Files
swift-mirror/lib/IRGen/GenStruct.cpp
Slava Pestov e12c29ded9 IRGen: Refactor NonFixedStructTypeInfo::initializeMetadata()
The emitInitializeFieldOffsetVector() function used for
class metadata is now almost identical to the logic used
for structs. Refactor the code used for classes and also
use it to layout structs.
2017-08-09 01:07:09 -07:00

851 lines
32 KiB
C++

//===--- GenStruct.cpp - Swift IR Generation For 'struct' Types -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for struct types.
//
//===----------------------------------------------------------------------===//
#include "GenStruct.h"
#include "swift/AST/Types.h"
#include "swift/AST/Decl.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/SILModule.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/RecordLayout.h"
#include "clang/CodeGen/SwiftCallingConv.h"
#include "GenMeta.h"
#include "GenRecord.h"
#include "GenType.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "IndirectTypeInfo.h"
#include "MemberAccessStrategy.h"
#include "NonFixedTypeInfo.h"
#include "ResilientTypeInfo.h"
#include "StructMetadataVisitor.h"
#include "MetadataLayout.h"
#pragma clang diagnostic ignored "-Winconsistent-missing-override"
using namespace swift;
using namespace irgen;
/// The kinds of TypeInfos implementing struct types.
enum class StructTypeInfoKind {
LoadableStructTypeInfo,
FixedStructTypeInfo,
ClangRecordTypeInfo,
NonFixedStructTypeInfo,
ResilientStructTypeInfo
};
static StructTypeInfoKind getStructTypeInfoKind(const TypeInfo &type) {
return (StructTypeInfoKind) type.getSubclassKind();
}
namespace {
class StructFieldInfo : public RecordField<StructFieldInfo> {
public:
StructFieldInfo(VarDecl *field, const TypeInfo &type)
: RecordField(type), Field(field) {}
/// The field.
VarDecl * const Field;
StringRef getFieldName() const {
return Field->getName().str();
}
SILType getType(IRGenModule &IGM, SILType T) const {
return T.getFieldType(Field, IGM.getSILModule());
}
};
/// A field-info implementation for fields of Clang types.
class ClangFieldInfo : public RecordField<ClangFieldInfo> {
public:
ClangFieldInfo(VarDecl *swiftField, const ElementLayout &layout,
unsigned explosionBegin, unsigned explosionEnd)
: RecordField(layout, explosionBegin, explosionEnd),
Field(swiftField) {}
VarDecl * const Field;
StringRef getFieldName() const {
if (Field) return Field->getName().str();
return "<unimported>";
}
SILType getType(IRGenModule &IGM, SILType T) const {
if (Field)
return T.getFieldType(Field, IGM.getSILModule());
// The Swift-field-less cases use opaque storage, which is
// guaranteed to ignore the type passed to it.
return {};
}
};
/// A common base class for structs.
template <class Impl, class Base, class FieldInfoType = StructFieldInfo>
class StructTypeInfoBase :
public RecordTypeInfo<Impl, Base, FieldInfoType> {
typedef RecordTypeInfo<Impl, Base, FieldInfoType> super;
protected:
template <class... As>
StructTypeInfoBase(StructTypeInfoKind kind, As &&...args)
: super(std::forward<As>(args)...) {
super::setSubclassKind((unsigned) kind);
}
using super::asImpl;
public:
const FieldInfoType &getFieldInfo(VarDecl *field) const {
// FIXME: cache the physical field index in the VarDecl.
for (auto &fieldInfo : asImpl().getFields()) {
if (fieldInfo.Field == field)
return fieldInfo;
}
llvm_unreachable("field not in struct?");
}
/// Given a full struct explosion, project out a single field.
void projectFieldFromExplosion(IRGenFunction &IGF,
Explosion &in,
VarDecl *field,
Explosion &out) const {
auto &fieldInfo = getFieldInfo(field);
// If the field requires no storage, there's nothing to do.
if (fieldInfo.isEmpty())
return;
// Otherwise, project from the base.
auto fieldRange = fieldInfo.getProjectionRange();
auto elements = in.getRange(fieldRange.first, fieldRange.second);
out.add(elements);
}
/// Given the address of a tuple, project out the address of a
/// single element.
Address projectFieldAddress(IRGenFunction &IGF,
Address addr,
SILType T,
VarDecl *field) const {
auto &fieldInfo = getFieldInfo(field);
if (fieldInfo.isEmpty())
return fieldInfo.getTypeInfo().getUndefAddress();
auto offsets = asImpl().getNonFixedOffsets(IGF, T);
return fieldInfo.projectAddress(IGF, addr, offsets);
}
/// Return the constant offset of a field as a SizeTy, or nullptr if the
/// field is not at a fixed offset.
llvm::Constant *getConstantFieldOffset(IRGenModule &IGM,
VarDecl *field) const {
auto &fieldInfo = getFieldInfo(field);
if (fieldInfo.getKind() == ElementLayout::Kind::Fixed) {
return llvm::ConstantInt::get(IGM.SizeTy,
fieldInfo.getFixedByteOffset().getValue());
}
return nullptr;
}
MemberAccessStrategy getFieldAccessStrategy(IRGenModule &IGM,
SILType T, VarDecl *field) const {
auto &fieldInfo = getFieldInfo(field);
switch (fieldInfo.getKind()) {
case ElementLayout::Kind::Fixed:
case ElementLayout::Kind::Empty:
return MemberAccessStrategy::getDirectFixed(
fieldInfo.getFixedByteOffset());
case ElementLayout::Kind::InitialNonFixedSize:
return MemberAccessStrategy::getDirectFixed(Size(0));
case ElementLayout::Kind::NonFixed:
return asImpl().getNonFixedFieldAccessStrategy(IGM, T, fieldInfo);
}
llvm_unreachable("bad field layout kind");
}
unsigned getFieldIndex(IRGenModule &IGM, VarDecl *field) const {
auto &fieldInfo = getFieldInfo(field);
return fieldInfo.getStructIndex();
}
// For now, just use extra inhabitants from the first field.
// FIXME: generalize
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
if (asImpl().getFields().empty()) return false;
return asImpl().getFields()[0].getTypeInfo().mayHaveExtraInhabitants(IGM);
}
// This is dead code in NonFixedStructTypeInfo.
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const {
if (asImpl().getFields().empty()) return 0;
auto &fieldTI = cast<FixedTypeInfo>(asImpl().getFields()[0].getTypeInfo());
return fieldTI.getFixedExtraInhabitantCount(IGM);
}
// This is dead code in NonFixedStructTypeInfo.
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const {
auto &fieldTI = cast<FixedTypeInfo>(asImpl().getFields()[0].getTypeInfo());
return fieldTI.getFixedExtraInhabitantValue(IGM, bits, index);
}
// This is dead code in NonFixedStructTypeInfo.
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const {
if (asImpl().getFields().empty())
return APInt();
// Currently we only use the first field's extra inhabitants. The other
// fields can be ignored.
const FixedTypeInfo &fieldTI
= cast<FixedTypeInfo>(asImpl().getFields()[0].getTypeInfo());
auto targetSize = asImpl().getFixedSize().getValueInBits();
if (fieldTI.isKnownEmpty(ResilienceExpansion::Maximal))
return APInt(targetSize, 0);
APInt fieldMask = fieldTI.getFixedExtraInhabitantMask(IGM);
if (targetSize > fieldMask.getBitWidth())
fieldMask = fieldMask.zext(targetSize);
return fieldMask;
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
Address structAddr,
SILType structType) const override {
auto &field = asImpl().getFields()[0];
Address fieldAddr =
asImpl().projectFieldAddress(IGF, structAddr, structType, field.Field);
return field.getTypeInfo().getExtraInhabitantIndex(IGF, fieldAddr,
field.getType(IGF.IGM, structType));
}
void storeExtraInhabitant(IRGenFunction &IGF,
llvm::Value *index,
Address structAddr,
SILType structType) const override {
auto &field = asImpl().getFields()[0];
Address fieldAddr =
asImpl().projectFieldAddress(IGF, structAddr, structType, field.Field);
field.getTypeInfo().storeExtraInhabitant(IGF, index, fieldAddr,
field.getType(IGF.IGM, structType));
}
};
/// A type implementation for loadable record types imported from Clang.
class ClangRecordTypeInfo final :
public StructTypeInfoBase<ClangRecordTypeInfo, LoadableTypeInfo,
ClangFieldInfo> {
const clang::RecordDecl *ClangDecl;
public:
ClangRecordTypeInfo(ArrayRef<ClangFieldInfo> fields,
unsigned explosionSize,
llvm::Type *storageType, Size size,
SpareBitVector &&spareBits, Alignment align,
const clang::RecordDecl *clangDecl)
: StructTypeInfoBase(StructTypeInfoKind::ClangRecordTypeInfo,
fields, explosionSize,
storageType, size, std::move(spareBits),
align, IsPOD, IsFixedSize),
ClangDecl(clangDecl) {
}
void initializeFromParams(IRGenFunction &IGF, Explosion &params,
Address addr, SILType T) const override {
ClangRecordTypeInfo::initialize(IGF, params, addr);
}
void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
Size offset) const override {
lowering.addTypedData(ClangDecl, offset.asCharUnits());
}
llvm::NoneType getNonFixedOffsets(IRGenFunction &IGF) const {
return None;
}
llvm::NoneType getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
return None;
}
MemberAccessStrategy
getNonFixedFieldAccessStrategy(IRGenModule &IGM, SILType T,
const ClangFieldInfo &field) const {
llvm_unreachable("non-fixed field in Clang type?");
}
};
/// A type implementation for loadable struct types.
class LoadableStructTypeInfo final
: public StructTypeInfoBase<LoadableStructTypeInfo, LoadableTypeInfo> {
public:
// FIXME: Spare bits between struct members.
LoadableStructTypeInfo(ArrayRef<StructFieldInfo> fields,
unsigned explosionSize,
llvm::Type *storageType, Size size,
SpareBitVector &&spareBits,
Alignment align, IsPOD_t isPOD,
IsFixedSize_t alwaysFixedSize)
: StructTypeInfoBase(StructTypeInfoKind::LoadableStructTypeInfo,
fields, explosionSize,
storageType, size, std::move(spareBits),
align, isPOD, alwaysFixedSize)
{}
void addToAggLowering(IRGenModule &IGM, SwiftAggLowering &lowering,
Size offset) const override {
for (auto &field : getFields()) {
auto fieldOffset = offset + field.getFixedByteOffset();
cast<LoadableTypeInfo>(field.getTypeInfo())
.addToAggLowering(IGM, lowering, fieldOffset);
}
}
void initializeFromParams(IRGenFunction &IGF, Explosion &params,
Address addr, SILType T) const override {
LoadableStructTypeInfo::initialize(IGF, params, addr);
}
llvm::NoneType getNonFixedOffsets(IRGenFunction &IGF) const {
return None;
}
llvm::NoneType getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
return None;
}
MemberAccessStrategy
getNonFixedFieldAccessStrategy(IRGenModule &IGM, SILType T,
const StructFieldInfo &field) const {
llvm_unreachable("non-fixed field in loadable type?");
}
};
/// A type implementation for non-loadable but fixed-size struct types.
class FixedStructTypeInfo final
: public StructTypeInfoBase<FixedStructTypeInfo,
IndirectTypeInfo<FixedStructTypeInfo,
FixedTypeInfo>> {
public:
// FIXME: Spare bits between struct members.
FixedStructTypeInfo(ArrayRef<StructFieldInfo> fields, llvm::Type *T,
Size size, SpareBitVector &&spareBits,
Alignment align, IsPOD_t isPOD, IsBitwiseTakable_t isBT,
IsFixedSize_t alwaysFixedSize)
: StructTypeInfoBase(StructTypeInfoKind::FixedStructTypeInfo,
fields, T, size, std::move(spareBits), align,
isPOD, isBT, alwaysFixedSize)
{}
llvm::NoneType getNonFixedOffsets(IRGenFunction &IGF) const {
return None;
}
llvm::NoneType getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
return None;
}
MemberAccessStrategy
getNonFixedFieldAccessStrategy(IRGenModule &IGM, SILType T,
const StructFieldInfo &field) const {
llvm_unreachable("non-fixed field in fixed struct?");
}
};
/// Accessor for the non-fixed offsets of a struct type.
class StructNonFixedOffsets : public NonFixedOffsetsImpl {
SILType TheStruct;
public:
StructNonFixedOffsets(SILType type) : TheStruct(type) {
assert(TheStruct.getStructOrBoundGenericStruct());
}
llvm::Value *getOffsetForIndex(IRGenFunction &IGF, unsigned index) override {
// TODO: do this with StructMetadataLayout::getFieldOffset
// Get the field offset vector from the struct metadata.
llvm::Value *metadata = IGF.emitTypeMetadataRefForLayout(TheStruct);
Address fieldVector = emitAddressOfFieldOffsetVector(IGF, metadata,
TheStruct.getStructOrBoundGenericStruct());
// Grab the indexed offset.
fieldVector = IGF.Builder.CreateConstArrayGEP(fieldVector, index,
IGF.IGM.getPointerSize());
return IGF.Builder.CreateLoad(fieldVector);
}
MemberAccessStrategy getFieldAccessStrategy(IRGenModule &IGM,
unsigned nonFixedIndex) {
auto start =
IGM.getMetadataLayout(TheStruct.getStructOrBoundGenericStruct())
.getFieldOffsetVectorOffset();
// FIXME: Handle resilience
auto indirectOffset = start.getStatic() +
(IGM.getPointerSize() * nonFixedIndex);
return MemberAccessStrategy::getIndirectFixed(indirectOffset,
MemberAccessStrategy::OffsetKind::Bytes_Word);
}
};
/// A type implementation for non-fixed struct types.
class NonFixedStructTypeInfo final
: public StructTypeInfoBase<NonFixedStructTypeInfo,
WitnessSizedTypeInfo<NonFixedStructTypeInfo>>
{
public:
NonFixedStructTypeInfo(ArrayRef<StructFieldInfo> fields, llvm::Type *T,
Alignment align,
IsPOD_t isPOD, IsBitwiseTakable_t isBT)
: StructTypeInfoBase(StructTypeInfoKind::NonFixedStructTypeInfo,
fields, T, align, isPOD, isBT) {
}
// We have an indirect schema.
void getSchema(ExplosionSchema &s) const override {
s.add(ExplosionSchema::Element::forAggregate(getStorageType(),
getBestKnownAlignment()));
}
StructNonFixedOffsets
getNonFixedOffsets(IRGenFunction &IGF, SILType T) const {
return StructNonFixedOffsets(T);
}
MemberAccessStrategy
getNonFixedFieldAccessStrategy(IRGenModule &IGM, SILType T,
const StructFieldInfo &field) const {
return StructNonFixedOffsets(T).getFieldAccessStrategy(IGM,
field.getNonFixedElementIndex());
}
void initializeMetadata(IRGenFunction &IGF,
llvm::Value *metadata,
llvm::Value *vwtable,
SILType T) const override {
emitInitializeFieldOffsetVector(IGF, T, metadata, vwtable);
}
};
class StructTypeBuilder :
public RecordTypeBuilder<StructTypeBuilder, StructFieldInfo, VarDecl*> {
llvm::StructType *StructTy;
CanType TheStruct;
public:
StructTypeBuilder(IRGenModule &IGM, llvm::StructType *structTy,
CanType type) :
RecordTypeBuilder(IGM), StructTy(structTy), TheStruct(type) {
}
LoadableStructTypeInfo *createLoadable(ArrayRef<StructFieldInfo> fields,
StructLayout &&layout,
unsigned explosionSize) {
return LoadableStructTypeInfo::create(fields,
explosionSize,
layout.getType(),
layout.getSize(),
std::move(layout.getSpareBits()),
layout.getAlignment(),
layout.isPOD(),
layout.isAlwaysFixedSize());
}
FixedStructTypeInfo *createFixed(ArrayRef<StructFieldInfo> fields,
StructLayout &&layout) {
return FixedStructTypeInfo::create(fields, layout.getType(),
layout.getSize(),
std::move(layout.getSpareBits()),
layout.getAlignment(),
layout.isPOD(),
layout.isBitwiseTakable(),
layout.isAlwaysFixedSize());
}
NonFixedStructTypeInfo *createNonFixed(ArrayRef<StructFieldInfo> fields,
StructLayout &&layout) {
return NonFixedStructTypeInfo::create(fields, layout.getType(),
layout.getAlignment(),
layout.isPOD(),
layout.isBitwiseTakable());
}
StructFieldInfo getFieldInfo(unsigned index,
VarDecl *field, const TypeInfo &fieldTI) {
return StructFieldInfo(field, fieldTI);
}
SILType getType(VarDecl *field) {
assert(field->getDeclContext() == TheStruct->getAnyNominal());
auto silType = SILType::getPrimitiveAddressType(TheStruct);
return silType.getFieldType(field, IGM.getSILModule());
}
StructLayout performLayout(ArrayRef<const TypeInfo *> fieldTypes) {
return StructLayout(IGM, TheStruct, LayoutKind::NonHeapObject,
LayoutStrategy::Optimal, fieldTypes, StructTy);
}
};
/// A class for lowering Clang records.
class ClangRecordLowering {
IRGenModule &IGM;
StructDecl *SwiftDecl;
SILType SwiftType;
const clang::RecordDecl *ClangDecl;
const clang::ASTContext &ClangContext;
const clang::ASTRecordLayout &ClangLayout;
const Size TotalStride;
const Alignment TotalAlignment;
SpareBitVector SpareBits;
SmallVector<llvm::Type *, 8> LLVMFields;
SmallVector<ClangFieldInfo, 8> FieldInfos;
Size NextOffset = Size(0);
unsigned NextExplosionIndex = 0;
public:
ClangRecordLowering(IRGenModule &IGM, StructDecl *swiftDecl,
const clang::RecordDecl *clangDecl,
SILType swiftType)
: IGM(IGM), SwiftDecl(swiftDecl), SwiftType(swiftType),
ClangDecl(clangDecl), ClangContext(clangDecl->getASTContext()),
ClangLayout(ClangContext.getASTRecordLayout(clangDecl)),
TotalStride(Size(ClangLayout.getSize().getQuantity())),
TotalAlignment(Alignment(ClangLayout.getAlignment().getQuantity())) {
SpareBits.reserve(TotalStride.getValue() * 8);
}
void collectRecordFields() {
if (ClangDecl->isUnion()) {
collectUnionFields();
} else {
collectStructFields();
}
}
const TypeInfo *createTypeInfo(llvm::StructType *llvmType) {
llvmType->setBody(LLVMFields, /*packed*/ true);
return ClangRecordTypeInfo::create(FieldInfos, NextExplosionIndex,
llvmType, TotalStride,
std::move(SpareBits), TotalAlignment,
ClangDecl);
}
private:
/// Collect all the fields of a union.
void collectUnionFields() {
addOpaqueField(Size(0), TotalStride);
}
static bool isImportOfClangField(VarDecl *swiftField,
const clang::FieldDecl *clangField) {
assert(swiftField->hasClangNode());
return (swiftField->getClangNode().castAsDecl() == clangField);
}
void collectStructFields() {
auto cfi = ClangDecl->field_begin(), cfe = ClangDecl->field_end();
auto swiftProperties = SwiftDecl->getStoredProperties();
auto sfi = swiftProperties.begin(), sfe = swiftProperties.end();
while (cfi != cfe) {
const clang::FieldDecl *clangField = *cfi++;
// Bitfields are currently never mapped, but that doesn't mean
// we don't have to copy them.
if (clangField->isBitField()) {
// Collect all of the following bitfields.
unsigned bitStart =
ClangLayout.getFieldOffset(clangField->getFieldIndex());
unsigned bitEnd = bitStart + clangField->getBitWidthValue(ClangContext);
while (cfi != cfe && (*cfi)->isBitField()) {
clangField = *cfi++;
unsigned nextStart =
ClangLayout.getFieldOffset(clangField->getFieldIndex());
assert(nextStart >= bitEnd && "laying out bit-fields out of order?");
// In a heuristic effort to reduce the number of weird-sized
// fields, whenever we see a bitfield starting on a 32-bit
// boundary, start a new storage unit.
if (nextStart % 32 == 0) {
addOpaqueBitField(bitStart, bitEnd);
bitStart = nextStart;
}
bitEnd = nextStart + clangField->getBitWidthValue(ClangContext);
}
addOpaqueBitField(bitStart, bitEnd);
continue;
}
VarDecl *swiftField;
if (sfi != sfe) {
swiftField = *sfi;
if (isImportOfClangField(swiftField, clangField)) {
++sfi;
} else {
swiftField = nullptr;
}
} else {
swiftField = nullptr;
}
// Try to position this field. If this fails, it's because we
// didn't lay out padding correctly.
addStructField(clangField, swiftField);
}
assert(sfi == sfe && "more Swift fields than there were Clang fields?");
// We never take advantage of tail padding, because that would prevent
// us from passing the address of the object off to C, which is a pretty
// likely scenario for imported C types.
assert(NextOffset <= TotalStride);
assert(SpareBits.size() <= TotalStride.getValueInBits());
if (NextOffset < TotalStride) {
addPaddingField(TotalStride);
}
}
/// Place the next struct field at its appropriate offset.
void addStructField(const clang::FieldDecl *clangField,
VarDecl *swiftField) {
unsigned fieldOffset = ClangLayout.getFieldOffset(clangField->getFieldIndex());
assert(!clangField->isBitField());
Size offset(fieldOffset / 8);
// If we have a Swift import of this type, use our lowered information.
if (swiftField) {
auto &fieldTI = cast<LoadableTypeInfo>(
IGM.getTypeInfo(SwiftType.getFieldType(swiftField, IGM.getSILModule())));
addField(swiftField, offset, fieldTI);
return;
}
// Otherwise, add it as an opaque blob.
auto fieldSize = ClangContext.getTypeSizeInChars(clangField->getType());
return addOpaqueField(offset, Size(fieldSize.getQuantity()));
}
/// Add opaque storage for bitfields spanning the given range of bits.
void addOpaqueBitField(unsigned bitBegin, unsigned bitEnd) {
assert(bitBegin <= bitEnd);
// No need to add storage for zero-width bitfields.
if (bitBegin == bitEnd) return;
// Round up to an even number of bytes.
assert(bitBegin % 8 == 0);
Size offset = Size(bitBegin / 8);
Size byteLength = Size((bitEnd - bitBegin + 7) / 8);
addOpaqueField(offset, byteLength);
}
/// Add opaque storage at the given offset.
void addOpaqueField(Size offset, Size fieldSize) {
// No need to add storage for zero-size fields (e.g. incomplete array
// decls).
if (fieldSize.isZero()) return;
auto &opaqueTI = IGM.getOpaqueStorageTypeInfo(fieldSize, Alignment(1));
addField(nullptr, offset, opaqueTI);
}
/// Add storage for an (optional) Swift field at the given offset.
void addField(VarDecl *swiftField, Size offset,
const LoadableTypeInfo &fieldType) {
assert(offset >= NextOffset && "adding fields out of order");
// Add a padding field if required.
if (offset != NextOffset)
addPaddingField(offset);
addFieldInfo(swiftField, fieldType);
}
/// Add information to track a value field at the current offset.
void addFieldInfo(VarDecl *swiftField, const LoadableTypeInfo &fieldType) {
unsigned explosionSize = fieldType.getExplosionSize();
unsigned explosionBegin = NextExplosionIndex;
NextExplosionIndex += explosionSize;
unsigned explosionEnd = NextExplosionIndex;
ElementLayout layout = ElementLayout::getIncomplete(fieldType);
layout.completeFixed(fieldType.isPOD(ResilienceExpansion::Maximal),
NextOffset, LLVMFields.size());
FieldInfos.push_back(
ClangFieldInfo(swiftField, layout, explosionBegin, explosionEnd));
LLVMFields.push_back(fieldType.getStorageType());
NextOffset += fieldType.getFixedSize();
SpareBits.append(fieldType.getSpareBits());
}
/// Add padding to get up to the given offset.
void addPaddingField(Size offset) {
assert(offset > NextOffset);
Size count = offset - NextOffset;
LLVMFields.push_back(llvm::ArrayType::get(IGM.Int8Ty, count.getValue()));
NextOffset = offset;
SpareBits.appendSetBits(count.getValueInBits());
}
};
} // end anonymous namespace
/// A convenient macro for delegating an operation to all of the
/// various struct implementations.
#define FOR_STRUCT_IMPL(IGF, type, op, ...) do { \
auto &structTI = IGF.getTypeInfo(type); \
switch (getStructTypeInfoKind(structTI)) { \
case StructTypeInfoKind::ClangRecordTypeInfo: \
return structTI.as<ClangRecordTypeInfo>().op(IGF, __VA_ARGS__); \
case StructTypeInfoKind::LoadableStructTypeInfo: \
return structTI.as<LoadableStructTypeInfo>().op(IGF, __VA_ARGS__); \
case StructTypeInfoKind::FixedStructTypeInfo: \
return structTI.as<FixedStructTypeInfo>().op(IGF, __VA_ARGS__); \
case StructTypeInfoKind::NonFixedStructTypeInfo: \
return structTI.as<NonFixedStructTypeInfo>().op(IGF, __VA_ARGS__); \
case StructTypeInfoKind::ResilientStructTypeInfo: \
llvm_unreachable("resilient structs are opaque"); \
} \
llvm_unreachable("bad struct type info kind!"); \
} while (0)
Address irgen::projectPhysicalStructMemberAddress(IRGenFunction &IGF,
Address base,
SILType baseType,
VarDecl *field) {
FOR_STRUCT_IMPL(IGF, baseType, projectFieldAddress, base,
baseType, field);
}
void irgen::projectPhysicalStructMemberFromExplosion(IRGenFunction &IGF,
SILType baseType,
Explosion &base,
VarDecl *field,
Explosion &out) {
FOR_STRUCT_IMPL(IGF, baseType, projectFieldFromExplosion, base, field, out);
}
llvm::Constant *irgen::emitPhysicalStructMemberFixedOffset(IRGenModule &IGM,
SILType baseType,
VarDecl *field) {
FOR_STRUCT_IMPL(IGM, baseType, getConstantFieldOffset, field);
}
MemberAccessStrategy
irgen::getPhysicalStructMemberAccessStrategy(IRGenModule &IGM,
SILType baseType, VarDecl *field) {
FOR_STRUCT_IMPL(IGM, baseType, getFieldAccessStrategy, baseType, field);
}
unsigned irgen::getPhysicalStructFieldIndex(IRGenModule &IGM, SILType baseType,
VarDecl *field) {
FOR_STRUCT_IMPL(IGM, baseType, getFieldIndex, field);
}
void IRGenModule::emitStructDecl(StructDecl *st) {
if (!IRGen.tryEnableLazyTypeMetadata(st))
emitStructMetadata(*this, st);
emitNestedTypeDecls(st->getMembers());
if (shouldEmitOpaqueTypeMetadataRecord(st)) {
emitOpaqueTypeMetadataRecord(st);
return;
}
emitFieldMetadataRecord(st);
}
namespace {
/// A type implementation for resilient struct types. This is not a
/// StructTypeInfoBase at all, since we don't know anything about
/// the struct's fields.
class ResilientStructTypeInfo
: public ResilientTypeInfo<ResilientStructTypeInfo>
{
public:
ResilientStructTypeInfo(llvm::Type *T)
: ResilientTypeInfo(T) {
setSubclassKind((unsigned) StructTypeInfoKind::ResilientStructTypeInfo);
}
};
} // end anonymous namespace
const TypeInfo *TypeConverter::convertResilientStruct() {
llvm::Type *storageType = IGM.OpaquePtrTy->getElementType();
return new ResilientStructTypeInfo(storageType);
}
const TypeInfo *TypeConverter::convertStructType(TypeBase *key, CanType type,
StructDecl *D) {
// All resilient structs have the same opaque lowering, since they are
// indistinguishable as values.
if (IGM.isResilient(D, ResilienceExpansion::Maximal))
return &getResilientStructTypeInfo();
// Create the struct type.
auto ty = IGM.createNominalType(type);
// Register a forward declaration before we look at any of the child types.
addForwardDecl(key, ty);
// Use different rules for types imported from C.
if (D->hasClangNode()) {
const clang::Decl *clangDecl = D->getClangNode().getAsDecl();
assert(clangDecl && "Swift struct from an imported C macro?");
if (auto clangRecord = dyn_cast<clang::RecordDecl>(clangDecl)) {
ClangRecordLowering lowering(IGM, D, clangRecord,
SILType::getPrimitiveObjectType(type));
lowering.collectRecordFields();
return lowering.createTypeInfo(ty);
} else if (isa<clang::EnumDecl>(clangDecl)) {
// Fall back to Swift lowering for the enum's representation as a struct.
assert(std::distance(D->getStoredProperties().begin(),
D->getStoredProperties().end()) == 1 &&
"Struct representation of a Clang enum should wrap one value");
} else if (clangDecl->hasAttr<clang::SwiftNewtypeAttr>()) {
// Fall back to Swift lowering for the underlying type's
// representation as a struct member.
assert(std::distance(D->getStoredProperties().begin(),
D->getStoredProperties().end()) == 1 &&
"Struct representation of a swift_newtype should wrap one value");
} else {
llvm_unreachable("Swift struct represents unexpected imported type");
}
}
// Collect all the fields from the type.
SmallVector<VarDecl*, 8> fields;
for (VarDecl *VD : D->getStoredProperties())
fields.push_back(VD);
// Build the type.
StructTypeBuilder builder(IGM, ty, type);
return builder.layout(fields);
}