Files
swift-mirror/lib/Parse/Lexer.cpp
Jordan Rose e180bf9d4e [Parse] Tweak a utility function that relies on reading past the end (#19230)
Lexer::getEncodedStringSegment (now getEncodedStringSegmentImpl)
assumes that it can read one byte past the end of a string segment in
order to avoid bounds-checks on things like "is this a \r\n
sequence?". However, the function was being used for strings that did
not come from source where this assumption was not always valid.
Change the reusable form of the function to always copy into a
temporary buffer, allowing the fast path to continue to be used for
normal parsing.

Caught by ASan!

rdar://problem/44306756
2018-09-11 20:11:58 -07:00

2791 lines
96 KiB
C++

//===--- Lexer.cpp - Swift Language Lexer ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Lexer and Token interfaces.
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Confusables.h"
#include "swift/Parse/Lexer.h"
#include "swift/AST/DiagnosticsParse.h"
#include "swift/AST/Identifier.h"
#include "swift/Basic/LangOptions.h"
#include "swift/Basic/SourceManager.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
// FIXME: Figure out if this can be migrated to LLVM.
#include "clang/Basic/CharInfo.h"
#include <limits>
using namespace swift;
using namespace swift::syntax;
// clang::isIdentifierHead and clang::isIdentifierBody are deliberately not in
// this list as a reminder that they are using C rules for identifiers.
// (Admittedly these are the same as Swift's right now.)
using clang::isAlphanumeric;
using clang::isDigit;
using clang::isHexDigit;
using clang::isHorizontalWhitespace;
using clang::isPrintable;
using clang::isWhitespace;
//===----------------------------------------------------------------------===//
// UTF8 Validation/Encoding/Decoding helper functions
//===----------------------------------------------------------------------===//
/// EncodeToUTF8 - Encode the specified code point into a UTF8 stream. Return
/// true if it is an erroneous code point.
static bool EncodeToUTF8(unsigned CharValue,
SmallVectorImpl<char> &Result) {
// Number of bits in the value, ignoring leading zeros.
unsigned NumBits = 32-llvm::countLeadingZeros(CharValue);
// Handle the leading byte, based on the number of bits in the value.
unsigned NumTrailingBytes;
if (NumBits <= 5+6) {
// Encoding is 0x110aaaaa 10bbbbbb
Result.push_back(char(0xC0 | (CharValue >> 6)));
NumTrailingBytes = 1;
} else if (NumBits <= 4+6+6) {
// Encoding is 0x1110aaaa 10bbbbbb 10cccccc
Result.push_back(char(0xE0 | (CharValue >> (6+6))));
NumTrailingBytes = 2;
// UTF-16 surrogate pair values are not valid code points.
if (CharValue >= 0xD800 && CharValue <= 0xDFFF)
return true;
// U+FDD0...U+FDEF are also reserved
if (CharValue >= 0xFDD0 && CharValue <= 0xFDEF)
return true;
} else if (NumBits <= 3+6+6+6) {
// Encoding is 0x11110aaa 10bbbbbb 10cccccc 10dddddd
Result.push_back(char(0xF0 | (CharValue >> (6+6+6))));
NumTrailingBytes = 3;
// Reject over-large code points. These cannot be encoded as UTF-16
// surrogate pairs, so UTF-32 doesn't allow them.
if (CharValue > 0x10FFFF)
return true;
} else {
return true; // UTF8 can encode these, but they aren't valid code points.
}
// Emit all of the trailing bytes.
while (NumTrailingBytes--)
Result.push_back(char(0x80 | (0x3F & (CharValue >> (NumTrailingBytes*6)))));
return false;
}
/// CLO8 - Return the number of leading ones in the specified 8-bit value.
static unsigned CLO8(unsigned char C) {
return llvm::countLeadingOnes(uint32_t(C) << 24);
}
/// isStartOfUTF8Character - Return true if this isn't a UTF8 continuation
/// character, which will be of the form 0b10XXXXXX
static bool isStartOfUTF8Character(unsigned char C) {
// RFC 2279: The octet values FE and FF never appear.
// RFC 3629: The octet values C0, C1, F5 to FF never appear.
return C <= 0x80 || (C >= 0xC2 && C < 0xF5);
}
/// validateUTF8CharacterAndAdvance - Given a pointer to the starting byte of a
/// UTF8 character, validate it and advance the lexer past it. This returns the
/// encoded character or ~0U if the encoding is invalid.
uint32_t swift::validateUTF8CharacterAndAdvance(const char *&Ptr,
const char *End) {
if (Ptr >= End)
return ~0U;
unsigned char CurByte = *Ptr++;
if (CurByte < 0x80)
return CurByte;
// Read the number of high bits set, which indicates the number of bytes in
// the character.
unsigned EncodedBytes = CLO8(CurByte);
// If this is 0b10XXXXXX, then it is a continuation character.
if (EncodedBytes == 1 ||
!isStartOfUTF8Character(CurByte)) {
// Skip until we get the start of another character. This is guaranteed to
// at least stop at the nul at the end of the buffer.
while (Ptr < End && !isStartOfUTF8Character(*Ptr))
++Ptr;
return ~0U;
}
// Drop the high bits indicating the # bytes of the result.
unsigned CharValue = (unsigned char)(CurByte << EncodedBytes) >> EncodedBytes;
// Read and validate the continuation bytes.
for (unsigned i = 1; i != EncodedBytes; ++i) {
if (Ptr >= End)
return ~0U;
CurByte = *Ptr;
// If the high bit isn't set or the second bit isn't clear, then this is not
// a continuation byte!
if (CurByte < 0x80 || CurByte >= 0xC0) return ~0U;
// Accumulate our result.
CharValue <<= 6;
CharValue |= CurByte & 0x3F;
++Ptr;
}
// UTF-16 surrogate pair values are not valid code points.
if (CharValue >= 0xD800 && CharValue <= 0xDFFF)
return ~0U;
// If we got here, we read the appropriate number of accumulated bytes.
// Verify that the encoding was actually minimal.
// Number of bits in the value, ignoring leading zeros.
unsigned NumBits = 32-llvm::countLeadingZeros(CharValue);
if (NumBits <= 5+6)
return EncodedBytes == 2 ? CharValue : ~0U;
if (NumBits <= 4+6+6)
return EncodedBytes == 3 ? CharValue : ~0U;
return EncodedBytes == 4 ? CharValue : ~0U;
}
//===----------------------------------------------------------------------===//
// Setup and Helper Methods
//===----------------------------------------------------------------------===//
Lexer::Lexer(const PrincipalTag &, const LangOptions &LangOpts,
const SourceManager &SourceMgr, unsigned BufferID,
DiagnosticEngine *Diags, bool InSILMode,
HashbangMode HashbangAllowed, CommentRetentionMode RetainComments,
TriviaRetentionMode TriviaRetention)
: LangOpts(LangOpts), SourceMgr(SourceMgr), BufferID(BufferID),
Diags(Diags), InSILMode(InSILMode),
IsHashbangAllowed(HashbangAllowed == HashbangMode::Allowed),
RetainComments(RetainComments), TriviaRetention(TriviaRetention) {}
void Lexer::initialize(unsigned Offset, unsigned EndOffset) {
assert(Offset <= EndOffset);
// Initialize buffer pointers.
StringRef contents =
SourceMgr.extractText(SourceMgr.getRangeForBuffer(BufferID));
BufferStart = contents.data();
BufferEnd = contents.data() + contents.size();
assert(*BufferEnd == 0);
assert(BufferStart + Offset <= BufferEnd);
assert(BufferStart + EndOffset <= BufferEnd);
// Check for Unicode BOM at start of file (Only UTF-8 BOM supported now).
size_t BOMLength = contents.startswith("\xEF\xBB\xBF") ? 3 : 0;
// Keep information about existance of UTF-8 BOM for transparency source code
// editing with libSyntax.
ContentStart = BufferStart + BOMLength;
// Initialize code completion.
if (BufferID == SourceMgr.getCodeCompletionBufferID()) {
const char *Ptr = BufferStart + SourceMgr.getCodeCompletionOffset();
if (Ptr >= BufferStart && Ptr <= BufferEnd)
CodeCompletionPtr = Ptr;
}
ArtificialEOF = BufferStart + EndOffset;
CurPtr = BufferStart + Offset;
assert(NextToken.is(tok::NUM_TOKENS));
lexImpl();
assert((NextToken.isAtStartOfLine() || CurPtr != BufferStart) &&
"The token should be at the beginning of the line, "
"or we should be lexing from the middle of the buffer");
}
Lexer::Lexer(const LangOptions &Options, const SourceManager &SourceMgr,
unsigned BufferID, DiagnosticEngine *Diags, bool InSILMode,
HashbangMode HashbangAllowed, CommentRetentionMode RetainComments,
TriviaRetentionMode TriviaRetention)
: Lexer(PrincipalTag(), Options, SourceMgr, BufferID, Diags, InSILMode,
HashbangAllowed, RetainComments, TriviaRetention) {
unsigned EndOffset = SourceMgr.getRangeForBuffer(BufferID).getByteLength();
initialize(/*Offset=*/0, EndOffset);
}
Lexer::Lexer(const LangOptions &Options, const SourceManager &SourceMgr,
unsigned BufferID, DiagnosticEngine *Diags, bool InSILMode,
HashbangMode HashbangAllowed, CommentRetentionMode RetainComments,
TriviaRetentionMode TriviaRetention, unsigned Offset,
unsigned EndOffset)
: Lexer(PrincipalTag(), Options, SourceMgr, BufferID, Diags, InSILMode,
HashbangAllowed, RetainComments, TriviaRetention) {
initialize(Offset, EndOffset);
}
Lexer::Lexer(Lexer &Parent, State BeginState, State EndState)
: Lexer(PrincipalTag(), Parent.LangOpts, Parent.SourceMgr, Parent.BufferID,
Parent.Diags, Parent.InSILMode,
Parent.IsHashbangAllowed
? HashbangMode::Allowed
: HashbangMode::Disallowed,
Parent.RetainComments, Parent.TriviaRetention) {
assert(BufferID == SourceMgr.findBufferContainingLoc(BeginState.Loc) &&
"state for the wrong buffer");
assert(BufferID == SourceMgr.findBufferContainingLoc(EndState.Loc) &&
"state for the wrong buffer");
unsigned Offset = SourceMgr.getLocOffsetInBuffer(BeginState.Loc, BufferID);
unsigned EndOffset = SourceMgr.getLocOffsetInBuffer(EndState.Loc, BufferID);
initialize(Offset, EndOffset);
}
InFlightDiagnostic Lexer::diagnose(const char *Loc, Diagnostic Diag) {
if (Diags)
return Diags->diagnose(getSourceLoc(Loc), Diag);
return InFlightDiagnostic();
}
Token Lexer::getTokenAt(SourceLoc Loc) {
assert(BufferID == static_cast<unsigned>(
SourceMgr.findBufferContainingLoc(Loc)) &&
"location from the wrong buffer");
Lexer L(LangOpts, SourceMgr, BufferID, Diags, InSILMode,
HashbangMode::Allowed, CommentRetentionMode::None,
TriviaRetentionMode::WithoutTrivia);
L.restoreState(State(Loc));
Token Result;
L.lex(Result);
return Result;
}
void Lexer::formToken(tok Kind, const char *TokStart,
bool IsMultilineString, unsigned CustomDelimiterLen) {
assert(CurPtr >= BufferStart &&
CurPtr <= BufferEnd && "Current pointer out of range!");
// When we are lexing a subrange from the middle of a file buffer, we will
// run past the end of the range, but will stay within the file. Check if
// we are past the imaginary EOF, and synthesize a tok::eof in this case.
if (Kind != tok::eof && TokStart >= ArtificialEOF) {
Kind = tok::eof;
}
unsigned CommentLength = 0;
if (RetainComments == CommentRetentionMode::AttachToNextToken) {
// 'CommentLength' here is the length from the *first* comment to the
// token text (or its backtick if exist).
auto Iter = llvm::find_if(LeadingTrivia, [](const TriviaPiece &Piece) {
return Piece.isComment();
});
for (auto End = LeadingTrivia.end(); Iter != End; Iter++) {
if (Iter->getKind() == TriviaKind::Backtick)
// Since Token::getCommentRange() doesn't take backtick into account,
// we cannot include length of backtick.
break;
CommentLength += Iter->getTextLength();
}
}
StringRef TokenText { TokStart, static_cast<size_t>(CurPtr - TokStart) };
if (TriviaRetention == TriviaRetentionMode::WithTrivia) {
lexTrivia(TrailingTrivia, /* IsForTrailingTrivia */ true);
}
NextToken.setToken(Kind, TokenText, CommentLength,
IsMultilineString, CustomDelimiterLen);
}
void Lexer::formEscapedIdentifierToken(const char *TokStart) {
assert(CurPtr - TokStart >= 3 && "escaped identifier must be longer than or equal 3 bytes");
assert(TokStart[0] == '`' && "escaped identifier starts with backtick");
assert(CurPtr[-1] == '`' && "escaped identifier ends with backtick");
LeadingTrivia.push_back(TriviaPiece::backtick());
assert(TrailingTrivia.empty() && "TrailingTrivia is empty here");
TrailingTrivia.push_back(TriviaPiece::backtick());
formToken(tok::identifier, TokStart);
// If this token is at ArtificialEOF, it's forced to be tok::eof. Don't mark
// this as escaped-identifier in this case.
if (NextToken.is(tok::eof))
return;
NextToken.setEscapedIdentifier(true);
}
Lexer::State Lexer::getStateForBeginningOfTokenLoc(SourceLoc Loc) const {
const char *Ptr = getBufferPtrForSourceLoc(Loc);
// Skip whitespace backwards until we hit a newline. This is needed to
// correctly lex the token if it is at the beginning of the line.
while (Ptr >= ContentStart + 1) {
char C = Ptr[-1];
if (C == ' ' || C == '\t') {
--Ptr;
continue;
}
if (C == 0) {
// A NUL character can be either whitespace we diagnose or a code
// completion token.
if (Ptr - 1 == CodeCompletionPtr)
break;
--Ptr;
continue;
}
if (C == '\n' || C == '\r') {
--Ptr;
break;
}
break;
}
return State(SourceLoc(llvm::SMLoc::getFromPointer(Ptr)));
}
//===----------------------------------------------------------------------===//
// Lexer Subroutines
//===----------------------------------------------------------------------===//
static void diagnoseEmbeddedNul(DiagnosticEngine *Diags, const char *Ptr) {
assert(Ptr && "invalid source location");
assert(*Ptr == '\0' && "not an embedded null");
if (!Diags)
return;
SourceLoc NulLoc = Lexer::getSourceLoc(Ptr);
SourceLoc NulEndLoc = Lexer::getSourceLoc(Ptr+1);
Diags->diagnose(NulLoc, diag::lex_nul_character)
.fixItRemoveChars(NulLoc, NulEndLoc);
}
void Lexer::skipToEndOfLine(bool EatNewline) {
while (1) {
switch (*CurPtr++) {
case '\n':
case '\r':
if (EatNewline) {
NextToken.setAtStartOfLine(true);
} else {
--CurPtr;
}
return; // If we found the end of the line, return.
default:
// If this is a "high" UTF-8 character, validate it.
if ((signed char)(CurPtr[-1]) < 0) {
--CurPtr;
const char *CharStart = CurPtr;
if (validateUTF8CharacterAndAdvance(CurPtr, BufferEnd) == ~0U)
diagnose(CharStart, diag::lex_invalid_utf8);
}
break; // Otherwise, eat other characters.
case 0:
switch (getNulCharacterKind(CurPtr - 1)) {
case NulCharacterKind::Embedded:
// If this is a random nul character in the middle of a buffer, skip it
// as whitespace.
diagnoseEmbeddedNul(Diags, CurPtr-1);
LLVM_FALLTHROUGH;
case NulCharacterKind::CodeCompletion:
continue;
case NulCharacterKind::BufferEnd:
// Otherwise, the last line of the file does not have a newline.
--CurPtr;
return;
}
}
}
}
void Lexer::skipSlashSlashComment(bool EatNewline) {
assert(CurPtr[-1] == '/' && CurPtr[0] == '/' && "Not a // comment");
skipToEndOfLine(EatNewline);
}
void Lexer::skipHashbang(bool EatNewline) {
assert(CurPtr == ContentStart && CurPtr[0] == '#' && CurPtr[1] == '!' &&
"Not a hashbang");
skipToEndOfLine(EatNewline);
}
/// skipSlashStarComment - /**/ comments are skipped (treated as whitespace).
/// Note that (unlike in C) block comments can be nested.
void Lexer::skipSlashStarComment() {
const char *StartPtr = CurPtr-1;
assert(CurPtr[-1] == '/' && CurPtr[0] == '*' && "Not a /* comment");
// Make sure to advance over the * so that we don't incorrectly handle /*/ as
// the beginning and end of the comment.
++CurPtr;
// /**/ comments can be nested, keep track of how deep we've gone.
unsigned Depth = 1;
while (1) {
switch (*CurPtr++) {
case '*':
// Check for a '*/'
if (*CurPtr == '/') {
++CurPtr;
if (--Depth == 0)
return;
}
break;
case '/':
// Check for a '/*'
if (*CurPtr == '*') {
++CurPtr;
++Depth;
}
break;
case '\n':
case '\r':
NextToken.setAtStartOfLine(true);
break;
default:
// If this is a "high" UTF-8 character, validate it.
if ((signed char)(CurPtr[-1]) < 0) {
--CurPtr;
const char *CharStart = CurPtr;
if (validateUTF8CharacterAndAdvance(CurPtr, BufferEnd) == ~0U)
diagnose(CharStart, diag::lex_invalid_utf8);
}
break; // Otherwise, eat other characters.
case 0:
switch (getNulCharacterKind(CurPtr - 1)) {
case NulCharacterKind::Embedded:
// If this is a random nul character in the middle of a buffer, skip it
// as whitespace.
diagnoseEmbeddedNul(Diags, CurPtr - 1);
LLVM_FALLTHROUGH;
case NulCharacterKind::CodeCompletion:
continue;
case NulCharacterKind::BufferEnd: {
// Otherwise, we have an unterminated /* comment.
--CurPtr;
// Count how many levels deep we are.
llvm::SmallString<8> Terminator("*/");
while (--Depth != 0)
Terminator += "*/";
const char *EOL = (CurPtr[-1] == '\n') ? (CurPtr - 1) : CurPtr;
diagnose(EOL, diag::lex_unterminated_block_comment)
.fixItInsert(getSourceLoc(EOL), Terminator);
diagnose(StartPtr, diag::lex_comment_start);
return;
}
}
}
}
}
static bool isValidIdentifierContinuationCodePoint(uint32_t c) {
if (c < 0x80)
return clang::isIdentifierBody(c, /*dollar*/true);
// N1518: Recommendations for extended identifier characters for C and C++
// Proposed Annex X.1: Ranges of characters allowed
return c == 0x00A8 || c == 0x00AA || c == 0x00AD || c == 0x00AF
|| (c >= 0x00B2 && c <= 0x00B5) || (c >= 0x00B7 && c <= 0x00BA)
|| (c >= 0x00BC && c <= 0x00BE) || (c >= 0x00C0 && c <= 0x00D6)
|| (c >= 0x00D8 && c <= 0x00F6) || (c >= 0x00F8 && c <= 0x00FF)
|| (c >= 0x0100 && c <= 0x167F)
|| (c >= 0x1681 && c <= 0x180D)
|| (c >= 0x180F && c <= 0x1FFF)
|| (c >= 0x200B && c <= 0x200D)
|| (c >= 0x202A && c <= 0x202E)
|| (c >= 0x203F && c <= 0x2040)
|| c == 0x2054
|| (c >= 0x2060 && c <= 0x206F)
|| (c >= 0x2070 && c <= 0x218F)
|| (c >= 0x2460 && c <= 0x24FF)
|| (c >= 0x2776 && c <= 0x2793)
|| (c >= 0x2C00 && c <= 0x2DFF)
|| (c >= 0x2E80 && c <= 0x2FFF)
|| (c >= 0x3004 && c <= 0x3007)
|| (c >= 0x3021 && c <= 0x302F)
|| (c >= 0x3031 && c <= 0x303F)
|| (c >= 0x3040 && c <= 0xD7FF)
|| (c >= 0xF900 && c <= 0xFD3D)
|| (c >= 0xFD40 && c <= 0xFDCF)
|| (c >= 0xFDF0 && c <= 0xFE44)
|| (c >= 0xFE47 && c <= 0xFFF8)
|| (c >= 0x10000 && c <= 0x1FFFD)
|| (c >= 0x20000 && c <= 0x2FFFD)
|| (c >= 0x30000 && c <= 0x3FFFD)
|| (c >= 0x40000 && c <= 0x4FFFD)
|| (c >= 0x50000 && c <= 0x5FFFD)
|| (c >= 0x60000 && c <= 0x6FFFD)
|| (c >= 0x70000 && c <= 0x7FFFD)
|| (c >= 0x80000 && c <= 0x8FFFD)
|| (c >= 0x90000 && c <= 0x9FFFD)
|| (c >= 0xA0000 && c <= 0xAFFFD)
|| (c >= 0xB0000 && c <= 0xBFFFD)
|| (c >= 0xC0000 && c <= 0xCFFFD)
|| (c >= 0xD0000 && c <= 0xDFFFD)
|| (c >= 0xE0000 && c <= 0xEFFFD);
}
static bool isValidIdentifierStartCodePoint(uint32_t c) {
if (!isValidIdentifierContinuationCodePoint(c))
return false;
if (c < 0x80 && (isDigit(c) || c == '$'))
return false;
// N1518: Recommendations for extended identifier characters for C and C++
// Proposed Annex X.2: Ranges of characters disallowed initially
if ((c >= 0x0300 && c <= 0x036F) ||
(c >= 0x1DC0 && c <= 0x1DFF) ||
(c >= 0x20D0 && c <= 0x20FF) ||
(c >= 0xFE20 && c <= 0xFE2F))
return false;
return true;
}
static bool advanceIf(char const *&ptr, char const *end,
bool (*predicate)(uint32_t)) {
char const *next = ptr;
uint32_t c = validateUTF8CharacterAndAdvance(next, end);
if (c == ~0U)
return false;
if (predicate(c)) {
ptr = next;
return true;
}
return false;
}
static bool advanceIfValidStartOfIdentifier(char const *&ptr,
char const *end) {
return advanceIf(ptr, end, isValidIdentifierStartCodePoint);
}
static bool advanceIfValidContinuationOfIdentifier(char const *&ptr,
char const *end) {
return advanceIf(ptr, end, isValidIdentifierContinuationCodePoint);
}
static bool advanceIfValidStartOfOperator(char const *&ptr,
char const *end) {
return advanceIf(ptr, end, Identifier::isOperatorStartCodePoint);
}
static bool advanceIfValidContinuationOfOperator(char const *&ptr,
char const *end) {
return advanceIf(ptr, end, Identifier::isOperatorContinuationCodePoint);
}
bool Lexer::isIdentifier(StringRef string) {
if (string.empty()) return false;
char const *p = string.data(), *end = string.end();
if (!advanceIfValidStartOfIdentifier(p, end))
return false;
while (p < end && advanceIfValidContinuationOfIdentifier(p, end));
return p == end;
}
/// \brief Determines if the given string is a valid operator identifier,
/// without escaping characters.
bool Lexer::isOperator(StringRef string) {
if (string.empty()) return false;
char const *p = string.data(), *end = string.end();
if (!advanceIfValidStartOfOperator(p, end))
return false;
while (p < end && advanceIfValidContinuationOfOperator(p, end));
return p == end;
}
tok Lexer::kindOfIdentifier(StringRef Str, bool InSILMode) {
#define SIL_KEYWORD(kw)
#define KEYWORD(kw) if (Str == #kw) return tok::kw_##kw;
#include "swift/Syntax/TokenKinds.def"
// SIL keywords are only active in SIL mode.
if (InSILMode) {
#define SIL_KEYWORD(kw) if (Str == #kw) return tok::kw_##kw;
#include "swift/Syntax/TokenKinds.def"
}
return tok::identifier;
}
/// lexIdentifier - Match [a-zA-Z_][a-zA-Z_$0-9]*
void Lexer::lexIdentifier() {
const char *TokStart = CurPtr-1;
CurPtr = TokStart;
bool didStart = advanceIfValidStartOfIdentifier(CurPtr, BufferEnd);
assert(didStart && "Unexpected start");
(void) didStart;
// Lex [a-zA-Z_$0-9[[:XID_Continue:]]]*
while (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd));
tok Kind = kindOfIdentifier(StringRef(TokStart, CurPtr-TokStart), InSILMode);
return formToken(Kind, TokStart);
}
/// lexHash - Handle #], #! for shebangs, and the family of #identifiers.
void Lexer::lexHash() {
const char *TokStart = CurPtr-1;
// Scan for [a-zA-Z]+ to see what we match.
const char *tmpPtr = CurPtr;
if (clang::isIdentifierHead(*tmpPtr)) {
do {
++tmpPtr;
} while (clang::isIdentifierBody(*tmpPtr));
}
// Map the character sequence onto
tok Kind = llvm::StringSwitch<tok>(StringRef(CurPtr, tmpPtr-CurPtr))
#define POUND_KEYWORD(id) \
.Case(#id, tok::pound_##id)
#include "swift/Syntax/TokenKinds.def"
.Default(tok::pound);
// If we didn't find a match, then just return tok::pound. This is highly
// dubious in terms of error recovery, but is useful for code completion and
// SIL parsing.
if (Kind == tok::pound)
return formToken(tok::pound, TokStart);
// If we found something specific, return it.
CurPtr = tmpPtr;
return formToken(Kind, TokStart);
}
/// Is the operator beginning at the given character "left-bound"?
static bool isLeftBound(const char *tokBegin, const char *bufferBegin) {
// The first character in the file is not left-bound.
if (tokBegin == bufferBegin) return false;
switch (tokBegin[-1]) {
case ' ': case '\r': case '\n': case '\t': // whitespace
case '(': case '[': case '{': // opening delimiters
case ',': case ';': case ':': // expression separators
case '\0': // whitespace / last char in file
return false;
case '/':
if (tokBegin - 1 != bufferBegin && tokBegin[-2] == '*')
return false; // End of a slash-star comment, so whitespace.
else
return true;
case '\xA0':
if (tokBegin - 1 != bufferBegin && tokBegin[-2] == '\xC2')
return false; // Non-breaking whitespace (U+00A0)
else
return true;
default:
return true;
}
}
/// Is the operator ending at the given character (actually one past the end)
/// "right-bound"?
///
/// The code-completion point is considered right-bound.
static bool isRightBound(const char *tokEnd, bool isLeftBound,
const char *codeCompletionPtr) {
switch (*tokEnd) {
case ' ': case '\r': case '\n': case '\t': // whitespace
case ')': case ']': case '}': // closing delimiters
case ',': case ';': case ':': // expression separators
return false;
case '\0':
if (tokEnd == codeCompletionPtr) // code-completion
return true;
return false; // whitespace / last char in file
case '.':
// Prefer the '^' in "x^.y" to be a postfix op, not binary, but the '^' in
// "^.y" to be a prefix op, not binary.
return !isLeftBound;
case '/':
// A following comment counts as whitespace, so this token is not right bound.
if (tokEnd[1] == '/' || tokEnd[1] == '*')
return false;
else
return true;
case '\xC2':
if (tokEnd[1] == '\xA0')
return false; // Non-breaking whitespace (U+00A0)
else
return true;
default:
return true;
}
}
static bool rangeContainsPlaceholderEnd(const char *CurPtr,
const char *End) {
for (auto SubStr = CurPtr; SubStr != End - 1; ++SubStr) {
if (SubStr[0] == '\n') {
return false;
}
if (SubStr[0] == '#' && SubStr[1] == '>') {
return true;
}
}
return false;
}
/// lexOperatorIdentifier - Match identifiers formed out of punctuation.
void Lexer::lexOperatorIdentifier() {
const char *TokStart = CurPtr-1;
CurPtr = TokStart;
bool didStart = advanceIfValidStartOfOperator(CurPtr, BufferEnd);
assert(didStart && "unexpected operator start");
(void) didStart;
do {
if (CurPtr != BufferEnd && InSILBody &&
(*CurPtr == '!' || *CurPtr == '?'))
// When parsing SIL body, '!' and '?' are special token and can't be
// in the middle of an operator.
break;
// '.' cannot appear in the middle of an operator unless the operator
// started with a '.'.
if (*CurPtr == '.' && *TokStart != '.')
break;
if (Identifier::isEditorPlaceholder(StringRef(CurPtr, BufferEnd-CurPtr)) &&
rangeContainsPlaceholderEnd(CurPtr + 2, BufferEnd)) {
break;
}
} while (advanceIfValidContinuationOfOperator(CurPtr, BufferEnd));
if (CurPtr-TokStart > 2) {
// If there is a "//" or "/*" in the middle of an identifier token,
// it starts a comment.
for (auto Ptr = TokStart+1; Ptr != CurPtr-1; ++Ptr) {
if (Ptr[0] == '/' && (Ptr[1] == '/' || Ptr[1] == '*')) {
CurPtr = Ptr;
break;
}
}
}
// Decide between the binary, prefix, and postfix cases.
// It's binary if either both sides are bound or both sides are not bound.
// Otherwise, it's postfix if left-bound and prefix if right-bound.
bool leftBound = isLeftBound(TokStart, ContentStart);
bool rightBound = isRightBound(CurPtr, leftBound, CodeCompletionPtr);
// Match various reserved words.
if (CurPtr-TokStart == 1) {
switch (TokStart[0]) {
case '=':
if (leftBound != rightBound) {
auto d = diagnose(TokStart, diag::lex_unary_equal);
if (leftBound)
d.fixItInsert(getSourceLoc(TokStart), " ");
else
d.fixItInsert(getSourceLoc(TokStart+1), " ");
}
// always emit 'tok::equal' to avoid trickle down parse errors
return formToken(tok::equal, TokStart);
case '&':
if (leftBound == rightBound || leftBound)
break;
return formToken(tok::amp_prefix, TokStart);
case '.': {
if (leftBound == rightBound)
return formToken(tok::period, TokStart);
if (rightBound)
return formToken(tok::period_prefix, TokStart);
// If left bound but not right bound, handle some likely situations.
// If there is just some horizontal whitespace before the next token, its
// addition is probably incorrect.
const char *AfterHorzWhitespace = CurPtr;
while (*AfterHorzWhitespace == ' ' || *AfterHorzWhitespace == '\t')
++AfterHorzWhitespace;
// First, when we are code completing "x. <ESC>", then make sure to return
// a tok::period, since that is what the user is wanting to know about.
if (*AfterHorzWhitespace == '\0' &&
AfterHorzWhitespace == CodeCompletionPtr) {
diagnose(TokStart, diag::expected_member_name);
return formToken(tok::period, TokStart);
}
if (isRightBound(AfterHorzWhitespace, leftBound, CodeCompletionPtr) &&
// Don't consider comments to be this. A leading slash is probably
// either // or /* and most likely occurs just in our testsuite for
// expected-error lines.
*AfterHorzWhitespace != '/') {
diagnose(TokStart, diag::extra_whitespace_period)
.fixItRemoveChars(getSourceLoc(CurPtr),
getSourceLoc(AfterHorzWhitespace));
return formToken(tok::period, TokStart);
}
// Otherwise, it is probably a missing member.
diagnose(TokStart, diag::expected_member_name);
return formToken(tok::unknown, TokStart);
}
case '?':
if (leftBound)
return formToken(tok::question_postfix, TokStart);
return formToken(tok::question_infix, TokStart);
}
} else if (CurPtr-TokStart == 2) {
switch ((TokStart[0] << 8) | TokStart[1]) {
case ('-' << 8) | '>': // ->
return formToken(tok::arrow, TokStart);
case ('*' << 8) | '/': // */
diagnose(TokStart, diag::lex_unexpected_block_comment_end);
return formToken(tok::unknown, TokStart);
}
} else {
// Verify there is no "*/" in the middle of the identifier token, we reject
// it as potentially ending a block comment.
auto Pos = StringRef(TokStart, CurPtr-TokStart).find("*/");
if (Pos != StringRef::npos) {
diagnose(TokStart+Pos, diag::lex_unexpected_block_comment_end);
return formToken(tok::unknown, TokStart);
}
}
if (leftBound == rightBound)
return formToken(leftBound ? tok::oper_binary_unspaced :
tok::oper_binary_spaced, TokStart);
return formToken(leftBound ? tok::oper_postfix : tok::oper_prefix, TokStart);
}
/// lexDollarIdent - Match $[0-9a-zA-Z_$]+
void Lexer::lexDollarIdent() {
const char *tokStart = CurPtr-1;
assert(*tokStart == '$');
// In a SIL function body, '$' is a token by itself, except it's a SIL global
// name. SIL global identifiers may start with a '$', e.g. @$S1m3fooyyF.
if (InSILBody && NextToken.getKind() != tok::at_sign)
return formToken(tok::sil_dollar, tokStart);
bool isAllDigits = true;
for (;; ++CurPtr) {
if (isDigit(*CurPtr)) {
// continue
} else if (clang::isIdentifierHead(*CurPtr, /*dollar*/true)) {
isAllDigits = false;
// continue
} else {
break;
}
}
if (CurPtr == tokStart + 1) {
// It is an error to see a standalone '$'. Offer to replace '$' with '`$`'.
diagnose(tokStart, diag::standalone_dollar_identifier)
.fixItReplaceChars(getSourceLoc(tokStart), getSourceLoc(CurPtr), "`$`");
return formToken(tok::identifier, tokStart);
}
// We reserve $nonNumeric for persistent bindings in the debugger.
if (!isAllDigits) {
if (!LangOpts.EnableDollarIdentifiers && !InSILBody)
diagnose(tokStart, diag::expected_dollar_numeric);
// Even if we diagnose, we go ahead and form an identifier token,
// in part to ensure that the basic behavior of the lexer is
// independent of language mode.
return formToken(tok::identifier, tokStart);
} else {
return formToken(tok::dollarident, tokStart);
}
}
enum class ExpectedDigitKind : unsigned { Binary, Octal, Decimal, Hex };
void Lexer::lexHexNumber() {
// We assume we're starting from the 'x' in a '0x...' floating-point literal.
assert(*CurPtr == 'x' && "not a hex literal");
const char *TokStart = CurPtr-1;
assert(*TokStart == '0' && "not a hex literal");
auto expected_digit = [&]() {
while (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd));
return formToken(tok::unknown, TokStart);
};
auto expected_hex_digit = [&](const char *loc) {
diagnose(loc, diag::lex_invalid_digit_in_int_literal, StringRef(loc, 1),
(unsigned)ExpectedDigitKind::Hex);
return expected_digit();
};
// 0x[0-9a-fA-F][0-9a-fA-F_]*
++CurPtr;
if (!isHexDigit(*CurPtr))
return expected_hex_digit(CurPtr);
while (isHexDigit(*CurPtr) || *CurPtr == '_')
++CurPtr;
if (*CurPtr != '.' && *CurPtr != 'p' && *CurPtr != 'P') {
auto tmp = CurPtr;
if (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd))
return expected_hex_digit(tmp);
else
return formToken(tok::integer_literal, TokStart);
}
const char *PtrOnDot = nullptr;
// (\.[0-9A-Fa-f][0-9A-Fa-f_]*)?
if (*CurPtr == '.') {
PtrOnDot = CurPtr;
++CurPtr;
// If the character after the '.' is not a digit, assume we have an int
// literal followed by a dot expression.
if (!isHexDigit(*CurPtr)) {
--CurPtr;
return formToken(tok::integer_literal, TokStart);
}
while (isHexDigit(*CurPtr) || *CurPtr == '_')
++CurPtr;
if (*CurPtr != 'p' && *CurPtr != 'P') {
if (!isDigit(PtrOnDot[1])) {
// e.g: 0xff.description
CurPtr = PtrOnDot;
return formToken(tok::integer_literal, TokStart);
}
diagnose(CurPtr, diag::lex_expected_binary_exponent_in_hex_float_literal);
return formToken(tok::unknown, TokStart);
}
}
// [pP][+-]?[0-9][0-9_]*
assert(*CurPtr == 'p' || *CurPtr == 'P' && "not at a hex float exponent?!");
++CurPtr;
bool signedExponent = false;
if (*CurPtr == '+' || *CurPtr == '-') {
++CurPtr; // Eat the sign.
signedExponent = true;
}
if (!isDigit(*CurPtr)) {
if (PtrOnDot && !isDigit(PtrOnDot[1]) && !signedExponent) {
// e.g: 0xff.fpValue, 0xff.fp
CurPtr = PtrOnDot;
return formToken(tok::integer_literal, TokStart);
}
// Note: 0xff.fp+otherExpr can be valid expression. But we don't accept it.
// There are 3 cases to diagnose if the exponent starts with a non-digit:
// identifier (invalid character), underscore (invalid first character),
// non-identifier (empty exponent)
auto tmp = CurPtr;
if (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd))
diagnose(tmp, diag::lex_invalid_digit_in_fp_exponent, StringRef(tmp, 1),
*tmp == '_');
else
diagnose(CurPtr, diag::lex_expected_digit_in_fp_exponent);
return expected_digit();
}
while (isDigit(*CurPtr) || *CurPtr == '_')
++CurPtr;
auto tmp = CurPtr;
if (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd)) {
diagnose(tmp, diag::lex_invalid_digit_in_fp_exponent, StringRef(tmp, 1),
false);
return expected_digit();
}
return formToken(tok::floating_literal, TokStart);
}
/// lexNumber:
/// integer_literal ::= [0-9][0-9_]*
/// integer_literal ::= 0x[0-9a-fA-F][0-9a-fA-F_]*
/// integer_literal ::= 0o[0-7][0-7_]*
/// integer_literal ::= 0b[01][01_]*
/// floating_literal ::= [0-9][0-9]_*\.[0-9][0-9_]*
/// floating_literal ::= [0-9][0-9]*\.[0-9][0-9_]*[eE][+-]?[0-9][0-9_]*
/// floating_literal ::= [0-9][0-9_]*[eE][+-]?[0-9][0-9_]*
/// floating_literal ::= 0x[0-9A-Fa-f][0-9A-Fa-f_]*
/// (\.[0-9A-Fa-f][0-9A-Fa-f_]*)?[pP][+-]?[0-9][0-9_]*
void Lexer::lexNumber() {
const char *TokStart = CurPtr-1;
assert((isDigit(*TokStart) || *TokStart == '.') && "Unexpected start");
auto expected_digit = [&]() {
while (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd));
return formToken(tok::unknown, TokStart);
};
auto expected_int_digit = [&](const char *loc, ExpectedDigitKind kind) {
diagnose(loc, diag::lex_invalid_digit_in_int_literal, StringRef(loc, 1),
(unsigned)kind);
return expected_digit();
};
if (*TokStart == '0' && *CurPtr == 'x')
return lexHexNumber();
if (*TokStart == '0' && *CurPtr == 'o') {
// 0o[0-7][0-7_]*
++CurPtr;
if (*CurPtr < '0' || *CurPtr > '7')
return expected_int_digit(CurPtr, ExpectedDigitKind::Octal);
while ((*CurPtr >= '0' && *CurPtr <= '7') || *CurPtr == '_')
++CurPtr;
auto tmp = CurPtr;
if (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd))
return expected_int_digit(tmp, ExpectedDigitKind::Octal);
return formToken(tok::integer_literal, TokStart);
}
if (*TokStart == '0' && *CurPtr == 'b') {
// 0b[01][01_]*
++CurPtr;
if (*CurPtr != '0' && *CurPtr != '1')
return expected_int_digit(CurPtr, ExpectedDigitKind::Binary);
while (*CurPtr == '0' || *CurPtr == '1' || *CurPtr == '_')
++CurPtr;
auto tmp = CurPtr;
if (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd))
return expected_int_digit(tmp, ExpectedDigitKind::Binary);
return formToken(tok::integer_literal, TokStart);
}
// Handle a leading [0-9]+, lexing an integer or falling through if we have a
// floating point value.
while (isDigit(*CurPtr) || *CurPtr == '_')
++CurPtr;
// Lex things like 4.x as '4' followed by a tok::period.
if (*CurPtr == '.') {
// NextToken is the soon to be previous token
// Therefore: x.0.1 is sub-tuple access, not x.float_literal
if (!isDigit(CurPtr[1]) || NextToken.is(tok::period))
return formToken(tok::integer_literal, TokStart);
} else {
// Floating literals must have '.', 'e', or 'E' after digits. If it is
// something else, then this is the end of the token.
if (*CurPtr != 'e' && *CurPtr != 'E') {
auto tmp = CurPtr;
if (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd))
return expected_int_digit(tmp, ExpectedDigitKind::Decimal);
return formToken(tok::integer_literal, TokStart);
}
}
// Lex decimal point.
if (*CurPtr == '.') {
++CurPtr;
// Lex any digits after the decimal point.
while (isDigit(*CurPtr) || *CurPtr == '_')
++CurPtr;
}
// Lex exponent.
if (*CurPtr == 'e' || *CurPtr == 'E') {
++CurPtr; // Eat the 'e'
if (*CurPtr == '+' || *CurPtr == '-')
++CurPtr; // Eat the sign.
if (!isDigit(*CurPtr)) {
// There are 3 cases to diagnose if the exponent starts with a non-digit:
// identifier (invalid character), underscore (invalid first character),
// non-identifier (empty exponent)
auto tmp = CurPtr;
if (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd))
diagnose(tmp, diag::lex_invalid_digit_in_fp_exponent, StringRef(tmp, 1),
*tmp == '_');
else
diagnose(CurPtr, diag::lex_expected_digit_in_fp_exponent);
return expected_digit();
}
while (isDigit(*CurPtr) || *CurPtr == '_')
++CurPtr;
auto tmp = CurPtr;
if (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd)) {
diagnose(tmp, diag::lex_invalid_digit_in_fp_exponent, StringRef(tmp, 1),
false);
return expected_digit();
}
}
return formToken(tok::floating_literal, TokStart);
}
/// unicode_character_escape ::= [\]u{hex+}
/// hex ::= [0-9a-fA-F]
unsigned Lexer::lexUnicodeEscape(const char *&CurPtr, Lexer *Diags) {
assert(CurPtr[0] == '{' && "Invalid unicode escape");
++CurPtr;
const char *DigitStart = CurPtr;
unsigned NumDigits = 0;
for (; isHexDigit(CurPtr[0]); ++NumDigits)
++CurPtr;
if (CurPtr[0] != '}') {
if (Diags)
Diags->diagnose(CurPtr, diag::lex_invalid_u_escape_rbrace);
return ~1U;
}
++CurPtr;
if (NumDigits < 1 || NumDigits > 8) {
if (Diags)
Diags->diagnose(CurPtr, diag::lex_invalid_u_escape);
return ~1U;
}
unsigned CharValue = 0;
StringRef(DigitStart, NumDigits).getAsInteger(16, CharValue);
return CharValue;
}
/// maybeConsumeNewlineEscape - Check for valid elided newline escape and
/// move pointer passed in to the character after the end of the line.
static bool maybeConsumeNewlineEscape(const char *&CurPtr, ssize_t Offset) {
const char *TmpPtr = CurPtr + Offset;
while (true) {
switch (*TmpPtr++) {
case ' ': case '\t':
continue;
case '\r':
if (*TmpPtr == '\n')
++TmpPtr;
LLVM_FALLTHROUGH;
case '\n':
CurPtr = TmpPtr;
return true;
case 0:
default:
return false;
}
}
}
/// diagnoseZeroWidthMatchAndAdvance - Error invisible characters in delimiters.
/// An invisible character in the middle of a delimiter can be used to extend
/// the literal beyond what it would appear creating potential security bugs.
static bool diagnoseZeroWidthMatchAndAdvance(char Target, const char *&CurPtr,
DiagnosticEngine *Diags) {
// TODO: Detect, diagnose and skip over zero-width characters if required.
// See https://github.com/apple/swift/pull/17668 for possible implementation.
return *CurPtr == Target && CurPtr++;
}
/// advanceIfMultilineDelimiter - Centralized check for multiline delimiter.
static bool advanceIfMultilineDelimiter(const char *&CurPtr,
DiagnosticEngine *Diags) {
const char *TmpPtr = CurPtr;
if (*(TmpPtr - 1) == '"' &&
diagnoseZeroWidthMatchAndAdvance('"', TmpPtr, Diags) &&
diagnoseZeroWidthMatchAndAdvance('"', TmpPtr, Diags)) {
CurPtr = TmpPtr;
return true;
}
return false;
}
/// advanceIfCustomDelimiter - Extracts/detects any custom delimiter on
/// opening a string literal, advances CurPtr if a delimiter is found and
/// returns a non-zero delimiter length. CurPtr[-1] generally '#' when called.
static unsigned advanceIfCustomDelimiter(const char *&CurPtr,
DiagnosticEngine *Diags) {
const char *TmpPtr = CurPtr;
unsigned CustomDelimiterLen = 1;
while (diagnoseZeroWidthMatchAndAdvance('#', TmpPtr, Diags))
CustomDelimiterLen++;
if (diagnoseZeroWidthMatchAndAdvance('"', TmpPtr, Diags)) {
CurPtr = TmpPtr;
return CustomDelimiterLen;
}
return 0;
}
/// delimiterMatches - Does custom delimiter ('#' characters surrounding quotes)
/// match the number of '#' characters after '\' inside the string? This allows
/// interpolation inside a "raw" string. Normal/cooked string processing is
/// the degenerate case of there being no '#' characters surrounding the quotes.
/// If delimiter matches, advances byte pointer passed in and returns true.
/// Also used to detect the final delimiter of a string when IsClosing == true.
static bool delimiterMatches(unsigned CustomDelimiterLen, const char *&BytesPtr,
DiagnosticEngine *Diags, bool IsClosing = false) {
if (!CustomDelimiterLen)
return true;
const char *TmpPtr = BytesPtr;
while (CustomDelimiterLen--)
if (!diagnoseZeroWidthMatchAndAdvance('#', TmpPtr, Diags))
return false;
BytesPtr = TmpPtr;
if (*BytesPtr == '#' && Diags)
Diags->diagnose(Lexer::getSourceLoc(BytesPtr), IsClosing ?
diag::lex_invalid_closing_delimiter :
diag::lex_invalid_escape_delimiter)
.fixItRemoveChars(Lexer::getSourceLoc(BytesPtr),
Lexer::getSourceLoc(BytesPtr + 1));
return true;
}
/// lexCharacter - Read a character and return its UTF32 code. If this is the
/// end of enclosing string/character sequence (i.e. the character is equal to
/// 'StopQuote'), this returns ~0U and leaves 'CurPtr' pointing to the terminal
/// quote. If this is a malformed character sequence, it emits a diagnostic
/// (when EmitDiagnostics is true) and returns ~1U.
///
/// character_escape ::= [\][\] | [\]t | [\]n | [\]r | [\]" | [\]' | [\]0
/// character_escape ::= unicode_character_escape
unsigned Lexer::lexCharacter(const char *&CurPtr, char StopQuote,
bool EmitDiagnostics, bool IsMultilineString,
unsigned CustomDelimiterLen) {
const char *CharStart = CurPtr;
switch (*CurPtr++) {
default: {// Normal characters are part of the string.
// If this is a "high" UTF-8 character, validate it.
if ((signed char)(CurPtr[-1]) >= 0) {
if (isPrintable(CurPtr[-1]) == 0)
if (!(IsMultilineString && (CurPtr[-1] == '\t')))
if (EmitDiagnostics)
diagnose(CharStart, diag::lex_unprintable_ascii_character);
return CurPtr[-1];
}
--CurPtr;
unsigned CharValue = validateUTF8CharacterAndAdvance(CurPtr, BufferEnd);
if (CharValue != ~0U) return CharValue;
if (EmitDiagnostics)
diagnose(CharStart, diag::lex_invalid_utf8);
return ~1U;
}
case '"':
case '\'':
// If we found a closing quote character, we're done.
if (CurPtr[-1] == StopQuote) {
--CurPtr;
return ~0U;
}
// Otherwise, this is just a character.
return CurPtr[-1];
case 0:
if (CurPtr-1 != BufferEnd) {
if (EmitDiagnostics)
diagnose(CurPtr-1, diag::lex_nul_character);
return CurPtr[-1];
}
// Move the pointer back to EOF.
--CurPtr;
if (EmitDiagnostics)
diagnose(CurPtr-1, diag::lex_unterminated_string);
return ~1U;
case '\n': // String literals cannot have \n or \r in them.
case '\r':
if (IsMultilineString) // ... unless they are multiline
return CurPtr[-1];
if (EmitDiagnostics)
diagnose(CurPtr-1, diag::lex_unterminated_string);
return ~1U;
case '\\': // Escapes.
if (!delimiterMatches(CustomDelimiterLen, CurPtr,
EmitDiagnostics ? Diags : nullptr))
return '\\';
break;
}
unsigned CharValue = 0;
// Escape processing. We already ate the "\".
switch (*CurPtr) {
case ' ': case '\t': case '\n': case '\r':
if (IsMultilineString && maybeConsumeNewlineEscape(CurPtr, 0))
return '\n';
LLVM_FALLTHROUGH;
default: // Invalid escape.
if (EmitDiagnostics)
diagnose(CurPtr, diag::lex_invalid_escape);
// If this looks like a plausible escape character, recover as though this
// is an invalid escape.
if (isAlphanumeric(*CurPtr)) ++CurPtr;
return ~1U;
// Simple single-character escapes.
case '0': ++CurPtr; return '\0';
case 'n': ++CurPtr; return '\n';
case 'r': ++CurPtr; return '\r';
case 't': ++CurPtr; return '\t';
case '"': ++CurPtr; return '"';
case '\'': ++CurPtr; return '\'';
case '\\': ++CurPtr; return '\\';
case 'u': { // \u HEX HEX HEX HEX
++CurPtr;
if (*CurPtr != '{') {
if (EmitDiagnostics)
diagnose(CurPtr-1, diag::lex_unicode_escape_braces);
return ~1U;
}
CharValue = lexUnicodeEscape(CurPtr, EmitDiagnostics ? this : nullptr);
if (CharValue == ~1U) return ~1U;
break;
}
}
// Check to see if the encoding is valid.
llvm::SmallString<64> TempString;
if (CharValue >= 0x80 && EncodeToUTF8(CharValue, TempString)) {
if (EmitDiagnostics)
diagnose(CharStart, diag::lex_invalid_unicode_scalar);
return ~1U;
}
return CharValue;
}
/// skipToEndOfInterpolatedExpression - Given the first character after a \(
/// sequence in a string literal (the start of an interpolated expression),
/// scan forward to the end of the interpolated expression and return the end.
/// On success, the returned pointer will point to the ')' at the end of the
/// interpolated expression. On failure, it will point to the first character
/// that cannot be lexed as part of the interpolated expression; this character
/// will never be ')'.
///
/// This function performs brace and quote matching, keeping a stack of
/// outstanding delimiters as it scans the string.
static const char *skipToEndOfInterpolatedExpression(const char *CurPtr,
const char *EndPtr,
DiagnosticEngine *Diags,
bool IsMultilineString) {
SmallVector<char, 4> OpenDelimiters;
SmallVector<bool, 4> AllowNewline;
SmallVector<unsigned, 4> CustomDelimiter;
AllowNewline.push_back(IsMultilineString);
auto inStringLiteral = [&]() {
return !OpenDelimiters.empty() &&
(OpenDelimiters.back() == '"' || OpenDelimiters.back() == '\'');
};
while (true) {
// This is a simple scanner, capable of recognizing nested parentheses and
// string literals but not much else. The implications of this include not
// being able to break an expression over multiple lines in an interpolated
// string. This limitation allows us to recover from common errors though.
//
// On success scanning the expression body, the real lexer will be used to
// relex the body when parsing the expressions. We let it diagnose any
// issues with malformed tokens or other problems.
unsigned CustomDelimiterLen = 0;
switch (*CurPtr++) {
// String literals in general cannot be split across multiple lines;
// interpolated ones are no exception - unless multiline literals.
case '\n':
case '\r':
if (AllowNewline.back())
continue;
// Will be diagnosed as an unterminated string literal.
return CurPtr-1;
case '#':
if (inStringLiteral() ||
!(CustomDelimiterLen = advanceIfCustomDelimiter(CurPtr, Diags)))
continue;
LLVM_FALLTHROUGH;
case '"':
case '\'': {
if (!AllowNewline.back() && inStringLiteral()) {
if (OpenDelimiters.back() == CurPtr[-1] &&
delimiterMatches(CustomDelimiter.back(), CurPtr, Diags, true)) {
// Closing single line string literal.
OpenDelimiters.pop_back();
AllowNewline.pop_back();
CustomDelimiter.pop_back();
}
// Otherwise, it's just a quote in string literal. e.g. "foo's".
continue;
}
bool isMultilineQuote = advanceIfMultilineDelimiter(CurPtr, Diags);
if (!inStringLiteral()) {
// Open string literal
OpenDelimiters.push_back(CurPtr[-1]);
AllowNewline.push_back(isMultilineQuote);
CustomDelimiter.push_back(CustomDelimiterLen);
continue;
}
// We are in multiline string literal.
assert(AllowNewline.back() && "other cases must be handled above");
if (isMultilineQuote &&
delimiterMatches(CustomDelimiter.back(), CurPtr, Diags, true)) {
// Close multiline string literal.
OpenDelimiters.pop_back();
AllowNewline.pop_back();
CustomDelimiter.pop_back();
}
// Otherwise, it's just a normal character in multiline string.
continue;
}
case '\\':
if (inStringLiteral() &&
delimiterMatches(CustomDelimiter.back(), CurPtr, Diags)) {
char escapedChar = *CurPtr++;
switch (escapedChar) {
case '(':
// Entering a recursive interpolated expression
OpenDelimiters.push_back('(');
continue;
case '\n': case '\r':
if (AllowNewline.back())
continue;
LLVM_FALLTHROUGH;
case 0:
// Don't jump over newline/EOF due to preceding backslash!
return CurPtr-1;
default:
continue;
}
}
continue;
case 0:
// If we hit EOF, we fail.
if (CurPtr-1 == EndPtr) {
if (Diags)
Diags->diagnose(Lexer::getSourceLoc(CurPtr-1),
diag::lex_unterminated_string);
return CurPtr-1;
}
continue;
// Paren nesting deeper to support "foo = \((a+b)-(c*d)) bar".
case '(':
if (!inStringLiteral()) {
OpenDelimiters.push_back('(');
}
continue;
case ')':
if (OpenDelimiters.empty()) {
// No outstanding open delimiters; we're done.
return CurPtr-1;
} else if (OpenDelimiters.back() == '(') {
// Pop the matching bracket and keep going.
OpenDelimiters.pop_back();
continue;
} else {
// It's a right parenthesis in a string literal.
assert(inStringLiteral());
continue;
}
default:
// Normal token character.
continue;
}
}
}
/// getStringLiteralContent:
/// Extract content of string literal from inside quotes.
static StringRef getStringLiteralContent(const Token &Str) {
StringRef Bytes = Str.getText();
if (unsigned CustomDelimiterLen = Str.getCustomDelimiterLen())
Bytes = Bytes.drop_front(CustomDelimiterLen).drop_back(CustomDelimiterLen);
if (Str.isMultilineString())
Bytes = Bytes.drop_front(3).drop_back(3);
else
Bytes = Bytes.drop_front().drop_back();
return Bytes;
}
static size_t commonPrefixLength(StringRef shorter, StringRef longer) {
size_t offset = 0;
while (offset < shorter.size() && offset < longer.size() && shorter[offset] == longer[offset]) {
++offset;
}
return offset;
}
/// getMultilineTrailingIndent:
/// Determine trailing indent to be used for multiline literal indent stripping.
static std::tuple<StringRef, SourceLoc>
getMultilineTrailingIndent(const Token &Str, DiagnosticEngine *Diags) {
StringRef Bytes = getStringLiteralContent(Str);
const char *begin = Bytes.begin(), *end = Bytes.end(), *start = end;
bool sawNonWhitespace = false;
// Work back from the end to find whitespace to strip.
while (!sawNonWhitespace && start > begin) {
switch (*--start) {
case ' ':
case '\t':
continue;
case '\n':
case '\r': {
++start;
auto startLoc = Lexer::getSourceLoc(start);
auto string = StringRef(start, end - start);
// Disallow escaped newline in the last line.
if (Diags && Str.getCustomDelimiterLen() == 0) {
auto *Ptr = start - 1;
if (*Ptr == '\n') --Ptr;
if (*Ptr == '\r') --Ptr;
auto *LineEnd = Ptr + 1;
while (Ptr > begin && (*Ptr == ' ' || *Ptr == '\t')) --Ptr;
if (*Ptr == '\\') {
auto escapeLoc = Lexer::getSourceLoc(Ptr);
bool invalid = true;
while (*--Ptr == '\\') invalid = !invalid;
if (invalid)
Diags->diagnose(escapeLoc, diag::lex_escaped_newline_at_lastline)
.fixItRemoveChars(escapeLoc, Lexer::getSourceLoc(LineEnd));
}
}
return std::make_tuple(string, startLoc);
}
default:
sawNonWhitespace = true;
}
}
if (sawNonWhitespace && Diags) {
auto loc = Lexer::getSourceLoc(start + 1);
Diags->diagnose(loc, diag::lex_illegal_multiline_string_end)
// FIXME: Should try to suggest indentation.
.fixItInsert(loc, "\n");
}
return std::make_tuple("", Lexer::getSourceLoc(end - 1));
}
/// diagnoseInvalidMultilineIndents:
/// Emit errors for a group of multiline indents with the same MistakeOffset.
/// Note: Does not emit an error if MistakeOffset does not lie within
/// ExpectedIndent.
static void diagnoseInvalidMultilineIndents(
DiagnosticEngine *Diags,
StringRef ExpectedIndent,
SourceLoc IndentLoc,
StringRef Bytes,
SmallVector<size_t, 4> LineStarts,
size_t MistakeOffset,
StringRef ActualIndent) {
if (MistakeOffset >= ExpectedIndent.size()) {
// These lines were valid; there's nothing to correct.
return;
}
assert(!LineStarts.empty());
auto getLoc = [&](size_t offset) -> SourceLoc {
return Lexer::getSourceLoc((const char *)Bytes.bytes_begin() + offset);
};
auto classify = [&](unsigned char ch) -> unsigned {
switch (ch) {
case ' ':
return 0;
case '\t':
return 1;
default:
return 2;
}
};
Diags->diagnose(getLoc(LineStarts[0] + MistakeOffset),
diag::lex_multiline_string_indent_inconsistent,
LineStarts.size() != 1, LineStarts.size(),
classify(Bytes[LineStarts[0] + MistakeOffset]));
Diags->diagnose(IndentLoc.getAdvancedLoc(MistakeOffset),
diag::lex_multiline_string_indent_should_match_here,
classify(ExpectedIndent[MistakeOffset]));
auto fix = Diags->diagnose(getLoc(LineStarts[0] + MistakeOffset),
diag::lex_multiline_string_indent_change_line,
LineStarts.size() != 1);
assert(MistakeOffset <= ActualIndent.size());
assert(ExpectedIndent.substr(0, MistakeOffset) ==
ActualIndent.substr(0, MistakeOffset));
for (auto line : LineStarts) {
fix.fixItReplaceChars(getLoc(line + MistakeOffset),
getLoc(line + ActualIndent.size()),
ExpectedIndent.substr(MistakeOffset));
}
}
/// validateMultilineIndents:
/// Diagnose contents of string literal that have inconsistent indentation.
static void validateMultilineIndents(const Token &Str,
DiagnosticEngine *Diags) {
StringRef Indent;
SourceLoc IndentStartLoc;
std::tie(Indent, IndentStartLoc) = getMultilineTrailingIndent(Str, Diags);
if (Indent.empty())
return;
// The offset into the previous line where it experienced its first indentation
// error, or Indent.size() if every character matched.
size_t lastMistakeOffset = std::numeric_limits<size_t>::max();
// Offsets for each consecutive previous line with its first error at
// lastMatchLength.
SmallVector<size_t, 4> linesWithLastMistakeOffset = {};
// Prefix of indentation that's present on all lines in linesWithLastMatchLength.
StringRef commonIndentation = "";
StringRef Bytes = getStringLiteralContent(Str);
for (size_t pos = Bytes.find('\n'); pos != StringRef::npos; pos = Bytes.find('\n', pos + 1)) {
size_t nextpos = pos + 1;
auto restOfBytes = Bytes.substr(nextpos);
// Ignore blank lines.
if (restOfBytes[0] == '\n' || restOfBytes[0] == '\r') {
continue;
}
// Where is the first difference?
auto errorOffset = commonPrefixLength(Indent, restOfBytes);
// Are we starting a new run?
if (errorOffset != lastMistakeOffset) {
// Diagnose problems in the just-finished run of lines.
diagnoseInvalidMultilineIndents(Diags, Indent, IndentStartLoc, Bytes,
linesWithLastMistakeOffset, lastMistakeOffset,
commonIndentation);
// Set up for a new run.
lastMistakeOffset = errorOffset;
linesWithLastMistakeOffset = {};
// To begin with, all whitespace is part of the common indentation.
auto prefixLength = restOfBytes.find_first_not_of(" \t");
commonIndentation = restOfBytes.substr(0, prefixLength);
}
else {
// We're continuing the run, so include this line in the common prefix.
auto prefixLength = commonPrefixLength(commonIndentation, restOfBytes);
commonIndentation = commonIndentation.substr(0, prefixLength);
}
// Either way, add this line to the run.
linesWithLastMistakeOffset.push_back(nextpos);
}
// Handle the last run.
diagnoseInvalidMultilineIndents(Diags, Indent, IndentStartLoc, Bytes,
linesWithLastMistakeOffset, lastMistakeOffset,
commonIndentation);
}
/// lexStringLiteral:
/// string_literal ::= ["]([^"\\\n\r]|character_escape)*["]
/// string_literal ::= ["]["]["].*["]["]["] - approximately
/// string_literal ::= (#+)("")?".*"(\2\1) - "raw" strings
void Lexer::lexStringLiteral(unsigned CustomDelimiterLen) {
const char *TokStart = CurPtr-1;
assert((*TokStart == '"' || *TokStart == '\'') && "Unexpected start");
// NOTE: We only allow single-quote string literals so we can emit useful
// diagnostics about changing them to double quotes.
bool wasErroneous = false, IsMultilineString = false;
// Is this the start of a multiline string literal?
if ((IsMultilineString = advanceIfMultilineDelimiter(CurPtr, Diags))) {
if (*CurPtr != '\n' && *CurPtr != '\r')
diagnose(CurPtr, diag::lex_illegal_multiline_string_start)
.fixItInsert(Lexer::getSourceLoc(CurPtr), "\n");
}
while (true) {
const char *TmpPtr = CurPtr + 1;
if (*CurPtr == '\\' && delimiterMatches(CustomDelimiterLen, TmpPtr, nullptr)
&& *TmpPtr == '(') {
// Consume tokens until we hit the corresponding ')'.
CurPtr = TmpPtr + 1;
const char *EndPtr =
skipToEndOfInterpolatedExpression(CurPtr, BufferEnd,
Diags, IsMultilineString);
if (*EndPtr == ')') {
// Successfully scanned the body of the expression literal.
CurPtr = EndPtr+1;
} else {
CurPtr = EndPtr;
wasErroneous = true;
}
continue;
}
// String literals cannot have \n or \r in them (unless multiline).
if (((*CurPtr == '\r' || *CurPtr == '\n') && !IsMultilineString)
|| CurPtr == BufferEnd) {
TokStart -= CustomDelimiterLen;
diagnose(TokStart, diag::lex_unterminated_string);
return formToken(tok::unknown, TokStart);
}
unsigned CharValue = lexCharacter(CurPtr, *TokStart, true,
IsMultilineString, CustomDelimiterLen);
wasErroneous |= CharValue == ~1U;
// If this is the end of string, we are done. If it is a normal character
// or an already-diagnosed error, just munch it.
if (CharValue == ~0U) {
++CurPtr;
if (*TokStart == '\'') {
// Complain about single-quote string and suggest replacement with
// double-quoted equivalent.
StringRef orig(TokStart, CurPtr - TokStart);
llvm::SmallString<32> replacement;
replacement += '"';
std::string str = orig.slice(1, orig.size() - 1).str();
std::string quot = "\"";
size_t pos = 0;
while (pos != str.length()) {
if (str.at(pos) == '\\') {
if (str.at(pos + 1) == '\'') {
// Un-escape escaped single quotes.
str.replace(pos, 2, "'");
++pos;
} else {
// Skip over escaped characters.
pos += 2;
}
} else if (str.at(pos) == '"') {
str.replace(pos, 1, "\\\"");
// Advance past the newly added ["\""].
pos += 2;
} else {
++pos;
}
}
replacement += StringRef(str);
replacement += '"';
diagnose(TokStart, diag::lex_single_quote_string)
.fixItReplaceChars(getSourceLoc(TokStart), getSourceLoc(CurPtr),
replacement);
}
// Is this the end of multiline/custom-delimited string literal?
if ((!IsMultilineString || advanceIfMultilineDelimiter(CurPtr, Diags)) &&
delimiterMatches(CustomDelimiterLen, CurPtr, Diags, true)) {
TokStart -= CustomDelimiterLen;
if (wasErroneous)
return formToken(tok::unknown, TokStart);
formToken(tok::string_literal, TokStart,
IsMultilineString, CustomDelimiterLen);
if (IsMultilineString && Diags)
validateMultilineIndents(NextToken, Diags);
return;
}
}
}
}
/// We found an opening curly quote in the source file. Scan ahead until we
/// find and end-curly-quote (or straight one). If we find what looks to be a
/// string literal, diagnose the problem and return a pointer to the end of the
/// entire string literal. This helps us avoid parsing the body of the string
/// as program tokens, which will only lead to massive confusion.
const char *Lexer::findEndOfCurlyQuoteStringLiteral(const char *Body,
bool EmitDiagnostics) {
while (true) {
// Don't bother with string interpolations.
if (*Body == '\\' && *(Body + 1) == '(')
return nullptr;
// We didn't find the end of the string literal if we ran to end of line.
if (*Body == '\r' || *Body == '\n' || Body == BufferEnd)
return nullptr;
// Get the next character.
const char *CharStart = Body;
unsigned CharValue = lexCharacter(Body, '\0', /*EmitDiagnostics=*/false);
// If the character was incorrectly encoded, give up.
if (CharValue == ~1U) return nullptr;
// If we found a straight-quote, then we're done. Just return the spot
// to continue.
if (CharValue == '"')
return Body;
// If we found an ending curly quote (common since this thing started with
// an opening curly quote) diagnose it with a fixit and then return.
if (CharValue == 0x0000201D) {
if (EmitDiagnostics) {
diagnose(CharStart, diag::lex_invalid_curly_quote)
.fixItReplaceChars(getSourceLoc(CharStart), getSourceLoc(Body),
"\"");
}
return Body;
}
// Otherwise, keep scanning.
}
}
/// lexEscapedIdentifier:
/// identifier ::= '`' identifier '`'
///
/// If it doesn't match this production, the leading ` is a punctuator.
void Lexer::lexEscapedIdentifier() {
assert(CurPtr[-1] == '`' && "Unexpected start of escaped identifier");
const char *Quote = CurPtr-1;
// Check whether we have an identifier followed by another backtick, in which
// case this is an escaped identifier.
const char *IdentifierStart = CurPtr;
if (advanceIfValidStartOfIdentifier(CurPtr, BufferEnd)) {
// Keep continuing the identifier.
while (advanceIfValidContinuationOfIdentifier(CurPtr, BufferEnd));
// If we have the terminating "`", it's an escaped identifier.
if (*CurPtr == '`') {
++CurPtr;
formEscapedIdentifierToken(Quote);
return;
}
}
// Special case; allow '`$`'.
if (Quote[1] == '$' && Quote[2] == '`') {
CurPtr = Quote + 3;
formEscapedIdentifierToken(Quote);
return;
}
// The backtick is punctuation.
CurPtr = IdentifierStart;
formToken(tok::backtick, Quote);
}
/// Find the end of a version control conflict marker.
static const char *findConflictEnd(const char *CurPtr, const char *BufferEnd,
ConflictMarkerKind CMK) {
StringRef terminator = CMK == ConflictMarkerKind::Perforce ? "<<<<\n"
: ">>>>>>> ";
size_t termLen = terminator.size();
// Get a reference to the rest of the buffer minus the length of the start
// of the conflict marker.
auto restOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(termLen);
size_t endPos = restOfBuffer.find(terminator);
while (endPos != StringRef::npos) {
// Must occur at start of line.
if (endPos != 0 &&
(restOfBuffer[endPos - 1] == '\r' || restOfBuffer[endPos - 1] == '\n'))
{
return restOfBuffer.data() + endPos;
}
restOfBuffer = restOfBuffer.substr(endPos + termLen);
endPos = restOfBuffer.find(terminator);
}
return nullptr;
}
bool Lexer::tryLexConflictMarker(bool EatNewline) {
const char *Ptr = CurPtr - 1;
// Only a conflict marker if it starts at the beginning of a line.
if (Ptr != ContentStart && Ptr[-1] != '\n' && Ptr[-1] != '\r')
return false;
// Check to see if we have <<<<<<< or >>>>.
StringRef restOfBuffer(Ptr, BufferEnd - Ptr);
if (!restOfBuffer.startswith("<<<<<<< ") && !restOfBuffer.startswith(">>>> "))
return false;
ConflictMarkerKind Kind = *Ptr == '<' ? ConflictMarkerKind::Normal
: ConflictMarkerKind::Perforce;
if (const char *End = findConflictEnd(Ptr, BufferEnd, Kind)) {
// Diagnose at the conflict marker, then jump ahead to the end.
diagnose(CurPtr, diag::lex_conflict_marker_in_file);
CurPtr = End;
// Skip ahead to the end of the marker.
if (CurPtr != BufferEnd)
skipToEndOfLine(EatNewline);
return true;
}
// No end of conflict marker found.
return false;
}
bool Lexer::lexUnknown(bool EmitDiagnosticsIfToken) {
const char *Tmp = CurPtr - 1;
if (advanceIfValidContinuationOfIdentifier(Tmp, BufferEnd)) {
// If this is a valid identifier continuation, but not a valid identifier
// start, attempt to recover by eating more continuation characters.
if (EmitDiagnosticsIfToken) {
diagnose(CurPtr - 1, diag::lex_invalid_identifier_start_character);
}
while (advanceIfValidContinuationOfIdentifier(Tmp, BufferEnd))
;
CurPtr = Tmp;
return true;
}
// This character isn't allowed in Swift source.
uint32_t Codepoint = validateUTF8CharacterAndAdvance(Tmp, BufferEnd);
if (Codepoint == ~0U) {
diagnose(CurPtr - 1, diag::lex_invalid_utf8)
.fixItReplaceChars(getSourceLoc(CurPtr - 1), getSourceLoc(Tmp), " ");
CurPtr = Tmp;
return false; // Skip presumed whitespace.
} else if (Codepoint == 0x000000A0) {
// Non-breaking whitespace (U+00A0)
while (Tmp[0] == '\xC2' && Tmp[1] == '\xA0')
Tmp += 2;
SmallString<8> Spaces;
Spaces.assign((Tmp - CurPtr + 1) / 2, ' ');
diagnose(CurPtr - 1, diag::lex_nonbreaking_space)
.fixItReplaceChars(getSourceLoc(CurPtr - 1), getSourceLoc(Tmp),
Spaces);
CurPtr = Tmp;
return false;
} else if (Codepoint == 0x0000201D) {
// If this is an end curly quote, just diagnose it with a fixit hint.
if (EmitDiagnosticsIfToken) {
diagnose(CurPtr - 1, diag::lex_invalid_curly_quote)
.fixItReplaceChars(getSourceLoc(CurPtr - 1), getSourceLoc(Tmp), "\"");
}
CurPtr = Tmp;
return true;
} else if (Codepoint == 0x0000201C) {
auto EndPtr = Tmp;
// If this is a start curly quote, do a fuzzy match of a string literal
// to improve recovery.
if (auto Tmp2 =
findEndOfCurlyQuoteStringLiteral(Tmp, EmitDiagnosticsIfToken))
Tmp = Tmp2;
// Note, we intentionally diagnose the end quote before the start quote,
// so that the IDE suggests fixing the end quote before the start quote.
// This, in turn, works better with our error recovery because we won't
// diagnose an end curly quote in the middle of a straight quoted
// literal.
if (EmitDiagnosticsIfToken) {
diagnose(CurPtr - 1, diag::lex_invalid_curly_quote)
.fixItReplaceChars(getSourceLoc(CurPtr - 1), getSourceLoc(EndPtr),
"\"");
}
CurPtr = Tmp;
return true;
}
diagnose(CurPtr - 1, diag::lex_invalid_character)
.fixItReplaceChars(getSourceLoc(CurPtr - 1), getSourceLoc(Tmp), " ");
char ExpectedCodepoint;
if ((ExpectedCodepoint =
confusable::tryConvertConfusableCharacterToASCII(Codepoint))) {
llvm::SmallString<4> ConfusedChar;
EncodeToUTF8(Codepoint, ConfusedChar);
llvm::SmallString<1> ExpectedChar;
ExpectedChar += ExpectedCodepoint;
diagnose(CurPtr - 1, diag::lex_confusable_character, ConfusedChar,
ExpectedChar)
.fixItReplaceChars(getSourceLoc(CurPtr - 1), getSourceLoc(Tmp),
ExpectedChar);
}
CurPtr = Tmp;
return false; // Skip presumed whitespace.
}
Lexer::NulCharacterKind Lexer::getNulCharacterKind(const char *Ptr) const {
assert(Ptr != nullptr && *Ptr == 0);
if (Ptr == CodeCompletionPtr) {
return NulCharacterKind::CodeCompletion;
}
if (Ptr == BufferEnd) {
return NulCharacterKind::BufferEnd;
}
return NulCharacterKind::Embedded;
}
void Lexer::tryLexEditorPlaceholder() {
assert(CurPtr[-1] == '<' && CurPtr[0] == '#');
const char *TokStart = CurPtr-1;
for (const char *Ptr = CurPtr+1; Ptr < BufferEnd-1; ++Ptr) {
if (*Ptr == '\n')
break;
if (Ptr[0] == '<' && Ptr[1] == '#')
break;
if (Ptr[0] == '#' && Ptr[1] == '>') {
// Found it. Flag it as error (or warning, if in playground mode) for the
// rest of the compiler pipeline and lex it as an identifier.
if (LangOpts.Playground) {
diagnose(TokStart, diag::lex_editor_placeholder_in_playground);
} else {
diagnose(TokStart, diag::lex_editor_placeholder);
}
CurPtr = Ptr+2;
formToken(tok::identifier, TokStart);
return;
}
}
// Not a well-formed placeholder.
lexOperatorIdentifier();
}
StringRef Lexer::getEncodedStringSegmentImpl(StringRef Bytes,
SmallVectorImpl<char> &TempString,
bool IsFirstSegment,
bool IsLastSegment,
unsigned IndentToStrip,
unsigned CustomDelimiterLen) {
TempString.clear();
// Note that it is always safe to read one over the end of "Bytes" because we
// know that there is a terminating " character (or null byte for an
// unterminated literal or a segment that doesn't come from source). Use
// BytesPtr to avoid a range check subscripting on the StringRef.
const char *BytesPtr = Bytes.begin();
bool IsEscapedNewline = false;
while (BytesPtr < Bytes.end()) {
char CurChar = *BytesPtr++;
// Multiline string line ending normalization and indent stripping.
if (CurChar == '\r' || CurChar == '\n') {
bool stripNewline = IsEscapedNewline ||
(IsFirstSegment && BytesPtr - 1 == Bytes.begin());
if (CurChar == '\r' && *BytesPtr == '\n')
++BytesPtr;
if (*BytesPtr != '\r' && *BytesPtr != '\n')
BytesPtr += IndentToStrip;
if (IsLastSegment && BytesPtr == Bytes.end())
stripNewline = true;
if (!stripNewline)
TempString.push_back('\n');
IsEscapedNewline = false;
continue;
}
if (CurChar != '\\' ||
!delimiterMatches(CustomDelimiterLen, BytesPtr, nullptr)) {
TempString.push_back(CurChar);
continue;
}
// Invalid escapes are accepted by the lexer but diagnosed as an error. We
// just ignore them here.
unsigned CharValue = 0; // Unicode character value for \x, \u, \U.
switch (*BytesPtr++) {
default:
continue; // Invalid escape, ignore it.
// Simple single-character escapes.
case '0': TempString.push_back('\0'); continue;
case 'n': TempString.push_back('\n'); continue;
case 'r': TempString.push_back('\r'); continue;
case 't': TempString.push_back('\t'); continue;
case '"': TempString.push_back('"'); continue;
case '\'': TempString.push_back('\''); continue;
case '\\': TempString.push_back('\\'); continue;
case ' ': case '\t': case '\n': case '\r':
if (maybeConsumeNewlineEscape(BytesPtr, -1)) {
IsEscapedNewline = true;
--BytesPtr;
}
continue;
// String interpolation.
case '(':
llvm_unreachable("string contained interpolated segments");
// Unicode escapes of various lengths.
case 'u': // \u HEX HEX HEX HEX
if (BytesPtr[0] != '{')
continue; // Ignore invalid escapes.
CharValue = lexUnicodeEscape(BytesPtr, /*no diagnostics*/nullptr);
// Ignore invalid escapes.
if (CharValue == ~1U) continue;
break;
}
if (CharValue < 0x80)
TempString.push_back(CharValue);
else
EncodeToUTF8(CharValue, TempString);
}
// If we didn't escape or reprocess anything, then we don't need to use the
// temporary string, just point to the original one. We know that this
// is safe because unescaped strings are always shorter than their escaped
// forms (in a valid string).
if (TempString.size() == Bytes.size()) {
TempString.clear();
return Bytes;
}
return StringRef(TempString.begin(), TempString.size());
}
void Lexer::getStringLiteralSegments(
const Token &Str,
SmallVectorImpl<StringSegment> &Segments,
DiagnosticEngine *Diags) {
assert(Str.is(tok::string_literal));
// Get the bytes behind the string literal, dropping any double quotes.
StringRef Bytes = getStringLiteralContent(Str);
// Are substitutions required either for indent stripping or line ending
// normalization?
bool MultilineString = Str.isMultilineString(), IsFirstSegment = true;
unsigned IndentToStrip = 0, CustomDelimiterLen = Str.getCustomDelimiterLen();
if (MultilineString)
IndentToStrip =
std::get<0>(getMultilineTrailingIndent(Str, /*Diags=*/nullptr)).size();
// Note that it is always safe to read one over the end of "Bytes" because
// we know that there is a terminating " character. Use BytesPtr to avoid a
// range check subscripting on the StringRef.
const char *SegmentStartPtr = Bytes.begin();
const char *BytesPtr = SegmentStartPtr;
size_t pos;
while ((pos = Bytes.find('\\', BytesPtr-Bytes.begin())) != StringRef::npos) {
BytesPtr = Bytes.begin() + pos + 1;
if (!delimiterMatches(CustomDelimiterLen, BytesPtr, Diags) ||
*BytesPtr++ != '(')
continue;
// String interpolation.
// Push the current segment.
Segments.push_back(
StringSegment::getLiteral(getSourceLoc(SegmentStartPtr),
BytesPtr-SegmentStartPtr-2-CustomDelimiterLen,
IsFirstSegment, false, IndentToStrip,
CustomDelimiterLen));
IsFirstSegment = false;
// Find the closing ')'.
const char *End = skipToEndOfInterpolatedExpression(BytesPtr,
Str.getText().end(),
Diags, MultilineString);
assert(*End == ')' && "invalid string literal interpolations should"
" not be returned as string literals");
++End;
// Add an expression segment.
Segments.push_back(
StringSegment::getExpr(getSourceLoc(BytesPtr-1), End-BytesPtr+1));
// Reset the beginning of the segment to the string that remains to be
// consumed.
SegmentStartPtr = BytesPtr = End;
}
Segments.push_back(
StringSegment::getLiteral(getSourceLoc(SegmentStartPtr),
Bytes.end()-SegmentStartPtr,
IsFirstSegment, true, IndentToStrip,
CustomDelimiterLen));
}
//===----------------------------------------------------------------------===//
// Main Lexer Loop
//===----------------------------------------------------------------------===//
void Lexer::lexImpl() {
assert(CurPtr >= BufferStart &&
CurPtr <= BufferEnd && "Current pointer out of range!");
LeadingTrivia.clear();
TrailingTrivia.clear();
if (CurPtr == BufferStart) {
if (BufferStart < ContentStart) {
size_t BOMLen = ContentStart - BufferStart;
assert(BOMLen == 3 && "UTF-8 BOM is 3 bytes");
// Add UTF-8 BOM to LeadingTrivia.
auto Text = OwnedString::makeRefCounted(StringRef(CurPtr, BOMLen));
LeadingTrivia.push_back(TriviaPiece::garbageText(Text));
CurPtr += BOMLen;
}
NextToken.setAtStartOfLine(true);
} else {
NextToken.setAtStartOfLine(false);
}
lexTrivia(LeadingTrivia, /* IsForTrailingTrivia */ false);
// Remember the start of the token so we can form the text range.
const char *TokStart = CurPtr;
switch ((signed char)*CurPtr++) {
default: {
char const *Tmp = CurPtr-1;
if (advanceIfValidStartOfIdentifier(Tmp, BufferEnd))
return lexIdentifier();
if (advanceIfValidStartOfOperator(Tmp, BufferEnd))
return lexOperatorIdentifier();
bool ShouldTokenize = lexUnknown(/*EmitDiagnosticsIfToken=*/true);
assert(
ShouldTokenize &&
"Invalid UTF-8 sequence should be eaten by lexTrivia as LeadingTrivia");
(void)ShouldTokenize;
return formToken(tok::unknown, TokStart);
}
case '\n':
case '\r':
llvm_unreachable("Newlines should be eaten by lexTrivia as LeadingTrivia");
case ' ':
case '\t':
case '\f':
case '\v':
llvm_unreachable(
"Whitespaces should be eaten by lexTrivia as LeadingTrivia");
case -1:
case -2:
diagnose(CurPtr-1, diag::lex_utf16_bom_marker);
CurPtr = BufferEnd;
return formToken(tok::unknown, TokStart);
case 0:
switch (getNulCharacterKind(CurPtr - 1)) {
case NulCharacterKind::CodeCompletion:
return formToken(tok::code_complete, TokStart);
case NulCharacterKind::BufferEnd:
// This is the real end of the buffer.
// Put CurPtr back into buffer bounds.
--CurPtr;
// Return EOF.
return formToken(tok::eof, TokStart);
case NulCharacterKind::Embedded:
llvm_unreachable(
"Embedded nul should be eaten by lexTrivia as LeadingTrivia");
}
case '@': return formToken(tok::at_sign, TokStart);
case '{': return formToken(tok::l_brace, TokStart);
case '[': return formToken(tok::l_square, TokStart);
case '(': return formToken(tok::l_paren, TokStart);
case '}': return formToken(tok::r_brace, TokStart);
case ']': return formToken(tok::r_square, TokStart);
case ')': return formToken(tok::r_paren, TokStart);
case ',': return formToken(tok::comma, TokStart);
case ';': return formToken(tok::semi, TokStart);
case ':': return formToken(tok::colon, TokStart);
case '\\': return formToken(tok::backslash, TokStart);
case '#':
if (unsigned CustomDelimiterLen = advanceIfCustomDelimiter(CurPtr, Diags))
return lexStringLiteral(CustomDelimiterLen);
return lexHash();
// Operator characters.
case '/':
if (CurPtr[0] == '/') { // "//"
skipSlashSlashComment(/*EatNewline=*/true);
assert(isKeepingComments() &&
"Non token comment should be eaten by lexTrivia as LeadingTrivia");
return formToken(tok::comment, TokStart);
}
if (CurPtr[0] == '*') { // "/*"
skipSlashStarComment();
assert(isKeepingComments() &&
"Non token comment should be eaten by lexTrivia as LeadingTrivia");
return formToken(tok::comment, TokStart);
}
return lexOperatorIdentifier();
case '%':
// Lex %[0-9a-zA-Z_]+ as a local SIL value
if (InSILBody && clang::isIdentifierBody(CurPtr[0])) {
do {
++CurPtr;
} while (clang::isIdentifierBody(CurPtr[0]));
return formToken(tok::sil_local_name, TokStart);
}
return lexOperatorIdentifier();
case '!':
if (InSILBody)
return formToken(tok::sil_exclamation, TokStart);
if (isLeftBound(TokStart, ContentStart))
return formToken(tok::exclaim_postfix, TokStart);
return lexOperatorIdentifier();
case '?':
if (isLeftBound(TokStart, ContentStart))
return formToken(tok::question_postfix, TokStart);
return lexOperatorIdentifier();
case '<':
if (CurPtr[0] == '#')
return tryLexEditorPlaceholder();
return lexOperatorIdentifier();
case '>':
return lexOperatorIdentifier();
case '=': case '-': case '+': case '*':
case '&': case '|': case '^': case '~': case '.':
return lexOperatorIdentifier();
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N':
case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U':
case 'V': case 'W': case 'X': case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u':
case 'v': case 'w': case 'x': case 'y': case 'z':
case '_':
return lexIdentifier();
case '$':
return lexDollarIdent();
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
return lexNumber();
case '"':
case '\'':
return lexStringLiteral();
case '`':
return lexEscapedIdentifier();
}
}
Token Lexer::getTokenAtLocation(const SourceManager &SM, SourceLoc Loc) {
// Don't try to do anything with an invalid location.
if (!Loc.isValid())
return Token();
// Figure out which buffer contains this location.
int BufferID = SM.findBufferContainingLoc(Loc);
if (BufferID < 0)
return Token();
// Use fake language options; language options only affect validity
// and the exact token produced.
LangOptions FakeLangOpts;
// Here we return comments as tokens because either the caller skipped
// comments and normally we won't be at the beginning of a comment token
// (making this option irrelevant), or the caller lexed comments and
// we need to lex just the comment token.
Lexer L(FakeLangOpts, SM, BufferID, nullptr, /*InSILMode=*/ false,
HashbangMode::Allowed, CommentRetentionMode::ReturnAsTokens);
L.restoreState(State(Loc));
return L.peekNextToken();
}
void Lexer::lexTrivia(syntax::Trivia &Pieces, bool IsForTrailingTrivia) {
Restart:
const char *TriviaStart = CurPtr;
switch ((signed char)*CurPtr++) {
case '\n':
if (IsForTrailingTrivia)
break;
NextToken.setAtStartOfLine(true);
Pieces.appendOrSquash(TriviaPiece::newlines(1));
goto Restart;
case '\r':
if (IsForTrailingTrivia)
break;
NextToken.setAtStartOfLine(true);
if (CurPtr[0] == '\n') {
Pieces.appendOrSquash(TriviaPiece::carriageReturnLineFeeds(1));
++CurPtr;
} else {
Pieces.appendOrSquash(TriviaPiece::carriageReturns(1));
}
goto Restart;
case ' ':
Pieces.appendOrSquash(TriviaPiece::spaces(1));
goto Restart;
case '\t':
Pieces.appendOrSquash(TriviaPiece::tabs(1));
goto Restart;
case '\v':
Pieces.appendOrSquash(TriviaPiece::verticalTabs(1));
goto Restart;
case '\f':
Pieces.appendOrSquash(TriviaPiece::formfeeds(1));
goto Restart;
case '/':
if (IsForTrailingTrivia || isKeepingComments()) {
// Don't lex comments as trailing trivias (for now).
// Don't try to lex comments here if we are lexing comments as Tokens.
break;
} else if (*CurPtr == '/') {
// '// ...' comment.
bool isDocComment = CurPtr[1] == '/';
skipSlashSlashComment(/*EatNewline=*/false);
size_t Length = CurPtr - TriviaStart;
auto Text = OwnedString::makeRefCounted(StringRef(TriviaStart, Length));
Pieces.push_back(isDocComment ? TriviaPiece::docLineComment(Text)
: TriviaPiece::lineComment(Text));
goto Restart;
} else if (*CurPtr == '*') {
// '/* ... */' comment.
bool isDocComment = CurPtr[1] == '*';
skipSlashStarComment();
size_t Length = CurPtr - TriviaStart;
auto Text = OwnedString::makeRefCounted(StringRef(TriviaStart, Length));
Pieces.push_back(isDocComment ? TriviaPiece::docBlockComment(Text)
: TriviaPiece::blockComment(Text));
goto Restart;
}
break;
case '#':
if (TriviaStart == ContentStart && *CurPtr == '!') {
// Hashbang '#!/path/to/swift'.
--CurPtr;
if (!IsHashbangAllowed)
diagnose(TriviaStart, diag::lex_hashbang_not_allowed);
skipHashbang(/*EatNewline=*/false);
size_t Length = CurPtr - TriviaStart;
auto Text = OwnedString::makeRefCounted(StringRef(TriviaStart, Length));
Pieces.push_back(TriviaPiece::garbageText(Text));
goto Restart;
}
break;
case '<':
case '>':
if (tryLexConflictMarker(/*EatNewline=*/false)) {
// Conflict marker.
size_t Length = CurPtr - TriviaStart;
auto Text = OwnedString::makeRefCounted(StringRef(TriviaStart, Length));
Pieces.push_back(TriviaPiece::garbageText(Text));
goto Restart;
}
break;
case 0:
switch (getNulCharacterKind(CurPtr - 1)) {
case NulCharacterKind::Embedded: {
diagnoseEmbeddedNul(Diags, CurPtr - 1);
size_t Length = CurPtr - TriviaStart;
auto Text = OwnedString::makeRefCounted(StringRef(TriviaStart, Length));
Pieces.push_back(TriviaPiece::garbageText(Text));
goto Restart;
}
case NulCharacterKind::CodeCompletion:
case NulCharacterKind::BufferEnd:
break;
}
break;
// Start character of tokens.
case -1: case -2:
case '@': case '{': case '[': case '(': case '}': case ']': case ')':
case ',': case ';': case ':': case '\\': case '$':
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case '"': case '\'': case '`':
// Start of identifiers.
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N':
case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U':
case 'V': case 'W': case 'X': case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u':
case 'v': case 'w': case 'x': case 'y': case 'z':
case '_':
// Start of operators.
case '%': case '!': case '?': case '=':
case '-': case '+': case '*':
case '&': case '|': case '^': case '~': case '.':
break;
default:
const char *Tmp = CurPtr - 1;
if (advanceIfValidStartOfIdentifier(Tmp, BufferEnd)) {
break;
}
if (advanceIfValidStartOfOperator(Tmp, BufferEnd)) {
break;
}
bool ShouldTokenize = lexUnknown(/*EmitDiagnosticsIfToken=*/false);
if (ShouldTokenize) {
CurPtr = Tmp;
return;
}
size_t Length = CurPtr - TriviaStart;
auto Text = OwnedString::makeRefCounted(StringRef(TriviaStart, Length));
Pieces.push_back(TriviaPiece::garbageText(Text));
goto Restart;
}
// Reset the cursor.
--CurPtr;
}
SourceLoc Lexer::getLocForEndOfToken(const SourceManager &SM, SourceLoc Loc) {
return Loc.getAdvancedLocOrInvalid(getTokenAtLocation(SM, Loc).getLength());
}
static SourceLoc getLocForStartOfTokenInBuf(SourceManager &SM,
unsigned BufferID,
unsigned Offset,
unsigned BufferStart,
unsigned BufferEnd) {
// Use fake language options; language options only affect validity
// and the exact token produced.
LangOptions FakeLangOptions;
Lexer L(FakeLangOptions, SM, BufferID, nullptr, /*InSILMode=*/false,
HashbangMode::Allowed, CommentRetentionMode::None,
TriviaRetentionMode::WithoutTrivia, BufferStart, BufferEnd);
// Lex tokens until we find the token that contains the source location.
Token Tok;
do {
L.lex(Tok);
unsigned TokOffs = SM.getLocOffsetInBuffer(Tok.getLoc(), BufferID);
if (TokOffs > Offset) {
// We ended up skipping over the source location entirely, which means
// that it points into whitespace. We are done here.
break;
}
if (Offset < TokOffs+Tok.getLength()) {
// Current token encompasses our source location.
if (Tok.is(tok::string_literal)) {
SmallVector<Lexer::StringSegment, 4> Segments;
Lexer::getStringLiteralSegments(Tok, Segments, /*Diags=*/nullptr);
for (auto &Seg : Segments) {
unsigned SegOffs = SM.getLocOffsetInBuffer(Seg.Loc, BufferID);
unsigned SegEnd = SegOffs+Seg.Length;
if (SegOffs > Offset)
break;
// If the offset is inside an interpolated expr segment, re-lex.
if (Seg.Kind == Lexer::StringSegment::Expr && Offset < SegEnd)
return getLocForStartOfTokenInBuf(SM, BufferID, Offset,
/*BufferStart=*/SegOffs,
/*BufferEnd=*/SegEnd);
}
}
return Tok.getLoc();
}
} while (Tok.isNot(tok::eof));
// We've passed our source location; just return the original source location.
return SM.getLocForOffset(BufferID, Offset);
}
// Find the start of the given line.
static const char *findStartOfLine(const char *bufStart, const char *current) {
while (current != bufStart) {
if (current[0] == '\n' || current[0] == '\r') {
++current;
break;
}
--current;
}
return current;
}
SourceLoc Lexer::getLocForStartOfToken(SourceManager &SM, SourceLoc Loc) {
if (!Loc.isValid())
return SourceLoc();
unsigned BufferId = SM.findBufferContainingLoc(Loc);
return getLocForStartOfToken(SM, BufferId,
SM.getLocOffsetInBuffer(Loc, BufferId));
}
SourceLoc Lexer::getLocForStartOfToken(SourceManager &SM, unsigned BufferID,
unsigned Offset) {
CharSourceRange entireRange = SM.getRangeForBuffer(BufferID);
StringRef Buffer = SM.extractText(entireRange);
const char *BufStart = Buffer.data();
if (Offset > Buffer.size())
return SourceLoc();
const char *StrData = BufStart+Offset;
// If it points to whitespace return the SourceLoc for it.
if (StrData[0] == '\n' || StrData[0] == '\r' ||
StrData[0] == ' ' || StrData[0] == '\t')
return SM.getLocForOffset(BufferID, Offset);
// Back up from the current location until we hit the beginning of a line
// (or the buffer). We'll relex from that point.
const char *LexStart = findStartOfLine(BufStart, StrData);
return getLocForStartOfTokenInBuf(SM, BufferID, Offset,
/*BufferStart=*/LexStart-BufStart,
/*BufferEnd=*/Buffer.size());
}
SourceLoc Lexer::getLocForStartOfLine(SourceManager &SM, SourceLoc Loc) {
// Don't try to do anything with an invalid location.
if (Loc.isInvalid())
return Loc;
// Figure out which buffer contains this location.
int BufferID = SM.findBufferContainingLoc(Loc);
if (BufferID < 0)
return SourceLoc();
CharSourceRange entireRange = SM.getRangeForBuffer(BufferID);
StringRef Buffer = SM.extractText(entireRange);
const char *BufStart = Buffer.data();
unsigned Offset = SM.getLocOffsetInBuffer(Loc, BufferID);
const char *StartOfLine = findStartOfLine(BufStart, BufStart + Offset);
return getSourceLoc(StartOfLine);
}
SourceLoc Lexer::getLocForEndOfLine(SourceManager &SM, SourceLoc Loc) {
// Don't try to do anything with an invalid location.
if (Loc.isInvalid())
return Loc;
// Figure out which buffer contains this location.
int BufferID = SM.findBufferContainingLoc(Loc);
if (BufferID < 0)
return SourceLoc();
// Use fake language options; language options only affect validity
// and the exact token produced.
LangOptions FakeLangOpts;
// Here we return comments as tokens because either the caller skipped
// comments and normally we won't be at the beginning of a comment token
// (making this option irrelevant), or the caller lexed comments and
// we need to lex just the comment token.
Lexer L(FakeLangOpts, SM, BufferID, nullptr, /*InSILMode=*/ false,
HashbangMode::Allowed, CommentRetentionMode::ReturnAsTokens);
L.restoreState(State(Loc));
L.skipToEndOfLine(/*EatNewline=*/true);
return getSourceLoc(L.CurPtr);
}
StringRef Lexer::getIndentationForLine(SourceManager &SM, SourceLoc Loc,
StringRef *ExtraIndentation) {
// FIXME: do something more intelligent here.
//
// Four spaces is the typical indentation in Swift code, so for now just use
// that directly here, but if someone was to do something better, updating
// here will update everyone.
if (ExtraIndentation)
*ExtraIndentation = " ";
// Don't try to do anything with an invalid location.
if (Loc.isInvalid())
return "";
// Figure out which buffer contains this location.
int BufferID = SM.findBufferContainingLoc(Loc);
if (BufferID < 0)
return "";
CharSourceRange entireRange = SM.getRangeForBuffer(BufferID);
StringRef Buffer = SM.extractText(entireRange);
const char *BufStart = Buffer.data();
unsigned Offset = SM.getLocOffsetInBuffer(Loc, BufferID);
const char *StartOfLine = findStartOfLine(BufStart, BufStart + Offset);
const char *EndOfIndentation = StartOfLine;
while (*EndOfIndentation && isHorizontalWhitespace(*EndOfIndentation))
++EndOfIndentation;
return StringRef(StartOfLine, EndOfIndentation - StartOfLine);
}
ArrayRef<Token> swift::
slice_token_array(ArrayRef<Token> AllTokens, SourceLoc StartLoc,
SourceLoc EndLoc) {
assert(StartLoc.isValid() && EndLoc.isValid());
auto StartIt = token_lower_bound(AllTokens, StartLoc);
auto EndIt = token_lower_bound(AllTokens, EndLoc);
assert(StartIt->getLoc() == StartLoc && EndIt->getLoc() == EndLoc);
return AllTokens.slice(StartIt - AllTokens.begin(), EndIt - StartIt + 1);
}