Files
swift-mirror/lib/AST/ProtocolConformanceRef.cpp
Kavon Farvardin e0412269fd [NCGenerics] infinite substitution hack
Workaround for rdar://119950540 when dealing with invertible protocols.

This should be sound because "its an invariant that subst() on a
conformance returns the same thing as a global lookup with subst() of
the conforming type, assuming you don't have overlapping conformances."
2024-01-10 19:37:21 -08:00

380 lines
12 KiB
C++

//===--- ProtocolConformance.cpp - AST Protocol Conformance Reference -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the ProtocolConformanceRef structure, which wraps a
// concrete or abstract conformance, or is invalid.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ProtocolConformanceRef.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Availability.h"
#include "swift/AST/Decl.h"
#include "swift/AST/InFlightSubstitution.h"
#include "swift/AST/Module.h"
#include "swift/AST/PackConformance.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/Types.h"
#define DEBUG_TYPE "AST"
using namespace swift;
ProtocolConformanceRef::ProtocolConformanceRef(ProtocolDecl *protocol,
ProtocolConformance *conf) {
assert(protocol != nullptr &&
"cannot construct ProtocolConformanceRef with null protocol");
if (conf) {
assert(protocol == conf->getProtocol() && "protocol conformance mismatch");
Union = conf;
} else {
Union = protocol;
}
}
bool ProtocolConformanceRef::isInvalid() const {
if (!Union)
return true;
if (auto pack = Union.dyn_cast<PackConformance *>())
return pack->isInvalid();
return false;
}
ProtocolDecl *ProtocolConformanceRef::getRequirement() const {
assert(!isInvalid());
if (isConcrete()) {
return getConcrete()->getProtocol();
} else if (isPack()) {
return getPack()->getProtocol();
} else {
return getAbstract();
}
}
ProtocolConformanceRef
ProtocolConformanceRef::subst(Type origType,
SubstitutionMap subMap,
SubstOptions options) const {
InFlightSubstitutionViaSubMap IFS(subMap, options);
return subst(origType, IFS);
}
ProtocolConformanceRef
ProtocolConformanceRef::subst(Type origType,
TypeSubstitutionFn subs,
LookupConformanceFn conformances,
SubstOptions options) const {
InFlightSubstitution IFS(subs, conformances, options);
return subst(origType, IFS);
}
ProtocolConformanceRef
ProtocolConformanceRef::subst(Type origType, InFlightSubstitution &IFS) const {
if (isInvalid())
return *this;
if (isConcrete())
return getConcrete()->subst(IFS);
if (isPack())
return getPack()->subst(IFS);
// Handle abstract conformances below:
// If the type is an opaque archetype, the conformance will remain abstract,
// unless we're specifically substituting opaque types.
if (auto origArchetype = origType->getAs<ArchetypeType>()) {
if (!IFS.shouldSubstituteOpaqueArchetypes()
&& isa<OpaqueTypeArchetypeType>(origArchetype)) {
return *this;
}
}
// Otherwise, compute the substituted type.
auto substType = origType.subst(IFS);
auto *proto = getRequirement();
// If the type is an existential, it must be self-conforming.
if (substType->isExistentialType()) {
auto optConformance =
proto->getModuleContext()->lookupExistentialConformance(substType,
proto);
if (optConformance)
return optConformance;
return ProtocolConformanceRef::forInvalid();
}
// If the type has been fully substituted and the requirement is for
// an invertible protocol, just do a module lookup. This avoids an infinite
// substitution issue by recognizing that these protocols are very simple
// (see rdar://119950540 for the general issue).
if (!substType->hasTypeParameter() && proto->getInvertibleProtocolKind())
return proto->getModuleContext()->lookupConformance(substType, proto);
// Check the conformance map.
// FIXME: Pack element level?
return IFS.lookupConformance(origType->getCanonicalType(), substType, proto,
/*level=*/0);
}
ProtocolConformanceRef ProtocolConformanceRef::mapConformanceOutOfContext() const {
if (isConcrete()) {
return getConcrete()->subst(
[](SubstitutableType *type) -> Type {
if (auto *archetypeType = type->getAs<ArchetypeType>())
return archetypeType->getInterfaceType();
return type;
},
MakeAbstractConformanceForGenericType(),
SubstFlags::PreservePackExpansionLevel);
} else if (isPack()) {
return getPack()->subst(
[](SubstitutableType *type) -> Type {
if (auto *archetypeType = type->getAs<ArchetypeType>())
return archetypeType->getInterfaceType();
return type;
},
MakeAbstractConformanceForGenericType(),
SubstFlags::PreservePackExpansionLevel);
}
return *this;
}
Type
ProtocolConformanceRef::getTypeWitnessByName(Type type, Identifier name) const {
assert(!isInvalid());
// Find the named requirement.
ProtocolDecl *proto = getRequirement();
auto *assocType = proto->getAssociatedType(name);
// FIXME: Shouldn't this be a hard error?
if (!assocType)
return ErrorType::get(proto->getASTContext());
return assocType->getDeclaredInterfaceType().subst(
SubstitutionMap::getProtocolSubstitutions(proto, type, *this));
}
ConcreteDeclRef
ProtocolConformanceRef::getWitnessByName(Type type, DeclName name) const {
// Find the named requirement.
auto *proto = getRequirement();
auto *requirement = proto->getSingleRequirement(name);
if (requirement == nullptr)
return ConcreteDeclRef();
// For a type with dependent conformance, just return the requirement from
// the protocol. There are no protocol conformance tables.
if (!isConcrete()) {
auto subs = SubstitutionMap::getProtocolSubstitutions(proto, type, *this);
return ConcreteDeclRef(requirement, subs);
}
return getConcrete()->getWitnessDeclRef(requirement);
}
llvm::Optional<ArrayRef<Requirement>>
ProtocolConformanceRef::getConditionalRequirementsIfAvailable() const {
if (isConcrete())
return getConcrete()->getConditionalRequirementsIfAvailable();
else
// An abstract conformance is never conditional: any conditionality in the
// concrete types that will eventually pass through this at runtime is
// completely pre-checked and packaged up.
return ArrayRef<Requirement>();
}
ArrayRef<Requirement>
ProtocolConformanceRef::getConditionalRequirements() const {
if (isConcrete())
return getConcrete()->getConditionalRequirements();
else
// An abstract conformance is never conditional, as above.
return {};
}
Type ProtocolConformanceRef::getAssociatedType(Type conformingType,
Type assocType) const {
if (isPack()) {
auto *pack = getPack();
assert(conformingType->isEqual(pack->getType()));
return pack->getAssociatedType(assocType);
}
assert(!isConcrete() || getConcrete()->getType()->isEqual(conformingType));
auto type = assocType->getCanonicalType();
auto proto = getRequirement();
// Fast path for generic parameters.
if (isa<GenericTypeParamType>(type)) {
assert(type->isEqual(proto->getSelfInterfaceType()) &&
"type parameter in protocol was not Self");
return conformingType;
}
// Fast path for dependent member types on 'Self' of our associated types.
auto memberType = cast<DependentMemberType>(type);
if (memberType.getBase()->isEqual(proto->getSelfInterfaceType()) &&
memberType->getAssocType()->getProtocol() == proto &&
isConcrete())
return getConcrete()->getTypeWitness(memberType->getAssocType());
// General case: consult the substitution map.
auto substMap =
SubstitutionMap::getProtocolSubstitutions(proto, conformingType, *this);
return type.subst(substMap);
}
ProtocolConformanceRef
ProtocolConformanceRef::getAssociatedConformance(Type conformingType,
Type assocType,
ProtocolDecl *protocol) const {
// If this is a pack conformance, project the associated conformances.
if (isPack()) {
auto *pack = getPack();
assert(conformingType->isEqual(pack->getType()));
return ProtocolConformanceRef(
pack->getAssociatedConformance(assocType, protocol));
}
// If this is a concrete conformance, look up the associated conformance.
if (isConcrete()) {
auto conformance = getConcrete();
assert(conformance->getType()->isEqual(conformingType));
return conformance->getAssociatedConformance(assocType, protocol);
}
// Otherwise, apply the substitution {self -> conformingType}
// to the abstract conformance requirement laid upon the dependent type
// by the protocol.
auto subMap =
SubstitutionMap::getProtocolSubstitutions(getRequirement(),
conformingType, *this);
auto abstractConf = ProtocolConformanceRef(protocol);
return abstractConf.subst(assocType, subMap);
}
/// Check of all types used by the conformance are canonical.
bool ProtocolConformanceRef::isCanonical() const {
if (isAbstract() || isInvalid())
return true;
if (isPack())
return getPack()->isCanonical();
return getConcrete()->isCanonical();
}
ProtocolConformanceRef
ProtocolConformanceRef::getCanonicalConformanceRef() const {
if (isAbstract() || isInvalid())
return *this;
if (isPack())
return ProtocolConformanceRef(getPack()->getCanonicalConformance());
return ProtocolConformanceRef(getConcrete()->getCanonicalConformance());
}
bool ProtocolConformanceRef::hasUnavailableConformance() const {
if (isInvalid() || isAbstract())
return false;
if (isPack()) {
for (auto conformance : getPack()->getPatternConformances()) {
if (conformance.hasUnavailableConformance())
return true;
}
return false;
}
// Check whether this conformance is on an unavailable extension.
auto concrete = getConcrete();
auto ext = dyn_cast<ExtensionDecl>(concrete->getDeclContext());
if (ext && AvailableAttr::isUnavailable(ext))
return true;
// Check the conformances in the substitution map.
auto subMap = concrete->getSubstitutionMap();
for (auto subConformance : subMap.getConformances()) {
if (subConformance.hasUnavailableConformance())
return true;
}
return false;
}
bool ProtocolConformanceRef::hasMissingConformance(ModuleDecl *module) const {
return forEachMissingConformance(module,
[](BuiltinProtocolConformance *builtin) {
return true;
});
}
bool ProtocolConformanceRef::forEachMissingConformance(
ModuleDecl *module,
llvm::function_ref<bool(BuiltinProtocolConformance *missing)> fn) const {
if (isInvalid() || isAbstract())
return false;
if (isPack()) {
for (auto conformance : getPack()->getPatternConformances()) {
if (conformance.forEachMissingConformance(module, fn))
return true;
}
return false;
}
// Is this a missing conformance?
ProtocolConformance *concreteConf = getConcrete();
RootProtocolConformance *rootConf = concreteConf->getRootConformance();
if (auto builtinConformance = dyn_cast<BuiltinProtocolConformance>(rootConf)){
if (builtinConformance->isMissing() && fn(builtinConformance))
return true;
}
// Check conformances that are part of this conformance.
auto subMap = concreteConf->getSubstitutionMap();
for (auto conformance : subMap.getConformances()) {
if (conformance.forEachMissingConformance(module, fn))
return true;
}
return false;
}
void swift::simple_display(llvm::raw_ostream &out, ProtocolConformanceRef conformanceRef) {
if (conformanceRef.isAbstract()) {
simple_display(out, conformanceRef.getAbstract());
} else if (conformanceRef.isConcrete()) {
simple_display(out, conformanceRef.getConcrete());
} else if (conformanceRef.isPack()) {
simple_display(out, conformanceRef.getPack());
}
}
SourceLoc swift::extractNearestSourceLoc(const ProtocolConformanceRef conformanceRef) {
if (conformanceRef.isAbstract()) {
return extractNearestSourceLoc(conformanceRef.getAbstract());
} else if (conformanceRef.isConcrete()) {
return extractNearestSourceLoc(conformanceRef.getConcrete());
}
return SourceLoc();
}