Files
swift-mirror/lib/SILOptimizer/Transforms/StringOptimization.cpp
Min-Yih Hsu e1023bc323 [DebugInfo] PATCH 2/3: Duplicate logics regarding debug_value_addr
This patch replace all in-memory objects of DebugValueAddrInst with
DebugValueInst + op_deref, and duplicates logics that handles
DebugValueAddrInst with the latter. All related check in the tests
have been updated as well.

Note that this patch neither remove the DebugValueAddrInst class nor
remove `debug_value_addr` syntax in the test inputs.
2021-08-31 11:57:56 -07:00

751 lines
26 KiB
C++

//===--- StringOptimization.cpp - Optimize string operations --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This pass performs several optimizations on String operations.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "string-optimization"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILGlobalVariable.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ASTMangler.h"
#include "swift/Demangling/Demangle.h"
#include "llvm/Support/Debug.h"
using namespace swift;
namespace {
/// Optimizes String operations with constant operands.
/// Specifically:
/// * Replaces x.append(y) with x = y if x is empty.
/// * Removes x.append("")
/// * Replaces x.append(y) with x = x + y if x and y are constant strings.
/// * Replaces _typeName(T.self) with a constant string if T is statically
/// known.
/// * Replaces String(literal).utf8CString with the string literal itself.
///
/// This pass must run on high-level SIL, where semantic calls are still in
/// place.
///
/// The optimization is implemented in a simple way. Therfore it cannot handle
/// complicated patterns, e.g. the dataflow analysis for the String.append self
/// argument is only done within a single block.
/// But this is totally sufficient to be able to constant propagate strings in
/// string interpolations.
///
/// If we want to make this optimization more powerful it's best done by using
/// the ConstExprStepEvaluator (which is currently lacking a few features to be
/// used for this optimization).
class StringOptimization {
struct StringInfo {
/// The string
StringRef str;
/// Negative means: not constant
int reservedCapacity = 0;
StringInfo(StringRef str, int reservedCapacity = 0) :
str(str), reservedCapacity(reservedCapacity) { }
bool isConstant() const { return reservedCapacity >= 0; }
bool isEmpty() const { return isConstant() && str.empty(); }
static StringInfo unknown() { return StringInfo(StringRef(), -1); }
};
/// The stdlib's String type.
SILType stringType;
/// The String initializer which takes an UTF8 string literal as argument.
SILFunction *makeUTF8Func = nullptr;
/// Caches the analysis result for an alloc_stack or an inout function
/// argument, whether it is an "identifyable" object.
/// See mayWriteToIdentifyableObject().
llvm::DenseMap<SILValue, bool> identifyableObjectsCache;
public:
bool run(SILFunction *F);
private:
bool optimizeBlock(SILBasicBlock &block);
bool optimizeStringAppend(ApplyInst *appendCall,
llvm::DenseMap<SILValue, SILValue> &storedStrings);
bool optimizeStringConcat(ApplyInst *concatCall);
bool optimizeTypeName(ApplyInst *typeNameCall);
bool optimizeGetCString(ApplyInst *getCStringCall);
static ApplyInst *isSemanticCall(SILInstruction *inst, StringRef attr,
unsigned numArgs);
StoreInst *isStringStoreToIdentifyableObject(SILInstruction *inst);
static void invalidateModifiedObjects(SILInstruction *inst,
llvm::DenseMap<SILValue, SILValue> &storedStrings);
static StringInfo getStringInfo(SILValue value);
static StringInfo getStringFromStaticLet(SILValue value);
static Optional<int> getIntConstant(SILValue value);
static void replaceAppendWith(ApplyInst *appendCall, SILValue newValue);
static SILValue copyValue(SILValue value, SILInstruction *before);
ApplyInst *createStringInit(StringRef str, SILInstruction *beforeInst);
};
/// The main entry point of the optimization.
bool StringOptimization::run(SILFunction *F) {
NominalTypeDecl *stringDecl = F->getModule().getASTContext().getStringDecl();
if (!stringDecl)
return false;
stringType = SILType::getPrimitiveObjectType(
stringDecl->getDeclaredInterfaceType()->getCanonicalType());
bool changed = false;
for (SILBasicBlock &block : *F) {
changed |= optimizeBlock(block);
}
return changed;
}
/// Run the optimization on a basic block.
bool StringOptimization::optimizeBlock(SILBasicBlock &block) {
bool changed = false;
/// Maps identifyable objects (alloc_stack, inout parameters) to string values
/// which are stored in those objects.
llvm::DenseMap<SILValue, SILValue> storedStrings;
for (auto iter = block.begin(); iter != block.end();) {
SILInstruction *inst = &*iter++;
if (StoreInst *store = isStringStoreToIdentifyableObject(inst)) {
storedStrings[store->getDest()] = store->getSrc();
continue;
}
if (ApplyInst *append = isSemanticCall(inst, semantics::STRING_APPEND, 2)) {
if (optimizeStringAppend(append, storedStrings)) {
changed = true;
continue;
}
}
if (ApplyInst *append = isSemanticCall(inst, semantics::STRING_CONCAT, 3)) {
if (optimizeStringConcat(append)) {
changed = true;
continue;
}
}
if (ApplyInst *typeName = isSemanticCall(inst, semantics::TYPENAME, 2)) {
if (optimizeTypeName(typeName)) {
changed = true;
continue;
}
}
if (ApplyInst *getCString = isSemanticCall(inst,
semantics::STRING_GET_UTF8_CSTRING, 1)) {
if (optimizeGetCString(getCString)) {
changed = true;
continue;
}
}
// Remove items from storedStrings if inst overwrites (or potentially
// overwrites) a stored String in an identifyable object.
invalidateModifiedObjects(inst, storedStrings);
}
return changed;
}
/// Optimize String.append in case anything is known about the parameters.
bool StringOptimization::optimizeStringAppend(ApplyInst *appendCall,
llvm::DenseMap<SILValue, SILValue> &storedStrings) {
SILValue rhs = appendCall->getArgument(0);
StringInfo rhsString = getStringInfo(rhs);
// Remove lhs.append(rhs) if rhs is empty.
if (rhsString.isEmpty()) {
appendCall->eraseFromParent();
return true;
}
SILValue lhsAddr = appendCall->getArgument(1);
StringInfo lhsString = getStringInfo(storedStrings[lhsAddr]);
// The following two optimizations are a trade-off: Performance-wise it may be
// benefitial to initialize an empty string with reserved capacity and then
// append multiple other string components.
// Removing the empty string (with the reserved capacity) might result in more
// allocations.
// So we just do this optimization up to a certain capacity limit (found by
// experiment).
if (lhsString.reservedCapacity > 50)
return false;
// Replace lhs.append(rhs) with 'lhs = rhs' if lhs is empty.
if (lhsString.isEmpty()) {
replaceAppendWith(appendCall, copyValue(rhs, appendCall));
storedStrings[lhsAddr] = rhs;
return true;
}
// Replace lhs.append(rhs) with "lhs = lhs + rhs" if both lhs and rhs are
// constant.
if (lhsString.isConstant() && rhsString.isConstant()) {
std::string concat = lhsString.str.str();
concat += rhsString.str;
if (ApplyInst *stringInit = createStringInit(concat, appendCall)) {
replaceAppendWith(appendCall, stringInit);
storedStrings[lhsAddr] = stringInit;
return true;
}
}
return false;
}
/// Optimize String.+ in case anything is known about the parameters.
bool StringOptimization::optimizeStringConcat(ApplyInst *concatCall) {
SILValue lhs = concatCall->getArgument(0);
SILValue rhs = concatCall->getArgument(1);
StringInfo rhsString = getStringInfo(rhs);
// Replace lhs + "" with lhs
if (rhsString.isEmpty()) {
lhs = copyValue(lhs, concatCall);
concatCall->replaceAllUsesWith(lhs);
concatCall->eraseFromParent();
return true;
}
// Replace "" + rhs with rhs
StringInfo lhsString = getStringInfo(lhs);
if (lhsString.isEmpty()) {
rhs = copyValue(rhs, concatCall);
concatCall->replaceAllUsesWith(rhs);
concatCall->eraseFromParent();
return true;
}
// Replace lhs + rhs with "lhs + rhs" if both lhs and rhs are constant.
if (lhsString.isConstant() && rhsString.isConstant()) {
std::string concat = lhsString.str.str();
concat += rhsString.str;
if (ApplyInst *stringInit = createStringInit(concat, concatCall)) {
concatCall->replaceAllUsesWith(stringInit);
concatCall->eraseFromParent();
return true;
}
}
return false;
}
/// Checks if the demangling tree contains any node which prevents constant
/// folding of the type name.
static bool containsProblematicNode(Demangle::Node *node, bool qualified) {
switch (node->getKind()) {
case Demangle::Node::Kind::LocalDeclName:
// The printing of contexts for local types is completely different
// in the runtime. Don't constant fold if we need to print the context.
if (qualified)
return true;
break;
case Demangle::Node::Kind::Class: {
// ObjC class names are not derived from the mangling but from the
// ObjC runtime. We cannot constant fold this.
Demangle::Node *context = node->getChild(0);
if (context->getKind() == Demangle::Node::Kind::Module &&
context->getText() == "__C") {
return true;
}
break;
}
default:
break;
}
for (Demangle::Node *child : *node) {
if (containsProblematicNode(child, qualified))
return true;
}
return false;
}
/// Try to replace a _typeName() call with a constant string if the type is
/// statically known.
bool StringOptimization::optimizeTypeName(ApplyInst *typeNameCall) {
// Check, if the type is statically known.
auto *anyType =
dyn_cast<InitExistentialMetatypeInst>(typeNameCall->getArgument(0));
if (!anyType)
return false;
auto *metatypeInst = dyn_cast<MetatypeInst>(anyType->getOperand());
if (!metatypeInst)
return false;
auto metatype = metatypeInst->getType().getAs<MetatypeType>();
Type ty = metatype->getInstanceType();
if (ty->hasArchetype() || ty->hasDynamicSelfType())
return false;
// Usually the "qualified" parameter of _typeName() is a constant boolean.
Optional<int> isQualifiedOpt = getIntConstant(typeNameCall->getArgument(1));
if (!isQualifiedOpt)
return false;
bool isQualified = isQualifiedOpt.getValue();
// Create the constant type string by mangling + demangling.
Mangle::ASTMangler mangler;
std::string mangledTypeName = mangler.mangleTypeForTypeName(ty);
Demangle::DemangleOptions options;
options.PrintForTypeName = true;
options.DisplayLocalNameContexts = false;
options.QualifyEntities = isQualified;
Demangle::Context ctx;
Demangle::NodePointer root = ctx.demangleTypeAsNode(mangledTypeName);
if (!root || containsProblematicNode(root, isQualified))
return false;
std::string typeStr = nodeToString(root, options);
if (typeStr.empty())
return false;
ApplyInst *stringInit = createStringInit(typeStr, typeNameCall);
if (!stringInit)
return false;
typeNameCall->replaceAllUsesWith(stringInit);
typeNameCall->eraseFromParent();
return true;
}
/// Replaces a String initializer followed by String.utf8CString with a
/// (UTF8 encoded) string literal.
///
/// Note that string literals are always generated with a trailing 0-byte.
bool StringOptimization::optimizeGetCString(ApplyInst *getCStringCall) {
// Is this a String.utf8CString of a literal String?
StringInfo stringInfo = getStringInfo(getCStringCall->getArgument(0));
if (!stringInfo.isConstant())
return false;
StringLiteralInst *literal = nullptr;
bool changed = false;
SmallVector<SILInstruction *, 16> workList;
workList.push_back(getCStringCall);
/// String.utf8CString returns an array of Int8. Search for ref_tail_addr of
/// the array buffer.
while (!workList.empty()) {
SILInstruction *inst = workList.pop_back_val();
// Look through string_extract which extract the buffer from the array.
if (isa<StructExtractInst>(inst) || inst == getCStringCall) {
for (Operand *use : cast<SingleValueInstruction>(inst)->getUses()) {
workList.push_back(use->getUser());
}
continue;
}
if (auto *rta = dyn_cast<RefTailAddrInst>(inst)) {
// Replace the ref_tail_addr with a pointer_to_address of the string
// literal.
if (!literal) {
// Build the literal if we don't have one, yet.
SILBuilder builder(getCStringCall);
literal = builder.createStringLiteral(getCStringCall->getLoc(),
stringInfo.str, StringLiteralInst::Encoding::UTF8);
}
SILBuilder builder(rta);
auto *strAddr = builder.createPointerToAddress(rta->getLoc(), literal,
rta->getType(), /*isStrict*/ false);
rta->replaceAllUsesWith(strAddr);
changed = true;
}
}
return changed;
}
/// Returns the apply instruction if \p inst is a call of a function which has
/// a semantic attribute \p attr and exactly \p numArgs arguments.
ApplyInst *StringOptimization::isSemanticCall(SILInstruction *inst,
StringRef attr, unsigned numArgs) {
auto *apply = dyn_cast<ApplyInst>(inst);
if (!apply || apply->getNumArguments() != numArgs)
return nullptr;
SILFunction *callee = apply->getReferencedFunctionOrNull();
if (callee && callee->hasSemanticsAttr(attr))
return apply;
return nullptr;
}
/// Returns true for all instructions which we can safely analyze as a potential
/// write to an identifyable objects.
///
/// If we see any other kind of object user, which may write to an object, or
/// let the object address escape in some unexpected way (like address
/// projections), we'll just ignore that object and will not treat it as
/// "identifyable" object.
static bool mayWriteToIdentifyableObject(SILInstruction *inst) {
// For simplicity, only handle store and apply. This is sufficient for most
// case, especially for string interpolation.
return isa<StoreInst>(inst) || isa<ApplyInst>(inst);
}
/// Returns the store intstruction if \p inst is a store of a String to an
/// identifyable object.
StoreInst *StringOptimization::
isStringStoreToIdentifyableObject(SILInstruction *inst) {
auto *store = dyn_cast<StoreInst>(inst);
if (!store)
return nullptr;
if (store->getSrc()->getType() != stringType)
return nullptr;
SILValue destAddr = store->getDest();
// We only handle alloc_stack an indirect function arguments. For those we can
// be sure that they are not aliased, just by checking all users.
if (!isa<AllocStackInst>(destAddr) && !isExclusiveArgument(destAddr))
return nullptr;
if (identifyableObjectsCache.count(destAddr) != 0) {
return identifyableObjectsCache[destAddr] ? store : nullptr;
}
// Check if it's an "identifyable" object. This is the case if it only has
// users which we are able to track in a simple way: stores and applies.
for (Operand *use : destAddr->getUses()) {
SILInstruction *user = use->getUser();
switch (user->getKind()) {
// Those instructions do not write to destAddr nor let they destAddr
// escape.
case SILInstructionKind::DebugValueAddrInst:
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::LoadInst:
break;
case SILInstructionKind::DebugValueInst:
if (DebugValueInst::hasAddrVal(user))
break;
LLVM_FALLTHROUGH;
default:
if (!mayWriteToIdentifyableObject(user)) {
// We don't handle user. It is some instruction which may write to
// destAddr or let destAddr "escape" (like an address projection).
identifyableObjectsCache[destAddr] = false;
return nullptr;
}
break;
}
}
identifyableObjectsCache[destAddr] = true;
return store;
}
/// Removes all objects from \p storedStrings which \p inst (potentially)
/// modifies.
void StringOptimization::invalidateModifiedObjects(SILInstruction *inst,
llvm::DenseMap<SILValue, SILValue> &storedStrings) {
// Ignore non-writing instructions, like "load", "dealloc_stack".
// Note that identifyable objects (= keys in storedStrings) can only have
// certain kind of instructions as users: all instruction which we handle in
// isStringStoreToIdentifyableObject().
if (!mayWriteToIdentifyableObject(inst))
return;
for (Operand &op : inst->getAllOperands()) {
storedStrings.erase(op.get());
}
}
/// If \p value is a struct_extract, return its operand and field.
static std::pair<SILValue, VarDecl *> skipStructExtract(SILValue value) {
if (auto *sei = dyn_cast<StructExtractInst>(value))
return {sei->getOperand(), sei->getField()};
// Look through function calls, which do the struct_extract in the callee.
// This specifically targets
// String(stringInterpolation: DefaultStringInterpolation)
// which is not inlined in the high level pipeline (due to the specified
// effects).
auto *apply = dyn_cast<ApplyInst>(value);
if (!apply)
return {value, nullptr};
SILFunction *callee = apply->getReferencedFunctionOrNull();
if (!callee || !callee->isDefinition())
return {value, nullptr};
// `String(stringInterpolation: DefaultStringInterpolation)` has only a single
// basic block. Avoid the effort of searching all blocks for a `return`.
auto *ret = dyn_cast<ReturnInst>(callee->getEntryBlock()->getTerminator());
if (!ret)
return {value, nullptr};
auto *sei = dyn_cast<StructExtractInst>(ret->getOperand());
if (!sei)
return {value, nullptr};
auto *arg = dyn_cast<SILFunctionArgument>(sei->getOperand());
if (!arg)
return {value, nullptr};
value = apply->getArgument(arg->getIndex());
return {value, sei->getField()};
}
/// Returns information about value if it's a constant string.
StringOptimization::StringInfo StringOptimization::getStringInfo(SILValue value) {
if (!value)
return StringInfo::unknown();
// Look through struct_extract(struct(value)).
// This specifically targets calls to
// String(stringInterpolation: DefaultStringInterpolation)
// which are not inlined in the high level pipeline.
VarDecl *field = nullptr;
std::tie(value, field) = skipStructExtract(value);
if (field) {
auto *si = dyn_cast<StructInst>(value);
if (!si)
return StringInfo::unknown();
value = si->getFieldValue(field);
}
auto *apply = dyn_cast<ApplyInst>(value);
if (!apply) {
return getStringFromStaticLet(value);
}
SILFunction *callee = apply->getReferencedFunctionOrNull();
if (!callee)
return StringInfo::unknown();
if (callee->hasSemanticsAttr(semantics::STRING_INIT_EMPTY)) {
// An empty string initializer.
return StringInfo("");
}
if (callee->hasSemanticsAttr(semantics::STRING_INIT_EMPTY_WITH_CAPACITY)) {
// An empty string initializer with initial capacity.
int reservedCapacity = std::numeric_limits<int>::max();
if (apply->getNumArguments() > 0) {
if (Optional<int> capacity = getIntConstant(apply->getArgument(0)))
reservedCapacity = capacity.getValue();
}
return StringInfo("", reservedCapacity);
}
if (callee->hasSemanticsAttr(semantics::STRING_MAKE_UTF8)) {
// A string literal initializer.
SILValue stringVal = apply->getArgument(0);
auto *stringLiteral = dyn_cast<StringLiteralInst>(stringVal);
SILValue lengthVal = apply->getArgument(1);
auto *intLiteral = dyn_cast<IntegerLiteralInst>(lengthVal);
if (intLiteral && stringLiteral &&
// For simplicity, we only support UTF8 string literals.
stringLiteral->getEncoding() == StringLiteralInst::Encoding::UTF8 &&
// This passed number of code units should always match the size of the
// string in the string literal. Just to be on the safe side, check it.
intLiteral->getValue() == stringLiteral->getValue().size()) {
return StringInfo(stringLiteral->getValue());
}
}
return StringInfo::unknown();
}
/// Return the string if \p value is a load from a global static let, which is
/// initialized with a String constant.
StringOptimization::StringInfo
StringOptimization::getStringFromStaticLet(SILValue value) {
// Match the pattern
// %ptr_to_global = apply %addressor()
// %global_addr = pointer_to_address %ptr_to_global
// %value = load %global_addr
auto *load = dyn_cast<LoadInst>(value);
if (!load)
return StringInfo::unknown();
auto *pta = dyn_cast<PointerToAddressInst>(load->getOperand());
if (!pta)
return StringInfo::unknown();
auto *addressorCall = dyn_cast<ApplyInst>(pta->getOperand());
if (!addressorCall)
return StringInfo::unknown();
SILFunction *addressorFunc = addressorCall->getReferencedFunctionOrNull();
if (!addressorFunc)
return StringInfo::unknown();
// The addressor function has a builtin.once call to the initializer.
BuiltinInst *onceCall = nullptr;
SILFunction *initializer = findInitializer(addressorFunc, onceCall);
if (!initializer)
return StringInfo::unknown();
if (initializer->size() != 1)
return StringInfo::unknown();
// Match the pattern
// %addr = global_addr @staticStringLet
// ...
// %str = apply %stringInitializer(...)
// store %str to %addr
GlobalAddrInst *gAddr = nullptr;
for (SILInstruction &inst : initializer->front()) {
if (auto *ga = dyn_cast<GlobalAddrInst>(&inst)) {
if (gAddr)
return StringInfo::unknown();
gAddr = ga;
}
}
if (!gAddr || !gAddr->getReferencedGlobal()->isLet())
return StringInfo::unknown();
Operand *gUse = gAddr->getSingleUse();
auto *store = dyn_cast<StoreInst>(gUse->getUser());
if (!store || store->getDest() != gAddr)
return StringInfo::unknown();
SILValue initVal = store->getSrc();
// This check is probably not needed, but let's be on the safe side:
// it prevents an infinite recursion if the initializer of the global is
// itself a load of another global, and so on.
if (isa<LoadInst>(initVal))
return StringInfo::unknown();
return getStringInfo(initVal);
}
/// Returns the constant integer value if \a value is an Int or Bool struct with
/// an integer_literal as operand.
Optional<int> StringOptimization::getIntConstant(SILValue value) {
auto *boolOrIntStruct = dyn_cast<StructInst>(value);
if (!boolOrIntStruct || boolOrIntStruct->getNumOperands() != 1)
return None;
auto *literal = dyn_cast<IntegerLiteralInst>(boolOrIntStruct->getOperand(0));
if (!literal || literal->getValue().getActiveBits() > 64)
return None;
return literal->getValue().getSExtValue();
}
/// Replace a String.append() with a store of \p newValue to the destination.
void StringOptimization::replaceAppendWith(ApplyInst *appendCall,
SILValue newValue) {
SILBuilder builder(appendCall);
SILLocation loc = appendCall->getLoc();
SILValue destAddr = appendCall->getArgument(1);
if (appendCall->getFunction()->hasOwnership()) {
builder.createStore(loc, newValue, destAddr,
StoreOwnershipQualifier::Assign);
} else {
builder.createDestroyAddr(loc, destAddr);
builder.createStore(loc, newValue, destAddr,
StoreOwnershipQualifier::Unqualified);
}
appendCall->eraseFromParent();
}
/// Returns a copy of \p value. Depending if the function is in OSSA, insert
/// either a copy_value or retain_value.
SILValue StringOptimization::copyValue(SILValue value, SILInstruction *before) {
SILBuilder builder(before);
SILLocation loc = before->getLoc();
if (before->getFunction()->hasOwnership())
return builder.createCopyValue(loc, value);
builder.createRetainValue(loc, value, builder.getDefaultAtomicity());
return value;
}
/// Creates a call to a string initializer.
ApplyInst *StringOptimization::createStringInit(StringRef str,
SILInstruction *beforeInst) {
SILBuilder builder(beforeInst);
SILLocation loc = beforeInst->getLoc();
SILModule &module = beforeInst->getFunction()->getModule();
ASTContext &ctxt = module.getASTContext();
if (!makeUTF8Func) {
// Find the String initializer which takes a string_literal as argument.
ConstructorDecl *makeUTF8Decl = ctxt.getMakeUTF8StringDecl();
if (!makeUTF8Decl)
return nullptr;
auto Mangled = SILDeclRef(makeUTF8Decl, SILDeclRef::Kind::Allocator).mangle();
makeUTF8Func = module.findFunction(Mangled, SILLinkage::PublicExternal);
if (!makeUTF8Func)
return nullptr;
}
auto *literal = builder.createStringLiteral(loc, str,
StringLiteralInst::Encoding::UTF8);
auto *length = builder.createIntegerLiteral(loc,
SILType::getBuiltinWordType(ctxt),
literal->getCodeUnitCount());
auto *isAscii = builder.createIntegerLiteral(loc,
SILType::getBuiltinIntegerType(1, ctxt),
intmax_t(ctxt.isASCIIString(str)));
SILType stringMetaType = SILType::getPrimitiveObjectType(
CanType(MetatypeType::get(stringType.getASTType(),
MetatypeRepresentation::Thin)));
auto *metaTypeInst = builder.createMetatype(loc, stringMetaType);
auto *functionRef = builder.createFunctionRefFor(loc, makeUTF8Func);
return builder.createApply(loc, functionRef, SubstitutionMap(),
{ literal, length, isAscii, metaTypeInst });
}
/// The StringOptimization function pass.
class StringOptimizationPass : public SILFunctionTransform {
public:
void run() override {
SILFunction *F = getFunction();
if (!F->shouldOptimize())
return;
LLVM_DEBUG(llvm::dbgs() << "*** StringOptimization on function: "
<< F->getName() << " ***\n");
StringOptimization stringOptimization;
bool changed = stringOptimization.run(F);
if (changed) {
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
};
} // end anonymous namespace
SILTransform *swift::createStringOptimization() {
return new StringOptimizationPass();
}