;
ListOfValues.push_back(addValueRef(DMB->getOperand()));
ListOfValues.push_back(DMB->getOperand().getResultNumber());
handleSILDeclRef(S, DMB->getMember(), ListOfValues);
ListOfValues.push_back(BasicBlockMap[DMB->getHasMethodBB()]);
ListOfValues.push_back(BasicBlockMap[DMB->getNoMethodBB()]);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(DMB->getOperand().getType().getSwiftRValueType()),
(unsigned)DMB->getOperand().getType().getCategory(), ListOfValues);
break;
}
case ValueKind::CheckedCastBranchInst: {
// Format: the cast kind, a typed value, a BasicBlock ID for success,
// a BasicBlock ID for failure. Uses SILOneTypeValuesLayout.
const CheckedCastBranchInst *CBI = cast<CheckedCastBranchInst>(&SI);
SmallVector<ValueID, 8> ListOfValues;
ListOfValues.push_back(CBI->isExact()),
ListOfValues.push_back(addValueRef(CBI->getOperand()));
ListOfValues.push_back(CBI->getOperand().getResultNumber());
ListOfValues.push_back(
S.addTypeRef(CBI->getOperand().getType().getSwiftRValueType()));
ListOfValues.push_back((unsigned)CBI->getOperand().getType().getCategory());
ListOfValues.push_back(BasicBlockMap[CBI->getSuccessBB()]);
ListOfValues.push_back(BasicBlockMap[CBI->getFailureBB()]);
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(CBI->getCastType().getSwiftRValueType()),
(unsigned)CBI->getCastType().getCategory(),
ListOfValues);
break;
}
case ValueKind::CheckedCastAddrBranchInst: {
// Format: the cast kind, two typed values, a BasicBlock ID for
// success, a BasicBlock ID for failure. Uses SILOneTypeValuesLayout;
// the type is the type of the second (dest) operand.
auto CBI = cast<CheckedCastAddrBranchInst>(&SI);
ValueID listOfValues[] = {
toStableCastConsumptionKind(CBI->getConsumptionKind()),
S.addTypeRef(CBI->getSourceType()),
addValueRef(CBI->getSrc()),
CBI->getSrc().getResultNumber(),
S.addTypeRef(CBI->getSrc().getType().getSwiftRValueType()),
(unsigned)CBI->getSrc().getType().getCategory(),
S.addTypeRef(CBI->getTargetType()),
addValueRef(CBI->getDest()),
CBI->getDest().getResultNumber(),
BasicBlockMap[CBI->getSuccessBB()],
BasicBlockMap[CBI->getFailureBB()]
};
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(CBI->getDest().getType().getSwiftRValueType()),
(unsigned)CBI->getDest().getType().getCategory(),
llvm::makeArrayRef(listOfValues));
break;
}
case ValueKind::InitBlockStorageHeaderInst: {
auto IBSHI = cast<InitBlockStorageHeaderInst>(&SI);
SmallVector<ValueID, 6> ListOfValues;
ListOfValues.push_back(addValueRef(IBSHI->getBlockStorage()));
ListOfValues.push_back(IBSHI->getBlockStorage().getResultNumber());
ListOfValues.push_back(
S.addTypeRef(IBSHI->getBlockStorage().getType().getSwiftRValueType()));
// Always an address, don't need to save category
ListOfValues.push_back(addValueRef(IBSHI->getInvokeFunction()));
ListOfValues.push_back(IBSHI->getInvokeFunction().getResultNumber());
ListOfValues.push_back(
S.addTypeRef(IBSHI->getInvokeFunction().getType().getSwiftRValueType()));
// Always a value, don't need to save category
SILOneTypeValuesLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[SILOneTypeValuesLayout::Code], (unsigned)SI.getKind(),
S.addTypeRef(IBSHI->getType().getSwiftRValueType()),
(unsigned)IBSHI->getType().getCategory(),
ListOfValues);
}
}
// Non-void values get registered in the value table.
if (SI.hasValue()) {
addValueRef(&SI);
++InstID;
}
}
/// Depending on the RecordKind, we write the SILFunction table, the global
/// variable table, the table for SILVTable, or the table for SILWitnessTable.
static void writeIndexTable(const sil_index_block::ListLayout &List,
sil_index_block::RecordKind kind,
const SILSerializer::Table &table) {
assert((kind == sil_index_block::SIL_FUNC_NAMES ||
kind == sil_index_block::SIL_VTABLE_NAMES ||
kind == sil_index_block::SIL_GLOBALVAR_NAMES ||
kind == sil_index_block::SIL_WITNESSTABLE_NAMES) &&
"SIL function table, global, vtable and witness table are supported");
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<FuncTableInfo> generator;
for (auto &entry : table)
generator.insert(entry.first, entry.second);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0.
endian::Writer<little>(blobStream).write<uint32_t>(0);
tableOffset = generator.Emit(blobStream);
}
SmallVector<uint64_t, 8> scratch;
List.emit(scratch, kind, tableOffset, hashTableBlob);
}
void SILSerializer::writeIndexTables() {
BCBlockRAII restoreBlock(Out, SIL_INDEX_BLOCK_ID, 4);
sil_index_block::ListLayout List(Out);
sil_index_block::OffsetLayout Offset(Out);
if (!FuncTable.empty()) {
writeIndexTable(List, sil_index_block::SIL_FUNC_NAMES, FuncTable);
Offset.emit(ScratchRecord, sil_index_block::SIL_FUNC_OFFSETS, Funcs);
}
if (!VTableList.empty()) {
writeIndexTable(List, sil_index_block::SIL_VTABLE_NAMES, VTableList);
Offset.emit(ScratchRecord, sil_index_block::SIL_VTABLE_OFFSETS,
VTableOffset);
}
if (!GlobalVarList.empty()) {
writeIndexTable(List, sil_index_block::SIL_GLOBALVAR_NAMES, GlobalVarList);
Offset.emit(ScratchRecord, sil_index_block::SIL_GLOBALVAR_OFFSETS,
GlobalVarOffset);
}
if (!WitnessTableList.empty()) {
writeIndexTable(List, sil_index_block::SIL_WITNESSTABLE_NAMES, WitnessTableList);
Offset.emit(ScratchRecord, sil_index_block::SIL_WITNESSTABLE_OFFSETS,
WitnessTableOffset);
}
}
void SILSerializer::writeSILGlobalVar(const SILGlobalVariable &g) {
GlobalVarList[Ctx.getIdentifier(g.getName())] = GlobalVarID++;
GlobalVarOffset.push_back(Out.GetCurrentBitNo());
TypeID TyID = S.addTypeRef(g.getLoweredType().getSwiftType());
GlobalVarLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[GlobalVarLayout::Code],
toStableSILLinkage(g.getLinkage()),
TyID);
}
void SILSerializer::writeSILVTable(const SILVTable &vt) {
VTableList[vt.getClass()->getName()] = VTableID++;
VTableOffset.push_back(Out.GetCurrentBitNo());
VTableLayout::emitRecord(Out, ScratchRecord, SILAbbrCodes[VTableLayout::Code],
S.addDeclRef(vt.getClass()));
for (auto &entry : vt.getEntries()) {
SmallVector<ValueID, 4> ListOfValues;
handleSILDeclRef(S, entry.first, ListOfValues);
FuncsToDeclare.insert(entry.second);
// Each entry is a pair of SILDeclRef and SILFunction.
VTableEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[VTableEntryLayout::Code],
// SILFunction name
S.addIdentifierRef(Ctx.getIdentifier(entry.second->getName())),
ListOfValues);
}
}
void SILSerializer::writeSILWitnessTable(const SILWitnessTable &wt) {
WitnessTableList[wt.getIdentifier()] = WitnessTableID++;
WitnessTableOffset.push_back(Out.GetCurrentBitNo());
WitnessTableLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessTableLayout::Code],
S.addTypeRef(wt.getConformance()->getType()),
toStableSILLinkage(wt.getLinkage()),
unsigned(wt.isDeclaration()));
S.writeConformance(wt.getConformance()->getProtocol(), wt.getConformance(),
nullptr, SILAbbrCodes);
// If we have a declaration, do not attempt to serialize entries.
if (wt.isDeclaration())
return;
for (auto &entry : wt.getEntries()) {
if (entry.getKind() == SILWitnessTable::BaseProtocol) {
auto &baseWitness = entry.getBaseProtocolWitness();
WitnessBaseEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessBaseEntryLayout::Code],
S.addDeclRef(baseWitness.Requirement),
S.addTypeRef(baseWitness.Witness->getType()));
S.writeConformance(baseWitness.Witness->getProtocol(),
baseWitness.Witness, nullptr, SILAbbrCodes);
continue;
}
if (entry.getKind() == SILWitnessTable::AssociatedTypeProtocol) {
auto &assoc = entry.getAssociatedTypeProtocolWitness();
WitnessAssocProtocolLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessAssocProtocolLayout::Code],
S.addDeclRef(assoc.Requirement),
S.addDeclRef(assoc.Protocol),
assoc.Witness ? S.addTypeRef(assoc.Witness->getType()) : (TypeID)0);
if (assoc.Witness)
S.writeConformance(assoc.Witness->getProtocol(),
assoc.Witness, nullptr, SILAbbrCodes);
continue;
}
if (entry.getKind() == SILWitnessTable::AssociatedType) {
auto &assoc = entry.getAssociatedTypeWitness();
WitnessAssocEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessAssocEntryLayout::Code],
S.addDeclRef(assoc.Requirement),
S.addTypeRef(assoc.Witness));
continue;
}
auto &methodWitness = entry.getMethodWitness();
SmallVector<ValueID, 4> ListOfValues;
handleSILDeclRef(S, methodWitness.Requirement, ListOfValues);
FuncsToDeclare.insert(methodWitness.Witness);
WitnessMethodEntryLayout::emitRecord(Out, ScratchRecord,
SILAbbrCodes[WitnessMethodEntryLayout::Code],
// SILFunction name
S.addIdentifierRef(Ctx.getIdentifier(methodWitness.Witness->getName())),
ListOfValues);
}
}
/// Can we always serialize entities with the given linkage no matter what?
static bool canAlwaysSerializeLinkage(SILLinkage linkage) {
switch (linkage) {
case SILLinkage::Public:
case SILLinkage::PublicExternal:
case SILLinkage::Hidden:
case SILLinkage::HiddenExternal:
// We always serialize shared linkage items since we leave elimination of them
// as a responsibility of the optimizer.
case SILLinkage::Shared:
case SILLinkage::SharedExternal:
return true;
// We never serialize anything with private linkage.
case SILLinkage::Private:
return false;
}
}
/// If a Global/Function referenced by one of F's instructions has private
/// linkage return true.
///
/// SILWitnessTables do not need to be checked here since WitnessMethodInst
/// always looks up the relevant witness method indirectly from a table in the
/// SILModule that maps ProtocolConformances to SILWitnessTables.
static bool
transitivelyReferencesPotentiallyUnserializableLinkage(const SILFunction &F) {
for (auto &BB : F)
for (auto &I : BB) {
if (auto *GA = dyn_cast<SILGlobalAddrInst>(&I))
if (!canAlwaysSerializeLinkage(GA->getReferencedGlobal()->getLinkage()))
return true;
if (auto *FRI = dyn_cast<FunctionRefInst>(&I))
if (!canAlwaysSerializeLinkage(FRI->getReferencedFunction()->getLinkage()))
return true;
}
return false;
}
/// Helper function for whether to emit a function body.
bool SILSerializer::shouldEmitFunctionBody(const SILFunction &F) {
// If F is a declaration, it has no body to emit...
if (F.empty())
return false;
// If F is transparent, we should always emit its body.
if (F.isTransparent())
return true;
// If F or a Global/Function referenced by one of F's instructions has private
// linkage, we should not emit a body and potentially expose it.
if (!canAlwaysSerializeLinkage(F.getLinkage()) ||
transitivelyReferencesPotentiallyUnserializableLinkage(F))
return false;
// Otherwise serialize the body of the function only if we are asked to
// serialize everything.
return ShouldSerializeAll;
}
void SILSerializer::writeSILBlock(const SILModule *SILMod) {
BCBlockRAII subBlock(Out, SIL_BLOCK_ID, 6);
registerSILAbbr<SILFunctionLayout>();
registerSILAbbr<SILBasicBlockLayout>();
registerSILAbbr<SILOneValueOneOperandLayout>();
registerSILAbbr<SILOneTypeLayout>();
registerSILAbbr<SILOneOperandLayout>();
registerSILAbbr<SILOneTypeOneOperandLayout>();
registerSILAbbr<SILInitExistentialLayout>();
registerSILAbbr<SILOneTypeValuesLayout>();
registerSILAbbr<SILTwoOperandsLayout>();
registerSILAbbr<SILInstApplyLayout>();
registerSILAbbr<SILInstNoOperandLayout>();
registerSILAbbr<VTableLayout>();
registerSILAbbr<VTableEntryLayout>();
registerSILAbbr<GlobalVarLayout>();
registerSILAbbr<WitnessTableLayout>();
registerSILAbbr<WitnessMethodEntryLayout>();
registerSILAbbr<WitnessBaseEntryLayout>();
registerSILAbbr<WitnessAssocProtocolLayout>();
registerSILAbbr<WitnessAssocEntryLayout>();
registerSILAbbr<SILGenericOuterParamsLayout>();
registerSILAbbr<SILInstCastLayout>();
// Register the abbreviation codes so these layouts can exist in both
// decl blocks and sil blocks.
// We have to make sure BOUND_GENERIC_SUBSTITUTION does not overlap with
// SIL-specific records.
registerSILAbbr<decls_block::BoundGenericSubstitutionLayout>();
registerSILAbbr<decls_block::NoConformanceLayout>();
registerSILAbbr<decls_block::NormalProtocolConformanceLayout>();
registerSILAbbr<decls_block::SpecializedProtocolConformanceLayout>();
registerSILAbbr<decls_block::InheritedProtocolConformanceLayout>();
registerSILAbbr<decls_block::GenericParamListLayout>();
registerSILAbbr<decls_block::GenericParamLayout>();
registerSILAbbr<decls_block::GenericRequirementLayout>();
registerSILAbbr<decls_block::LastGenericRequirementLayout>();
for (const SILGlobalVariable &g : SILMod->getSILGlobals())
writeSILGlobalVar(g);
// Write out VTables first because it may require serializations of
// non-transparent SILFunctions (body is not needed).
// Go through all SILVTables in SILMod and write them if we should
// serialize everything.
// FIXME: Resilience: could write out vtable for fragile classes.
for (const SILVTable &vt : SILMod->getVTables()) {
if (ShouldSerializeAll)
writeSILVTable(vt);
}
// Write out WitnessTables. For now, write out only if EnableSerializeAll.
for (const SILWitnessTable &wt : SILMod->getWitnessTables()) {
if (ShouldSerializeAll)
writeSILWitnessTable(wt);
}
// Go through all the SILFunctions in SILMod and write out any
// mandatory function bodies.
for (const SILFunction &F : *SILMod) {
if (shouldEmitFunctionBody(F))
writeSILFunction(F);
}
// Now write function declarations for every function we've
// emitted a reference to without emitting a function body for.
for (const SILFunction &F : *SILMod) {
if (!shouldEmitFunctionBody(F) && FuncsToDeclare.count(&F))
writeSILFunction(F, true);
}
}
void SILSerializer::writeSILModule(const SILModule *SILMod) {
writeSILBlock(SILMod);
writeIndexTables();
}
void Serializer::writeSIL(const SILModule *SILMod, bool serializeAllSIL) {
if (!SILMod)
return;
SILSerializer SILSer(*this, M->Ctx, Out, serializeAllSIL);
SILSer.writeSILModule(SILMod);
}