Files
swift-mirror/lib/SIL/Utils/OwnershipUtils.cpp
Michael Gottesman e15eab5020 [ownership] Change ForwardingOperand::visitForwardingValues to handle ForwardingOwned terminators that are function exiting correctly.
Previously, we would have just asserted when we passed the operand to
PhiOperand on the next line of the code.
2023-01-24 16:55:54 -08:00

2430 lines
86 KiB
C++

//===--- OwnershipUtils.cpp -----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/OwnershipUtils.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/GraphNodeWorklist.h"
#include "swift/Basic/SmallPtrSetVector.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/LinearLifetimeChecker.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
using namespace swift;
bool swift::hasPointerEscape(BorrowedValue value) {
assert(value.kind == BorrowedValueKind::BeginBorrow ||
value.kind == BorrowedValueKind::LoadBorrow);
GraphNodeWorklist<Operand *, 8> worklist;
for (Operand *use : value->getUses()) {
if (use->getOperandOwnership() != OperandOwnership::NonUse)
worklist.insert(use);
}
while (Operand *op = worklist.pop()) {
switch (op->getOperandOwnership()) {
case OperandOwnership::NonUse:
case OperandOwnership::TrivialUse:
case OperandOwnership::ForwardingConsume:
case OperandOwnership::DestroyingConsume:
llvm_unreachable("this operand cannot handle an inner guaranteed use");
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
return true;
case OperandOwnership::Borrow:
case OperandOwnership::EndBorrow:
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::InteriorPointer:
case OperandOwnership::BitwiseEscape:
break;
case OperandOwnership::Reborrow: {
SILArgument *phi = cast<BranchInst>(op->getUser())
->getDestBB()
->getArgument(op->getOperandNumber());
for (auto *use : phi->getUses()) {
if (use->getOperandOwnership() != OperandOwnership::NonUse)
worklist.insert(use);
}
break;
}
case OperandOwnership::GuaranteedForwarding: {
// This may follow a guaranteed phis.
ForwardingOperand(op).visitForwardedValues([&](SILValue result) {
// Do not include transitive uses with 'none' ownership
if (result->getOwnershipKind() == OwnershipKind::None)
return true;
for (auto *resultUse : result->getUses()) {
if (resultUse->getOperandOwnership() != OperandOwnership::NonUse) {
worklist.insert(resultUse);
}
}
return true;
});
break;
}
}
}
return false;
}
bool swift::canOpcodeForwardInnerGuaranteedValues(SILValue value) {
// If we have an argument from a transforming terminator, we can forward
// guaranteed.
if (auto *arg = dyn_cast<SILArgument>(value))
if (auto *ti = arg->getSingleTerminator())
if (ti->mayHaveTerminatorResult())
return OwnershipForwardingMixin::get(ti)->preservesOwnership();
if (auto *inst = value->getDefiningInstruction())
if (auto *mixin = OwnershipForwardingMixin::get(inst))
return mixin->preservesOwnership() &&
!isa<OwnedFirstArgForwardingSingleValueInst>(inst);
return false;
}
bool swift::canOpcodeForwardInnerGuaranteedValues(Operand *use) {
if (auto *mixin = OwnershipForwardingMixin::get(use->getUser()))
return mixin->preservesOwnership() &&
!isa<OwnedFirstArgForwardingSingleValueInst>(use->getUser());
return false;
}
bool swift::canOpcodeForwardOwnedValues(SILValue value) {
if (auto *inst = value->getDefiningInstructionOrTerminator()) {
if (auto *mixin = OwnershipForwardingMixin::get(inst)) {
return mixin->preservesOwnership() &&
!isa<GuaranteedFirstArgForwardingSingleValueInst>(inst);
}
}
return false;
}
bool swift::canOpcodeForwardOwnedValues(Operand *use) {
auto *user = use->getUser();
if (auto *mixin = OwnershipForwardingMixin::get(user))
return mixin->preservesOwnership() &&
!isa<GuaranteedFirstArgForwardingSingleValueInst>(user);
return false;
}
//===----------------------------------------------------------------------===//
// Guaranteed Use-Point (Lifetime) Discovery
//===----------------------------------------------------------------------===//
// Find all use points of \p guaranteedValue within its borrow scope. All uses
// are naturally dominated by \p guaranteedValue. If a PointerEscape is found,
// then no assumption can be made about \p guaranteedValue's lifetime. Therefore
// the use points are incomplete and this returns false.
//
// Accumulate results in \p usePoints, ignoring existing elements.
//
// Skip over nested borrow scopes. Their scope-ending instructions are their use
// points. Transitively find all nested scope-ending instructions by looking
// through nested reborrows. Nested reborrows are not use points.
//
// FIXME: handle inner reborrows, which aren't dominated by
// guaranteedValue. Audit all users to handle reborrows.
bool swift::findInnerTransitiveGuaranteedUses(
SILValue guaranteedValue, SmallVectorImpl<Operand *> *usePoints) {
bool foundPointerEscape = false;
auto leafUse = [&](Operand *use) {
if (usePoints && use->getOperandOwnership() != OperandOwnership::NonUse) {
usePoints->push_back(use);
}
return true;
};
// Push the value's immediate uses.
//
// TODO: The worklist can be a simple vector without any a membership check if
// destructures are changed to be represented as reborrows. Currently a
// destructure forwards multiple results! This means that the worklist could
// grow exponentially without the membership check. It's fine to do this
// membership check locally in this function (within a borrow scope) because
// it isn't needed for the immediate uses, only the transitive uses.
GraphNodeWorklist<Operand *, 8> worklist;
for (Operand *use : guaranteedValue->getUses()) {
if (use->getOperandOwnership() != OperandOwnership::NonUse)
worklist.insert(use);
}
// --- Transitively follow forwarded uses and look for escapes.
// usePoints grows in this loop.
while (Operand *use = worklist.pop()) {
switch (use->getOperandOwnership()) {
case OperandOwnership::NonUse:
case OperandOwnership::TrivialUse:
case OperandOwnership::ForwardingConsume:
case OperandOwnership::DestroyingConsume:
llvm_unreachable("this operand cannot handle an inner guaranteed use");
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
leafUse(use);
foundPointerEscape = true;
break;
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::BitwiseEscape:
// Reborrow only happens when this is called on a value that creates a
// borrow scope.
case OperandOwnership::Reborrow:
// EndBorrow either happens when this is called on a value that creates a
// borrow scope, or when it is pushed as a use when processing a nested
// borrow.
case OperandOwnership::EndBorrow:
leafUse(use);
break;
case OperandOwnership::InteriorPointer:
#if 0 // FIXME!!! Enable in a following commit that fixes RAUW
// If our base guaranteed value does not have any consuming uses
// (consider function arguments), we need to be sure to include interior
// pointer operands since we may not get a use from a end_scope
// instruction.
if (InteriorPointerOperand(use).findTransitiveUses(usePoints)
!= AddressUseKind::NonEscaping) {
foundPointerEscape = true;
}
#endif
leafUse(use);
foundPointerEscape = true;
break;
case OperandOwnership::GuaranteedForwarding: {
bool nonLeaf = false;
ForwardingOperand(use).visitForwardedValues([&](SILValue result) {
// Do not include transitive uses with 'none' ownership
if (result->getOwnershipKind() == OwnershipKind::None)
return true;
// Bailout on guaranteed phis because the caller may assume dominance.
if (SILArgument::asPhi(result)) {
leafUse(use);
foundPointerEscape = true;
return true;
}
for (auto *resultUse : result->getUses()) {
if (resultUse->getOperandOwnership() != OperandOwnership::NonUse) {
nonLeaf = true;
worklist.insert(resultUse);
}
}
return true;
});
// e.g. A dead forwarded value, e.g. a switch_enum with only trivial uses,
// must itself be a leaf use.
if (!nonLeaf) {
leafUse(use);
}
break;
}
case OperandOwnership::Borrow:
// FIXME: Use visitExtendedScopeEndingUses and audit all clients to handle
// reborrows.
//
// FIXME: visit[Extended]ScopeEndingUses can't return false here once dead
// borrows are disallowed.
if (!BorrowingOperand(use).visitScopeEndingUses([&](Operand *endUse) {
if (endUse->getOperandOwnership() == OperandOwnership::Reborrow) {
foundPointerEscape = true;
}
leafUse(endUse);
return true;
})) {
// Special case for dead borrows. This is dangerous because clients
// don't expect a begin_borrow to be in the use list.
leafUse(use);
}
break;
}
}
return !foundPointerEscape;
}
/// Find all uses in the extended lifetime (i.e. including copies) of a simple
/// (i.e. not reborrowed) borrow scope and its transitive uses.
bool swift::findExtendedUsesOfSimpleBorrowedValue(
BorrowedValue borrowedValue, SmallVectorImpl<Operand *> *usePoints) {
auto recordUse = [&](Operand *use) {
if (usePoints && use->getOperandOwnership() != OperandOwnership::NonUse) {
usePoints->push_back(use);
}
};
// Push the value's immediate uses.
//
// TODO: The worklist can be a simple vector without any a membership check if
// destructures are changed to be represented as reborrows. Currently a
// destructure forwards multiple results! This means that the worklist could
// grow exponentially without the membership check. It's fine to do this
// membership check locally in this function (within a borrow scope) because
// it isn't needed for the immediate uses, only the transitive uses.
GraphNodeWorklist<Operand *, 8> worklist;
auto addUsesToWorklist = [&worklist](SILValue value) {
for (Operand *use : value->getUses()) {
if (use->getOperandOwnership() != OperandOwnership::NonUse)
worklist.insert(use);
}
};
addUsesToWorklist(borrowedValue.value);
// --- Transitively follow forwarded uses and look for escapes.
// usePoints grows in this loop.
while (Operand *use = worklist.pop()) {
if (auto *cvi = dyn_cast<CopyValueInst>(use->getUser())) {
addUsesToWorklist(cvi);
}
switch (use->getOperandOwnership()) {
case OperandOwnership::NonUse:
break;
case OperandOwnership::TrivialUse:
case OperandOwnership::ForwardingConsume:
case OperandOwnership::DestroyingConsume:
recordUse(use);
break;
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
case OperandOwnership::Reborrow:
return false;
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::BitwiseEscape:
// EndBorrow either happens when this is called on a value that creates a
// borrow scope, or when it is pushed as a use when processing a nested
// borrow.
case OperandOwnership::EndBorrow:
recordUse(use);
break;
case OperandOwnership::InteriorPointer:
if (InteriorPointerOperandKind::get(use) ==
InteriorPointerOperandKind::Invalid)
return false;
// If our base guaranteed value does not have any consuming uses (consider
// function arguments), we need to be sure to include interior pointer
// operands since we may not get a use from a end_scope instruction.
if (InteriorPointerOperand(use).findTransitiveUses(usePoints) !=
AddressUseKind::NonEscaping) {
return false;
}
recordUse(use);
break;
case OperandOwnership::GuaranteedForwarding: {
// Conservatively assume that a forwarding phi is not dominated by the
// initial borrowed value and bailout.
if (PhiOperand(use)) {
return false;
}
ForwardingOperand(use).visitForwardedValues([&](SILValue result) {
// Do not include transitive uses with 'none' ownership
if (result->getOwnershipKind() == OwnershipKind::None)
return true;
for (auto *resultUse : result->getUses()) {
if (resultUse->getOperandOwnership() != OperandOwnership::NonUse) {
worklist.insert(resultUse);
}
}
return true;
});
recordUse(use);
break;
}
case OperandOwnership::Borrow:
// FIXME: visitExtendedScopeEndingUses can't return false here once dead
// borrows are disallowed.
if (!BorrowingOperand(use).visitExtendedScopeEndingUses(
[&](Operand *endUse) {
recordUse(endUse);
return true;
})) {
// Special case for dead borrows. This is dangerous because clients
// don't expect a begin_borrow to be in the use list.
recordUse(use);
}
break;
}
}
return true;
}
// TODO: refactor this with SSAPrunedLiveness::computeLiveness.
bool swift::findUsesOfSimpleValue(SILValue value,
SmallVectorImpl<Operand *> *usePoints) {
for (auto *use : value->getUses()) {
switch (use->getOperandOwnership()) {
case OperandOwnership::PointerEscape:
return false;
case OperandOwnership::Borrow:
if (!BorrowingOperand(use).visitScopeEndingUses([&](Operand *end) {
if (end->getOperandOwnership() == OperandOwnership::Reborrow) {
return false;
}
usePoints->push_back(end);
return true;
})) {
return false;
}
break;
default:
break;
}
usePoints->push_back(use);
}
return true;
}
bool swift::visitGuaranteedForwardingPhisForSSAValue(
SILValue value, function_ref<bool(Operand *)> visitor) {
assert(isa<BeginBorrowInst>(value) || isa<LoadBorrowInst>(value) ||
(isa<SILPhiArgument>(value) &&
value->getOwnershipKind() == OwnershipKind::Guaranteed));
// guaranteedForwardingOps is a collection of all transitive
// GuaranteedForwarding uses of \p value. It is a set, to avoid repeated
// processing of structs and tuples which are GuaranteedForwarding.
SmallSetVector<Operand *, 4> guaranteedForwardingOps;
// Collect first-level GuaranteedForwarding uses, and call the visitor on any
// GuaranteedForwardingPhi uses.
for (auto *use : value->getUses()) {
if (use->getOperandOwnership() == OperandOwnership::GuaranteedForwarding) {
if (PhiOperand(use)) {
if (!visitor(use)) {
return false;
}
}
guaranteedForwardingOps.insert(use);
}
}
// Transitively, collect GuaranteedForwarding uses.
for (unsigned i = 0; i < guaranteedForwardingOps.size(); i++) {
for (auto val : guaranteedForwardingOps[i]->getUser()->getResults()) {
for (auto *valUse : val->getUses()) {
if (valUse->getOperandOwnership() ==
OperandOwnership::GuaranteedForwarding) {
if (PhiOperand(valUse)) {
if (!visitor(valUse)) {
return false;
}
}
guaranteedForwardingOps.insert(valUse);
}
}
}
}
return true;
}
// Find all use points of \p guaranteedValue within its borrow scope. All use
// points will be dominated by \p guaranteedValue.
//
// Record (non-nested) reborrows as uses.
//
// BorrowedValues (which introduce a borrow scope) are fundamentally different
// than "inner" guaranteed values. Their only use points are their scope-ending
// uses. There is no need to transitively process uses. However, unlike inner
// guaranteed values, they can have reborrows. To transitively process
// reborrows, use findExtendedTransitiveBorrowedUses.
bool swift::findTransitiveGuaranteedUses(
SILValue guaranteedValue, SmallVectorImpl<Operand *> &usePoints,
function_ref<void(Operand *)> visitReborrow) {
// Handle local borrow introducers without following uses.
// SILFunctionArguments are *not* borrow introducers in this context--we're
// trying to find lifetime of values within a function.
if (auto borrowedValue = BorrowedValue(guaranteedValue)) {
if (borrowedValue.isLocalScope()) {
borrowedValue.visitLocalScopeEndingUses([&](Operand *scopeEnd) {
// Initially push the reborrow as a use point. visitReborrow may pop it
// if it only wants to compute the extended lifetime's use points.
usePoints.push_back(scopeEnd);
if (scopeEnd->getOperandOwnership() == OperandOwnership::Reborrow)
visitReborrow(scopeEnd);
return true;
});
}
return true;
}
return findInnerTransitiveGuaranteedUses(guaranteedValue, &usePoints);
}
// Find all use points of \p guaranteedValue within its borrow scope. If the
// guaranteed value introduces a borrow scope, then this includes the extended
// borrow scope by following reborrows.
bool swift::
findExtendedTransitiveGuaranteedUses(SILValue guaranteedValue,
SmallVectorImpl<Operand *> &usePoints) {
// Multiple paths may reach the same reborrows, and reborrow may even be
// recursive, so the working set requires a membership check.
SmallPtrSetVector<SILValue, 4> reborrows;
auto visitReborrow = [&](Operand *reborrow) {
// Pop the reborrow. It should not appear in the use points of the
// extend lifetime.
assert(reborrow == usePoints.back());
usePoints.pop_back();
auto borrowedPhi =
BorrowingOperand(reborrow).getBorrowIntroducingUserResult();
reborrows.insert(borrowedPhi.value);
};
if (!findTransitiveGuaranteedUses(guaranteedValue, usePoints, visitReborrow))
return false;
// For guaranteed values that do not introduce a borrow scope, reborrows will
// be empty at this point.
for (unsigned idx = 0; idx < reborrows.size(); ++idx) {
bool result =
findTransitiveGuaranteedUses(reborrows[idx], usePoints, visitReborrow);
// It is impossible to find a Pointer escape while traversing reborrows.
assert(result && "visiting reborrows always succeeds");
(void)result;
}
return true;
}
//===----------------------------------------------------------------------===//
// Borrowing Operand
//===----------------------------------------------------------------------===//
void BorrowingOperandKind::print(llvm::raw_ostream &os) const {
switch (value) {
case Kind::Invalid:
llvm_unreachable("Using an unreachable?!");
case Kind::BeginBorrow:
os << "BeginBorrow";
return;
case Kind::BeginApply:
os << "BeginApply";
return;
case Kind::Branch:
os << "Branch";
return;
case Kind::Apply:
os << "Apply";
return;
case Kind::TryApply:
os << "TryApply";
return;
case Kind::Yield:
os << "Yield";
return;
}
llvm_unreachable("Covered switch isn't covered?!");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
BorrowingOperandKind kind) {
kind.print(os);
return os;
}
void BorrowingOperand::print(llvm::raw_ostream &os) const {
os << "BorrowScopeOperand:\n"
"Kind: " << kind << "\n"
"Value: " << op->get()
<< "User: " << *op->getUser();
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const BorrowingOperand &operand) {
operand.print(os);
return os;
}
bool BorrowingOperand::hasEmptyRequiredEndingUses() const {
switch (kind) {
case BorrowingOperandKind::Invalid:
llvm_unreachable("Using invalid case");
case BorrowingOperandKind::BeginBorrow:
case BorrowingOperandKind::BeginApply: {
return op->getUser()->hasUsesOfAnyResult();
}
case BorrowingOperandKind::Branch: {
auto *br = cast<BranchInst>(op->getUser());
return br->getArgForOperand(op)->use_empty();
}
// These are instantaneous borrow scopes so there aren't any special end
// scope instructions.
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::Yield:
return false;
}
llvm_unreachable("Covered switch isn't covered");
}
bool BorrowingOperand::visitScopeEndingUses(
function_ref<bool(Operand *)> func) const {
switch (kind) {
case BorrowingOperandKind::Invalid:
llvm_unreachable("Using invalid case");
case BorrowingOperandKind::BeginBorrow: {
bool deadBorrow = true;
for (auto *use : cast<BeginBorrowInst>(op->getUser())->getUses()) {
if (use->isLifetimeEnding()) {
deadBorrow = false;
if (!func(use))
return false;
}
}
// FIXME: special case for dead borrows. This is dangerous because clients
// only expect visitScopeEndingUses to return false if the visitor returned
// false.
return !deadBorrow;
}
case BorrowingOperandKind::BeginApply: {
bool deadApply = true;
auto *user = cast<BeginApplyInst>(op->getUser());
for (auto *use : user->getTokenResult()->getUses()) {
deadApply = false;
if (!func(use))
return false;
}
return !deadApply;
}
// These are instantaneous borrow scopes so there aren't any special end
// scope instructions.
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::Yield:
return true;
case BorrowingOperandKind::Branch: {
bool deadBranch = true;
auto *br = cast<BranchInst>(op->getUser());
for (auto *use : br->getArgForOperand(op)->getUses()) {
if (use->isLifetimeEnding()) {
deadBranch = false;
if (!func(use))
return false;
}
}
return !deadBranch;
}
}
llvm_unreachable("Covered switch isn't covered");
}
bool BorrowingOperand::visitExtendedScopeEndingUses(
function_ref<bool(Operand *)> visitor) const {
if (hasBorrowIntroducingUser()) {
return visitBorrowIntroducingUserResults(
[visitor](BorrowedValue borrowedValue) {
return borrowedValue.visitExtendedScopeEndingUses(visitor);
});
}
return visitScopeEndingUses(visitor);
}
bool BorrowingOperand::visitBorrowIntroducingUserResults(
function_ref<bool(BorrowedValue)> visitor) const {
switch (kind) {
case BorrowingOperandKind::Invalid:
llvm_unreachable("Using invalid case");
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::BeginApply:
case BorrowingOperandKind::Yield:
llvm_unreachable("Never has borrow introducer results!");
case BorrowingOperandKind::BeginBorrow: {
auto value = BorrowedValue(cast<BeginBorrowInst>(op->getUser()));
assert(value);
return visitor(value);
}
case BorrowingOperandKind::Branch: {
auto *bi = cast<BranchInst>(op->getUser());
auto value = BorrowedValue(
bi->getDestBB()->getArgument(op->getOperandNumber()));
assert(value && "guaranteed-to-unowned conversion not allowed on branches");
return visitor(value);
}
}
llvm_unreachable("Covered switch isn't covered?!");
}
BorrowedValue BorrowingOperand::getBorrowIntroducingUserResult() {
switch (kind) {
case BorrowingOperandKind::Invalid:
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::BeginApply:
case BorrowingOperandKind::Yield:
return BorrowedValue();
case BorrowingOperandKind::BeginBorrow:
return BorrowedValue(cast<BeginBorrowInst>(op->getUser()));
case BorrowingOperandKind::Branch: {
auto *bi = cast<BranchInst>(op->getUser());
return BorrowedValue(bi->getDestBB()->getArgument(op->getOperandNumber()));
}
}
llvm_unreachable("covered switch");
}
void BorrowingOperand::getImplicitUses(
SmallVectorImpl<Operand *> &foundUses) const {
// FIXME: this visitScopeEndingUses should never return false once dead
// borrows are disallowed.
if (!visitScopeEndingUses([&](Operand *endOp) {
foundUses.push_back(endOp);
return true;
})) {
// Special-case for dead borrows.
foundUses.push_back(op);
}
}
//===----------------------------------------------------------------------===//
// Borrow Introducers
//===----------------------------------------------------------------------===//
void BorrowedValueKind::print(llvm::raw_ostream &os) const {
switch (value) {
case BorrowedValueKind::Invalid:
llvm_unreachable("Using invalid case?!");
case BorrowedValueKind::SILFunctionArgument:
os << "SILFunctionArgument";
return;
case BorrowedValueKind::BeginBorrow:
os << "BeginBorrowInst";
return;
case BorrowedValueKind::LoadBorrow:
os << "LoadBorrowInst";
return;
case BorrowedValueKind::Phi:
os << "Phi";
return;
}
llvm_unreachable("Covered switch isn't covered?!");
}
void BorrowedValue::print(llvm::raw_ostream &os) const {
os << "BorrowScopeIntroducingValue:\n"
"Kind: " << kind << "\n"
"Value: " << value;
}
void BorrowedValue::getLocalScopeEndingInstructions(
SmallVectorImpl<SILInstruction *> &scopeEndingInsts) const {
assert(isLocalScope() && "Should only call this given a local scope");
switch (kind) {
case BorrowedValueKind::Invalid:
llvm_unreachable("Using invalid case?!");
case BorrowedValueKind::SILFunctionArgument:
llvm_unreachable("Should only call this with a local scope");
case BorrowedValueKind::BeginBorrow:
case BorrowedValueKind::LoadBorrow:
case BorrowedValueKind::Phi:
for (auto *use : value->getUses()) {
if (use->isLifetimeEnding()) {
scopeEndingInsts.push_back(use->getUser());
}
}
return;
}
llvm_unreachable("Covered switch isn't covered?!");
}
// Note: BorrowedLifetimeExtender assumes no intermediate values between a
// borrow introducer and its reborrow. The borrowed value must be an operand of
// the reborrow.
bool BorrowedValue::visitLocalScopeEndingUses(
function_ref<bool(Operand *)> visitor) const {
assert(isLocalScope() && "Should only call this given a local scope");
switch (kind) {
case BorrowedValueKind::Invalid:
llvm_unreachable("Using invalid case?!");
case BorrowedValueKind::SILFunctionArgument:
llvm_unreachable("Should only call this with a local scope");
case BorrowedValueKind::LoadBorrow:
case BorrowedValueKind::BeginBorrow:
case BorrowedValueKind::Phi:
for (auto *use : value->getUses()) {
if (use->isLifetimeEnding()) {
if (!visitor(use))
return false;
}
}
return true;
}
llvm_unreachable("Covered switch isn't covered?!");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
BorrowedValueKind kind) {
kind.print(os);
return os;
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const BorrowedValue &value) {
value.print(os);
return os;
}
/// Add this scopes live blocks into the PrunedLiveness result.
void BorrowedValue::
computeTransitiveLiveness(MultiDefPrunedLiveness &liveness) const {
liveness.initializeDef(value);
visitTransitiveLifetimeEndingUses([&](Operand *endOp) {
if (endOp->getOperandOwnership() == OperandOwnership::EndBorrow) {
liveness.updateForUse(endOp->getUser(), /*lifetimeEnding*/ true);
return true;
}
assert(endOp->getOperandOwnership() == OperandOwnership::Reborrow);
PhiOperand phiOper(endOp);
liveness.initializeDef(phiOper.getValue());
liveness.updateForUse(endOp->getUser(), /*lifetimeEnding*/ false);
return true;
});
}
bool BorrowedValue::areUsesWithinExtendedScope(
ArrayRef<Operand *> uses, DeadEndBlocks *deadEndBlocks) const {
// First make sure that we actually have a local scope. If we have a non-local
// scope, then we have something (like a SILFunctionArgument) where a larger
// semantic construct (in the case of SILFunctionArgument, the function
// itself) acts as the scope. So we already know that our passed in
// instructions must be in the same scope.
if (!isLocalScope())
return true;
// Compute the local scope's liveness.
MultiDefPrunedLiveness liveness(value->getFunction());
computeTransitiveLiveness(liveness);
return liveness.areUsesWithinBoundary(uses, deadEndBlocks);
}
// The visitor \p func is only called on final scope-ending uses, not reborrows.
bool BorrowedValue::visitExtendedScopeEndingUses(
function_ref<bool(Operand *)> visitor) const {
assert(isLocalScope());
SmallPtrSetVector<SILValue, 4> reborrows;
auto visitEnd = [&](Operand *scopeEndingUse) {
if (scopeEndingUse->getOperandOwnership() == OperandOwnership::Reborrow) {
BorrowingOperand(scopeEndingUse).visitBorrowIntroducingUserResults(
[&](BorrowedValue borrowedValue) {
reborrows.insert(borrowedValue.value);
return true;
});
return true;
}
return visitor(scopeEndingUse);
};
if (!visitLocalScopeEndingUses(visitEnd))
return false;
// reborrows grows in this loop.
for (unsigned idx = 0; idx < reborrows.size(); ++idx) {
if (!BorrowedValue(reborrows[idx]).visitLocalScopeEndingUses(visitEnd))
return false;
}
return true;
}
bool BorrowedValue::visitTransitiveLifetimeEndingUses(
function_ref<bool(Operand *)> visitor) const {
assert(isLocalScope());
SmallPtrSetVector<SILValue, 4> reborrows;
auto visitEnd = [&](Operand *scopeEndingUse) {
if (scopeEndingUse->getOperandOwnership() == OperandOwnership::Reborrow) {
BorrowingOperand(scopeEndingUse)
.visitBorrowIntroducingUserResults([&](BorrowedValue borrowedValue) {
reborrows.insert(borrowedValue.value);
return true;
});
// visitor on the reborrow
return visitor(scopeEndingUse);
}
// visitor on the end_borrow
return visitor(scopeEndingUse);
};
if (!visitLocalScopeEndingUses(visitEnd))
return false;
// reborrows grows in this loop.
for (unsigned idx = 0; idx < reborrows.size(); ++idx) {
if (!BorrowedValue(reborrows[idx]).visitLocalScopeEndingUses(visitEnd))
return false;
}
return true;
}
bool BorrowedValue::visitInteriorPointerOperandHelper(
function_ref<void(InteriorPointerOperand)> func,
BorrowedValue::InteriorPointerOperandVisitorKind kind) const {
using Kind = BorrowedValue::InteriorPointerOperandVisitorKind;
SmallVector<Operand *, 32> worklist(value->getUses());
while (!worklist.empty()) {
auto *op = worklist.pop_back_val();
if (auto interiorPointer = InteriorPointerOperand(op)) {
func(interiorPointer);
continue;
}
if (auto borrowingOperand = BorrowingOperand(op)) {
switch (kind) {
case Kind::NoNestedNoReborrows:
// We do not look through nested things and or reborrows, so just
// continue.
continue;
case Kind::YesNestedNoReborrows:
// We only look through nested borrowing operands, we never look through
// reborrows though.
if (borrowingOperand.isReborrow())
continue;
break;
case Kind::YesNestedYesReborrows:
// Look through everything!
break;
}
borrowingOperand.visitBorrowIntroducingUserResults([&](auto bv) {
for (auto *use : bv->getUses()) {
if (auto intPtrOperand = InteriorPointerOperand(use)) {
func(intPtrOperand);
continue;
}
worklist.push_back(use);
}
return true;
});
continue;
}
auto *user = op->getUser();
if (isa<DebugValueInst>(user) || isa<SuperMethodInst>(user) ||
isa<ClassMethodInst>(user) || isa<CopyValueInst>(user) ||
isa<EndBorrowInst>(user) || isa<ApplyInst>(user) ||
isa<StoreInst>(user) || isa<PartialApplyInst>(user) ||
isa<UnmanagedRetainValueInst>(user) ||
isa<UnmanagedReleaseValueInst>(user) ||
isa<UnmanagedAutoreleaseValueInst>(user)) {
continue;
}
// These are interior pointers that have not had support yet added for them.
if (isa<ProjectExistentialBoxInst>(user)) {
continue;
}
// Look through object.
if (auto *svi = dyn_cast<SingleValueInstruction>(user)) {
if (Projection::isObjectProjection(svi)) {
for (SILValue result : user->getResults()) {
llvm::copy(result->getUses(), std::back_inserter(worklist));
}
continue;
}
}
return false;
}
return true;
}
// FIXME: This does not yet assume complete lifetimes. Therefore, it currently
// recursively looks through scoped uses, such as load_borrow. We should
// separate the logic for lifetime completion from the logic that can assume
// complete lifetimes.
AddressUseKind
swift::findTransitiveUsesForAddress(SILValue projectedAddress,
SmallVectorImpl<Operand *> *foundUses,
std::function<void(Operand *)> *onError) {
// If the projectedAddress is dead, it is itself a leaf use. Since we don't
// have an operand for it, simply bail. Dead projectedAddress is unexpected.
//
// TODO: store_borrow is currently an InteriorPointer with no uses, so we end
// up bailing. It should be in a dependence scope instead. It's not clear why
// it produces an address at all.
if (projectedAddress->use_empty())
return AddressUseKind::PointerEscape;
SmallVector<Operand *, 8> worklist(projectedAddress->getUses());
AddressUseKind result = AddressUseKind::NonEscaping;
auto leafUse = [foundUses](Operand *use) {
if (foundUses)
foundUses->push_back(use);
};
auto transitiveResultUses = [&](Operand *use) {
auto *svi = cast<SingleValueInstruction>(use->getUser());
if (svi->use_empty()) {
leafUse(use);
} else {
worklist.append(svi->use_begin(), svi->use_end());
}
};
while (!worklist.empty()) {
auto *op = worklist.pop_back_val();
// Skip type dependent operands.
if (op->isTypeDependent())
continue;
// Then update the worklist with new things to find if we recognize this
// inst and then continue. If we fail, we emit an error at the bottom of the
// loop that we didn't recognize the user.
auto *user = op->getUser();
// TODO: Partial apply should be NonEscaping, but then we need to consider
// the apply to be a use point.
if (isa<PartialApplyInst>(user) || isa<AddressToPointerInst>(user)) {
result = meet(result, AddressUseKind::PointerEscape);
continue;
}
// First, eliminate "end point uses" that we just need to check liveness at
// and do not need to check transitive uses of.
if (isa<LoadInst>(user) || isa<CopyAddrInst>(user) ||
isa<MarkUnresolvedMoveAddrInst>(user) || isIncidentalUse(user) ||
isa<StoreInst>(user) || isa<DestroyAddrInst>(user) ||
isa<AssignInst>(user) || isa<YieldInst>(user) ||
isa<LoadUnownedInst>(user) || isa<StoreUnownedInst>(user) ||
isa<EndApplyInst>(user) || isa<LoadWeakInst>(user) ||
isa<StoreWeakInst>(user) || isa<AssignByWrapperInst>(user) ||
isa<BeginUnpairedAccessInst>(user) ||
isa<EndUnpairedAccessInst>(user) || isa<WitnessMethodInst>(user) ||
isa<SwitchEnumAddrInst>(user) || isa<CheckedCastAddrBranchInst>(user) ||
isa<SelectEnumAddrInst>(user) || isa<InjectEnumAddrInst>(user) ||
isa<IsUniqueInst>(user) || isa<ValueMetatypeInst>(user) ||
isa<DebugValueInst>(user) || isa<EndBorrowInst>(user)) {
leafUse(op);
continue;
}
if (isa<UnconditionalCheckedCastAddrInst>(user)
|| isa<MarkFunctionEscapeInst>(user)) {
assert(!user->hasResults());
continue;
}
// Then handle users that we need to look at transitive uses of.
if (Projection::isAddressProjection(user) ||
isa<ProjectBlockStorageInst>(user) ||
isa<OpenExistentialAddrInst>(user) ||
isa<InitExistentialAddrInst>(user) || isa<InitEnumDataAddrInst>(user) ||
isa<BeginAccessInst>(user) || isa<TailAddrInst>(user) ||
isa<IndexAddrInst>(user) || isa<StoreBorrowInst>(user) ||
isa<UncheckedAddrCastInst>(user) || isa<MarkMustCheckInst>(user)) {
transitiveResultUses(op);
continue;
}
if (auto *builtin = dyn_cast<BuiltinInst>(user)) {
if (auto kind = builtin->getBuiltinKind()) {
if (*kind == BuiltinValueKind::TSanInoutAccess) {
leafUse(op);
continue;
}
}
}
// If we have a load_borrow, add it's end scope to the liveness requirement.
if (auto *lbi = dyn_cast<LoadBorrowInst>(user)) {
// FIXME: if we can assume complete lifetimes, then this should be
// as simple as:
// for (Operand *use : lbi->getUses()) {
// if (use->endsLocalBorrowScope()) {
if (!findInnerTransitiveGuaranteedUses(lbi, foundUses)) {
result = meet(result, AddressUseKind::PointerEscape);
}
continue;
}
// TODO: Merge this into the full apply site code below.
if (auto *beginApply = dyn_cast<BeginApplyInst>(user)) {
if (foundUses) {
// TODO: the empty check should not be needed when dead begin_apply is
// disallowed.
if (beginApply->getTokenResult()->use_empty()) {
leafUse(op);
} else {
llvm::copy(beginApply->getTokenResult()->getUses(),
std::back_inserter(*foundUses));
}
}
continue;
}
if (auto fas = FullApplySite::isa(user)) {
leafUse(op);
continue;
}
if (auto *mdi = dyn_cast<MarkDependenceInst>(user)) {
// If this is the base, just treat it as a liveness use.
if (op->get() == mdi->getBase()) {
leafUse(op);
continue;
}
// If we are the value use, look through it.
transitiveResultUses(op);
continue;
}
// We were unable to recognize this user, so return true that we failed.
if (onError) {
(*onError)(op);
}
result = meet(result, AddressUseKind::Unknown);
}
return result;
}
//===----------------------------------------------------------------------===//
// AddressOwnership
//===----------------------------------------------------------------------===//
bool AddressOwnership::areUsesWithinLifetime(
ArrayRef<Operand *> uses, DeadEndBlocks &deadEndBlocks) const {
if (!base.hasLocalOwnershipLifetime())
return true;
SILValue root = base.getOwnershipReferenceRoot();
BorrowedValue borrow(root);
if (borrow)
return borrow.areUsesWithinExtendedScope(uses, &deadEndBlocks);
// --- A reference with no borrow scope! Currently happens for project_box.
// Compute the reference value's liveness.
SSAPrunedLiveness liveness;
liveness.initializeDef(root);
SimpleLiveRangeSummary summary = liveness.computeSimple();
// Conservatively ignore InnerBorrowKind::Reborrowed and
// AddressUseKind::PointerEscape and Reborrowed. The resulting liveness at
// least covers the known uses.
(void)summary;
// FIXME (implicit borrow): handle reborrows transitively just like above so
// we don't bail out if a uses is within the reborrowed scope.
return liveness.areUsesWithinBoundary(uses, &deadEndBlocks);
}
//===----------------------------------------------------------------------===//
// Owned Value Introducers
//===----------------------------------------------------------------------===//
void OwnedValueIntroducerKind::print(llvm::raw_ostream &os) const {
switch (value) {
case OwnedValueIntroducerKind::Invalid:
llvm_unreachable("Using invalid case?!");
case OwnedValueIntroducerKind::Apply:
os << "Apply";
return;
case OwnedValueIntroducerKind::BeginApply:
os << "BeginApply";
return;
case OwnedValueIntroducerKind::TryApply:
os << "TryApply";
return;
case OwnedValueIntroducerKind::Copy:
os << "Copy";
return;
case OwnedValueIntroducerKind::LoadCopy:
os << "LoadCopy";
return;
case OwnedValueIntroducerKind::LoadTake:
os << "LoadTake";
return;
case OwnedValueIntroducerKind::Phi:
os << "Phi";
return;
case OwnedValueIntroducerKind::Struct:
os << "Struct";
return;
case OwnedValueIntroducerKind::Tuple:
os << "Tuple";
return;
case OwnedValueIntroducerKind::FunctionArgument:
os << "FunctionArgument";
return;
case OwnedValueIntroducerKind::PartialApplyInit:
os << "PartialApplyInit";
return;
case OwnedValueIntroducerKind::AllocBoxInit:
os << "AllocBoxInit";
return;
case OwnedValueIntroducerKind::AllocRefInit:
os << "AllocRefInit";
return;
}
llvm_unreachable("Covered switch isn't covered");
}
//===----------------------------------------------------------------------===//
// Introducer Searching Routines
//===----------------------------------------------------------------------===//
bool swift::getAllBorrowIntroducingValues(SILValue inputValue,
SmallVectorImpl<BorrowedValue> &out) {
if (inputValue->getOwnershipKind() != OwnershipKind::Guaranteed)
return false;
SmallSetVector<SILValue, 32> worklist;
worklist.insert(inputValue);
// worklist grows in this loop.
for (unsigned idx = 0; idx < worklist.size(); idx++) {
SILValue value = worklist[idx];
// First check if v is an introducer. If so, stash it and continue.
if (auto scopeIntroducer = BorrowedValue(value)) {
out.push_back(scopeIntroducer);
continue;
}
// If v produces .none ownership, then we can ignore it. It is important
// that we put this before checking for guaranteed forwarding instructions,
// since we want to ignore guaranteed forwarding instructions that in this
// specific case produce a .none value.
if (value->getOwnershipKind() == OwnershipKind::None)
continue;
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (isGuaranteedForwarding(value)) {
if (auto *i = value->getDefiningInstruction()) {
for (SILValue opValue : i->getNonTypeDependentOperandValues()) {
worklist.insert(opValue);
}
continue;
}
// Otherwise, we should have a block argument that is defined by a single
// predecessor terminator.
auto *arg = cast<SILPhiArgument>(value);
if (arg->isTerminatorResult()) {
if (auto *forwardedOper = arg->forwardedTerminatorResultOperand()) {
worklist.insert(forwardedOper->get());
continue;
}
}
arg->visitIncomingPhiOperands([&](auto *operand) {
worklist.insert(operand->get());
return true;
});
}
// Otherwise, this is an introducer we do not understand. Bail and return
// false.
return false;
}
return true;
}
// FIXME: replace this logic with AccessBase::findOwnershipReferenceRoot.
BorrowedValue swift::getSingleBorrowIntroducingValue(SILValue inputValue) {
if (inputValue->getOwnershipKind() != OwnershipKind::Guaranteed)
return {};
SILValue currentValue = inputValue;
while (true) {
// First check if our initial value is an introducer. If we have one, just
// return it.
if (auto scopeIntroducer = BorrowedValue(currentValue)) {
return scopeIntroducer;
}
if (currentValue->getOwnershipKind() == OwnershipKind::None)
return {};
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (isGuaranteedForwarding(currentValue)) {
if (auto *i = currentValue->getDefiningInstructionOrTerminator()) {
auto instOps = i->getNonTypeDependentOperandValues();
// If we have multiple incoming values, return .None. We can't handle
// this.
auto begin = instOps.begin();
if (std::next(begin) != instOps.end()) {
return {};
}
// Otherwise, set currentOp to the single operand and continue.
currentValue = *begin;
continue;
}
}
// Otherwise, this is an introducer we do not understand. Bail and return
// None.
return {};
}
llvm_unreachable("Should never hit this");
}
bool swift::getAllOwnedValueIntroducers(
SILValue inputValue, SmallVectorImpl<OwnedValueIntroducer> &out) {
if (inputValue->getOwnershipKind() != OwnershipKind::Owned)
return false;
SmallVector<SILValue, 32> worklist;
worklist.emplace_back(inputValue);
while (!worklist.empty()) {
SILValue value = worklist.pop_back_val();
// First check if v is an introducer. If so, stash it and continue.
if (auto introducer = OwnedValueIntroducer::get(value)) {
out.push_back(introducer);
continue;
}
// If v produces .none ownership, then we can ignore it. It is important
// that we put this before checking for guaranteed forwarding instructions,
// since we want to ignore guaranteed forwarding instructions that in this
// specific case produce a .none value.
if (value->getOwnershipKind() == OwnershipKind::None)
continue;
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (isForwardingConsume(value)) {
if (auto *i = value->getDefiningInstructionOrTerminator()) {
llvm::copy(i->getNonTypeDependentOperandValues(),
std::back_inserter(worklist));
continue;
}
}
// Otherwise, this is an introducer we do not understand. Bail and return
// false.
return false;
}
return true;
}
OwnedValueIntroducer swift::getSingleOwnedValueIntroducer(SILValue inputValue) {
if (inputValue->getOwnershipKind() != OwnershipKind::Owned)
return {};
SILValue currentValue = inputValue;
while (true) {
// First check if our initial value is an introducer. If we have one, just
// return it.
if (auto introducer = OwnedValueIntroducer::get(currentValue)) {
return introducer;
}
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (isForwardingConsume(currentValue)) {
if (auto *i = currentValue->getDefiningInstructionOrTerminator()) {
auto instOps = i->getNonTypeDependentOperandValues();
// If we have multiple incoming values, return .None. We can't handle
// this.
auto begin = instOps.begin();
if (std::next(begin) != instOps.end()) {
return {};
}
// Otherwise, set currentOp to the single operand and continue.
currentValue = *begin;
continue;
}
}
// Otherwise, this is an introducer we do not understand. Bail and return
// None.
return {};
}
llvm_unreachable("Should never hit this");
}
//===----------------------------------------------------------------------===//
// Forwarding Operand
//===----------------------------------------------------------------------===//
ForwardingOperand::ForwardingOperand(Operand *use) {
if (use->isTypeDependent())
return;
switch (use->getOperandOwnership()) {
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::ForwardingConsume:
case OperandOwnership::GuaranteedForwarding:
this->use = use;
break;
default:
this->use = nullptr;
return;
}
}
ValueOwnershipKind ForwardingOperand::getForwardingOwnershipKind() const {
auto *user = use->getUser();
// NOTE: This if chain is meant to be a covered switch, so make sure to return
// in each if itself since we have an unreachable at the bottom to ensure if a
// new subclass of OwnershipForwardingInst is added
if (auto *ofsvi = dyn_cast<AllArgOwnershipForwardingSingleValueInst>(user))
return ofsvi->getForwardingOwnershipKind();
if (auto *ofsvi = dyn_cast<FirstArgOwnershipForwardingSingleValueInst>(user))
return ofsvi->getForwardingOwnershipKind();
if (auto *ofci = dyn_cast<OwnershipForwardingConversionInst>(user))
return ofci->getForwardingOwnershipKind();
if (auto *ofseib = dyn_cast<OwnershipForwardingSelectEnumInstBase>(user))
return ofseib->getForwardingOwnershipKind();
if (auto *ofmvi =
dyn_cast<OwnershipForwardingMultipleValueInstruction>(user)) {
assert(ofmvi->getNumOperands() == 1);
return ofmvi->getForwardingOwnershipKind();
}
if (auto *ofti = dyn_cast<OwnershipForwardingTermInst>(user)) {
assert(ofti->getNumOperands() == 1);
return ofti->getForwardingOwnershipKind();
}
if (auto *move = dyn_cast<MoveOnlyWrapperToCopyableValueInst>(user)) {
return move->getForwardingOwnershipKind();
}
llvm_unreachable("Unhandled forwarding inst?!");
}
void ForwardingOperand::setForwardingOwnershipKind(
ValueOwnershipKind newKind) const {
auto *user = use->getUser();
// NOTE: This if chain is meant to be a covered switch, so make sure to return
// in each if itself since we have an unreachable at the bottom to ensure if a
// new subclass of OwnershipForwardingInst is added
if (auto *ofsvi = dyn_cast<AllArgOwnershipForwardingSingleValueInst>(user))
return ofsvi->setForwardingOwnershipKind(newKind);
if (auto *ofsvi = dyn_cast<FirstArgOwnershipForwardingSingleValueInst>(user))
return ofsvi->setForwardingOwnershipKind(newKind);
if (auto *ofci = dyn_cast<OwnershipForwardingConversionInst>(user))
return ofci->setForwardingOwnershipKind(newKind);
if (auto *ofseib = dyn_cast<OwnershipForwardingSelectEnumInstBase>(user))
return ofseib->setForwardingOwnershipKind(newKind);
if (auto *ofmvi = dyn_cast<OwnershipForwardingMultipleValueInstruction>(user)) {
assert(ofmvi->getNumOperands() == 1);
if (!ofmvi->getOperand(0)->getType().isTrivial(*ofmvi->getFunction())) {
ofmvi->setForwardingOwnershipKind(newKind);
// TODO: Refactor this better.
if (auto *dsi = dyn_cast<DestructureStructInst>(ofmvi)) {
for (auto &result : dsi->getAllResultsBuffer()) {
if (result.getType().isTrivial(*dsi->getFunction()))
continue;
result.setOwnershipKind(newKind);
}
} else {
auto *dti = cast<DestructureTupleInst>(ofmvi);
for (auto &result : dti->getAllResultsBuffer()) {
if (result.getType().isTrivial(*dti->getFunction()))
continue;
result.setOwnershipKind(newKind);
}
}
}
return;
}
if (auto *ofti = dyn_cast<OwnershipForwardingTermInst>(user)) {
assert(ofti->getNumOperands() == 1);
if (!ofti->getOperand()->getType().isTrivial(*ofti->getFunction())) {
ofti->setForwardingOwnershipKind(newKind);
// Then convert all of its incoming values that are owned to be guaranteed.
for (auto &succ : ofti->getSuccessors()) {
auto *succBlock = succ.getBB();
// If we do not have any arguments, then continue.
if (succBlock->args_empty())
continue;
for (auto *succArg : succBlock->getSILPhiArguments()) {
// If we have an any value, just continue.
if (!succArg->getType().isTrivial(*ofti->getFunction()))
continue;
succArg->setOwnershipKind(newKind);
}
}
}
return;
}
assert(
!isa<MoveOnlyWrapperToCopyableValueInst>(user) &&
"MoveOnlyWrapperToCopyableValueInst can not have its ownership changed");
llvm_unreachable("Out of sync with OperandOwnership");
}
void ForwardingOperand::replaceOwnershipKind(ValueOwnershipKind oldKind,
ValueOwnershipKind newKind) const {
auto *user = use->getUser();
if (auto *fInst = dyn_cast<AllArgOwnershipForwardingSingleValueInst>(user))
if (fInst->getForwardingOwnershipKind() == oldKind)
return fInst->setForwardingOwnershipKind(newKind);
if (auto *fInst = dyn_cast<FirstArgOwnershipForwardingSingleValueInst>(user))
if (fInst->getForwardingOwnershipKind() == oldKind)
return fInst->setForwardingOwnershipKind(newKind);
if (auto *ofci = dyn_cast<OwnershipForwardingConversionInst>(user))
if (ofci->getForwardingOwnershipKind() == oldKind)
return ofci->setForwardingOwnershipKind(newKind);
if (auto *ofseib = dyn_cast<OwnershipForwardingSelectEnumInstBase>(user))
if (ofseib->getForwardingOwnershipKind() == oldKind)
return ofseib->setForwardingOwnershipKind(newKind);
if (auto *ofmvi = dyn_cast<OwnershipForwardingMultipleValueInstruction>(user)) {
if (ofmvi->getForwardingOwnershipKind() == oldKind) {
ofmvi->setForwardingOwnershipKind(newKind);
}
// TODO: Refactor this better.
if (auto *dsi = dyn_cast<DestructureStructInst>(ofmvi)) {
for (auto &result : dsi->getAllResultsBuffer()) {
if (result.getOwnershipKind() != oldKind)
continue;
result.setOwnershipKind(newKind);
}
} else {
auto *dti = cast<DestructureTupleInst>(ofmvi);
for (auto &result : dti->getAllResultsBuffer()) {
if (result.getOwnershipKind() != oldKind)
continue;
result.setOwnershipKind(newKind);
}
}
return;
}
if (auto *ofti = dyn_cast<OwnershipForwardingTermInst>(user)) {
if (ofti->getForwardingOwnershipKind() == oldKind) {
ofti->setForwardingOwnershipKind(newKind);
// Then convert all of its incoming values that are owned to be guaranteed.
for (auto &succ : ofti->getSuccessors()) {
auto *succBlock = succ.getBB();
// If we do not have any arguments, then continue.
if (succBlock->args_empty())
continue;
for (auto *succArg : succBlock->getSILPhiArguments()) {
// If we have an any value, just continue.
if (succArg->getOwnershipKind() == oldKind) {
succArg->setOwnershipKind(newKind);
}
}
}
}
return;
}
assert(
!isa<MoveOnlyWrapperToCopyableValueInst>(user) &&
"MoveOnlyWrapperToCopyableValueInst can not have its ownership changed");
llvm_unreachable("Missing Case! Out of sync with OperandOwnership");
}
SILValue ForwardingOperand::getSingleForwardedValue() const {
if (auto *svi = dyn_cast<SingleValueInstruction>(use->getUser()))
return svi;
return SILValue();
}
bool ForwardingOperand::visitForwardedValues(
function_ref<bool(SILValue)> visitor) {
auto *user = use->getUser();
// See if we have a single value instruction... if we do that is always the
// transitive result.
if (auto *svi = dyn_cast<SingleValueInstruction>(user)) {
return visitor(svi);
}
if (auto *mvri = dyn_cast<MultipleValueInstruction>(user)) {
return llvm::all_of(mvri->getResults(), [&](SILValue value) {
if (value->getOwnershipKind() == OwnershipKind::None)
return true;
return visitor(value);
});
}
// This is an instruction like switch_enum and checked_cast_br that are
// "transforming terminators"... We know that this means that we should at
// most have a single phi argument.
auto *ti = cast<TermInst>(user);
if (ti->mayHaveTerminatorResult()) {
return llvm::all_of(
ti->getSuccessorBlocks(), [&](SILBasicBlock *succBlock) {
// If we do not have any arguments, then continue.
if (succBlock->args_empty())
return true;
auto args = succBlock->getSILPhiArguments();
assert(args.size() == 1 &&
"Transforming terminator with multiple args?!");
return visitor(args[0]);
});
}
// If our terminator is function exiting, we do not have a value to visit, so
// just return.
if (ti->isFunctionExiting())
return true;
auto *succArg = PhiOperand(use).getValue();
return visitor(succArg);
}
void swift::visitExtendedReborrowPhiBaseValuePairs(
BeginBorrowInst *borrowInst, function_ref<void(SILPhiArgument *, SILValue)>
visitReborrowPhiBaseValuePair) {
// A Reborrow can have different base values on different control flow
// paths.
// For that reason, worklist stores (reborrow, base value) pairs.
// We need a SetVector to make sure we don't revisit the same pair again.
SmallSetVector<std::tuple<PhiOperand, SILValue>, 4> worklist;
// Find all reborrows of value and insert the (reborrow, base value) pair into
// the worklist.
auto collectReborrows = [&](SILValue value, SILValue baseValue) {
BorrowedValue(value).visitLocalScopeEndingUses([&](Operand *op) {
if (op->getOperandOwnership() == OperandOwnership::Reborrow) {
worklist.insert(std::make_tuple(PhiOperand(op), baseValue));
}
return true;
});
};
// Initialize the worklist.
collectReborrows(borrowInst, borrowInst->getOperand());
// For every (reborrow, base value) pair in the worklist:
// - Find phi value and new base value
// - Call the visitor on the phi value and new base value pair
// - Populate the worklist with pairs of reborrows of phi value and the new
// base.
for (unsigned idx = 0; idx < worklist.size(); idx++) {
PhiOperand phiOp;
SILValue currentBaseValue;
std::tie(phiOp, currentBaseValue) = worklist[idx];
auto *phiValue = phiOp.getValue();
SILValue newBaseValue = currentBaseValue;
// If the previous base value was also passed as a phi operand along with
// the reborrow, its phi value will be the new base value.
for (auto &op : phiOp.getBranch()->getAllOperands()) {
PhiOperand otherPhiOp(&op);
if (otherPhiOp.getSource() != currentBaseValue) {
continue;
}
newBaseValue = otherPhiOp.getValue();
}
// Call the visitor function
visitReborrowPhiBaseValuePair(phiValue, newBaseValue);
collectReborrows(phiValue, newBaseValue);
}
}
void swift::visitExtendedGuaranteedForwardingPhiBaseValuePairs(
BorrowedValue borrow, function_ref<void(SILPhiArgument *, SILValue)>
visitGuaranteedForwardingPhiBaseValuePair) {
assert(borrow.kind == BorrowedValueKind::BeginBorrow ||
borrow.kind == BorrowedValueKind::LoadBorrow);
// A GuaranteedForwardingPhi can have different base values on different
// control flow paths.
// For that reason, worklist stores (GuaranteedForwardingPhi operand, base
// value) pairs. We need a SetVector to make sure we don't revisit the same
// pair again.
SmallSetVector<std::tuple<PhiOperand, SILValue>, 4> worklist;
auto collectGuaranteedForwardingPhis = [&](SILValue value,
SILValue baseValue) {
visitGuaranteedForwardingPhisForSSAValue(value, [&](Operand *op) {
worklist.insert(std::make_tuple(PhiOperand(op), baseValue));
return true;
});
};
// Collect all GuaranteedForwardingPhis
collectGuaranteedForwardingPhis(borrow.value, borrow.value);
borrow.visitTransitiveLifetimeEndingUses([&](Operand *endUse) {
if (endUse->getOperandOwnership() == OperandOwnership::Reborrow) {
auto *phiValue = PhiOperand(endUse).getValue();
collectGuaranteedForwardingPhis(phiValue, phiValue);
}
return true;
});
// For every (GuaranteedForwardingPhi operand, base value) pair in the
// worklist:
// - Find phi value and new base value
// - Call the visitor on the phi value and new base value pair
// - Populate the worklist with pairs of GuaranteedForwardingPhi ops of phi
// value and the new base.
for (unsigned idx = 0; idx < worklist.size(); idx++) {
PhiOperand phiOp;
SILValue currentBaseValue;
std::tie(phiOp, currentBaseValue) = worklist[idx];
auto *phiValue = phiOp.getValue();
SILValue newBaseValue = currentBaseValue;
// If an adjacent reborrow is found in the same block as the guaranteed phi,
// then set newBaseValue to the reborrow.
for (auto &op : phiOp.getBranch()->getAllOperands()) {
PhiOperand otherPhiOp(&op);
if (otherPhiOp.getSource() != currentBaseValue) {
continue;
}
newBaseValue = otherPhiOp.getValue();
}
// Call the visitor function
visitGuaranteedForwardingPhiBaseValuePair(phiValue, newBaseValue);
collectGuaranteedForwardingPhis(phiValue, newBaseValue);
}
}
/// If \p instruction forwards guaranteed values to its results, visit each
/// forwarded operand. The visitor must check whether the forwarded value is
/// guaranteed.
///
/// Return true \p visitOperand was called at least once.
///
/// \p visitOperand should always recheck for Guaranteed owernship if it
/// matters, in case a cast forwards a trivial type to a nontrivial type.
///
/// This intentionally does not handle phis, which require recursive traversal
/// to determine `isGuaranteedForwardingPhi`.
bool swift::visitForwardedGuaranteedOperands(
SILValue value, function_ref<void(Operand *)> visitOperand) {
assert(!SILArgument::asPhi(value) && "phis are handled separately");
if (auto *termResult = SILArgument::isTerminatorResult(value)) {
if (auto *oper = termResult->forwardedTerminatorResultOperand()) {
visitOperand(oper);
return true;
}
return false;
}
auto *inst = value->getDefiningInstruction();
if (!inst)
return false;
// Bypass conversions that produce a guarantee value out of thin air.
if (inst->getNumRealOperands() == 0) {
return false;
}
if (isa<FirstArgOwnershipForwardingSingleValueInst>(inst)
|| isa<OwnershipForwardingConversionInst>(inst)
|| isa<OwnershipForwardingSelectEnumInstBase>(inst)
|| isa<OwnershipForwardingMultipleValueInstruction>(inst)
|| isa<MoveOnlyWrapperToCopyableValueInst>(inst)
|| isa<CopyableToMoveOnlyWrapperValueInst>(inst)) {
assert(inst->getNumRealOperands() == 1
&& "forwarding instructions must have a single real operand");
assert(!isa<SingleValueInstruction>(inst)
|| !BorrowedValue(cast<SingleValueInstruction>(inst))
&& "forwarded operand cannot begin a borrow scope");
visitOperand(&inst->getOperandRef(0));
return true;
}
if (isa<AllArgOwnershipForwardingSingleValueInst>(inst)) {
assert(inst->getNumOperands() > 0 && "checked above");
assert(inst->getNumOperands() == inst->getNumRealOperands() &&
"mixin expects all readl operands");
for (auto &operand : inst->getAllOperands()) {
visitOperand(&operand);
}
return true;
}
return false;
}
/// Visit the phis in the same block as \p phi which are reborrows of a borrow
/// of one of the values reaching \p phi.
///
/// If the visitor returns false, stops visiting and returns false. Otherwise,
/// returns true.
///
///
/// When an owned value is passed as a phi argument, it is consumed. So any
/// open scope borrowing that owned value must be ended no later than in that
/// branch instruction. Either such a borrow scope is ended beforehand
/// %lifetime = begin_borrow %value
/// ...
/// end_borrow %lifetime <-- borrow scope ended here
/// br block(%value) <-- before consume
/// or the borrow scope is ended in the same instruction as the owned value is
/// consumed
/// %lifetime = begin_borrow %value
/// ...
/// end_borrow %lifetime
/// br block(%value, %lifetime) <-- borrow scope ended here
/// <-- in same instruction as consume
/// In particular, the following is invalid
/// %lifetime = begin_borrow %value
/// ...
/// br block(%value)
/// block(%value_2 : @owned):
/// end_borrow %lifetime
/// destroy_value %value_2
/// because %lifetime was guaranteed by %value but value is consumed at
/// `br two`.
///
/// Similarly, when a guaranteed value is passed as a phi argument, its borrow
/// scope ends and a new borrow scope is begun. And so any open nested borrow
/// of the original outer borrow must be ended no later than in that branch
/// instruction.
///
///
/// Given an phi argument
/// block(..., %value : @owned, ...)
/// this function finds the adjacent reborrow phis
/// block(..., %lifetime : @guaranteed, ..., %value : @owned, ...)
/// ^^^^^^^^^^^^^^^^^^^^^^^
/// one of whose reaching values is a borrow of a reaching value of %value.
///
/// In both cases, finding an adjacent phi may be more complicated than merely
/// looking for guaranteed operands adjacent to the incoming operands to phi
/// and which are borrows of the value whose lifetime ends there. The reason is
/// that they might not be borrows of that incoming value _directly_ but rather
/// reborrows of some other reborrow:
///
/// %lifetime = begin_borrow %value
/// br one(%value, %lifetime)
/// one(%value_1 : @owned, %lifetime_1 : @guaranteed)
/// br two(%value_1, %lifetime_1)
/// two(%value_2 : @owned, %lifetime_2 : @guaranteed)
/// end_borrow %lifetime_2
/// destroy_value %value_2
///
/// When called with %value_2, \p visitor is invoked with:
/// two(%value_2 : @owned, %lifetime_2 : @guaranteed)
/// ^^^^^^^^^^^^^^^^^^^^^^^^^
///
/// FIXME: this does not correctly handle dominated phis:
///
/// %value = ...
/// %borrow = begin_borrow %value
/// br one(%borrow)
/// one(%reborrow_1 : @guaranteed)
/// br two(%value, %reborrow_1)
/// two(%phi_2 : @owned, %reborrow_2 : @guaranteed)
/// br three(%value, %reborrow_1)
///
/// Instead, just call findEnclosingDefs for each guaranteed phi in the same
/// block and visit any that match.
///
/// FIXME: this does not correctly handle guaranteed phis
///
/// %borrow = begin_borrow %value
/// %field = struct_extract %borrow
/// br one(%borrow, %field)
/// one(%reborrow : @guaranteed, %forwardingphi : @guaranteed)
///
bool swift::visitAdjacentReborrowsOfPhi(
SILPhiArgument *phi, function_ref<bool(SILPhiArgument *)> visitor) {
assert(phi->isPhi());
// First, collect all the values that reach \p phi, that is:
// - operands to the phi
// - operands to phis which are operands to the phi
// - and so forth.
SmallPtrSet<SILValue, 8> reachingValues;
// At the same time, record all the phis in \p phi's phi web: the phis which
// are transitively operands to \p phi. This is the subset of \p
// reachingValues that are phis.
SmallVector<SILPhiArgument *, 4> phis;
phi->visitTransitiveIncomingPhiOperands(
[&](auto *phi, auto *operand) -> bool {
phis.push_back(phi);
reachingValues.insert(phi);
reachingValues.insert(operand->get());
return true;
});
// Second, find all the guaranteed phis one of whose operands _could_ (by
// dint of being adjacent to a phi in the phi web with the appropriate
// ownership and type) be a reborrow of a reaching value of \p phi.
SmallVector<SILPhiArgument *, 4> candidates;
for (auto *phi : phis) {
SILBasicBlock *block = phi->getParentBlock();
for (auto *uncastAdjacent : block->getArguments()) {
auto *adjacent = cast<SILPhiArgument>(uncastAdjacent);
if (adjacent == phi)
continue;
if (adjacent->getType() != phi->getType())
continue;
if (adjacent->getOwnershipKind() != OwnershipKind::Guaranteed)
continue;
candidates.push_back(adjacent);
}
}
// Finally, look through \p candidates to find those one of whose incoming
// operands either
// (1) borrow one of reaching values of \p phi
// or (2) is itself a guaranteed phi which does so.
// Because we may discover a reborrow R1 of type (1) after visiting another
// R2 of type (2) which reborrows R1, we need to iterate to a fixed point.
//
// Record all the phis that we see which are borrows or reborrows of a
// reaching value \p so that we can check for case (2) above.
//
// Visit those phis which are both reborrows of a reaching value AND are in
// the same block as \phi.
//
// For example, given
//
// %lifetime = begin_borrow %value
// br one(%value, %lifetime)
// one(%value_1 : @owned, %lifetime_1 : @guaranteed)
// br two(%value_1, %lifetime_1)
// two(%value_2 : @owned, %lifetime_2 : @guaranteed)
// end_borrow %lifetime_2
// destroy_value %value_2
//
// when visiting the reborrow phis adjacent to %value_2, The following steps
// would be taken:
//
// (1) Look at the first candidate:
// two(%value_2 : @owned, %lifetime_2 : @guaranteed)
// ^^^^^^^^^^^^^^^^^^^^^^^^^
// but see that its one incoming value
// br two(%value_1, %lifetime_1)
// ^^^^^^^^^^^
// although a phi argument itself, is not known (yet!) to be a reborrow phi.
// So the first candidate is NOT (yet!) added to reborrowPhis.
//
// (2) Look at the second candidate:
// one(%value_1 : @owned, %lifetime_1 : @guaranteed)
// ^^^^^^^^^^^^^^^^^^^^^^^^^
// and see that one of its incoming values
// br one(%value, %lifetime)
// ^^^^^^^^^
// is a borrow
// %lifetime = begin_borrow %value
// of %value, one of the values reaching %value_2.
// So the second candidate IS added to reborrowPhis.
// AND changed is set to true, so we will repeat the outer loop.
// But this candidate is not adjacent to our phi %value_2, so it is not
// visited.
//
// (4.5) Changed is true: repeat the outer loop. Set changed to false.
//
// (3) Look at the first candidate:
// two(%value_2 : @owned, %lifetime_2 : @guaranteed)
// ^^^^^^^^^^^^^^^^^^^^^^^^^
// and see that one of its incoming values
// br two(%value_1, %lifetime_1)
// ^^^^^^^^^^^
// is itself a phi
// one(%value_1 : @owned, %lifetime_1 : @guaranteed)
// ^^^^^^^^^^^^^^^^^^^^^^^^^
// which was added to reborrowPhis in (2).
// So the first candidate IS added to reborrowPhis.
// AND changed is set to true.
// ALSO, see that the first candidate IS adjacent to our phi %value_2, so our
// visitor is invoked with the first candidate.
//
// (4) Look at the second candidate.
// See that it is already a member of reborrowPhis.
//
// (4.5) Changed is true: repeat the outer loop. Set changed to false.
//
// (5) Look at the first candidate.
// See that it is already a member of reborrowPhis.
//
// (6) Look at the second candidate.
// See that it is already a member of reborrowPhis.
//
// (6.5) Changed is false: exit the outer loop.
bool changed = false;
SmallSetVector<SILPhiArgument *, 4> reborrowPhis;
do {
changed = false;
for (auto *candidate : candidates) {
if (reborrowPhis.contains(candidate))
continue;
auto success = candidate->visitIncomingPhiOperands([&](auto *operand) {
// If the value being reborrowed is itself a reborrow of a value
// reaching \p phi, then visit it.
SILPhiArgument *forwarded;
if ((forwarded = dyn_cast<SILPhiArgument>(operand->get()))) {
if (!reborrowPhis.contains(forwarded))
return true;
changed = true;
reborrowPhis.insert(candidate);
if (candidate->getParentBlock() == phi->getParentBlock())
return visitor(candidate);
return true;
}
BeginBorrowInst *bbi;
if (!(bbi = dyn_cast<BeginBorrowInst>(operand->get())))
return true;
auto borrowee = bbi->getOperand();
if (!reachingValues.contains(borrowee))
return true;
changed = true;
reborrowPhis.insert(candidate);
if (candidate->getParentBlock() == phi->getParentBlock())
return visitor(candidate);
return true;
});
if (!success)
return false;
}
} while (changed);
return true;
}
namespace {
// Find the definitions of the scopes that enclose guaranteed values, handling
// all combinations of aggregation, guaranteed forwarding phis, and reborrows.
class FindEnclosingDefs {
// A separately allocated set-vector is used for each level of recursion
// across block boudndaries (NodeSet cannot be used recursively).
using LocalValueSetVector = SmallPtrSetVector<SILValue, 8>;
SILFunction *function;
ValueSet visitedPhis;
public:
FindEnclosingDefs(SILFunction *function) : function(function),
visitedPhis(function) {}
// Visit each definition of a scope that immediately encloses a guaranteed
// value. The guaranteed value effectively keeps these scopes alive.
//
// This means something different depending on whether \p value is itself a
// borrow introducer vs. a forwarded guaranteed value. If \p value is an
// introducer, then this disovers the enclosing borrow scope and visits all
// introducers of that scope. If \p value is a forwarded value, then this
// visits the introducers of the current borrow scope.
bool visitEnclosingDefs(SILValue value,
function_ref<bool(SILValue)> visitor) && {
if (value->getOwnershipKind() != OwnershipKind::Guaranteed)
return true;
if (auto borrowedValue = BorrowedValue(value)) {
switch (borrowedValue.kind) {
case BorrowedValueKind::Invalid:
llvm_unreachable("checked above");
case BorrowedValueKind::Phi: {
StackList<SILValue> enclosingDefs(function);
recursivelyFindDefsOfReborrow(SILArgument::asPhi(value), enclosingDefs);
for (SILValue def : enclosingDefs) {
if (!visitor(def))
return false;
}
return true;
}
case BorrowedValueKind::BeginBorrow:
return std::move(*this).visitBorrowIntroducers(
cast<BeginBorrowInst>(value)->getOperand(), visitor);
case BorrowedValueKind::LoadBorrow:
case BorrowedValueKind::SILFunctionArgument:
// There is no enclosing def on this path.
return true;
}
}
// Handle forwarded guaranteed values.
return std::move(*this).visitBorrowIntroducers(value, visitor);
}
// Visit the values that introduce the borrow scopes that includes \p
// value. If value is owned, or introduces a borrow scope, then this only
// visits \p value.
bool visitBorrowIntroducers(SILValue value,
function_ref<bool(SILValue)> visitor) && {
StackList<SILValue> introducers(function);
LocalValueSetVector visitedValues;
recursivelyFindBorrowIntroducers(value, introducers, visitedValues);
for (SILValue introducer : introducers) {
if (!visitor(introducer))
return false;
}
return true;
}
protected:
// This is the identity function (i.e. just adds \p value to \p introducers)
// when:
// - \p value is owned
// - \p value introduces a borrow scope (begin_borrow, load_borrow, reborrow)
//
// Otherwise recurse up the use-def chain to find all introducers.
//
// Returns false if \p forwardingPhi was already encountered, either because
// of a phi cycle or because of reconvergent control flow. Similarly, return
// false if all incoming values were encountered.
bool recursivelyFindBorrowIntroducers(SILValue value,
StackList<SILValue> &introducers,
LocalValueSetVector &visitedValues) {
// Check if this value's introducers have already been added to
// 'introducers' to avoid duplicates and avoid exponential recursion on
// aggregates.
if (!visitedValues.insert(value))
return false;
switch (value->getOwnershipKind()) {
case OwnershipKind::Any:
case OwnershipKind::None:
case OwnershipKind::Unowned:
return false;
case OwnershipKind::Owned:
introducers.push_back(value);
return true;
case OwnershipKind::Guaranteed:
break;
}
// BorrowedValue handles the initial scope introducers: begin_borrow,
// load_borrow, & reborrow.
if (BorrowedValue(value)) {
introducers.push_back(value);
return true;
}
bool foundNewIntroducer = false;
// Handle forwarding phis.
if (auto *phi = SILArgument::asPhi(value)) {
foundNewIntroducer = recursivelyFindForwardingPhiIntroducers(
phi, introducers, visitedValues);
} else {
// Recurse through guaranteed forwarding instructions.
visitForwardedGuaranteedOperands(value, [&](Operand *operand) {
SILValue forwardedVal = operand->get();
if (forwardedVal->getOwnershipKind() == OwnershipKind::Guaranteed) {
foundNewIntroducer |=
recursivelyFindBorrowIntroducers(forwardedVal, introducers,
visitedValues);
}
});
}
return foundNewIntroducer;
}
// Given the enclosing definition on a predecessor path, identify the
// enclosing definitions on the successor block. Each enclosing predecessor
// def is either used by an outer-adjacent phi in the successor block, or it
// must dominate the successor block.
static SILValue findSuccessorDefFromPredDef(SILBasicBlock *predecessor,
SILValue enclosingPredDef) {
SILBasicBlock *successor = predecessor->getSingleSuccessorBlock();
assert(successor && "phi predecessor must have a single successor in OSSA");
for (auto *candidatePhi : successor->getArguments()) {
SILValue candidateValue =
candidatePhi->getIncomingPhiValue(predecessor);
// Find the outer adjacent phi in the successor block.
// the 'enclosingDef' from the 'pred' block.
if (candidateValue == enclosingPredDef)
return candidatePhi;
}
// No candidates phi are outer-adjacent phis. The incoming enclosingDef
// must dominate the current guaranteed phi. So it remains the enclosing
// scope.
return enclosingPredDef;
}
// Given the enclosing definitions on a predecessor path, identify the
// enclosing definitions on the successor block.
void findSuccessorDefsFromPredDefs(
SILBasicBlock *predecessor, const StackList<SILValue> &predDefs,
StackList<SILValue> &successorDefs,
LocalValueSetVector &visitedSuccessorValues) {
// Gather the new introducers for the successor block.
for (SILValue predDef : predDefs) {
SILValue succDef = findSuccessorDefFromPredDef(predecessor, predDef);
if (visitedSuccessorValues.insert(succDef))
successorDefs.push_back(succDef);
}
}
// Find the introducers of a forwarding phi's borrow scope. The introducers
// are either dominating values, or reborrows in the same block as the
// forwarding phi.
//
// Recurse along the use-def phi web until a begin_borrow is reached. At each
// level, find the outer-adjacent phi, if one exists, otherwise return the
// dominating definition.
//
// Returns false if \p forwardingPhi was already encountered, either because
// of a phi cycle or because of reconvergent control flow. Similarly, returns
// false if all incoming values were encountered.
//
// one(%reborrow_1 : @guaranteed)
// %field = struct_extract %reborrow_1
// br two(%reborrow_1, %field)
// two(%reborrow_2 : @guaranteed, %forward_2 : @guaranteed)
// end_borrow %reborrow_2
//
// Calling recursivelyFindForwardingPhiIntroducers(%forward_2)
// recursively computes these introducers:
//
// %field is the only value incoming to %forward_2.
//
// %field is introduced by %reborrow_1 via
// recursivelyFindBorrowIntroducers(%field).
//
// %reborrow_1 is introduced by %reborrow_2 in block "two" via
// findSuccessorDefsFromPredDefs(%reborrow_1)).
//
// %reborrow_2 is returned.
//
bool
recursivelyFindForwardingPhiIntroducers(SILPhiArgument *forwardingPhi,
StackList<SILValue> &introducers,
LocalValueSetVector &visitedValues) {
// Phi cycles are skipped. They cannot contribute any new enclosing defs.
if (!visitedPhis.insert(forwardingPhi))
return false;
bool foundIntroducer = false;
SILBasicBlock *block = forwardingPhi->getParent();
for (auto *pred : block->getPredecessorBlocks()) {
SILValue incomingValue = forwardingPhi->getIncomingPhiValue(pred);
// Each phi operand requires a new introducer list and visited values
// set. These values will be remapped to successor phis before adding them
// to the caller's introducer list. It may be necessary to revisit a value
// that was already visited by the caller before remapping to phis.
StackList<SILValue> incomingIntroducers(function);
LocalValueSetVector incomingVisitedValues;
if (!recursivelyFindBorrowIntroducers(incomingValue, incomingIntroducers,
incomingVisitedValues))
continue;
foundIntroducer = true;
findSuccessorDefsFromPredDefs(pred, incomingIntroducers, introducers,
visitedValues);
}
return foundIntroducer;
}
// Given a reborrow operand's incoming value, find the enclosing definition.
void recursivelyFindDefsOfReborrowOperand(
SILValue incomingValue,
StackList<SILValue> &enclosingDefs) {
if (incomingValue->getOwnershipKind() == OwnershipKind::None)
return;
assert(incomingValue->getOwnershipKind() == OwnershipKind::Guaranteed);
// Avoid repeatedly constructing BorrowedValue during use-def
// traversal. That would be quadratic if it checks all uses for reborrows.
if (auto *predPhi = dyn_cast<SILPhiArgument>(incomingValue)) {
recursivelyFindDefsOfReborrow(predPhi, enclosingDefs);
return;
}
// Handle non-phi borrow introducers.
BorrowedValue borrowedValue(incomingValue);
switch (borrowedValue.kind) {
case BorrowedValueKind::Phi:
llvm_unreachable("phis are short-curcuited above");
case BorrowedValueKind::Invalid:
llvm_unreachable("A reborrow immediate operand must be a BorrowedValue.");
case BorrowedValueKind::BeginBorrow: {
LocalValueSetVector visitedValues;
recursivelyFindBorrowIntroducers(
cast<BeginBorrowInst>(incomingValue)->getOperand(), enclosingDefs,
visitedValues);
break;
}
case BorrowedValueKind::LoadBorrow:
case BorrowedValueKind::SILFunctionArgument:
// There is no enclosing def on this path.
break;
}
}
// Given a reborrow, find the definitions of the enclosing borrow scopes. Each
// enclosing borrow scope is represented by one of the following cases, which
// refer to the example below:
//
// dominating owned value -> %value encloses %reborrow_1
// owned outer-adjacent phi -> %phi_3 encloses %reborrow_3
// dominating outer borrow introducer -> %outerBorrowB encloses %reborrow
// outer-adjacent reborrow -> %outerReborrow encloses %reborrow
//
// Recurse along the use-def phi web until a begin_borrow is reached. Then
// find all introducers of the begin_borrow's operand. At each level, find
// the outer adjacent phi, if one exists, otherwise return the most recently
// found dominating definition.
//
// If \p reborrow was already encountered because of a phi cycle, then no
// enclosingDefs are added.
//
// Example:
//
// %value = ...
// %borrow = begin_borrow %value
// br one(%borrow)
// one(%reborrow_1 : @guaranteed)
// br two(%value, %reborrow_1)
// two(%phi_2 : @owned, %reborrow_2 : @guaranteed)
// br three(%value, %reborrow_1)
// three(%phi_3 : @owned, %reborrow_3 : @guaranteed)
// end_borrow %reborrow_3
// destroy_value %phi_3
//
// recursivelyFindDefsOfReborrow(%reborrow_3) returns %phi_3 by
// computing enclosing defs (inner -> outer) in this order:
//
// %reborrow_1 -> %value
// %reborrow_2 -> %phi_2
// %reborrow_3 -> %phi_3
//
// Example:
//
// %outerBorrowA = begin_borrow
// %outerBorrowB = begin_borrow
// %struct = struct (%outerBorrowA, outerBorrowB)
// %borrow = begin_borrow %struct
// br one(%outerBorrowA, %borrow)
// one(%outerReborrow : @guaranteed, %reborrow : @guaranteed)
//
// recursivelyFindDefsOfReborrow(%reborrow) returns
// (%outerReborrow, %outerBorrowB).
//
void recursivelyFindDefsOfReborrow(SILPhiArgument *reborrow,
StackList<SILValue> &enclosingDefs) {
assert(enclosingDefs.empty());
LocalValueSetVector visitedDefs;
// phi cycles can be skipped. They cannot contribute any new enclosing defs.
if (!visitedPhis.insert(reborrow))
return;
SILBasicBlock *block = reborrow->getParent();
for (auto *pred : block->getPredecessorBlocks()) {
SILValue incomingValue = reborrow->getIncomingPhiValue(pred);
// Each phi operand requires a new enclosing def list. These values will
// be remapped to successor phis before adding them to the caller's
// enclosing def list. It may be necessary to revisit a value that was
// already visited by the caller before remapping to phis.
StackList<SILValue> enclosingPredDefs(function);
recursivelyFindDefsOfReborrowOperand(incomingValue, enclosingPredDefs);
findSuccessorDefsFromPredDefs(pred, enclosingPredDefs, enclosingDefs,
visitedDefs);
}
}
};
} // end namespace
bool swift::visitEnclosingDefs(SILValue value,
function_ref<bool(SILValue)> visitor) {
return FindEnclosingDefs(value->getFunction())
.visitEnclosingDefs(value, visitor);
}
bool swift::visitBorrowIntroducers(SILValue value,
function_ref<bool(SILValue)> visitor) {
return FindEnclosingDefs(value->getFunction())
.visitBorrowIntroducers(value, visitor);
}
void swift::visitTransitiveEndBorrows(
SILValue value,
function_ref<void(EndBorrowInst *)> visitEndBorrow) {
GraphNodeWorklist<SILValue, 4> worklist;
worklist.insert(value);
while (!worklist.empty()) {
auto val = worklist.pop();
for (auto *consumingUse : val->getConsumingUses()) {
auto *consumingUser = consumingUse->getUser();
if (auto *branch = dyn_cast<BranchInst>(consumingUser)) {
auto *succBlock = branch->getSingleSuccessorBlock();
auto *phiArg = cast<SILPhiArgument>(
succBlock->getArgument(consumingUse->getOperandNumber()));
worklist.insert(phiArg);
} else {
visitEndBorrow(cast<EndBorrowInst>(consumingUser));
}
}
}
}
/// Whether the specified lexical begin_borrow instruction is nested.
///
/// A begin_borrow [lexical] is nested if the borrowed value's lifetime is
/// guaranteed by another lexical scope. That happens if:
/// - the value is a guaranteed argument to the function
/// - the value is itself a begin_borrow [lexical]
bool swift::isNestedLexicalBeginBorrow(BeginBorrowInst *bbi) {
assert(bbi->isLexical());
auto value = bbi->getOperand();
if (auto *outerBBI = dyn_cast<BeginBorrowInst>(value)) {
return outerBBI->isLexical();
}
if (auto *arg = dyn_cast<SILFunctionArgument>(value)) {
return arg->getOwnershipKind() == OwnershipKind::Guaranteed;
}
return false;
}