Files
swift-mirror/lib/DependencyScan/ModuleDependencyScanner.cpp
Artem Chikin e08b78226c [Dependency Scanning] Consider '-swift-module-file' inputs when looking for dependencies
Previously this flag was only used to pass explicit dependencies to compilation tasks. This change adds support for the dependency scanner to also consider these inputs when resolving dependencies.

Resolves https://github.com/swiftlang/swift-driver/issues/1951
2025-07-18 09:48:02 -07:00

1994 lines
86 KiB
C++

//===--- ModuleDependencyScanner.cpp - Compute module dependencies --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/DependencyScan/ModuleDependencyScanner.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ModuleDependencies.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/PluginLoader.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/FileTypes.h"
#include "swift/Basic/PrettyStackTrace.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/Frontend/CompileJobCacheKey.h"
#include "swift/Frontend/ModuleInterfaceLoader.h"
#include "swift/Serialization/ScanningLoaders.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "swift/Subsystems.h"
#include "clang/CAS/IncludeTree.h"
#include "clang/Frontend/CompilerInstance.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/CAS/CASProvidingFileSystem.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MemoryBufferRef.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/VersionTuple.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/VirtualOutputBackend.h"
#include "llvm/Support/VirtualOutputBackends.h"
#include "llvm/Support/VirtualOutputFile.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <optional>
using namespace swift;
static void findPath_dfs(ModuleDependencyID X, ModuleDependencyID Y,
ModuleDependencyIDSet &visited,
std::vector<ModuleDependencyID> &stack,
std::vector<ModuleDependencyID> &result,
const ModuleDependenciesCache &cache) {
stack.push_back(X);
if (X == Y) {
copy(stack.begin(), stack.end(), std::back_inserter(result));
return;
}
visited.insert(X);
auto optionalNode = cache.findDependency(X);
auto node = optionalNode.value();
assert(optionalNode.has_value() && "Expected cache value for dependency.");
for (const auto &dep : node->getModuleImports()) {
std::optional<ModuleDependencyKind> lookupKind = std::nullopt;
// Underlying Clang module needs an explicit lookup to avoid confusing it
// with the parent Swift module.
if ((dep.importIdentifier == X.ModuleName && node->isSwiftModule()) ||
node->isClangModule())
lookupKind = ModuleDependencyKind::Clang;
auto optionalDepNode =
cache.findDependency(dep.importIdentifier, lookupKind);
if (!optionalDepNode.has_value())
continue;
auto depNode = optionalDepNode.value();
auto depID = ModuleDependencyID{dep.importIdentifier, depNode->getKind()};
if (!visited.count(depID)) {
findPath_dfs(depID, Y, visited, stack, result, cache);
}
}
stack.pop_back();
}
static std::vector<ModuleDependencyID>
findPathToDependency(ModuleDependencyID dependency,
const ModuleDependenciesCache &cache) {
auto mainModuleDep = cache.findDependency(cache.getMainModuleName(),
ModuleDependencyKind::SwiftSource);
if (!mainModuleDep.has_value())
return {};
auto mainModuleID = ModuleDependencyID{cache.getMainModuleName().str(),
ModuleDependencyKind::SwiftSource};
auto visited = ModuleDependencyIDSet();
auto stack = std::vector<ModuleDependencyID>();
auto dependencyPath = std::vector<ModuleDependencyID>();
findPath_dfs(mainModuleID, dependency, visited, stack, dependencyPath, cache);
return dependencyPath;
}
static bool isSwiftDependencyKind(ModuleDependencyKind Kind) {
return Kind == ModuleDependencyKind::SwiftInterface ||
Kind == ModuleDependencyKind::SwiftSource ||
Kind == ModuleDependencyKind::SwiftBinary;
}
// The Swift compiler does not have a concept of a working directory.
// It is instead handled by the Swift driver by resolving relative paths
// according to the driver's notion of a working directory. On the other hand,
// Clang does have a concept working directory which may be specified on a
// Clang invocation with '-working-directory'. If so, it is crucial that we
// use this directory as an argument to the Clang scanner invocation below.
static std::string
computeClangWorkingDirectory(const std::vector<std::string> &commandLineArgs,
const ASTContext &ctx) {
std::string workingDir;
auto clangWorkingDirPos = std::find(
commandLineArgs.rbegin(), commandLineArgs.rend(), "-working-directory");
if (clangWorkingDirPos == commandLineArgs.rend())
workingDir =
ctx.SourceMgr.getFileSystem()->getCurrentWorkingDirectory().get();
else {
if (clangWorkingDirPos - 1 == commandLineArgs.rend()) {
ctx.Diags.diagnose(SourceLoc(), diag::clang_dependency_scan_error,
"Missing '-working-directory' argument");
workingDir =
ctx.SourceMgr.getFileSystem()->getCurrentWorkingDirectory().get();
} else
workingDir = *(clangWorkingDirPos - 1);
}
return workingDir;
}
static std::string moduleCacheRelativeLookupModuleOutput(
const clang::tooling::dependencies::ModuleDeps &MD,
clang::tooling::dependencies::ModuleOutputKind MOK,
const StringRef moduleCachePath, const StringRef stableModuleCachePath,
const StringRef runtimeResourcePath) {
llvm::SmallString<128> outputPath(moduleCachePath);
if (MD.IsInStableDirectories)
outputPath = stableModuleCachePath;
// FIXME: This is a hack to treat Clang modules defined in the compiler's
// own resource directory as stable, when they are not reported as such
// by the Clang scanner.
if (!runtimeResourcePath.empty() &&
hasPrefix(llvm::sys::path::begin(MD.ClangModuleMapFile),
llvm::sys::path::end(MD.ClangModuleMapFile),
llvm::sys::path::begin(runtimeResourcePath),
llvm::sys::path::end(runtimeResourcePath)))
outputPath = stableModuleCachePath;
llvm::sys::path::append(outputPath,
MD.ID.ModuleName + "-" + MD.ID.ContextHash);
switch (MOK) {
case clang::tooling::dependencies::ModuleOutputKind::ModuleFile:
llvm::sys::path::replace_extension(
outputPath, getExtension(swift::file_types::TY_ClangModuleFile));
break;
case clang::tooling::dependencies::ModuleOutputKind::DependencyFile:
llvm::sys::path::replace_extension(
outputPath, getExtension(swift::file_types::TY_Dependencies));
break;
case clang::tooling::dependencies::ModuleOutputKind::DependencyTargets:
return MD.ID.ModuleName + "-" + MD.ID.ContextHash;
case clang::tooling::dependencies::ModuleOutputKind::
DiagnosticSerializationFile:
llvm::sys::path::replace_extension(
outputPath, getExtension(swift::file_types::TY_SerializedDiagnostics));
break;
}
return outputPath.str().str();
}
static std::vector<std::string> inputSpecificClangScannerCommand(
const std::vector<std::string> &baseCommandLineArgs,
std::optional<StringRef> sourceFileName) {
std::vector<std::string> result(baseCommandLineArgs.begin(),
baseCommandLineArgs.end());
auto sourceFilePos =
std::find(result.begin(), result.end(), "<swift-imported-modules>");
assert(sourceFilePos != result.end());
if (sourceFileName.has_value())
*sourceFilePos = sourceFileName->str();
else
result.erase(sourceFilePos);
return result;
}
static std::string remapPath(llvm::PrefixMapper *PrefixMapper, StringRef Path) {
if (!PrefixMapper)
return Path.str();
return PrefixMapper->mapToString(Path);
}
static llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem>
getClangScanningFS(std::shared_ptr<llvm::cas::ObjectStore> cas,
ASTContext &ctx) {
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> baseFileSystem =
llvm::vfs::createPhysicalFileSystem();
ClangInvocationFileMapping fileMapping =
applyClangInvocationMapping(ctx, nullptr, baseFileSystem, false);
if (cas)
return llvm::cas::createCASProvidingFileSystem(cas, baseFileSystem);
return baseFileSystem;
}
ModuleDependencyScanningWorker::ModuleDependencyScanningWorker(
SwiftDependencyScanningService &globalScanningService,
const CompilerInvocation &ScanCompilerInvocation,
const SILOptions &SILOptions, ASTContext &ScanASTContext,
swift::DependencyTracker &DependencyTracker,
std::shared_ptr<llvm::cas::ObjectStore> CAS,
std::shared_ptr<llvm::cas::ActionCache> ActionCache,
llvm::PrefixMapper *Mapper, DiagnosticEngine &Diagnostics)
: workerCompilerInvocation(
std::make_unique<CompilerInvocation>(ScanCompilerInvocation)),
workerASTContext(std::unique_ptr<ASTContext>(
ASTContext::get(workerCompilerInvocation->getLangOptions(),
workerCompilerInvocation->getTypeCheckerOptions(),
workerCompilerInvocation->getSILOptions(),
workerCompilerInvocation->getSearchPathOptions(),
workerCompilerInvocation->getClangImporterOptions(),
workerCompilerInvocation->getSymbolGraphOptions(),
workerCompilerInvocation->getCASOptions(),
workerCompilerInvocation->getSerializationOptions(),
ScanASTContext.SourceMgr, Diagnostics))),
scanningASTDelegate(std::make_unique<InterfaceSubContextDelegateImpl>(
workerASTContext->SourceMgr, &workerASTContext->Diags,
workerASTContext->SearchPathOpts, workerASTContext->LangOpts,
workerASTContext->ClangImporterOpts, workerASTContext->CASOpts,
workerCompilerInvocation->getFrontendOptions(),
/* buildModuleCacheDirIfAbsent */ false,
getModuleCachePathFromClang(
ScanASTContext.getClangModuleLoader()->getClangInstance()),
workerCompilerInvocation->getFrontendOptions()
.PrebuiltModuleCachePath,
workerCompilerInvocation->getFrontendOptions()
.BackupModuleInterfaceDir,
workerCompilerInvocation->getFrontendOptions()
.SerializeModuleInterfaceDependencyHashes,
workerCompilerInvocation->getFrontendOptions()
.shouldTrackSystemDependencies(),
RequireOSSAModules_t(SILOptions))),
clangScanningTool(*globalScanningService.ClangScanningService,
getClangScanningFS(CAS, ScanASTContext)),
moduleOutputPath(workerCompilerInvocation->getFrontendOptions()
.ExplicitModulesOutputPath),
sdkModuleOutputPath(workerCompilerInvocation->getFrontendOptions()
.ExplicitSDKModulesOutputPath),
CAS(CAS), ActionCache(ActionCache), PrefixMapper(Mapper) {
auto loader = std::make_unique<PluginLoader>(
*workerASTContext, /*DepTracker=*/nullptr,
workerCompilerInvocation->getFrontendOptions().CacheReplayPrefixMap,
workerCompilerInvocation->getFrontendOptions().DisableSandbox);
workerASTContext->setPluginLoader(std::move(loader));
// Set up the required command-line arguments and working directory
// configuration required for clang dependency scanner queries
auto scanClangImporter =
static_cast<ClangImporter *>(ScanASTContext.getClangModuleLoader());
clangScanningBaseCommandLineArgs =
scanClangImporter->getClangDepScanningInvocationArguments(ScanASTContext);
clangScanningModuleCommandLineArgs = inputSpecificClangScannerCommand(
clangScanningBaseCommandLineArgs, std::nullopt);
clangScanningWorkingDirectoryPath = computeClangWorkingDirectory(
clangScanningBaseCommandLineArgs, ScanASTContext);
// Handle clang arguments. For caching build, all arguments are passed
// with `-direct-clang-cc1-module-build`.
if (ScanASTContext.ClangImporterOpts.ClangImporterDirectCC1Scan) {
swiftModuleClangCC1CommandLineArgs.push_back(
"-direct-clang-cc1-module-build");
for (auto &Arg : scanClangImporter->getSwiftExplicitModuleDirectCC1Args()) {
swiftModuleClangCC1CommandLineArgs.push_back("-Xcc");
swiftModuleClangCC1CommandLineArgs.push_back(Arg);
}
} else {
swiftModuleClangCC1CommandLineArgs.push_back("-Xcc");
swiftModuleClangCC1CommandLineArgs.push_back("-fno-implicit-modules");
swiftModuleClangCC1CommandLineArgs.push_back("-Xcc");
swiftModuleClangCC1CommandLineArgs.push_back("-fno-implicit-module-maps");
}
// Set up the Swift module loader for Swift queries.
swiftModuleScannerLoader = std::make_unique<SwiftModuleScanner>(
*workerASTContext,
workerCompilerInvocation->getSearchPathOptions().ModuleLoadMode,
*scanningASTDelegate, moduleOutputPath, sdkModuleOutputPath,
swiftModuleClangCC1CommandLineArgs,
workerCompilerInvocation->getSearchPathOptions().ExplicitSwiftModuleInputs);
}
SwiftModuleScannerQueryResult
ModuleDependencyScanningWorker::scanFilesystemForSwiftModuleDependency(
Identifier moduleName, bool isTestableImport) {
return swiftModuleScannerLoader->lookupSwiftModule(moduleName,
isTestableImport);
}
ModuleDependencyVector
ModuleDependencyScanningWorker::scanFilesystemForClangModuleDependency(
Identifier moduleName,
const llvm::DenseSet<clang::tooling::dependencies::ModuleID>
&alreadySeenModules) {
auto lookupModuleOutput =
[this](const clang::tooling::dependencies::ModuleDeps &MD,
const clang::tooling::dependencies::ModuleOutputKind MOK)
-> std::string {
return moduleCacheRelativeLookupModuleOutput(
MD, MOK, moduleOutputPath, sdkModuleOutputPath,
workerASTContext->SearchPathOpts.RuntimeResourcePath);
};
auto clangModuleDependencies = clangScanningTool.getModuleDependencies(
moduleName.str(), clangScanningModuleCommandLineArgs,
clangScanningWorkingDirectoryPath, alreadySeenModules,
lookupModuleOutput);
if (!clangModuleDependencies) {
auto errorStr = toString(clangModuleDependencies.takeError());
// We ignore the "module 'foo' not found" error, the Swift dependency
// scanner will report such an error only if all of the module loaders
// fail as well.
if (errorStr.find("fatal error: module '" + moduleName.str().str() +
"' not found") == std::string::npos)
workerASTContext->Diags.diagnose(
SourceLoc(), diag::clang_dependency_scan_error, errorStr);
return {};
}
return ClangImporter::bridgeClangModuleDependencies(
*workerASTContext, clangScanningTool, *clangModuleDependencies,
lookupModuleOutput,
[&](StringRef path) { return remapPath(PrefixMapper, path); });
}
bool ModuleDependencyScanningWorker::scanHeaderDependenciesOfSwiftModule(
const ASTContext &ctx, ModuleDependencyID moduleID,
std::optional<StringRef> headerPath,
std::optional<llvm::MemoryBufferRef> sourceBuffer,
ModuleDependenciesCache &cache,
ModuleDependencyIDSetVector &headerClangModuleDependencies,
std::vector<std::string> &headerFileInputs,
std::vector<std::string> &bridgingHeaderCommandLine,
std::optional<std::string> &includeTreeID) {
// Scan the specified textual header file and collect its dependencies
auto scanHeaderDependencies = [&]()
-> llvm::Expected<clang::tooling::dependencies::TranslationUnitDeps> {
auto lookupModuleOutput =
[this, &ctx](const clang::tooling::dependencies::ModuleDeps &MD,
const clang::tooling::dependencies::ModuleOutputKind MOK)
-> std::string {
return moduleCacheRelativeLookupModuleOutput(
MD, MOK, moduleOutputPath, sdkModuleOutputPath,
ctx.SearchPathOpts.RuntimeResourcePath);
};
auto dependencies = clangScanningTool.getTranslationUnitDependencies(
inputSpecificClangScannerCommand(clangScanningBaseCommandLineArgs,
headerPath),
clangScanningWorkingDirectoryPath, cache.getAlreadySeenClangModules(),
lookupModuleOutput, sourceBuffer);
if (!dependencies)
return dependencies.takeError();
// Record module dependencies for each new module we found.
auto bridgedDeps = ClangImporter::bridgeClangModuleDependencies(
ctx, clangScanningTool, dependencies->ModuleGraph, lookupModuleOutput,
[this](StringRef path) { return remapPath(PrefixMapper, path); });
cache.recordDependencies(bridgedDeps, ctx.Diags);
llvm::copy(dependencies->FileDeps, std::back_inserter(headerFileInputs));
auto bridgedDependencyIDs =
llvm::map_range(dependencies->ClangModuleDeps, [](auto &input) {
return ModuleDependencyID{input.ModuleName,
ModuleDependencyKind::Clang};
});
headerClangModuleDependencies.insert(bridgedDependencyIDs.begin(),
bridgedDependencyIDs.end());
return dependencies;
};
// - If a generated header is provided, scan the generated header.
// - Textual module dependencies require us to process their bridging header.
// - Binary module dependnecies may have arbitrary header inputs.
auto clangModuleDependencies = scanHeaderDependencies();
if (!clangModuleDependencies) {
auto errorStr = toString(clangModuleDependencies.takeError());
workerASTContext->Diags.diagnose(
SourceLoc(), diag::clang_header_dependency_scan_error, errorStr);
return true;
}
auto targetModuleInfo = cache.findKnownDependency(moduleID);
if (!targetModuleInfo.isTextualSwiftModule())
return false;
if (auto TreeID = clangModuleDependencies->IncludeTreeID)
includeTreeID = TreeID;
ClangImporter::getBridgingHeaderOptions(ctx, *clangModuleDependencies,
bridgingHeaderCommandLine);
return false;
}
template <typename Function, typename... Args>
auto ModuleDependencyScanner::withDependencyScanningWorker(Function &&F,
Args &&...ArgList) {
NumLookups++;
auto getWorker = [this]() -> std::unique_ptr<ModuleDependencyScanningWorker> {
std::lock_guard<std::mutex> guard(WorkersLock);
// If we have run out of workers, something has gone wrong as we must never
// have the number of workers exceeding the size of the thread pool
// requesting them.
if (Workers.empty())
swift_unreachable("Out of Swift dependency scanning workers.");
// Otherwise, return from the back.
auto result = std::move(Workers.back());
Workers.pop_back();
return result;
};
auto releaseWorker =
[this](std::unique_ptr<ModuleDependencyScanningWorker> &&worker) {
std::lock_guard<std::mutex> guard(WorkersLock);
Workers.emplace_front(std::move(worker));
};
std::unique_ptr<ModuleDependencyScanningWorker> worker = getWorker();
auto Task = std::bind(std::forward<Function>(F), worker.get(),
std::forward<Args>(ArgList)...);
auto result = Task();
releaseWorker(std::move(worker));
return result;
}
llvm::Error ModuleDependencyScanningWorker::createCacheKeyForEmbeddedHeader(
std::string embeddedHeaderIncludeTree,
std::string chainedHeaderIncludeTree) {
assert(CAS && ActionCache && "CAS is not available");
auto chained = CAS->parseID(chainedHeaderIncludeTree);
if (!chained)
return chained.takeError();
auto chainedRef = CAS->getReference(*chained);
if (!chainedRef)
return llvm::createStringError("Chained IncludeTree missing");
auto embedded = CAS->parseID(embeddedHeaderIncludeTree);
if (!embedded)
return embedded.takeError();
auto key =
ClangImporter::createEmbeddedBridgingHeaderCacheKey(*CAS, *chainedRef);
if (!key)
return key.takeError();
return ActionCache->put(CAS->getID(*key), *embedded);
}
Identifier
ModuleDependencyScanner::getModuleImportIdentifier(StringRef moduleName) {
return ScanASTContext.getIdentifier(moduleName);
}
SwiftDependencyTracker::SwiftDependencyTracker(
std::shared_ptr<llvm::cas::ObjectStore> CAS, llvm::PrefixMapper *Mapper,
const CompilerInvocation &CI)
: CAS(CAS), Mapper(Mapper) {
auto &SearchPathOpts = CI.getSearchPathOptions();
FS = llvm::cas::createCASProvidingFileSystem(
CAS, llvm::vfs::createPhysicalFileSystem());
auto addCommonFile = [&](StringRef path) {
auto file = FS->openFileForRead(path);
if (!file)
return;
auto status = (*file)->status();
if (!status)
return;
auto fileRef = (*file)->getObjectRefForContent();
if (!fileRef)
return;
std::string realPath = Mapper ? Mapper->mapToString(path) : path.str();
CommonFiles.try_emplace(realPath, **fileRef, (size_t)status->getSize());
};
// Add SDKSetting file.
SmallString<256> SDKSettingPath;
llvm::sys::path::append(SDKSettingPath, SearchPathOpts.getSDKPath(),
"SDKSettings.json");
addCommonFile(SDKSettingPath);
// Add Legacy layout file.
const std::vector<std::string> AllSupportedArches = {
"arm64", "arm64e", "x86_64", "i386",
"armv7", "armv7s", "armv7k", "arm64_32"};
for (auto RuntimeLibPath : SearchPathOpts.RuntimeLibraryPaths) {
std::error_code EC;
for (auto &Arch : AllSupportedArches) {
SmallString<256> LayoutFile(RuntimeLibPath);
llvm::sys::path::append(LayoutFile, "layouts-" + Arch + ".yaml");
addCommonFile(LayoutFile);
}
}
// Add VFSOverlay file.
for (auto &Overlay: SearchPathOpts.VFSOverlayFiles)
addCommonFile(Overlay);
// Add blocklist file.
for (auto &File: CI.getFrontendOptions().BlocklistConfigFilePaths)
addCommonFile(File);
}
void SwiftDependencyTracker::startTracking(bool includeCommonDeps) {
TrackedFiles.clear();
if (includeCommonDeps) {
for (auto &entry : CommonFiles)
TrackedFiles.emplace(entry.first(), entry.second);
}
}
void SwiftDependencyTracker::trackFile(const Twine &path) {
auto file = FS->openFileForRead(path);
if (!file)
return;
auto status = (*file)->status();
if (!status)
return;
auto fileRef = (*file)->getObjectRefForContent();
if (!fileRef)
return;
std::string realPath =
Mapper ? Mapper->mapToString(path.str()) : path.str();
TrackedFiles.try_emplace(realPath, **fileRef, (size_t)status->getSize());
}
llvm::Expected<llvm::cas::ObjectProxy>
SwiftDependencyTracker::createTreeFromDependencies() {
llvm::SmallVector<clang::cas::IncludeTree::FileList::FileEntry> Files;
for (auto &file : TrackedFiles) {
auto includeTreeFile = clang::cas::IncludeTree::File::create(
*CAS, file.first, file.second.FileRef);
if (!includeTreeFile) {
return llvm::createStringError("CASFS createTree failed for " +
file.first + ": " +
toString(includeTreeFile.takeError()));
}
Files.push_back(
{includeTreeFile->getRef(),
(clang::cas::IncludeTree::FileList::FileSizeTy)file.second.Size});
}
auto includeTreeList =
clang::cas::IncludeTree::FileList::create(*CAS, Files, {});
if (!includeTreeList)
return llvm::createStringError("casfs include-tree filelist error: " +
toString(includeTreeList.takeError()));
return *includeTreeList;
}
ModuleDependencyScanner::ModuleDependencyScanner(
SwiftDependencyScanningService &ScanningService,
const CompilerInvocation &ScanCompilerInvocation,
const SILOptions &SILOptions, ASTContext &ScanASTContext,
swift::DependencyTracker &DependencyTracker,
std::shared_ptr<llvm::cas::ObjectStore> CAS,
std::shared_ptr<llvm::cas::ActionCache> ActionCache,
DiagnosticEngine &Diagnostics, bool ParallelScan)
: ScanCompilerInvocation(ScanCompilerInvocation),
ScanASTContext(ScanASTContext), IssueReporter(Diagnostics),
NumThreads(ParallelScan
? llvm::hardware_concurrency().compute_thread_count()
: 1),
ScanningThreadPool(llvm::hardware_concurrency(NumThreads)), CAS(CAS),
ActionCache(ActionCache) {
// Setup prefix mapping.
auto &ScannerPrefixMapper =
ScanCompilerInvocation.getSearchPathOptions().ScannerPrefixMapper;
if (!ScannerPrefixMapper.empty()) {
PrefixMapper = std::make_unique<llvm::PrefixMapper>();
SmallVector<llvm::MappedPrefix, 4> Prefixes;
llvm::MappedPrefix::transformPairs(ScannerPrefixMapper, Prefixes);
PrefixMapper->addRange(Prefixes);
PrefixMapper->sort();
}
if (CAS)
CacheFS = llvm::cas::createCASProvidingFileSystem(
CAS, ScanASTContext.SourceMgr.getFileSystem());
// TODO: Make num threads configurable
for (size_t i = 0; i < NumThreads; ++i)
Workers.emplace_front(std::make_unique<ModuleDependencyScanningWorker>(
ScanningService, ScanCompilerInvocation, SILOptions, ScanASTContext,
DependencyTracker, CAS, ActionCache, PrefixMapper.get(), Diagnostics));
}
/// Find all of the imported Clang modules starting with the given module name.
static void findAllImportedClangModules(StringRef moduleName,
const ModuleDependenciesCache &cache,
std::vector<std::string> &allModules,
llvm::StringSet<> &knownModules) {
if (!knownModules.insert(moduleName).second)
return;
allModules.push_back(moduleName.str());
auto moduleID =
ModuleDependencyID{moduleName.str(), ModuleDependencyKind::Clang};
auto optionalDependencies = cache.findDependency(moduleID);
if (!optionalDependencies.has_value())
return;
for (const auto &dep : cache.getClangDependencies(moduleID))
findAllImportedClangModules(dep.ModuleName, cache, allModules,
knownModules);
}
static std::set<ModuleDependencyID>
collectBinarySwiftDeps(const ModuleDependenciesCache &cache) {
std::set<ModuleDependencyID> binarySwiftModuleDepIDs;
auto binaryDepsMap =
cache.getDependenciesMap(ModuleDependencyKind::SwiftBinary);
for (const auto &binaryDepName : binaryDepsMap.keys())
binarySwiftModuleDepIDs.insert(ModuleDependencyID{
binaryDepName.str(), ModuleDependencyKind::SwiftBinary});
return binarySwiftModuleDepIDs;
}
llvm::ErrorOr<ModuleDependencyInfo>
ModuleDependencyScanner::getMainModuleDependencyInfo(ModuleDecl *mainModule) {
// Main module file name.
auto newExt = file_types::getExtension(file_types::TY_SwiftModuleFile);
llvm::SmallString<32> mainModulePath = mainModule->getName().str();
llvm::sys::path::replace_extension(mainModulePath, newExt);
std::string apinotesVer = (llvm::Twine("-fapinotes-swift-version=") +
ScanASTContext.LangOpts.EffectiveLanguageVersion
.asAPINotesVersionString())
.str();
auto clangImporter =
static_cast<ClangImporter *>(ScanASTContext.getClangModuleLoader());
std::vector<std::string> buildArgs;
if (ScanASTContext.ClangImporterOpts.ClangImporterDirectCC1Scan) {
buildArgs.push_back("-direct-clang-cc1-module-build");
for (auto &arg : clangImporter->getSwiftExplicitModuleDirectCC1Args()) {
buildArgs.push_back("-Xcc");
buildArgs.push_back(arg);
}
}
llvm::SmallVector<StringRef> buildCommands;
buildCommands.reserve(buildArgs.size());
llvm::for_each(buildArgs, [&](const std::string &arg) {
buildCommands.emplace_back(arg);
});
auto mainDependencies =
ModuleDependencyInfo::forSwiftSourceModule({}, buildCommands, {}, {}, {});
llvm::StringSet<> alreadyAddedModules;
// Compute Implicit dependencies of the main module
{
const auto &importInfo = mainModule->getImplicitImportInfo();
// Swift standard library.
switch (importInfo.StdlibKind) {
case ImplicitStdlibKind::None:
case ImplicitStdlibKind::Builtin:
break;
case ImplicitStdlibKind::Stdlib:
mainDependencies.addModuleImport("Swift", /* isExported */ false,
AccessLevel::Public,
&alreadyAddedModules);
break;
}
// Add any implicit module names.
for (const auto &import : importInfo.AdditionalUnloadedImports) {
mainDependencies.addModuleImport(
import.module.getModulePath(),
import.options.contains(ImportFlags::Exported), import.accessLevel,
&alreadyAddedModules, &ScanASTContext.SourceMgr);
}
// Already-loaded, implicitly imported module names.
for (const auto &import : importInfo.AdditionalImports) {
mainDependencies.addModuleImport(
import.module.importedModule->getNameStr(),
import.options.contains(ImportFlags::Exported), import.accessLevel,
&alreadyAddedModules);
}
// Add the bridging header.
if (!importInfo.BridgingHeaderPath.empty()) {
mainDependencies.addBridgingHeader(importInfo.BridgingHeaderPath);
}
// If we are to import the underlying Clang module of the same name,
// add a dependency with the same name to trigger the search.
if (importInfo.ShouldImportUnderlyingModule) {
mainDependencies.addModuleImport(
mainModule->getName().str(),
/* isExported */ true, AccessLevel::Public, &alreadyAddedModules);
}
// All modules specified with `-embed-tbd-for-module` are treated as
// implicit dependnecies for this compilation since they are not guaranteed
// to be impored in the source.
for (const auto &tbdSymbolModule :
ScanCompilerInvocation.getTBDGenOptions().embedSymbolsFromModules) {
mainDependencies.addModuleImport(
tbdSymbolModule,
/* isExported */ false, AccessLevel::Public, &alreadyAddedModules);
}
}
// Add source-specified `import` dependencies
{
for (auto fileUnit : mainModule->getFiles()) {
auto sourceFile = dyn_cast<SourceFile>(fileUnit);
if (!sourceFile)
continue;
mainDependencies.addModuleImports(*sourceFile, alreadyAddedModules,
&ScanASTContext.SourceMgr);
}
// Pass all the successful canImport checks from the ASTContext as part of
// build command to main module to ensure frontend gets the same result.
// This needs to happen after visiting all the top-level decls from all
// SourceFiles.
std::vector<std::string> buildArgs = mainDependencies.getCommandline();
mainModule->getASTContext().forEachCanImportVersionCheck(
[&](StringRef moduleName, const llvm::VersionTuple &Version,
const llvm::VersionTuple &UnderlyingVersion) {
if (Version.empty() && UnderlyingVersion.empty()) {
buildArgs.push_back("-module-can-import");
buildArgs.push_back(moduleName.str());
} else {
buildArgs.push_back("-module-can-import-version");
buildArgs.push_back(moduleName.str());
buildArgs.push_back(Version.getAsString());
buildArgs.push_back(UnderlyingVersion.getAsString());
}
});
mainDependencies.updateCommandLine(buildArgs);
}
return mainDependencies;
}
/// For the dependency set of the main module, discover all
/// cross-import overlays and their corresponding '.swiftcrossimport'
/// files. Cross-import overlay dependencies are required when
/// the two constituent modules are imported *from the same source file*,
/// directly or indirectly.
///
/// Given a complete module dependency graph in this stage of the scan,
/// the algorithm for discovering cross-import overlays is:
/// 1. For each source file of the module under scan construct a
/// set of module dependnecies only reachable from this source file.
/// 2. For each module set constructed in (1), perform pair-wise lookup
/// of cross import files for each pair of modules in the set.
///
/// Notably, if for some pair of modules 'A' and 'B' there exists
/// a cross-import overlay '_A_B', and these two modules are not reachable
/// from any single source file via direct or indirect imports, then
/// the cross-import overlay module is not required for compilation.
static void discoverCrossImportOverlayFiles(
StringRef mainModuleName, ModuleDependenciesCache &cache,
ASTContext &scanASTContext, llvm::SetVector<Identifier> &newOverlays,
std::set<std::pair<std::string, std::string>> &overlayFiles) {
auto mainModuleInfo = cache.findKnownDependency(ModuleDependencyID{
mainModuleName.str(), ModuleDependencyKind::SwiftSource});
llvm::StringMap<ModuleDependencyIDSet> perSourceFileDependencies;
const ModuleDependencyIDSet mainModuleDirectSwiftDepsSet{
mainModuleInfo.getImportedSwiftDependencies().begin(),
mainModuleInfo.getImportedSwiftDependencies().end()};
const ModuleDependencyIDSet mainModuleDirectClangDepsSet{
mainModuleInfo.getImportedClangDependencies().begin(),
mainModuleInfo.getImportedClangDependencies().end()};
// A utility to map an import identifier to one of the
// known resolved module dependencies
auto getModuleIDForImportIdentifier =
[](const std::string &importIdentifierStr,
const ModuleDependencyIDSet &directSwiftDepsSet,
const ModuleDependencyIDSet &directClangDepsSet)
-> std::optional<ModuleDependencyID> {
if (auto textualDepIt = directSwiftDepsSet.find(
{importIdentifierStr, ModuleDependencyKind::SwiftInterface});
textualDepIt != directSwiftDepsSet.end())
return *textualDepIt;
else if (auto binaryDepIt = directSwiftDepsSet.find(
{importIdentifierStr, ModuleDependencyKind::SwiftBinary});
binaryDepIt != directSwiftDepsSet.end())
return *binaryDepIt;
else if (auto clangDepIt = directClangDepsSet.find(
{importIdentifierStr, ModuleDependencyKind::Clang});
clangDepIt != directClangDepsSet.end())
return *clangDepIt;
else
return std::nullopt;
};
// Collect the set of directly-imported module dependencies
// for each source file in the source module under scan.
for (const auto &import : mainModuleInfo.getModuleImports()) {
auto importResolvedModuleID = getModuleIDForImportIdentifier(
import.importIdentifier, mainModuleDirectSwiftDepsSet,
mainModuleDirectClangDepsSet);
if (importResolvedModuleID)
for (const auto &importLocation : import.importLocations)
perSourceFileDependencies[importLocation.bufferIdentifier].insert(
*importResolvedModuleID);
}
// For each source-file, build a set of module dependencies of the
// module under scan corresponding to a sub-graph of modules only reachable
// from this source file's direct imports.
for (auto &keyValPair : perSourceFileDependencies) {
const auto &bufferIdentifier = keyValPair.getKey();
auto &directDependencyIDs = keyValPair.second;
SmallVector<ModuleDependencyID, 8> worklist{directDependencyIDs.begin(),
directDependencyIDs.end()};
while (!worklist.empty()) {
auto moduleID = worklist.pop_back_val();
perSourceFileDependencies[bufferIdentifier].insert(moduleID);
if (isSwiftDependencyKind(moduleID.Kind)) {
auto moduleInfo = cache.findKnownDependency(moduleID);
if (llvm::any_of(moduleInfo.getModuleImports(),
[](const ScannerImportStatementInfo &importInfo) {
return importInfo.isExported;
})) {
const ModuleDependencyIDSet directSwiftDepsSet{
moduleInfo.getImportedSwiftDependencies().begin(),
moduleInfo.getImportedSwiftDependencies().end()};
const ModuleDependencyIDSet directClangDepsSet{
moduleInfo.getImportedClangDependencies().begin(),
moduleInfo.getImportedClangDependencies().end()};
for (const auto &import : moduleInfo.getModuleImports()) {
if (import.isExported) {
auto importResolvedDepID = getModuleIDForImportIdentifier(
import.importIdentifier, directSwiftDepsSet,
directClangDepsSet);
if (importResolvedDepID &&
!perSourceFileDependencies[bufferIdentifier].count(
*importResolvedDepID))
worklist.push_back(*importResolvedDepID);
}
}
}
}
}
}
// Within a provided set of module dependencies reachable via
// direct imports from a given file, determine the available and required
// cross-import overlays.
auto discoverCrossImportOverlayFilesForModuleSet =
[&mainModuleName, &cache, &scanASTContext, &newOverlays,
&overlayFiles](const ModuleDependencyIDSet &inputDependencies) {
for (auto moduleID : inputDependencies) {
auto moduleName = moduleID.ModuleName;
// Do not look for overlays of main module under scan
if (moduleName == mainModuleName)
continue;
auto dependencies =
cache.findDependency(moduleName, moduleID.Kind).value();
// Collect a map from secondary module name to cross-import overlay
// names.
auto overlayMap = dependencies->collectCrossImportOverlayNames(
scanASTContext, moduleName, overlayFiles);
if (overlayMap.empty())
continue;
for (const auto &dependencyId : inputDependencies) {
auto moduleName = dependencyId.ModuleName;
// Do not look for overlays of main module under scan
if (moduleName == mainModuleName)
continue;
// check if any explicitly imported modules can serve as a
// secondary module, and add the overlay names to the
// dependencies list.
for (auto overlayName : overlayMap[moduleName]) {
if (overlayName.str() != mainModuleName &&
std::find_if(inputDependencies.begin(),
inputDependencies.end(),
[&](ModuleDependencyID Id) {
return moduleName == overlayName.str();
}) == inputDependencies.end()) {
newOverlays.insert(overlayName);
}
}
}
}
};
for (const auto &keyValPair : perSourceFileDependencies)
discoverCrossImportOverlayFilesForModuleSet(keyValPair.second);
}
std::vector<ModuleDependencyID>
ModuleDependencyScanner::performDependencyScan(ModuleDependencyID rootModuleID,
ModuleDependenciesCache &cache) {
PrettyStackTraceStringAction trace("Performing dependency scan of: ",
rootModuleID.ModuleName);
// If scanning for an individual Clang module, simply resolve its imports
if (rootModuleID.Kind == ModuleDependencyKind::Clang) {
ModuleDependencyIDSetVector discoveredClangModules;
resolveAllClangModuleDependencies({}, cache, discoveredClangModules);
return discoveredClangModules.takeVector();
}
// Resolve all, direct and transitive, imported module dependencies:
// 1. Imported Swift modules
// 2. Imported Clang modules
// 3. Clang module dependencies of bridging headers
// 4. Swift Overlay modules of imported Clang modules
// This may call into 'resolveImportedModuleDependencies'
// for the newly-added Swift overlay dependencies.
ModuleDependencyIDSetVector allModules =
resolveImportedModuleDependencies(rootModuleID, cache);
// 5. Resolve cross-import overlays
// This must only be done for the main source module, since textual and
// binary Swift modules already encode their dependencies on cross-import
// overlays with explicit imports.
if (ScanCompilerInvocation.getLangOptions().EnableCrossImportOverlays)
resolveCrossImportOverlayDependencies(
rootModuleID.ModuleName, cache,
[&](ModuleDependencyID id) { allModules.insert(id); });
if (ScanCompilerInvocation.getSearchPathOptions().BridgingHeaderChaining) {
auto err = performBridgingHeaderChaining(rootModuleID, cache, allModules);
if (err)
IssueReporter.Diagnostics.diagnose(SourceLoc(),
diag::error_scanner_extra,
toString(std::move(err)));
}
return allModules.takeVector();
}
ModuleDependencyIDSetVector
ModuleDependencyScanner::resolveImportedModuleDependencies(
const ModuleDependencyID &rootModuleID, ModuleDependenciesCache &cache) {
PrettyStackTraceStringAction trace(
"Resolving transitive closure of dependencies of: ",
rootModuleID.ModuleName);
ModuleDependencyIDSetVector allModules;
// Resolve all imports for which a Swift module can be found,
// transitively, starting at 'rootModuleID'.
ModuleDependencyIDSetVector discoveredSwiftModules;
resolveSwiftModuleDependencies(rootModuleID, cache, discoveredSwiftModules);
allModules.insert(discoveredSwiftModules.begin(),
discoveredSwiftModules.end());
ModuleDependencyIDSetVector discoveredClangModules;
resolveAllClangModuleDependencies(discoveredSwiftModules.getArrayRef(), cache,
discoveredClangModules);
allModules.insert(discoveredClangModules.begin(),
discoveredClangModules.end());
ModuleDependencyIDSetVector discoveredHeaderDependencyClangModules;
resolveHeaderDependencies(discoveredSwiftModules.getArrayRef(), cache,
discoveredHeaderDependencyClangModules);
allModules.insert(discoveredHeaderDependencyClangModules.begin(),
discoveredHeaderDependencyClangModules.end());
ModuleDependencyIDSetVector discoveredSwiftOverlayDependencyModules;
resolveSwiftOverlayDependencies(discoveredSwiftModules.getArrayRef(), cache,
discoveredSwiftOverlayDependencyModules);
allModules.insert(discoveredSwiftOverlayDependencyModules.begin(),
discoveredSwiftOverlayDependencyModules.end());
return allModules;
}
void ModuleDependencyScanner::resolveSwiftModuleDependencies(
const ModuleDependencyID &rootModuleID, ModuleDependenciesCache &cache,
ModuleDependencyIDSetVector &allDiscoveredSwiftModules) {
PrettyStackTraceStringAction trace(
"Resolving transitive closure of Swift dependencies of: ",
rootModuleID.ModuleName);
// Clang modules cannot have Swift module dependencies
if (!isSwiftDependencyKind(rootModuleID.Kind))
return;
allDiscoveredSwiftModules.insert(rootModuleID);
for (unsigned currentModuleIdx = 0;
currentModuleIdx < allDiscoveredSwiftModules.size();
++currentModuleIdx) {
auto moduleID = allDiscoveredSwiftModules[currentModuleIdx];
auto moduleDependencyInfo = cache.findKnownDependency(moduleID);
// If this dependency module's Swift imports are already resolved,
// we do not need to scan it.
if (!moduleDependencyInfo.getImportedSwiftDependencies().empty()) {
for (const auto &dep :
moduleDependencyInfo.getImportedSwiftDependencies())
allDiscoveredSwiftModules.insert(dep);
} else {
// Find the Swift dependencies of every module this module directly
// depends on.
ModuleDependencyIDSetVector importedSwiftDependencies;
resolveSwiftImportsForModule(moduleID, cache, importedSwiftDependencies);
allDiscoveredSwiftModules.insert(importedSwiftDependencies.begin(),
importedSwiftDependencies.end());
}
}
return;
}
void ModuleDependencyScanner::resolveAllClangModuleDependencies(
ArrayRef<ModuleDependencyID> swiftModuleDependents,
ModuleDependenciesCache &cache,
ModuleDependencyIDSetVector &allDiscoveredClangModules) {
// Gather all unresolved imports which must correspond to
// Clang modules (since no Swift module for them was found).
llvm::StringSet<> unresolvedImportIdentifiers;
llvm::StringSet<> unresolvedOptionalImportIdentifiers;
std::unordered_map<ModuleDependencyID,
std::vector<ScannerImportStatementInfo>>
unresolvedImportsMap;
std::unordered_map<ModuleDependencyID,
std::vector<ScannerImportStatementInfo>>
unresolvedOptionalImportsMap;
for (const auto &moduleID : swiftModuleDependents) {
auto moduleDependencyInfo = cache.findKnownDependency(moduleID);
auto unresolvedImports =
&unresolvedImportsMap
.emplace(moduleID, std::vector<ScannerImportStatementInfo>())
.first->second;
auto unresolvedOptionalImports =
&unresolvedOptionalImportsMap
.emplace(moduleID, std::vector<ScannerImportStatementInfo>())
.first->second;
// If we have already resolved Clang dependencies for this module,
// then we have the entire dependency sub-graph already computed for
// it and ready to be added to 'allDiscoveredClangModules' without
// additional scanning.
if (!moduleDependencyInfo.getImportedClangDependencies().empty()) {
auto directClangDeps = cache.getImportedClangDependencies(moduleID);
ModuleDependencyIDSetVector reachableClangModules;
reachableClangModules.insert(directClangDeps.begin(),
directClangDeps.end());
for (unsigned currentModuleIdx = 0;
currentModuleIdx < reachableClangModules.size();
++currentModuleIdx) {
auto moduleID = reachableClangModules[currentModuleIdx];
auto dependencies =
cache.findKnownDependency(moduleID).getImportedClangDependencies();
reachableClangModules.insert(dependencies.begin(), dependencies.end());
}
allDiscoveredClangModules.insert(reachableClangModules.begin(),
reachableClangModules.end());
continue;
} else {
// We need to query the Clang dependency scanner for this module's
// unresolved imports
llvm::StringSet<> resolvedImportIdentifiers;
for (const auto &resolvedDep :
moduleDependencyInfo.getImportedSwiftDependencies())
resolvedImportIdentifiers.insert(resolvedDep.ModuleName);
// When querying a *clang* module 'CxxStdlib' we must
// instead expect a module called 'std'...
auto addCanonicalClangModuleImport =
[this](const ScannerImportStatementInfo &importInfo,
std::vector<ScannerImportStatementInfo> &unresolvedImports,
llvm::StringSet<> &unresolvedImportIdentifiers) {
if (importInfo.importIdentifier ==
ScanASTContext.Id_CxxStdlib.str()) {
auto canonicalImportInfo = ScannerImportStatementInfo(
"std", importInfo.isExported, importInfo.accessLevel,
importInfo.importLocations);
unresolvedImports.push_back(canonicalImportInfo);
unresolvedImportIdentifiers.insert(
canonicalImportInfo.importIdentifier);
} else {
unresolvedImports.push_back(importInfo);
unresolvedImportIdentifiers.insert(importInfo.importIdentifier);
}
};
for (const auto &depImport : moduleDependencyInfo.getModuleImports())
if (!resolvedImportIdentifiers.contains(depImport.importIdentifier))
addCanonicalClangModuleImport(depImport, *unresolvedImports,
unresolvedImportIdentifiers);
for (const auto &depImport :
moduleDependencyInfo.getOptionalModuleImports())
if (!resolvedImportIdentifiers.contains(depImport.importIdentifier))
addCanonicalClangModuleImport(depImport, *unresolvedOptionalImports,
unresolvedOptionalImportIdentifiers);
}
}
// Prepare the module lookup result collection
llvm::StringMap<std::optional<ModuleDependencyVector>> moduleLookupResult;
for (const auto &unresolvedIdentifier : unresolvedImportIdentifiers)
moduleLookupResult.insert(
std::make_pair(unresolvedIdentifier.getKey(), std::nullopt));
// We need a copy of the shared already-seen module set, which will be shared
// amongst all the workers. In `recordDependencies`, each worker will
// contribute its results back to the shared set for future lookups.
const llvm::DenseSet<clang::tooling::dependencies::ModuleID>
seenClangModules = cache.getAlreadySeenClangModules();
std::mutex cacheAccessLock;
auto scanForClangModuleDependency =
[this, &cache, &moduleLookupResult, &cacheAccessLock,
&seenClangModules](Identifier moduleIdentifier) {
auto moduleName = moduleIdentifier.str();
{
std::lock_guard<std::mutex> guard(cacheAccessLock);
if (cache.hasDependency(moduleName, ModuleDependencyKind::Clang))
return;
}
auto moduleDependencies = withDependencyScanningWorker(
[&seenClangModules,
moduleIdentifier](ModuleDependencyScanningWorker *ScanningWorker) {
return ScanningWorker->scanFilesystemForClangModuleDependency(
moduleIdentifier, seenClangModules);
});
// Update the `moduleLookupResult` and cache all discovered dependencies
// so that subsequent queries do not have to call into the scanner
// if looking for a module that was discovered as a transitive
// dependency in this scan.
{
std::lock_guard<std::mutex> guard(cacheAccessLock);
moduleLookupResult.insert_or_assign(moduleName, moduleDependencies);
if (!moduleDependencies.empty())
cache.recordDependencies(moduleDependencies,
IssueReporter.Diagnostics);
}
};
// Enque asynchronous lookup tasks
for (const auto &unresolvedIdentifier : unresolvedImportIdentifiers)
ScanningThreadPool.async(
scanForClangModuleDependency,
getModuleImportIdentifier(unresolvedIdentifier.getKey()));
for (const auto &unresolvedIdentifier : unresolvedOptionalImportIdentifiers)
ScanningThreadPool.async(
scanForClangModuleDependency,
getModuleImportIdentifier(unresolvedIdentifier.getKey()));
ScanningThreadPool.wait();
// Use the computed scan results to update the dependency info
for (const auto &moduleID : swiftModuleDependents) {
std::vector<ScannerImportStatementInfo> failedToResolveImports;
ModuleDependencyIDSetVector importedClangDependencies;
auto recordResolvedClangModuleImport =
[&moduleLookupResult, &importedClangDependencies,
&allDiscoveredClangModules, moduleID, &failedToResolveImports](
const ScannerImportStatementInfo &moduleImport,
bool optionalImport) {
auto lookupResult = moduleLookupResult[moduleImport.importIdentifier];
// The imported module was found in the cache
if (lookupResult == std::nullopt) {
importedClangDependencies.insert(
{moduleImport.importIdentifier, ModuleDependencyKind::Clang});
} else {
// Cache discovered module dependencies.
if (!lookupResult.value().empty()) {
importedClangDependencies.insert(
{moduleImport.importIdentifier, ModuleDependencyKind::Clang});
// Add the full transitive dependency set
for (const auto &dep : lookupResult.value())
allDiscoveredClangModules.insert(dep.first);
} else if (!optionalImport) {
// Otherwise, we failed to resolve this dependency. We will try
// again using the cache after all other imports have been
// resolved. If that fails too, a scanning failure will be
// diagnosed.
failedToResolveImports.push_back(moduleImport);
}
}
};
for (const auto &unresolvedImport : unresolvedImportsMap[moduleID])
recordResolvedClangModuleImport(unresolvedImport, false);
for (const auto &unresolvedImport : unresolvedOptionalImportsMap[moduleID])
recordResolvedClangModuleImport(unresolvedImport, true);
// It is possible that a specific import resolution failed because we are
// attempting to resolve a module which can only be brought in via a
// modulemap of a different Clang module dependency which is not otherwise
// on the current search paths. For example, suppose we are scanning a
// `.swiftinterface` for module `Foo`, which contains:
// -----
// @_exported import Foo
// import Bar
// ...
// -----
// Where `Foo` is the underlying Framework clang module whose .modulemap
// defines an auxiliary module `Bar`. Because Foo is a framework, its
// modulemap is under
// `<some_framework_search_path>/Foo.framework/Modules/module.modulemap`.
// Which means that lookup of `Bar` alone from Swift will not be able to
// locate the module in it. However, the lookup of Foo will itself bring in
// the auxiliary module becuase the Clang scanner instance scanning for
// clang module Foo will be able to find it in the corresponding framework
// module's modulemap and register it as a dependency which means it will be
// registered with the scanner's cache in the step above. To handle such
// cases, we first add all successfully-resolved modules and (for Clang
// modules) their transitive dependencies to the cache, and then attempt to
// re-query imports for which resolution originally failed from the cache.
// If this fails, then the scanner genuinely failed to resolve this
// dependency.
for (const auto &unresolvedImport : failedToResolveImports) {
auto unresolvedModuleID = ModuleDependencyID{
unresolvedImport.importIdentifier, ModuleDependencyKind::Clang};
auto optionalCachedModuleInfo = cache.findDependency(unresolvedModuleID);
if (optionalCachedModuleInfo.has_value())
importedClangDependencies.insert(unresolvedModuleID);
else {
// Failed to resolve module dependency.
IssueReporter.diagnoseModuleNotFoundFailure(
unresolvedImport, cache, moduleID,
attemptToFindResolvingSerializedSearchPath(unresolvedImport,
cache));
}
}
if (!importedClangDependencies.empty())
cache.setImportedClangDependencies(
moduleID, importedClangDependencies.takeVector());
}
return;
}
void ModuleDependencyScanner::resolveHeaderDependencies(
ArrayRef<ModuleDependencyID> allSwiftModules,
ModuleDependenciesCache &cache,
ModuleDependencyIDSetVector &allDiscoveredHeaderDependencyClangModules) {
for (const auto &moduleID : allSwiftModules) {
auto moduleDependencyInfo = cache.findKnownDependency(moduleID);
if (!moduleDependencyInfo.getHeaderClangDependencies().empty()) {
allDiscoveredHeaderDependencyClangModules.insert(
moduleDependencyInfo.getHeaderClangDependencies().begin(),
moduleDependencyInfo.getHeaderClangDependencies().end());
} else {
ModuleDependencyIDSetVector headerClangModuleDependencies;
resolveHeaderDependenciesForModule(moduleID, cache,
headerClangModuleDependencies);
allDiscoveredHeaderDependencyClangModules.insert(
headerClangModuleDependencies.begin(),
headerClangModuleDependencies.end());
}
}
}
void ModuleDependencyScanner::resolveSwiftOverlayDependencies(
ArrayRef<ModuleDependencyID> allSwiftModules,
ModuleDependenciesCache &cache,
ModuleDependencyIDSetVector &allDiscoveredDependencies) {
ModuleDependencyIDSetVector discoveredSwiftOverlays;
for (const auto &moduleID : allSwiftModules) {
auto moduleDependencyInfo = cache.findKnownDependency(moduleID);
if (!moduleDependencyInfo.getSwiftOverlayDependencies().empty()) {
allDiscoveredDependencies.insert(
moduleDependencyInfo.getSwiftOverlayDependencies().begin(),
moduleDependencyInfo.getSwiftOverlayDependencies().end());
} else {
ModuleDependencyIDSetVector swiftOverlayDependencies;
resolveSwiftOverlayDependenciesForModule(moduleID, cache,
swiftOverlayDependencies);
discoveredSwiftOverlays.insert(swiftOverlayDependencies.begin(),
swiftOverlayDependencies.end());
}
}
// For each additional Swift overlay dependency, ensure we perform a full scan
// in case it itself has unresolved module dependencies.
for (const auto &overlayDepID : discoveredSwiftOverlays) {
ModuleDependencyIDSetVector allNewModules =
resolveImportedModuleDependencies(overlayDepID, cache);
allDiscoveredDependencies.insert(allNewModules.begin(),
allNewModules.end());
}
allDiscoveredDependencies.insert(discoveredSwiftOverlays.begin(),
discoveredSwiftOverlays.end());
}
void ModuleDependencyScanner::resolveSwiftImportsForModule(
const ModuleDependencyID &moduleID, ModuleDependenciesCache &cache,
ModuleDependencyIDSetVector &importedSwiftDependencies) {
PrettyStackTraceStringAction trace("Resolving Swift imports of: ",
moduleID.ModuleName);
if (!isSwiftDependencyKind(moduleID.Kind))
return;
auto moduleDependencyInfo = cache.findKnownDependency(moduleID);
llvm::StringMap<SwiftModuleScannerQueryResult> moduleLookupResult;
std::mutex lookupResultLock;
// A scanning task to query a module by-name. If the module already exists
// in the cache, do nothing and return.
auto scanForSwiftModuleDependency =
[this, &cache, &lookupResultLock,
&moduleLookupResult](Identifier moduleIdentifier, bool isTestable) {
auto moduleName = moduleIdentifier.str().str();
{
std::lock_guard<std::mutex> guard(lookupResultLock);
if (cache.hasSwiftDependency(moduleName))
return;
}
auto moduleDependencies = withDependencyScanningWorker(
[moduleIdentifier,
isTestable](ModuleDependencyScanningWorker *ScanningWorker) {
return ScanningWorker->scanFilesystemForSwiftModuleDependency(
moduleIdentifier, isTestable);
});
{
std::lock_guard<std::mutex> guard(lookupResultLock);
moduleLookupResult.insert_or_assign(moduleName, moduleDependencies);
}
};
// Enque asynchronous lookup tasks
for (const auto &dependsOn : moduleDependencyInfo.getModuleImports()) {
// Avoid querying the underlying Clang module here
if (moduleID.ModuleName == dependsOn.importIdentifier)
continue;
ScanningThreadPool.async(
scanForSwiftModuleDependency,
getModuleImportIdentifier(dependsOn.importIdentifier),
moduleDependencyInfo.isTestableImport(dependsOn.importIdentifier));
}
for (const auto &dependsOn :
moduleDependencyInfo.getOptionalModuleImports()) {
// Avoid querying the underlying Clang module here
if (moduleID.ModuleName == dependsOn.importIdentifier)
continue;
ScanningThreadPool.async(
scanForSwiftModuleDependency,
getModuleImportIdentifier(dependsOn.importIdentifier),
moduleDependencyInfo.isTestableImport(dependsOn.importIdentifier));
}
ScanningThreadPool.wait();
auto recordResolvedModuleImport =
[this, &cache, &moduleLookupResult, &importedSwiftDependencies,
moduleID](const ScannerImportStatementInfo &moduleImport) {
if (moduleID.ModuleName == moduleImport.importIdentifier)
return;
auto lookupResult = moduleLookupResult[moduleImport.importIdentifier];
// Query found module
if (lookupResult.foundDependencyInfo) {
cache.recordDependency(moduleImport.importIdentifier,
*(lookupResult.foundDependencyInfo));
importedSwiftDependencies.insert(
{moduleImport.importIdentifier,
lookupResult.foundDependencyInfo->getKind()});
IssueReporter.warnOnIncompatibleCandidates(
moduleImport.importIdentifier,
lookupResult.incompatibleCandidates);
// Module was resolved from a cache
} else if (auto cachedInfo = cache.findSwiftDependency(
moduleImport.importIdentifier))
importedSwiftDependencies.insert(
{moduleImport.importIdentifier, cachedInfo.value()->getKind()});
else
IssueReporter.diagnoseFailureOnOnlyIncompatibleCandidates(
moduleImport, lookupResult.incompatibleCandidates, cache,
std::nullopt);
};
for (const auto &importInfo : moduleDependencyInfo.getModuleImports())
recordResolvedModuleImport(importInfo);
for (const auto &importInfo : moduleDependencyInfo.getOptionalModuleImports())
recordResolvedModuleImport(importInfo);
// Resolve the dependency info with Swift dependency module information.
cache.setImportedSwiftDependencies(moduleID,
importedSwiftDependencies.getArrayRef());
}
void ModuleDependencyScanner::resolveHeaderDependenciesForModule(
const ModuleDependencyID &moduleID, ModuleDependenciesCache &cache,
ModuleDependencyIDSetVector &headerClangModuleDependencies) {
PrettyStackTraceStringAction trace(
"Resolving header dependencies of Swift module", moduleID.ModuleName);
std::vector<std::string> allClangModules;
llvm::StringSet<> alreadyKnownModules;
auto moduleDependencyInfo = cache.findKnownDependency(moduleID);
bool isTextualModuleWithABridgingHeader =
moduleDependencyInfo.isTextualSwiftModule() &&
moduleDependencyInfo.getBridgingHeader();
bool isBinaryModuleWithHeaderInput =
moduleDependencyInfo.isSwiftBinaryModule() &&
!moduleDependencyInfo.getAsSwiftBinaryModule()->headerImport.empty();
if (!isTextualModuleWithABridgingHeader && !isBinaryModuleWithHeaderInput)
return;
std::optional<std::string> headerPath;
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer;
std::optional<llvm::MemoryBufferRef> sourceBufferRef;
auto extractHeaderContent =
[&](const SwiftBinaryModuleDependencyStorage &binaryMod)
-> std::unique_ptr<llvm::MemoryBuffer> {
auto header = binaryMod.headerImport;
// Check to see if the header input exists on disk.
auto FS = ScanASTContext.SourceMgr.getFileSystem();
if (FS->exists(header))
return nullptr;
auto moduleBuf = FS->getBufferForFile(binaryMod.compiledModulePath);
if (!moduleBuf)
return nullptr;
auto content = extractEmbeddedBridgingHeaderContent(std::move(*moduleBuf),
ScanASTContext);
if (content.empty())
return nullptr;
return llvm::MemoryBuffer::getMemBufferCopy(content, header);
};
if (isBinaryModuleWithHeaderInput) {
auto &binaryMod = *moduleDependencyInfo.getAsSwiftBinaryModule();
if (auto embeddedHeader = extractHeaderContent(binaryMod)) {
sourceBuffer = std::move(embeddedHeader);
sourceBufferRef = sourceBuffer->getMemBufferRef();
} else
headerPath = binaryMod.headerImport;
} else
headerPath = *moduleDependencyInfo.getBridgingHeader();
withDependencyScanningWorker(
[&](ModuleDependencyScanningWorker *ScanningWorker) {
std::vector<std::string> headerFileInputs;
std::optional<std::string> includeTreeID;
std::vector<std::string> bridgingHeaderCommandLine;
auto headerScan = ScanningWorker->scanHeaderDependenciesOfSwiftModule(
*ScanningWorker->workerASTContext, moduleID, headerPath,
sourceBufferRef, cache, headerClangModuleDependencies,
headerFileInputs, bridgingHeaderCommandLine, includeTreeID);
if (!headerScan) {
// Record direct header Clang dependencies
cache.setHeaderClangDependencies(
moduleID, headerClangModuleDependencies.getArrayRef());
// Record include Tree ID
if (includeTreeID)
moduleDependencyInfo.addBridgingHeaderIncludeTree(*includeTreeID);
// Record the bridging header command line
if (isTextualModuleWithABridgingHeader)
moduleDependencyInfo.updateBridgingHeaderCommandLine(
bridgingHeaderCommandLine);
moduleDependencyInfo.setHeaderSourceFiles(headerFileInputs);
// Update the dependency in the cache
cache.updateDependency(moduleID, moduleDependencyInfo);
} else {
// Failure to scan header
}
return true;
});
cache.setHeaderClangDependencies(moduleID,
headerClangModuleDependencies.getArrayRef());
}
void ModuleDependencyScanner::resolveSwiftOverlayDependenciesForModule(
const ModuleDependencyID &moduleID, ModuleDependenciesCache &cache,
ModuleDependencyIDSetVector &swiftOverlayDependencies) {
PrettyStackTraceStringAction trace(
"Resolving Swift Overlay dependencies of module", moduleID.ModuleName);
std::vector<std::string> allClangDependencies;
llvm::StringSet<> knownModules;
// Find all of the discovered Clang modules that this module depends on.
for (const auto &dep : cache.getClangDependencies(moduleID))
findAllImportedClangModules(dep.ModuleName, cache, allClangDependencies,
knownModules);
llvm::StringMap<SwiftModuleScannerQueryResult> swiftOverlayLookupResult;
std::mutex lookupResultLock;
// A scanning task to query a Swift module by-name. If the module already
// exists in the cache, do nothing and return.
auto scanForSwiftDependency = [this, &cache, &lookupResultLock,
&swiftOverlayLookupResult](
Identifier moduleIdentifier) {
auto moduleName = moduleIdentifier.str();
{
std::lock_guard<std::mutex> guard(lookupResultLock);
if (cache.hasDependency(moduleName, ModuleDependencyKind::SwiftInterface) ||
cache.hasDependency(moduleName, ModuleDependencyKind::SwiftBinary))
return;
}
auto moduleDependencies = withDependencyScanningWorker(
[moduleIdentifier](ModuleDependencyScanningWorker *ScanningWorker) {
return ScanningWorker->scanFilesystemForSwiftModuleDependency(
moduleIdentifier, /* isTestableImport */ false);
});
{
std::lock_guard<std::mutex> guard(lookupResultLock);
swiftOverlayLookupResult.insert_or_assign(moduleName, moduleDependencies);
}
};
// Enque asynchronous lookup tasks
for (const auto &clangDep : allClangDependencies)
ScanningThreadPool.async(scanForSwiftDependency,
getModuleImportIdentifier(clangDep));
ScanningThreadPool.wait();
// Aggregate both previously-cached and freshly-scanned module results
auto recordResult = [this, &cache, &swiftOverlayLookupResult,
&swiftOverlayDependencies,
moduleID](const std::string &moduleName) {
auto lookupResult = swiftOverlayLookupResult[moduleName];
if (moduleName != moduleID.ModuleName) {
// Query found module
if (lookupResult.foundDependencyInfo) {
cache.recordDependency(moduleName, *(lookupResult.foundDependencyInfo));
swiftOverlayDependencies.insert(
{moduleName, lookupResult.foundDependencyInfo->getKind()});
IssueReporter.warnOnIncompatibleCandidates(
moduleName, lookupResult.incompatibleCandidates);
// Module was resolved from a cache
} else if (auto cachedInfo = cache.findSwiftDependency(moduleName))
swiftOverlayDependencies.insert(
{moduleName, cachedInfo.value()->getKind()});
else
IssueReporter.diagnoseFailureOnOnlyIncompatibleCandidates(
ScannerImportStatementInfo(moduleName),
lookupResult.incompatibleCandidates, cache, std::nullopt);
}
};
for (const auto &clangDep : allClangDependencies)
recordResult(clangDep);
// C++ Interop requires additional handling
bool lookupCxxStdLibOverlay = ScanCompilerInvocation.getLangOptions().EnableCXXInterop;
if (lookupCxxStdLibOverlay && moduleID.Kind == ModuleDependencyKind::SwiftInterface) {
const auto &moduleInfo = cache.findKnownDependency(moduleID);
const auto commandLine = moduleInfo.getCommandline();
// If the textual interface was built without C++ interop, do not query
// the C++ Standard Library Swift overlay for its compilation.
//
// FIXME: We always declare the 'Darwin' module as formally having been built
// without C++Interop, for compatibility with prior versions. Once we are certain
// that we are only building against modules built with support of
// '-formal-cxx-interoperability-mode', this hard-coded check should be removed.
if (moduleID.ModuleName == "Darwin" ||
llvm::find(commandLine, "-formal-cxx-interoperability-mode=off") !=
commandLine.end())
lookupCxxStdLibOverlay = false;
}
if (lookupCxxStdLibOverlay) {
for (const auto &clangDepName : allClangDependencies) {
// If this Clang module is a part of the C++ stdlib, and we haven't
// loaded the overlay for it so far, it is a split libc++ module (e.g.
// std_vector). Load the CxxStdlib overlay explicitly.
const auto &clangDepInfo =
cache.findDependency(clangDepName, ModuleDependencyKind::Clang)
.value()
->getAsClangModule();
if (importer::isCxxStdModule(clangDepName, clangDepInfo->IsSystem) &&
!swiftOverlayDependencies.contains(
{clangDepName, ModuleDependencyKind::SwiftInterface}) &&
!swiftOverlayDependencies.contains(
{clangDepName, ModuleDependencyKind::SwiftBinary})) {
scanForSwiftDependency(
getModuleImportIdentifier(ScanASTContext.Id_CxxStdlib.str()));
recordResult(ScanASTContext.Id_CxxStdlib.str().str());
break;
}
}
}
// Resolve the dependency info with Swift overlay dependency module
// information.
cache.setSwiftOverlayDependencies(moduleID,
swiftOverlayDependencies.getArrayRef());
}
void ModuleDependencyScanner::resolveCrossImportOverlayDependencies(
StringRef mainModuleName, ModuleDependenciesCache &cache,
llvm::function_ref<void(ModuleDependencyID)> action) {
// Modules explicitly imported. Only these can be secondary module.
llvm::SetVector<Identifier> newOverlays;
std::set<std::pair<std::string, std::string>> overlayFiles;
discoverCrossImportOverlayFiles(mainModuleName, cache, ScanASTContext,
newOverlays, overlayFiles);
// No new cross-import overlays are found, return.
if (newOverlays.empty())
return;
// Construct a dummy main to resolve the newly discovered cross import
// overlays.
StringRef dummyMainName = "MainModuleCrossImportOverlays";
auto dummyMainID = ModuleDependencyID{dummyMainName.str(),
ModuleDependencyKind::SwiftSource};
auto actualMainID = ModuleDependencyID{mainModuleName.str(),
ModuleDependencyKind::SwiftSource};
auto dummyMainDependencies = ModuleDependencyInfo::forSwiftSourceModule();
std::for_each(
newOverlays.begin(), newOverlays.end(), [&](Identifier modName) {
dummyMainDependencies.addModuleImport(
modName.str(),
/* isExported */ false,
// TODO: What is the right access level for a cross-import overlay?
AccessLevel::Public);
});
// Record the dummy main module's direct dependencies. The dummy main module
// only directly depend on these newly discovered overlay modules.
if (cache.findDependency(dummyMainID))
cache.updateDependency(dummyMainID, dummyMainDependencies);
else
cache.recordDependency(dummyMainName, dummyMainDependencies);
ModuleDependencyIDSetVector allModules =
resolveImportedModuleDependencies(dummyMainID, cache);
// Update main module's dependencies to include these new overlays.
auto newOverlayDeps = cache.getAllDependencies(dummyMainID);
cache.setCrossImportOverlayDependencies(actualMainID,
newOverlayDeps.getArrayRef());
// Update the command-line on the main module to
// disable implicit cross-import overlay search.
auto mainDep = cache.findKnownDependency(actualMainID);
std::vector<std::string> cmdCopy = mainDep.getCommandline();
cmdCopy.push_back("-disable-cross-import-overlay-search");
for (auto &entry : overlayFiles) {
mainDep.addAuxiliaryFile(entry.second);
cmdCopy.push_back("-swift-module-cross-import");
cmdCopy.push_back(entry.first);
auto overlayPath = remapPath(entry.second);
cmdCopy.push_back(overlayPath);
}
mainDep.updateCommandLine(cmdCopy);
cache.updateDependency(actualMainID, mainDep);
// Report any discovered modules to the clients, which include all overlays
// and their dependencies.
std::for_each(/* +1 to exclude dummy main*/ allModules.begin() + 1,
allModules.end(), action);
}
llvm::Error ModuleDependencyScanner::performBridgingHeaderChaining(
const ModuleDependencyID &rootModuleID, ModuleDependenciesCache &cache,
ModuleDependencyIDSetVector &allModules) {
if (rootModuleID.Kind != ModuleDependencyKind::SwiftSource)
return llvm::Error::success();
bool hasBridgingHeader = false;
llvm::vfs::OnDiskOutputBackend outputBackend;
SmallString<256> outputPath(
ScanCompilerInvocation.getFrontendOptions().ScannerOutputDir);
if (outputPath.empty())
outputPath = "/<compiler-generated>";
llvm::sys::path::append(
outputPath, ScanCompilerInvocation.getFrontendOptions().ModuleName + "-" +
ScanCompilerInvocation.getModuleScanningHash() +
"-ChainedBridgingHeader.h");
llvm::SmallString<256> sourceBuf;
llvm::raw_svector_ostream outOS(sourceBuf);
// Iterate through all the modules and collect all the bridging header
// and chain them into a single file. The allModules list is in the order of
// discover, thus providing stable ordering for a deterministic generated
// buffer.
auto FS = ScanASTContext.SourceMgr.getFileSystem();
for (const auto &moduleID : allModules) {
if (moduleID.Kind != ModuleDependencyKind::SwiftSource &&
moduleID.Kind != ModuleDependencyKind::SwiftBinary)
continue;
auto moduleDependencyInfo = cache.findKnownDependency(moduleID);
if (auto *binaryMod = moduleDependencyInfo.getAsSwiftBinaryModule()) {
if (!binaryMod->headerImport.empty()) {
hasBridgingHeader = true;
if (FS->exists(binaryMod->headerImport)) {
outOS << "#include \"" << binaryMod->headerImport << "\"\n";
} else {
// Extract the embedded bridging header
auto moduleBuf = FS->getBufferForFile(binaryMod->compiledModulePath);
if (!moduleBuf)
return llvm::errorCodeToError(moduleBuf.getError());
auto content = extractEmbeddedBridgingHeaderContent(
std::move(*moduleBuf), ScanASTContext);
if (content.empty())
return llvm::createStringError("can't load embedded header from " +
binaryMod->compiledModulePath);
outOS << content << "\n";
}
}
} else if (auto *srcMod = moduleDependencyInfo.getAsSwiftSourceModule()) {
if (srcMod->textualModuleDetails.bridgingHeaderFile) {
hasBridgingHeader = true;
outOS << "#include \""
<< *srcMod->textualModuleDetails.bridgingHeaderFile << "\"\n";
}
}
}
if (!hasBridgingHeader)
return llvm::Error::success();
if (ScanCompilerInvocation.getFrontendOptions().WriteScannerOutput) {
auto outFile = outputBackend.createFile(outputPath);
if (!outFile)
return outFile.takeError();
*outFile << sourceBuf;
if (auto err = outFile->keep())
return err;
}
auto sourceBuffer =
llvm::MemoryBuffer::getMemBufferCopy(sourceBuf, outputPath);
// Scan and update the main module dependency.
auto mainModuleDeps = cache.findKnownDependency(rootModuleID);
ModuleDependencyIDSetVector headerClangModuleDependencies;
std::optional<std::string> includeTreeID;
auto err = withDependencyScanningWorker(
[&](ModuleDependencyScanningWorker *ScanningWorker) -> llvm::Error {
std::vector<std::string> headerFileInputs;
std::vector<std::string> bridgingHeaderCommandLine;
if (ScanningWorker->scanHeaderDependenciesOfSwiftModule(
*ScanningWorker->workerASTContext, rootModuleID,
/*headerPath=*/std::nullopt, sourceBuffer->getMemBufferRef(),
cache, headerClangModuleDependencies, headerFileInputs,
bridgingHeaderCommandLine, includeTreeID))
return llvm::createStringError(
"failed to scan generated bridging header " + outputPath);
cache.setHeaderClangDependencies(
rootModuleID, headerClangModuleDependencies.getArrayRef());
// Record include Tree ID
if (includeTreeID) {
// Save the old include tree ID inside the CAS for lookup. Old include
// tree can be used to create embedded header for the original
// bridging header.
if (auto embeddedHeaderIncludeTree =
mainModuleDeps.getBridgingHeaderIncludeTree()) {
if (auto err = ScanningWorker->createCacheKeyForEmbeddedHeader(
*embeddedHeaderIncludeTree, *includeTreeID))
return err;
}
mainModuleDeps.addBridgingHeaderIncludeTree(*includeTreeID);
}
mainModuleDeps.updateBridgingHeaderCommandLine(
bridgingHeaderCommandLine);
mainModuleDeps.setHeaderSourceFiles(headerFileInputs);
mainModuleDeps.setChainedBridgingHeaderBuffer(
outputPath, sourceBuffer->getBuffer());
// Update the dependency in the cache
cache.updateDependency(rootModuleID, mainModuleDeps);
return llvm::Error::success();
});
if (err)
return err;
cache.setHeaderClangDependencies(rootModuleID,
headerClangModuleDependencies.getArrayRef());
llvm::for_each(
headerClangModuleDependencies,
[&allModules](const ModuleDependencyID &dep) { allModules.insert(dep); });
return llvm::Error::success();
}
void ModuleDependencyIssueReporter::diagnoseModuleNotFoundFailure(
const ScannerImportStatementInfo &moduleImport,
const ModuleDependenciesCache &cache,
std::optional<ModuleDependencyID> dependencyOf,
std::optional<std::pair<ModuleDependencyID, std::string>>
resolvingSerializedSearchPath,
std::optional<
std::vector<SwiftModuleScannerQueryResult::IncompatibleCandidate>>
foundIncompatibleCandidates) {
// Do not report the same failure multiple times. This can
// happen, for example, when we first report that a valid Swift module is
// missing and then look it up again as a Swift overlay of its underlying
// Clang module.
if (ReportedMissing.find(moduleImport.importIdentifier) !=
ReportedMissing.end())
return;
SourceLoc importLoc = SourceLoc();
if (!moduleImport.importLocations.empty()) {
auto locInfo = moduleImport.importLocations[0];
importLoc = Diagnostics.SourceMgr.getLocFromExternalSource(
locInfo.bufferIdentifier, locInfo.lineNumber, locInfo.columnNumber);
}
// Emit the top-level error diagnostic, which is one of 3 possibilities:
// 1. Module dependency can not be found but could be resolved if using search
// paths serialized into some binary Swift module dependency
//
// 2. Swift Module dependency can not be found but we did find binary Swift
// module candidates for this module which are not compatible with current
// compilation
//
// 3. All other generic "module not found" cases
if (resolvingSerializedSearchPath) {
Diagnostics.diagnose(
importLoc,
diag::dependency_scan_module_not_found_on_specified_search_paths,
moduleImport.importIdentifier);
Diagnostics.diagnose(importLoc, diag::inherited_search_path_resolves_module,
moduleImport.importIdentifier,
resolvingSerializedSearchPath->first.ModuleName,
resolvingSerializedSearchPath->second);
} else if (foundIncompatibleCandidates) {
Diagnostics.diagnose(
importLoc, diag::dependency_scan_compatible_swift_module_not_found,
moduleImport.importIdentifier);
for (const auto &candidate : *foundIncompatibleCandidates)
Diagnostics.diagnose(importLoc,
diag::dependency_scan_incompatible_module_found,
candidate.path, candidate.incompatibilityReason);
} else
Diagnostics.diagnose(importLoc, diag::dependency_scan_module_not_found,
moduleImport.importIdentifier);
// Emit notes for every link in the dependency chain from the root
// module-under-scan to the module whose import failed to resolve.
if (dependencyOf.has_value()) {
auto path = findPathToDependency(dependencyOf.value(), cache);
// We may fail to construct a path in some cases, such as a Swift overlay of
// a Clang module dependnecy.
if (path.empty())
path = {dependencyOf.value()};
for (auto it = path.rbegin(), end = path.rend(); it != end; ++it) {
const auto &entry = *it;
auto optionalEntryNode = cache.findDependency(entry);
assert(optionalEntryNode.has_value());
auto entryNode = optionalEntryNode.value();
std::string moduleFilePath = "";
bool isClang = false;
switch (entryNode->getKind()) {
case swift::ModuleDependencyKind::SwiftSource:
Diagnostics.diagnose(importLoc,
diag::dependency_as_imported_by_main_module,
entry.ModuleName);
continue;
case swift::ModuleDependencyKind::SwiftInterface:
moduleFilePath =
entryNode->getAsSwiftInterfaceModule()->swiftInterfaceFile;
break;
case swift::ModuleDependencyKind::SwiftBinary:
moduleFilePath =
entryNode->getAsSwiftBinaryModule()->compiledModulePath;
break;
case swift::ModuleDependencyKind::Clang:
moduleFilePath = entryNode->getAsClangModule()->moduleMapFile;
isClang = true;
break;
default:
llvm_unreachable("Unexpected dependency kind");
}
Diagnostics.diagnose(importLoc, diag::dependency_as_imported_by,
entry.ModuleName, moduleFilePath, isClang);
}
}
// Emit notes for every other known location where the failed-to-resolve
// module is imported.
if (moduleImport.importLocations.size() > 1) {
for (size_t i = 1; i < moduleImport.importLocations.size(); ++i) {
auto locInfo = moduleImport.importLocations[i];
auto importLoc = Diagnostics.SourceMgr.getLocFromExternalSource(
locInfo.bufferIdentifier, locInfo.lineNumber, locInfo.columnNumber);
Diagnostics.diagnose(importLoc, diag::unresolved_import_location);
}
}
ReportedMissing.insert(moduleImport.importIdentifier);
}
void ModuleDependencyIssueReporter::diagnoseFailureOnOnlyIncompatibleCandidates(
const ScannerImportStatementInfo &moduleImport,
const std::vector<SwiftModuleScannerQueryResult::IncompatibleCandidate>
&candidates,
const ModuleDependenciesCache &cache,
std::optional<ModuleDependencyID> dependencyOf) {
// If no incompatible candidates were discovered,
// the dependency scanning failure will be caught downstream.
if (candidates.empty())
return;
diagnoseModuleNotFoundFailure(moduleImport, cache, dependencyOf,
/* resolvingSerializedSearchPath */ std::nullopt,
candidates);
}
void ModuleDependencyIssueReporter::warnOnIncompatibleCandidates(
StringRef moduleName,
const std::vector<SwiftModuleScannerQueryResult::IncompatibleCandidate>
&candidates) {
// If the dependency was ultimately resolved to a different
// binary module or a textual module, emit warnings about
// having encountered incompatible binary modules.
for (const auto &candidate : candidates)
Diagnostics.diagnose(SourceLoc(), diag::dependency_scan_module_incompatible,
candidate.path, candidate.incompatibilityReason);
}
std::optional<std::pair<ModuleDependencyID, std::string>>
ModuleDependencyScanner::attemptToFindResolvingSerializedSearchPath(
const ScannerImportStatementInfo &moduleImport,
const ModuleDependenciesCache &cache) {
std::set<ModuleDependencyID> binarySwiftModuleDepIDs =
collectBinarySwiftDeps(cache);
std::optional<std::pair<ModuleDependencyID, std::string>> result;
for (const auto &binaryDepID : binarySwiftModuleDepIDs) {
auto binaryModInfo =
cache.findKnownDependency(binaryDepID).getAsSwiftBinaryModule();
assert(binaryModInfo);
if (binaryModInfo->serializedSearchPaths.empty())
continue;
// Note: this will permanently mutate this worker with additional search
// paths. That's fine because we are diagnosing a scan failure here, but
// worth being aware of.
result = withDependencyScanningWorker(
[this, &binaryModInfo, &moduleImport,
&binaryDepID](ModuleDependencyScanningWorker *ScanningWorker)
-> std::optional<std::pair<ModuleDependencyID, std::string>> {
for (const auto &sp : binaryModInfo->serializedSearchPaths)
ScanningWorker->workerASTContext->addSearchPath(
sp.Path, sp.IsFramework, sp.IsSystem);
auto importIdentifier =
getModuleImportIdentifier(moduleImport.importIdentifier);
SwiftModuleScannerQueryResult swiftResult =
ScanningWorker->scanFilesystemForSwiftModuleDependency(
importIdentifier, /* isTestableImport */ false);
if (swiftResult.foundDependencyInfo)
return std::make_pair(
binaryDepID,
swiftResult.foundDependencyInfo->getModuleDefiningPath());
ModuleDependencyVector clangResult =
ScanningWorker->scanFilesystemForClangModuleDependency(
importIdentifier, {});
if (!clangResult.empty())
return std::make_pair(
binaryDepID, clangResult[0].second.getModuleDefiningPath());
return std::nullopt;
});
if (result)
break;
}
return result;
}