Files
swift-mirror/lib/IRGen/GenClass.cpp
Jordan Rose e05c03d5bc Standardize terminology for "computed", "stored", "variable", and "property".
These are the terms sent out in the proposal last week and described in
StoredAndComputedVariables.rst.

variable
  anything declared with 'var'
member variable
  a variable inside a nominal type (may be an instance variable or not)
property
  another term for "member variable"
computed variable
  a variable with a custom getter or setter
stored variable
  a variable with backing storage; any non-computed variable

These terms pre-exist in SIL and IRGen, so I only attempted to solidify
their definitions. Other than the use of "field" for "tuple element",
none of these should be exposed to users.

field
  a tuple element, or
  the underlying storage for a stored variable in a struct or class
physical
  describes an entity whose value can be accessed directly
logical
  describes an entity whose value must be accessed through some accessor

Swift SVN r8698
2013-09-26 18:50:44 +00:00

1204 lines
43 KiB
C++

//===--- GenClass.cpp - Swift IR Generation For 'class' Types -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for class types.
//
//===----------------------------------------------------------------------===//
#include "GenClass.h"
#include "swift/ABI/Class.h"
#include "swift/AST/Attr.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Module.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/TypeMemberVisitor.h"
#include "swift/AST/Types.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CallSite.h"
#include "Explosion.h"
#include "GenFunc.h"
#include "GenMeta.h"
#include "GenObjC.h"
#include "GenProto.h"
#include "GenType.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "GenHeap.h"
#include "HeapTypeInfo.h"
using namespace swift;
using namespace irgen;
/// Does the given class have a Swift refcount?
bool irgen::hasSwiftRefcount(IRGenModule &IGM, ClassDecl *theClass) {
// Scan to the root class.
while (theClass->hasSuperclass()) {
theClass = theClass->getSuperclass()->getClassOrBoundGenericClass();
assert(theClass && "base type of class not a class?");
}
// If the root class is implemented in swift, then we have a swift
// refcount.
return hasKnownSwiftImplementation(IGM, theClass);
}
/// Different policies for accessing a physical field.
enum class FieldAccess : uint8_t {
/// Instance variable offsets are constant.
ConstantDirect,
/// Instance variable offsets must be loaded from "direct offset"
/// global variables.
NonConstantDirect,
/// Instance variable offsets are kept in fields in metadata, but
/// the offsets of those fields within the metadata are constant.
ConstantIndirect,
/// Instance variable offsets are kept in fields in metadata, and
/// the offsets of those fields within the metadata must be loaded
/// from "indirect offset" global variables.
NonConstantIndirect
};
namespace {
class FieldEntry {
llvm::PointerIntPair<VarDecl*, 2, FieldAccess> VarAndAccess;
public:
FieldEntry(VarDecl *var, FieldAccess access)
: VarAndAccess(var, access) {}
VarDecl *getVar() const {
return VarAndAccess.getPointer();
}
FieldAccess getAccess() const {
return VarAndAccess.getInt();
}
};
/// Layout information for class types.
class ClassTypeInfo : public HeapTypeInfo<ClassTypeInfo> {
ClassDecl *TheClass;
mutable StructLayout *Layout;
/// Can we use swift reference-counting, or do we have to use
/// objc_retain/release?
const bool HasSwiftRefcount;
public:
ClassTypeInfo(llvm::PointerType *irType, Size size, Alignment align,
ClassDecl *D, bool hasSwiftRefcount)
: HeapTypeInfo(irType, size, align), TheClass(D), Layout(nullptr),
HasSwiftRefcount(hasSwiftRefcount) {}
bool hasSwiftRefcount() const {
return HasSwiftRefcount;
}
~ClassTypeInfo() {
delete Layout;
}
ClassDecl *getClass() const { return TheClass; }
const StructLayout &getLayout(IRGenModule &IGM) const;
Alignment getHeapAlignment(IRGenModule &IGM) const {
return getLayout(IGM).getAlignment();
}
ArrayRef<ElementLayout> getElements(IRGenModule &IGM) const {
return getLayout(IGM).getElements();
}
};
/// A class for computing properties of the instance-variable layout
/// of a class. TODO: cache the results!
class LayoutClass {
IRGenModule &IGM;
ClassDecl *Root;
SmallVector<FieldEntry, 8> Fields;
bool IsMetadataResilient = false;
bool IsObjectResilient = false;
bool IsObjectGenericallyArranged = false;
ResilienceScope Resilience;
public:
LayoutClass(IRGenModule &IGM, ResilienceScope resilience,
ClassDecl *theClass, CanType type)
: IGM(IGM), Resilience(resilience) {
layout(theClass, type);
}
/// The root class for purposes of metaclass objects.
ClassDecl *getRootClassForMetaclass() const {
// If the formal root class is imported from Objective-C, then
// we should use that. For a class that's really implemented in
// Objective-C, this is obviously right. For a class that's
// really implemented in Swift, but that we're importing via an
// Objective-C interface, this would be wrong --- except such a
// class can never be a formal root class, because a Swift class
// without a formal superclass will actually be parented by
// SwiftObject (or maybe eventually something else like it),
// which will be visible in the Objective-C type system.
if (Root->hasClangNode()) return Root;
return IGM.getSwiftRootClass();
}
const FieldEntry &getFieldEntry(VarDecl *field) const {
for (auto &entry : Fields)
if (entry.getVar() == field)
return entry;
llvm_unreachable("no entry for field!");
}
private:
void layout(ClassDecl *theClass, CanType type) {
// TODO: use the full type information to potentially make
// generic layouts concrete.
// First, collect information about the superclass.
if (theClass->hasSuperclass()) {
CanType superclassType = theClass->getSuperclass()->getCanonicalType();
auto superclass = type->getClassOrBoundGenericClass();
assert(superclass);
layout(superclass, superclassType);
} else {
Root = theClass;
}
// If the class is resilient, then it may have fields we can't
// see, and all subsequent fields are *at least* resilient ---
// and if the class is generic, then it may have
// dependently-sized fields, and we'll be in the worst case.
bool isClassResilient = IGM.isResilient(theClass, Resilience);
if (isClassResilient) {
IsMetadataResilient = true;
IsObjectResilient = true;
if (theClass->getGenericParamsOfContext() != nullptr) {
IsObjectGenericallyArranged = true;
}
}
// Okay, make entries for all the physical fields we know about.
for (auto member : theClass->getMembers()) {
auto var = dyn_cast<VarDecl>(member);
if (!var) continue;
// Skip properties that we have to access logically.
assert(isClassResilient || !IGM.isResilient(var, Resilience));
if (var->isComputed())
continue;
Fields.push_back(FieldEntry(var, getCurFieldAccess()));
// Adjust based on the type of this field.
// FIXME: this algorithm is assuming that fields are laid out
// in declaration order.
adjustAccessAfterField(var);
}
}
FieldAccess getCurFieldAccess() const {
if (IsObjectGenericallyArranged) {
if (IsMetadataResilient) {
return FieldAccess::NonConstantIndirect;
} else {
return FieldAccess::ConstantIndirect;
}
} else {
if (IsObjectResilient) {
return FieldAccess::NonConstantDirect;
} else {
return FieldAccess::ConstantDirect;
}
}
}
void adjustAccessAfterField(VarDecl *var) {
if (var->isComputed()) return;
CanType type = var->getType()->getCanonicalType();
switch (IGM.classifyTypeSize(type, ResilienceScope::Local)) {
case ObjectSize::Fixed:
return;
case ObjectSize::Resilient:
IsObjectResilient = true;
return;
case ObjectSize::Dependent:
IsObjectResilient = IsObjectGenericallyArranged = true;
return;
}
llvm_unreachable("bad ObjectSize value");
}
};
} // end anonymous namespace.
/// Return the index of the given field within the class.
static unsigned getFieldIndex(ClassDecl *base, VarDecl *target) {
// FIXME: This is algorithmically terrible.
unsigned index = 0;
for (Decl *member : base->getMembers()) {
if (member == target) return index;
if (auto var = dyn_cast<VarDecl>(member))
if (!var->isComputed())
++index;
}
llvm_unreachable("didn't find field in type!");
}
namespace {
class ClassLayoutBuilder : public StructLayoutBuilder {
SmallVector<ElementLayout, 8> LastElements;
public:
ClassLayoutBuilder(IRGenModule &IGM, ClassDecl *theClass)
: StructLayoutBuilder(IGM) {
// Start by adding a heap header.
addHeapHeader();
// Next, add the fields for the given class.
addFieldsForClass(theClass);
}
/// Return the element layouts for the most-derived class.
ArrayRef<ElementLayout> getLastElements() const {
return LastElements;
}
private:
void addFieldsForClass(ClassDecl *theClass) {
if (theClass->hasSuperclass()) {
// TODO: apply substitutions when computing base-class layouts!
auto superclass
= theClass->getSuperclass()->getClassOrBoundGenericClass();
assert(superclass);
// Recur.
addFieldsForClass(superclass);
// Forget about the fields from the superclass.
LastElements.clear();
}
// Collect fields from this class and add them to the layout as a chunk.
addDirectFieldsFromClass(theClass);
}
void addDirectFieldsFromClass(ClassDecl *theClass) {
assert(LastElements.empty());
for (Decl *member : theClass->getMembers()) {
VarDecl *var = dyn_cast<VarDecl>(member);
if (!var || var->isComputed()) continue;
auto &eltType = IGM.getTypeInfo(var->getType());
// FIXME: Type-parameter-dependent field layout isn't implemented yet.
if (!eltType.isFixedSize()) {
IGM.unimplemented(var->getLoc(), "non-fixed class layout");
exit(1);
}
LastElements.push_back(ElementLayout::getIncomplete(eltType));
}
// Add those fields to the builder.
addFields(LastElements, LayoutStrategy::Universal);
}
};
}
const StructLayout &ClassTypeInfo::getLayout(IRGenModule &IGM) const {
// Return the cached layout if available.
if (Layout) return *Layout;
// Add the heap header.
ClassLayoutBuilder builder(IGM, getClass());
// Set the body of the class type.
auto classPtrTy = cast<llvm::PointerType>(getStorageType());
auto classTy = cast<llvm::StructType>(classPtrTy->getElementType());
builder.setAsBodyOfStruct(classTy);
// Record the layout.
Layout = new StructLayout(builder, classTy, builder.getLastElements());
return *Layout;
}
/// Cast the base to i8*, apply the given inbounds offset (in bytes,
/// as a size_t), and cast to a pointer to the given type.
llvm::Value *IRGenFunction::emitByteOffsetGEP(llvm::Value *base,
llvm::Value *offset,
llvm::Type *objectType,
const llvm::Twine &name) {
assert(offset->getType() == IGM.SizeTy);
auto addr = Builder.CreateBitCast(base, IGM.Int8PtrTy);
addr = Builder.CreateInBoundsGEP(addr, offset);
return Builder.CreateBitCast(addr, objectType->getPointerTo(), name);
}
/// Cast the base to i8*, apply the given inbounds offset (in bytes,
/// as a size_t), and create an address in the given type.
Address IRGenFunction::emitByteOffsetGEP(llvm::Value *base,
llvm::Value *offset,
const TypeInfo &type,
const llvm::Twine &name) {
auto addr = emitByteOffsetGEP(base, offset, type.getStorageType(), name);
return type.getAddressForPointer(addr);
}
/// Emit a field l-value by applying the given offset to the given base.
static OwnedAddress emitAddressAtOffset(IRGenFunction &IGF,
llvm::Value *base,
llvm::Value *offset,
VarDecl *field) {
auto &fieldTI = IGF.getTypeInfo(field->getType());
auto addr = IGF.emitByteOffsetGEP(base, offset, fieldTI,
base->getName() + "." + field->getName().str());
return OwnedAddress(addr, base);
}
OwnedAddress irgen::projectPhysicalClassMemberAddress(IRGenFunction &IGF,
llvm::Value *base,
SILType baseType,
VarDecl *field) {
auto &baseClassTI = IGF.getTypeInfo(baseType).as<ClassTypeInfo>();
ClassDecl *baseClass = baseType.getClassOrBoundGenericClass();
LayoutClass layout(IGF.IGM, ResilienceScope::Local, baseClass,
baseType.getSwiftRValueType());
auto &entry = layout.getFieldEntry(field);
switch (entry.getAccess()) {
case FieldAccess::ConstantDirect: {
// FIXME: This field index computation is an ugly hack.
unsigned fieldIndex = getFieldIndex(baseClass, field);
Address baseAddr(base, baseClassTI.getHeapAlignment(IGF.IGM));
auto &element = baseClassTI.getElements(IGF.IGM)[fieldIndex];
Address memberAddr = element.project(IGF, baseAddr,
/*non fixed offsets*/ nullptr);
return OwnedAddress(memberAddr, base);
}
case FieldAccess::NonConstantDirect: {
Address offsetA = IGF.IGM.getAddrOfFieldOffset(field, /*indirect*/ false);
auto offset = IGF.Builder.CreateLoad(offsetA, "offset");
return emitAddressAtOffset(IGF, base, offset, field);
}
case FieldAccess::ConstantIndirect: {
auto metadata = emitHeapMetadataRefForHeapObject(IGF, base, baseType);
auto offset = emitClassFieldOffset(IGF, baseClass, field, metadata);
return emitAddressAtOffset(IGF, base, offset, field);
}
case FieldAccess::NonConstantIndirect: {
auto metadata = emitHeapMetadataRefForHeapObject(IGF, base, baseType);
Address indirectOffsetA =
IGF.IGM.getAddrOfFieldOffset(field, /*indirect*/ true);
auto indirectOffset =
IGF.Builder.CreateLoad(indirectOffsetA, "indirect-offset");
auto offsetA =
IGF.emitByteOffsetGEP(metadata, indirectOffset, IGF.IGM.SizeTy);
auto offset =
IGF.Builder.CreateLoad(Address(offsetA, IGF.IGM.getPointerAlignment()));
return emitAddressAtOffset(IGF, base, offset, field);
}
}
llvm_unreachable("bad field-access strategy");
}
/// Emit the deallocating destructor for a class in terms of its destroying
/// destructor.
void irgen::emitDeallocatingDestructor(IRGenModule &IGM,
ClassDecl *theClass,
llvm::Function *deallocator,
llvm::Function *destroyer) {
IRGenFunction IGF(IGM, ExplosionKind::Minimal, deallocator);
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(IGF, deallocator);
Type selfType = theClass->getDeclaredTypeInContext();
const ClassTypeInfo &info =
IGM.getTypeInfo(selfType).as<ClassTypeInfo>();
llvm::Value *obj = deallocator->getArgumentList().begin();
obj = IGF.Builder.CreateBitCast(obj, info.getStorageType());
// The destroying destructor returns the pointer back as a %swift.refcounted,
// so we don't need to keep it live across the call.
obj = IGF.Builder.CreateCall(destroyer, obj);
// Emit the deallocation.
llvm::Value *size = info.getLayout(IGM).emitSize(IGF);
emitDeallocateHeapObject(IGF, obj, size);
IGF.Builder.CreateRetVoid();
}
/// Emit an allocation of a class.
llvm::Value *irgen::emitClassAllocation(IRGenFunction &IGF, SILType selfType) {
// FIXME: Long-term, we clearly need a specialized runtime entry point.
auto &classTI = IGF.IGM.getTypeInfo(selfType).as<ClassTypeInfo>();
auto &layout = classTI.getLayout(IGF.IGM);
llvm::Value *metadata = emitClassHeapMetadataRef(IGF, selfType);
llvm::Value *size = layout.emitSize(IGF);
llvm::Value *alignMask = layout.emitAlignMask(IGF);
llvm::Value *val = IGF.emitAllocObjectCall(metadata, size, alignMask,
"reference.new");
llvm::Type *destType = layout.getType()->getPointerTo();
return IGF.Builder.CreateBitCast(val, destType);
}
/// emitClassDecl - Emit all the declarations associated with this class type.
void IRGenModule::emitClassDecl(ClassDecl *D) {
PrettyStackTraceDecl prettyStackTrace("emitting class metadata for", D);
auto &classTI = Types.getTypeInfo(D).as<ClassTypeInfo>();
auto &layout = classTI.getLayout(*this);
// Emit the class metadata.
emitClassMetadata(*this, D, layout);
// Emit the deallocating destructor.
llvm::Function *deallocator
= getAddrOfDestructor(D, DestructorKind::Deallocating);
llvm::Function *destroyer
= getAddrOfDestructor(D, DestructorKind::Destroying);
emitDeallocatingDestructor(*this, D, deallocator, destroyer);
// FIXME: This is mostly copy-paste from emitExtension;
// figure out how to refactor!
for (Decl *member : D->getMembers()) {
switch (member->getKind()) {
case DeclKind::Import:
case DeclKind::TopLevelCode:
case DeclKind::Protocol:
case DeclKind::EnumElement:
case DeclKind::Extension:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::EnumCase:
llvm_unreachable("decl not allowed in class!");
// We can have meaningful initializers for variables, but
// we can't handle them yet. For the moment, just ignore them.
case DeclKind::PatternBinding:
continue;
case DeclKind::Subscript:
// Getter/setter will be handled separately.
continue;
case DeclKind::TypeAlias:
case DeclKind::AssociatedType:
case DeclKind::GenericTypeParam:
continue;
case DeclKind::Enum:
emitEnumDecl(cast<EnumDecl>(member));
continue;
case DeclKind::Struct:
emitStructDecl(cast<StructDecl>(member));
continue;
case DeclKind::Class:
emitClassDecl(cast<ClassDecl>(member));
continue;
case DeclKind::Var:
if (cast<VarDecl>(member)->isComputed())
// Getter/setter will be handled separately.
continue;
// FIXME: Will need an implementation here for resilience
continue;
case DeclKind::Func:
emitLocalDecls(cast<FuncDecl>(member));
continue;
case DeclKind::Constructor:
emitLocalDecls(cast<ConstructorDecl>(member));
continue;
case DeclKind::Destructor:
emitLocalDecls(cast<DestructorDecl>(member));
continue;
}
llvm_unreachable("bad extension member kind");
}
}
namespace {
enum ForMetaClass_t : bool {
ForClass = false,
ForMetaClass = true
};
typedef std::pair<ClassDecl*, Module*> CategoryNameKey;
/// Used to provide unique names to ObjC categories generated by Swift
/// extensions. The first category for a class in a module gets the module's
/// name as its key, e.g., NSObject (MySwiftModule). Another extension of the
/// same class in the same module gets a category name with a number appended,
/// e.g., NSObject (MySwiftModule1).
llvm::DenseMap<CategoryNameKey, unsigned> CategoryCounts;
/// A class for building class data (in Objective-C terms, class_ro_t) or
/// category data (category_t).
class ClassDataBuilder : public ClassMemberVisitor<ClassDataBuilder> {
IRGenModule &IGM;
ClassDecl *TheClass;
ExtensionDecl *TheExtension;
const LayoutClass *Layout;
const StructLayout *FieldLayout;
bool HasNonTrivialDestructor = false;
bool HasNonTrivialConstructor = false;
llvm::SmallString<16> CategoryName;
SmallVector<llvm::Constant*, 8> Ivars;
SmallVector<llvm::Constant*, 16> InstanceMethods;
SmallVector<llvm::Constant*, 16> ClassMethods;
SmallVector<llvm::Constant*, 4> Protocols;
SmallVector<llvm::Constant*, 8> Properties;
llvm::Constant *Name = nullptr;
unsigned NextFieldIndex = 0;
public:
ClassDataBuilder(IRGenModule &IGM, ClassDecl *theClass,
const LayoutClass &layout,
const StructLayout &fieldLayout)
: IGM(IGM), TheClass(theClass), TheExtension(nullptr),
Layout(&layout), FieldLayout(&fieldLayout) {
visitMembers(TheClass);
}
ClassDataBuilder(IRGenModule &IGM, ClassDecl *theClass,
ExtensionDecl *theExtension)
: IGM(IGM), TheClass(theClass), TheExtension(theExtension),
Layout(nullptr), FieldLayout(nullptr)
{
buildCategoryName(CategoryName);
for (Decl *member : TheExtension->getMembers())
visit(member);
// ObjC protocol conformances may need to pull method descriptors for
// definitions from other contexts into the category.
for (unsigned i = 0, size = TheExtension->getProtocols().size();
i < size; ++i)
visitObjCConformance(TheExtension->getProtocols()[i],
TheExtension->getConformances()[i]);
}
void visitObjCConformance(ProtocolDecl *protocol,
ProtocolConformance *conformance) {
assert(TheExtension &&
"should only consider objc conformances for extensions");
if (protocol->isObjC())
for (auto &mapping : conformance->getWitnesses()) {
ValueDecl *vd = mapping.second.getDecl();
if (vd->getDeclContext() != TheExtension)
visit(vd);
}
for (auto &inherited : conformance->getInheritedConformances())
visitObjCConformance(inherited.first, inherited.second);
}
/// Build the metaclass stub object.
void buildMetaclassStub() {
assert(Layout && "can't build a metaclass from a category");
// The isa is the metaclass pointer for the root class.
auto rootClass = Layout->getRootClassForMetaclass();
auto rootPtr = IGM.getAddrOfMetaclassObject(rootClass);
// The superclass of the metaclass is the metaclass of the
// superclass. Note that for metaclass stubs, we can always
// ignore parent contexts and generic arguments.
//
// If this class has no formal superclass, then its actual
// superclass is SwiftObject, i.e. the root class.
llvm::Constant *superPtr;
if (TheClass->hasSuperclass()) {
auto base = TheClass->getSuperclass()->getClassOrBoundGenericClass();
superPtr = IGM.getAddrOfMetaclassObject(base);
} else {
superPtr = rootPtr;
}
auto dataPtr = emitROData(ForMetaClass);
dataPtr = llvm::ConstantExpr::getPtrToInt(dataPtr, IGM.IntPtrTy);
llvm::Constant *fields[] = {
rootPtr,
superPtr,
IGM.getObjCEmptyCachePtr(),
IGM.getObjCEmptyVTablePtr(),
dataPtr
};
auto init = llvm::ConstantStruct::get(IGM.ObjCClassStructTy,
makeArrayRef(fields));
auto metaclass =
cast<llvm::GlobalVariable>(IGM.getAddrOfMetaclassObject(TheClass));
metaclass->setInitializer(init);
}
private:
void buildCategoryName(SmallVectorImpl<char> &s) {
llvm::raw_svector_ostream os(s);
// Find the module the extension is declared in.
DeclContext *ModuleDC = TheExtension;
do {
ModuleDC = ModuleDC->getParent();
} while (ModuleDC && !isa<Module>(ModuleDC));
Module *TheModule = cast<Module>(ModuleDC);
os << TheModule->Name;
unsigned categoryCount = CategoryCounts[{TheClass, TheModule}]++;
if (categoryCount > 0)
os << categoryCount;
os.flush();
}
public:
llvm::Constant *emitCategory() {
assert(TheExtension && "can't emit category data for a class");
SmallVector<llvm::Constant*, 11> fields;
// struct category_t {
// char const *name;
fields.push_back(IGM.getAddrOfGlobalString(CategoryName));
// const class_t *theClass;
if (TheClass->hasClangNode())
fields.push_back(IGM.getAddrOfObjCClass(TheClass));
else {
llvm::Constant *metadata = tryEmitConstantHeapMetadataRef(IGM,
TheClass->getDeclaredTypeOfContext()->getCanonicalType());
assert(metadata &&
"extended objc class doesn't have constant metadata?");
fields.push_back(metadata);
}
// const method_list_t *instanceMethods;
fields.push_back(buildInstanceMethodList());
// const method_list_t *classMethods;
fields.push_back(buildClassMethodList());
// const protocol_list_t *baseProtocols;
fields.push_back(buildProtocolList());
// const property_list_t *properties;
fields.push_back(buildPropertyList());
// };
return buildGlobalVariable(fields, "_CATEGORY_");
}
llvm::Constant *emitROData(ForMetaClass_t forMeta) {
assert(Layout && FieldLayout && "can't emit rodata for a category");
SmallVector<llvm::Constant*, 11> fields;
// struct _class_ro_t {
// uint32_t flags;
fields.push_back(buildFlags(forMeta));
// uint32_t instanceStart;
// uint32_t instanceSize;
// The runtime requires that the ivar offsets be initialized to
// a valid layout of the ivars of this class, bounded by these
// two values. If the instanceSize of the superclass equals the
// stored instanceStart of the subclass, the ivar offsets
// will not be changed.
Size instanceStart = Size(0);
Size instanceSize = Size(0);
if (!forMeta) {
instanceSize = FieldLayout->getSize();
if (FieldLayout->getElements().empty()) {
instanceStart = instanceSize;
} else {
// FIXME: assumes layout is always sequential!
instanceStart = FieldLayout->getElements()[0].getByteOffset();
}
}
fields.push_back(llvm::ConstantInt::get(IGM.Int32Ty,
instanceStart.getValue()));
fields.push_back(llvm::ConstantInt::get(IGM.Int32Ty,
instanceSize.getValue()));
// uint32_t reserved; // only when building for 64bit targets
if (IGM.getPointerAlignment().getValue() > 4) {
assert(IGM.getPointerAlignment().getValue() == 8);
fields.push_back(llvm::ConstantInt::get(IGM.Int32Ty, 0));
}
// const uint8_t *ivarLayout;
// GC/ARC layout. TODO.
fields.push_back(null());
// const char *name;
// It is correct to use the same name for both class and metaclass.
fields.push_back(buildName());
// const method_list_t *baseMethods;
fields.push_back(forMeta ? buildClassMethodList()
: buildInstanceMethodList());
// const protocol_list_t *baseProtocols;
// Apparently, this list is the same in the class and the metaclass.
fields.push_back(buildProtocolList());
// const ivar_list_t *ivars;
fields.push_back(forMeta ? null() : buildIvarList());
// const uint8_t *weakIvarLayout;
// More GC/ARC layout. TODO.
fields.push_back(null());
// const property_list_t *baseProperties;
fields.push_back(forMeta ? null() : buildPropertyList());
// };
auto dataSuffix = forMeta ? "_METACLASS_DATA_" : "_DATA_";
return buildGlobalVariable(fields, dataSuffix);
}
private:
llvm::Constant *buildFlags(ForMetaClass_t forMeta) {
ClassFlags flags = ClassFlags::CompiledByARC;
// Mark metaclasses as appropriate.
if (forMeta) {
flags |= ClassFlags::Meta;
// Non-metaclasses need us to record things whether primitive
// construction/destructor is trivial.
} else if (HasNonTrivialDestructor || HasNonTrivialConstructor) {
flags |= ClassFlags::HasCXXStructors;
if (!HasNonTrivialConstructor)
flags |= ClassFlags::HasCXXDestructorOnly;
}
// FIXME: set ClassFlags::Hidden when appropriate
return llvm::ConstantInt::get(IGM.Int32Ty, uint32_t(flags));
}
llvm::Constant *buildName() {
if (Name) return Name;
// If the class is being exported as an Objective-C class, we
// should export it under its formal name.
if (TheClass->isObjC()) {
Name = IGM.getAddrOfGlobalString(TheClass->getName().str());
return Name;
}
// Otherwise, we need to mangle the type.
auto type = TheClass->getDeclaredType()->getCanonicalType();
// We add the "_Tt" prefix to make this a reserved name that
// will not conflict with any valid Objective-C class name.
llvm::SmallString<128> buffer;
buffer += "_Tt";
Name = IGM.getAddrOfGlobalString(IGM.mangleType(type, buffer));
return Name;
}
llvm::Constant *null() {
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
}
/*** Methods ***********************************************************/
public:
/// Methods need to be collected into the appropriate methods list.
void visitFuncDecl(FuncDecl *method) {
if (!requiresObjCMethodDescriptor(method)) return;
llvm::Constant *entry = emitObjCMethodDescriptor(IGM, method);
if (!method->isStatic()) {
InstanceMethods.push_back(entry);
} else {
ClassMethods.push_back(entry);
}
}
/// Constructors need to be collected into the appropriate methods list.
void visitConstructorDecl(ConstructorDecl *constructor) {
if (!requiresObjCMethodDescriptor(constructor)) return;
llvm::Constant *entry = emitObjCMethodDescriptor(IGM, constructor);
InstanceMethods.push_back(entry);
}
private:
llvm::Constant *buildClassMethodList() {
return buildMethodList(ClassMethods, TheExtension
? "_CATEGORY_CLASS_METHODS_"
: "_CLASS_METHODS_");
}
llvm::Constant *buildInstanceMethodList() {
return buildMethodList(InstanceMethods, TheExtension
? "_CATEGORY_INSTANCE_METHODS_"
: "_INSTANCE_METHODS_");
}
/// struct method_list_t {
/// uint32_t entsize; // runtime uses low bits for its own purposes
/// uint32_t count;
/// method_t list[count];
/// };
///
/// This method does not return a value of a predictable type.
llvm::Constant *buildMethodList(ArrayRef<llvm::Constant*> methods,
StringRef name) {
return buildOptionalList(methods, 3 * IGM.getPointerSize(), name);
}
/*** Protocols *********************************************************/
/// typedef uintptr_t protocol_ref_t; // protocol_t*, but unremapped
llvm::Constant *buildProtocolRef(ProtocolDecl *protocol) {
// FIXME
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
}
/// struct protocol_list_t {
/// uintptr_t count;
/// protocol_ref_t[count];
/// };
///
/// This method does not return a value of a predictable type.
llvm::Constant *buildProtocolList() {
return buildOptionalList(Protocols, Size(0), TheExtension
? "_CATEGORY_PROTOCOLS_"
: "_PROTOCOLS_");
}
/*** Ivars *************************************************************/
public:
/// Variables might be stored or computed.
void visitVarDecl(VarDecl *var) {
if (var->isComputed()) {
visitProperty(var);
} else {
visitStoredVar(var);
}
}
private:
/// Ivars need to be collected in the ivars list, and they also
/// affect flags.
void visitStoredVar(VarDecl *var) {
// FIXME: how to handle ivar extensions in categories?
if (!Layout && !FieldLayout)
return;
Ivars.push_back(buildIvar(var));
if (!IGM.isPOD(var->getType()->getCanonicalType(),
ResilienceScope::Local)) {
HasNonTrivialDestructor = true;
}
// Build property accessors for the ivar if necessary.
visitProperty(var);
}
/// struct ivar_t {
/// uintptr_t *offset;
/// const char *name;
/// const char *type;
/// uint32_t alignment;
/// uint32_t size;
/// };
llvm::Constant *buildIvar(VarDecl *ivar) {
assert(Layout && FieldLayout && "can't build ivar for category");
// FIXME: this is not always the right thing to do!
auto &elt = FieldLayout->getElements()[NextFieldIndex++];
auto offsetAddr = IGM.getAddrOfFieldOffset(ivar, /*indirect*/ false);
auto offsetVar = cast<llvm::GlobalVariable>(offsetAddr.getAddress());
offsetVar->setConstant(false);
auto offsetVal =
llvm::ConstantInt::get(IGM.IntPtrTy, elt.getByteOffset().getValue());
offsetVar->setInitializer(offsetVal);
// TODO: clang puts this in __TEXT,__objc_methname,cstring_literals
auto name = IGM.getAddrOfGlobalString(ivar->getName().str());
// TODO: clang puts this in __TEXT,__objc_methtype,cstring_literals
auto typeEncode = llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
auto &ivarTI = IGM.getTypeInfo(ivar->getType());
Size size;
Alignment alignment;
if (auto fixedTI = dyn_cast<FixedTypeInfo>(&ivarTI)) {
size = fixedTI->getFixedSize();
alignment = fixedTI->getFixedAlignment();
} else {
// FIXME: set something up to fill these in at runtime!
size = Size(0);
alignment = Alignment(0);
}
// If the size is larger than we can represent in 32-bits,
// complain about the unimplementable ivar.
if (uint32_t(size.getValue()) != size.getValue()) {
IGM.error(ivar->getLoc(),
"ivar size (" + Twine(size.getValue()) +
" bytes) overflows Objective-C ivar layout");
size = Size(0);
}
llvm::Constant *fields[] = {
offsetVar,
name,
typeEncode,
llvm::ConstantInt::get(IGM.Int32Ty, size.getValue()),
llvm::ConstantInt::get(IGM.Int32Ty, alignment.getValue())
};
return llvm::ConstantStruct::getAnon(IGM.getLLVMContext(), fields);
}
/// struct ivar_list_t {
/// uint32_t entsize;
/// uint32_t count;
/// ivar_t list[count];
/// };
///
/// This method does not return a value of a predictable type.
llvm::Constant *buildIvarList() {
Size eltSize = 3 * IGM.getPointerSize() + Size(8);
return buildOptionalList(Ivars, eltSize, "_IVARS_");
}
/*** Properties ********************************************************/
/// Properties need to be collected in the properties list.
void visitProperty(VarDecl *var) {
if (requiresObjCPropertyDescriptor(var)) {
if (llvm::Constant *prop = buildProperty(var))
Properties.push_back(prop);
auto getter_setter = emitObjCPropertyMethodDescriptors(IGM, var);
InstanceMethods.push_back(getter_setter.first);
if (getter_setter.second)
InstanceMethods.push_back(getter_setter.second);
}
}
/// Build the property attribute string for a property decl.
void buildPropertyAttributes(VarDecl *prop, SmallVectorImpl<char> &out,
ClassDecl *theClass) {
llvm::raw_svector_ostream outs(out);
// Emit the type encoding.
// FIXME: Only correct for class types.
outs << "T@";
// FIXME: Assume 'NSObject' really means 'id'.
if (theClass->getName() != prop->getASTContext().getIdentifier("NSObject"))
outs << '"' << theClass->getName().str() << '"';
// FIXME: Emit attributes for (nonatomic, strong) if the property has a
// setter, or (nonatomic, readonly) if the property has only a getter.
// Are these attributes always appropriate?
outs << (prop->isSettable()
? ",&,N" // strong, nonatomic
: ",R,N"); // readonly, nonatomic
// Emit the selector name for the getter. Clang only appears to emit the
// setter name if the property has an explicit setter= attribute.
outs << ",V" << prop->getName();
outs.flush();
}
/// struct property_t {
/// const char *name;
/// const char *attributes;
/// };
llvm::Constant *buildProperty(VarDecl *prop) {
// FIXME: For now we only emit properties of ObjC class type.
ClassDecl *theClass
= IGM.SILMod->Types.getLoweredBridgedType(prop->getType(),
AbstractCC::ObjCMethod)
->getClassOrBoundGenericClass();
if (!theClass)
return nullptr;
if (!theClass->isObjC())
return nullptr;
llvm::SmallString<16> propertyAttributes;
buildPropertyAttributes(prop, propertyAttributes, theClass);
llvm::Constant *fields[] = {
IGM.getAddrOfGlobalString(prop->getName().str()),
IGM.getAddrOfGlobalString(propertyAttributes)
};
return llvm::ConstantStruct::getAnon(IGM.getLLVMContext(), fields);
}
/// struct property_list_t {
/// uint32_t entsize;
/// uint32_t count;
/// property_t list[count];
/// };
///
/// This method does not return a value of a predictable type.
llvm::Constant *buildPropertyList() {
Size eltSize = 2 * IGM.getPointerSize();
return buildOptionalList(Properties, eltSize, TheExtension
? "_CATEGORY_PROPERTIES_"
: "_PROPERTIES_");
}
/*** General ***********************************************************/
/// Build a list structure from the given array of objects.
/// If the array is empty, use null. The assumption is that every
/// initializer has the same size.
///
/// \param optionalEltSize - if non-zero, a size which needs
/// to be placed in the list header
llvm::Constant *buildOptionalList(ArrayRef<llvm::Constant*> objects,
Size optionalEltSize,
StringRef nameBase) {
if (objects.empty())
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
SmallVector<llvm::Constant*, 3> fields;
// In all of the foo_list_t structs, either:
// - there's a 32-bit entry size and a 32-bit count or
// - there's no entry size and a uintptr_t count.
if (!optionalEltSize.isZero()) {
fields.push_back(llvm::ConstantInt::get(IGM.Int32Ty,
optionalEltSize.getValue()));
fields.push_back(llvm::ConstantInt::get(IGM.Int32Ty, objects.size()));
} else {
fields.push_back(llvm::ConstantInt::get(IGM.IntPtrTy, objects.size()));
}
auto arrayTy =
llvm::ArrayType::get(objects[0]->getType(), objects.size());
fields.push_back(llvm::ConstantArray::get(arrayTy, objects));
return buildGlobalVariable(fields, nameBase);
}
/// Build a private global variable as a structure containing the
/// given fields.
llvm::Constant *buildGlobalVariable(ArrayRef<llvm::Constant*> fields,
StringRef nameBase) {
auto init = llvm::ConstantStruct::getAnon(IGM.getLLVMContext(), fields);
auto var = new llvm::GlobalVariable(IGM.Module, init->getType(),
/*constant*/ true,
llvm::GlobalVariable::PrivateLinkage,
init,
Twine(nameBase)
+ TheClass->getName().str()
+ (TheExtension
? Twine("_$_") + CategoryName.str()
: Twine()));
var->setAlignment(IGM.getPointerAlignment().getValue());
var->setSection("__DATA, __objc_const");
return var;
}
public:
/// Member types don't get any representation.
/// Maybe this should change for reflection purposes?
void visitTypeDecl(TypeDecl *type) {}
/// Pattern-bindings don't require anything special as long as
/// these initializations are performed in the constructor, not
/// .cxx_construct.
void visitPatternBindingDecl(PatternBindingDecl *binding) {}
/// Subscripts should probably be collected in extended metadata.
void visitSubscriptDecl(SubscriptDecl *subscript) {
if (!requiresObjCSubscriptDescriptor(subscript)) return;
auto getter_setter = emitObjCSubscriptMethodDescriptors(IGM, subscript);
InstanceMethods.push_back(getter_setter.first);
if (getter_setter.second)
InstanceMethods.push_back(getter_setter.second);
}
/// The destructor doesn't really require any special
/// representation here.
void visitDestructorDecl(DestructorDecl *dtor) {}
};
}
/// Emit the private data (RO-data) associated with a class.
llvm::Constant *irgen::emitClassPrivateData(IRGenModule &IGM,
ClassDecl *cls) {
assert(IGM.ObjCInterop && "emitting RO-data outside of interop mode");
CanType type = cls->getDeclaredTypeInContext()->getCanonicalType();
auto &classTI = IGM.getTypeInfo(type).as<ClassTypeInfo>();
auto &fieldLayout = classTI.getLayout(IGM);
LayoutClass layout(IGM, ResilienceScope::Universal, cls, type);
ClassDataBuilder builder(IGM, cls, layout, fieldLayout);
// First, build the metaclass object.
builder.buildMetaclassStub();
// Then build the class RO-data.
return builder.emitROData(ForClass);
}
/// Emit the metadata for an ObjC category.
llvm::Constant *irgen::emitCategoryData(IRGenModule &IGM,
ExtensionDecl *ext) {
assert(IGM.ObjCInterop && "emitting RO-data outside of interop mode");
ClassDecl *cls = ext->getDeclaredTypeInContext()
->getClassOrBoundGenericClass();
assert(cls && "generating category metadata for a non-class extension");
ClassDataBuilder builder(IGM, cls, ext);
return builder.emitCategory();
}
const TypeInfo *TypeConverter::convertClassType(ClassDecl *D) {
llvm::StructType *ST = IGM.createNominalType(D);
llvm::PointerType *irType = ST->getPointerTo();
bool hasSwiftRefcount = ::hasSwiftRefcount(IGM, D);
return new ClassTypeInfo(irType, IGM.getPointerSize(),
IGM.getPointerAlignment(),
D, hasSwiftRefcount);
}
/// Lazily declare the Swift root-class, SwiftObject.
ClassDecl *IRGenModule::getSwiftRootClass() {
if (SwiftRootClass) return SwiftRootClass;
auto name = Context.getIdentifier("SwiftObject");
// Make a really fake-looking class.
SwiftRootClass = new (Context) ClassDecl(SourceLoc(), name, SourceLoc(),
MutableArrayRef<TypeLoc>(),
/*generics*/ nullptr,
Context.TheBuiltinModule);
SwiftRootClass->computeType();
SwiftRootClass->getMutableAttrs().ObjC = true;
SwiftRootClass->setIsObjC(true);
return SwiftRootClass;
}