mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This is useful to discover when a specific cleanup is being eliminated while debugging. The implementation is compiled out when assertions are disabled. rdar://29791263
536 lines
19 KiB
C++
536 lines
19 KiB
C++
//===--- SILGenProlog.cpp - Function prologue emission --------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SILGenFunction.h"
|
|
#include "Initialization.h"
|
|
#include "ManagedValue.h"
|
|
#include "Scope.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
SILValue SILGenFunction::emitSelfDecl(VarDecl *selfDecl) {
|
|
// Emit the implicit 'self' argument.
|
|
SILType selfType = getLoweredLoadableType(selfDecl->getType());
|
|
SILValue selfValue = F.begin()->createFunctionArgument(selfType, selfDecl);
|
|
VarLocs[selfDecl] = VarLoc::get(selfValue);
|
|
SILLocation PrologueLoc(selfDecl);
|
|
PrologueLoc.markAsPrologue();
|
|
unsigned ArgNo = 1; // Hardcoded for destructors.
|
|
B.createDebugValue(PrologueLoc, selfValue, {selfDecl->isLet(), ArgNo});
|
|
return selfValue;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Cleanup that writes back to an inout argument on function exit.
|
|
class CleanupWriteBackToInOut : public Cleanup {
|
|
VarDecl *var;
|
|
SILValue inoutAddr;
|
|
|
|
public:
|
|
CleanupWriteBackToInOut(VarDecl *var, SILValue inoutAddr)
|
|
: var(var), inoutAddr(inoutAddr) {}
|
|
|
|
void emit(SILGenFunction &gen, CleanupLocation l) override {
|
|
// Assign from the local variable to the inout address with an
|
|
// 'autogenerated' copyaddr.
|
|
l.markAutoGenerated();
|
|
gen.B.createCopyAddr(l, gen.VarLocs[var].value, inoutAddr,
|
|
IsNotTake, IsNotInitialization);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
namespace {
|
|
class StrongReleaseCleanup : public Cleanup {
|
|
SILValue box;
|
|
public:
|
|
StrongReleaseCleanup(SILValue box) : box(box) {}
|
|
void emit(SILGenFunction &gen, CleanupLocation l) override {
|
|
gen.B.emitDestroyValueOperation(l, box);
|
|
}
|
|
void dump() const override {
|
|
#ifndef NDEBUG
|
|
llvm::errs() << "DeallocateValueBuffer\n"
|
|
<< "State: " << getState() << "box: " << box << "\n";
|
|
#endif
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
namespace {
|
|
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
|
|
/*RetTy*/ ManagedValue>
|
|
{
|
|
public:
|
|
SILGenFunction &gen;
|
|
SILBasicBlock *parent;
|
|
SILLocation loc;
|
|
bool functionArgs;
|
|
ArrayRef<SILParameterInfo> ¶meters;
|
|
|
|
EmitBBArguments(SILGenFunction &gen, SILBasicBlock *parent,
|
|
SILLocation l, bool functionArgs,
|
|
ArrayRef<SILParameterInfo> ¶meters)
|
|
: gen(gen), parent(parent), loc(l), functionArgs(functionArgs),
|
|
parameters(parameters) {}
|
|
|
|
ManagedValue getManagedValue(SILValue arg, CanType t,
|
|
SILParameterInfo parameterInfo) const {
|
|
switch (parameterInfo.getConvention()) {
|
|
case ParameterConvention::Direct_Guaranteed:
|
|
case ParameterConvention::Indirect_In_Guaranteed:
|
|
// If we have a guaranteed parameter, it is passed in at +0, and its
|
|
// lifetime is guaranteed. We can potentially use the argument as-is
|
|
// if the parameter is bound as a 'let' without cleaning up.
|
|
return ManagedValue::forUnmanaged(arg);
|
|
|
|
case ParameterConvention::Direct_Unowned:
|
|
// An unowned parameter is passed at +0, like guaranteed, but it isn't
|
|
// kept alive by the caller, so we need to retain and manage it
|
|
// regardless.
|
|
return gen.emitManagedRetain(loc, arg);
|
|
|
|
case ParameterConvention::Indirect_Inout:
|
|
case ParameterConvention::Indirect_InoutAliasable:
|
|
// An inout parameter is +0 and guaranteed, but represents an lvalue.
|
|
return ManagedValue::forLValue(arg);
|
|
|
|
case ParameterConvention::Direct_Owned:
|
|
case ParameterConvention::Indirect_In:
|
|
// An owned or 'in' parameter is passed in at +1. We can claim ownership
|
|
// of the parameter and clean it up when it goes out of scope.
|
|
return gen.emitManagedRValueWithCleanup(arg);
|
|
}
|
|
llvm_unreachable("bad parameter convention");
|
|
}
|
|
|
|
ManagedValue visitType(CanType t) {
|
|
auto argType = gen.getLoweredType(t);
|
|
// Pop the next parameter info.
|
|
auto parameterInfo = parameters.front();
|
|
parameters = parameters.slice(1);
|
|
assert(
|
|
argType
|
|
== parent->getParent()->mapTypeIntoContext(
|
|
gen.getSILType(parameterInfo))
|
|
&& "argument does not have same type as specified by parameter info");
|
|
|
|
SILValue arg =
|
|
parent->createFunctionArgument(argType, loc.getAsASTNode<ValueDecl>());
|
|
ManagedValue mv = getManagedValue(arg, t, parameterInfo);
|
|
|
|
// If the value is a (possibly optional) ObjC block passed into the entry
|
|
// point of the function, then copy it so we can treat the value reliably
|
|
// as a heap object. Escape analysis can eliminate this copy if it's
|
|
// unneeded during optimization.
|
|
CanType objectType = t;
|
|
if (auto theObjTy = t.getAnyOptionalObjectType())
|
|
objectType = theObjTy;
|
|
if (functionArgs
|
|
&& isa<FunctionType>(objectType)
|
|
&& cast<FunctionType>(objectType)->getRepresentation()
|
|
== FunctionType::Representation::Block) {
|
|
SILValue blockCopy = gen.B.createCopyBlock(loc, mv.getValue());
|
|
mv = gen.emitManagedRValueWithCleanup(blockCopy);
|
|
}
|
|
return mv;
|
|
}
|
|
|
|
ManagedValue visitTupleType(CanTupleType t) {
|
|
SmallVector<ManagedValue, 4> elements;
|
|
|
|
auto &tl = gen.getTypeLowering(t);
|
|
bool canBeGuaranteed = tl.isLoadable();
|
|
|
|
// Collect the exploded elements.
|
|
for (auto fieldType : t.getElementTypes()) {
|
|
auto elt = visit(fieldType);
|
|
// If we can't borrow one of the elements as a guaranteed parameter, then
|
|
// we have to +1 the tuple.
|
|
if (elt.hasCleanup())
|
|
canBeGuaranteed = false;
|
|
elements.push_back(elt);
|
|
}
|
|
|
|
if (tl.isLoadable()) {
|
|
SmallVector<SILValue, 4> elementValues;
|
|
if (canBeGuaranteed) {
|
|
// If all of the elements were guaranteed, we can form a guaranteed tuple.
|
|
for (auto element : elements)
|
|
elementValues.push_back(element.getUnmanagedValue());
|
|
} else {
|
|
// Otherwise, we need to move or copy values into a +1 tuple.
|
|
for (auto element : elements) {
|
|
SILValue value = element.hasCleanup()
|
|
? element.forward(gen)
|
|
: element.copyUnmanaged(gen, loc).forward(gen);
|
|
elementValues.push_back(value);
|
|
}
|
|
}
|
|
auto tupleValue = gen.B.createTuple(loc, tl.getLoweredType(),
|
|
elementValues);
|
|
return canBeGuaranteed
|
|
? ManagedValue::forUnmanaged(tupleValue)
|
|
: gen.emitManagedRValueWithCleanup(tupleValue);
|
|
} else {
|
|
// If the type is address-only, we need to move or copy the elements into
|
|
// a tuple in memory.
|
|
// TODO: It would be a bit more efficient to use a preallocated buffer
|
|
// in this case.
|
|
auto buffer = gen.emitTemporaryAllocation(loc, tl.getLoweredType());
|
|
for (auto i : indices(elements)) {
|
|
auto element = elements[i];
|
|
auto elementBuffer = gen.B.createTupleElementAddr(loc, buffer,
|
|
i, element.getType().getAddressType());
|
|
if (element.hasCleanup())
|
|
element.forwardInto(gen, loc, elementBuffer);
|
|
else
|
|
element.copyInto(gen, elementBuffer, loc);
|
|
}
|
|
return gen.emitManagedRValueWithCleanup(buffer);
|
|
}
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
namespace {
|
|
|
|
/// A helper for creating SILArguments and binding variables to the argument
|
|
/// names.
|
|
struct ArgumentInitHelper {
|
|
SILGenFunction &gen;
|
|
SILFunction &f;
|
|
SILGenBuilder &initB;
|
|
|
|
/// An ArrayRef that we use in our SILParameterList queue. Parameters are
|
|
/// sliced off of the front as they're emitted.
|
|
ArrayRef<SILParameterInfo> parameters;
|
|
unsigned ArgNo = 0;
|
|
|
|
ArgumentInitHelper(SILGenFunction &gen, SILFunction &f)
|
|
: gen(gen), f(f), initB(gen.B),
|
|
parameters(f.getLoweredFunctionType()->getParameters()) {
|
|
}
|
|
|
|
unsigned getNumArgs() const { return ArgNo; }
|
|
|
|
ManagedValue makeArgument(Type ty, SILBasicBlock *parent, SILLocation l) {
|
|
assert(ty && "no type?!");
|
|
|
|
// Create an RValue by emitting destructured arguments into a basic block.
|
|
CanType canTy = ty->getCanonicalType();
|
|
return EmitBBArguments(gen, parent, l, /*functionArgs*/ true,
|
|
parameters).visit(canTy);
|
|
}
|
|
|
|
/// Create a SILArgument and store its value into the given Initialization,
|
|
/// if not null.
|
|
void makeArgumentIntoBinding(Type ty, SILBasicBlock *parent, VarDecl *vd) {
|
|
SILLocation loc(vd);
|
|
loc.markAsPrologue();
|
|
|
|
ManagedValue argrv = makeArgument(ty, parent, loc);
|
|
|
|
// Create a shadow copy of inout parameters so they can be captured
|
|
// by closures. The InOutDeshadowing guaranteed optimization will
|
|
// eliminate the variable if it is not needed.
|
|
if (auto inOutTy = vd->getType()->getAs<InOutType>()) {
|
|
|
|
SILValue address = argrv.getUnmanagedValue();
|
|
|
|
CanType objectType = inOutTy->getObjectType()->getCanonicalType();
|
|
|
|
// As a special case, don't introduce a local variable for
|
|
// Builtin.UnsafeValueBuffer, which is not copyable.
|
|
if (isa<BuiltinUnsafeValueBufferType>(objectType)) {
|
|
// FIXME: mark a debug location?
|
|
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(address);
|
|
gen.B.createDebugValueAddr(loc, address, {vd->isLet(), ArgNo});
|
|
return;
|
|
}
|
|
assert(argrv.getType().isAddress() && "expected inout to be address");
|
|
} else {
|
|
assert(vd->isLet() && "expected parameter to be immutable!");
|
|
// If the variable is immutable, we can bind the value as is.
|
|
// Leave the cleanup on the argument, if any, in place to consume the
|
|
// argument if we're responsible for it.
|
|
}
|
|
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(argrv.getValue());
|
|
if (argrv.getType().isAddress())
|
|
gen.B.createDebugValueAddr(loc, argrv.getValue(), {vd->isLet(), ArgNo});
|
|
else
|
|
gen.B.createDebugValue(loc, argrv.getValue(), {vd->isLet(), ArgNo});
|
|
}
|
|
|
|
void emitParam(ParamDecl *PD) {
|
|
// The contextual type of a ParamDecl has DynamicSelfType. We don't want
|
|
// that here.
|
|
auto type = PD->getType()->eraseDynamicSelfType();
|
|
|
|
++ArgNo;
|
|
if (PD->hasName()) {
|
|
makeArgumentIntoBinding(type, &*f.begin(), PD);
|
|
return;
|
|
}
|
|
|
|
emitAnonymousParam(type, PD, PD);
|
|
}
|
|
|
|
void emitAnonymousParam(Type type, SILLocation paramLoc, ParamDecl *PD) {
|
|
// Allow non-materializable tuples to be bound to anonymous parameters.
|
|
if (!type->isMaterializable()) {
|
|
if (auto tupleType = type->getAs<TupleType>()) {
|
|
for (auto eltType : tupleType->getElementTypes()) {
|
|
emitAnonymousParam(eltType, paramLoc, nullptr);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// A value bound to _ is unused and can be immediately released.
|
|
Scope discardScope(gen.Cleanups, CleanupLocation(PD));
|
|
|
|
// Manage the parameter.
|
|
ManagedValue argrv = makeArgument(type, &*f.begin(), paramLoc);
|
|
|
|
// Don't do anything else if we don't have a parameter.
|
|
if (!PD) return;
|
|
|
|
// Emit debug information for the argument.
|
|
SILLocation loc(PD);
|
|
loc.markAsPrologue();
|
|
if (argrv.getType().isAddress())
|
|
gen.B.createDebugValueAddr(loc, argrv.getValue(), {PD->isLet(), ArgNo});
|
|
else
|
|
gen.B.createDebugValue(loc, argrv.getValue(), {PD->isLet(), ArgNo});
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
static void makeArgument(Type ty, ParamDecl *decl,
|
|
SmallVectorImpl<SILValue> &args, SILGenFunction &gen) {
|
|
assert(ty && "no type?!");
|
|
|
|
// Destructure tuple arguments.
|
|
if (TupleType *tupleTy = ty->getAs<TupleType>()) {
|
|
for (auto fieldType : tupleTy->getElementTypes())
|
|
makeArgument(fieldType, decl, args, gen);
|
|
} else {
|
|
auto arg =
|
|
gen.F.begin()->createFunctionArgument(gen.getLoweredType(ty), decl);
|
|
args.push_back(arg);
|
|
}
|
|
}
|
|
|
|
|
|
void SILGenFunction::bindParametersForForwarding(const ParameterList *params,
|
|
SmallVectorImpl<SILValue> ¶meters) {
|
|
for (auto param : *params) {
|
|
Type type = (param->hasType()
|
|
? param->getType()->eraseDynamicSelfType()
|
|
: F.mapTypeIntoContext(param->getInterfaceType()));
|
|
makeArgument(type, param, parameters, *this);
|
|
}
|
|
}
|
|
|
|
static void emitCaptureArguments(SILGenFunction &gen,
|
|
AnyFunctionRef closure,
|
|
CapturedValue capture,
|
|
unsigned ArgNo) {
|
|
|
|
auto *VD = capture.getDecl();
|
|
SILLocation Loc(VD);
|
|
Loc.markAsPrologue();
|
|
|
|
// Local function to get the captured variable type within the capturing
|
|
// context.
|
|
auto getVarTypeInCaptureContext = [&]() -> Type {
|
|
auto interfaceType = cast<VarDecl>(VD)->getInterfaceType();
|
|
if (!interfaceType->hasTypeParameter()) return interfaceType;
|
|
|
|
// NB: The generic signature may be elided from the lowered function type
|
|
// if the function is in a fully-specialized context, but we still need to
|
|
// canonicalize references to the generic parameters that may appear in
|
|
// non-canonical types in that context. We need the original generic
|
|
// environment from the AST for that.
|
|
auto genericEnv = closure.getGenericEnvironment();
|
|
return genericEnv->mapTypeIntoContext(gen.F.getModule().getSwiftModule(),
|
|
interfaceType);
|
|
};
|
|
|
|
switch (gen.SGM.Types.getDeclCaptureKind(capture)) {
|
|
case CaptureKind::None:
|
|
break;
|
|
|
|
case CaptureKind::Constant: {
|
|
auto type = getVarTypeInCaptureContext();
|
|
auto &lowering = gen.getTypeLowering(type);
|
|
// Constant decls are captured by value.
|
|
SILType ty = lowering.getLoweredType();
|
|
SILValue val = gen.F.begin()->createFunctionArgument(ty, VD);
|
|
|
|
// If the original variable was settable, then Sema will have treated the
|
|
// VarDecl as an lvalue, even in the closure's use. As such, we need to
|
|
// allow formation of the address for this captured value. Create a
|
|
// temporary within the closure to provide this address.
|
|
if (VD->isSettable(VD->getDeclContext())) {
|
|
auto addr = gen.emitTemporaryAllocation(VD, ty);
|
|
lowering.emitStore(gen.B, VD, val, addr, StoreOwnershipQualifier::Init);
|
|
val = addr;
|
|
}
|
|
|
|
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(val);
|
|
if (auto *AllocStack = dyn_cast<AllocStackInst>(val))
|
|
AllocStack->setArgNo(ArgNo);
|
|
else
|
|
gen.B.createDebugValue(Loc, val, {/*Constant*/true, ArgNo});
|
|
|
|
// TODO: Closure contexts should always be guaranteed.
|
|
if (!gen.SGM.M.getOptions().EnableGuaranteedClosureContexts
|
|
&& !lowering.isTrivial())
|
|
gen.enterDestroyCleanup(val);
|
|
break;
|
|
}
|
|
|
|
case CaptureKind::Box: {
|
|
// LValues are captured as a retained @box that owns
|
|
// the captured value.
|
|
auto type = getVarTypeInCaptureContext();
|
|
auto boxTy = gen.SGM.Types.getContextBoxTypeForCapture(VD,
|
|
gen.getLoweredType(type).getSwiftRValueType(),
|
|
gen.F.getGenericEnvironment(), /*mutable*/ true);
|
|
SILValue box = gen.F.begin()->createFunctionArgument(
|
|
SILType::getPrimitiveObjectType(boxTy), VD);
|
|
SILValue addr = gen.B.createProjectBox(VD, box, 0);
|
|
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr, box);
|
|
gen.B.createDebugValueAddr(Loc, addr, {/*Constant*/false, ArgNo});
|
|
if (!gen.SGM.M.getOptions().EnableGuaranteedClosureContexts)
|
|
gen.Cleanups.pushCleanup<StrongReleaseCleanup>(box);
|
|
break;
|
|
}
|
|
case CaptureKind::StorageAddress: {
|
|
// Non-escaping stored decls are captured as the address of the value.
|
|
auto type = getVarTypeInCaptureContext();
|
|
SILType ty = gen.getLoweredType(type).getAddressType();
|
|
SILValue addr = gen.F.begin()->createFunctionArgument(ty, VD);
|
|
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr);
|
|
gen.B.createDebugValueAddr(Loc, addr, {/*Constant*/true, ArgNo});
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SILGenFunction::emitProlog(AnyFunctionRef TheClosure,
|
|
ArrayRef<ParameterList*> paramPatterns,
|
|
Type resultType, bool throws) {
|
|
unsigned ArgNo = emitProlog(paramPatterns, resultType,
|
|
TheClosure.getAsDeclContext(), throws);
|
|
|
|
// Emit the capture argument variables. These are placed last because they
|
|
// become the first curry level of the SIL function.
|
|
auto captureInfo = SGM.Types.getLoweredLocalCaptures(TheClosure);
|
|
for (auto capture : captureInfo.getCaptures()) {
|
|
if (capture.isDynamicSelfMetadata()) {
|
|
auto selfMetatype = MetatypeType::get(
|
|
captureInfo.getDynamicSelfType()->getSelfType(),
|
|
MetatypeRepresentation::Thick)
|
|
->getCanonicalType();
|
|
SILType ty = SILType::getPrimitiveObjectType(selfMetatype);
|
|
SILValue val = F.begin()->createFunctionArgument(ty);
|
|
(void) val;
|
|
|
|
return;
|
|
}
|
|
|
|
emitCaptureArguments(*this, TheClosure, capture, ++ArgNo);
|
|
}
|
|
}
|
|
|
|
static void emitIndirectResultParameters(SILGenFunction &gen, Type resultType,
|
|
DeclContext *DC) {
|
|
// Expand tuples.
|
|
if (auto tupleType = resultType->getAs<TupleType>()) {
|
|
for (auto eltType : tupleType->getElementTypes()) {
|
|
emitIndirectResultParameters(gen, eltType, DC);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the return type is address-only, emit the indirect return argument.
|
|
|
|
const TypeLowering &resultTI =
|
|
gen.getTypeLowering(DC->mapTypeIntoContext(resultType));
|
|
if (!SILModuleConventions::isReturnedIndirectlyInSIL(
|
|
resultTI.getLoweredType(), gen.SGM.M)) {
|
|
return;
|
|
}
|
|
auto &ctx = gen.getASTContext();
|
|
auto var = new (ctx) ParamDecl(/*IsLet*/ false, SourceLoc(), SourceLoc(),
|
|
ctx.getIdentifier("$return_value"), SourceLoc(),
|
|
ctx.getIdentifier("$return_value"), Type(),
|
|
DC);
|
|
var->setInterfaceType(resultType);
|
|
|
|
auto *arg =
|
|
gen.F.begin()->createFunctionArgument(resultTI.getLoweredType(), var);
|
|
(void)arg;
|
|
}
|
|
|
|
unsigned SILGenFunction::emitProlog(ArrayRef<ParameterList *> paramLists,
|
|
Type resultType, DeclContext *DC,
|
|
bool throws) {
|
|
// Create the indirect result parameters.
|
|
if (auto *genericSig = DC->getGenericSignatureOfContext()) {
|
|
resultType = genericSig->getCanonicalTypeInContext(
|
|
resultType, *SGM.M.getSwiftModule());
|
|
}
|
|
|
|
emitIndirectResultParameters(*this, resultType, DC);
|
|
|
|
// Emit the argument variables in calling convention order.
|
|
ArgumentInitHelper emitter(*this, F);
|
|
|
|
for (ParameterList *paramList : reversed(paramLists)) {
|
|
// Add the SILArguments and use them to initialize the local argument
|
|
// values.
|
|
for (auto ¶m : *paramList)
|
|
emitter.emitParam(param);
|
|
}
|
|
|
|
// Record the ArgNo of the artificial $error inout argument.
|
|
unsigned ArgNo = emitter.getNumArgs();
|
|
if (throws) {
|
|
RegularLocation Loc{SourceLoc()};
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(DC))
|
|
Loc = AFD->getThrowsLoc();
|
|
else if (auto *ACE = dyn_cast<AbstractClosureExpr>(DC))
|
|
Loc = ACE->getLoc();
|
|
auto NativeErrorTy = SILType::getExceptionType(getASTContext());
|
|
ManagedValue Undef = emitUndef(Loc, NativeErrorTy);
|
|
B.createDebugValue(Loc, Undef.getValue(),
|
|
{"$error", /*Constant*/ false, ++ArgNo});
|
|
}
|
|
|
|
return ArgNo;
|
|
}
|
|
|