Files
swift-mirror/lib/SIL/Utils/Projection.cpp
Michael Gottesman e1a19e4173 [sil] Split library into subfolders, while still building as a single library still.
Specifically, I split it into 3 initial categories: IR, Utils, Verifier. I just
did this quickly, we can always split it more later if we want.

I followed the model that we use in SILOptimizer: ./lib/SIL/CMakeLists.txt vends
 a macro (sil_register_sources) to the sub-folders that register the sources of
 the subdirectory with a global state variable that ./lib/SIL/CMakeLists.txt
 defines. Then after including those subdirs, the parent cmake declares the SIL
 library. So the output is the same, but we have the flexibility of having
 subdirectories to categorize source files.
2020-03-30 11:01:00 -07:00

1532 lines
53 KiB
C++

//===--- Projection.cpp ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-projection"
#include "swift/SIL/Projection.h"
#include "swift/Basic/NullablePtr.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILUndef.h"
#include "llvm/ADT/None.h"
#include "llvm/Support/Debug.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Projection Static Asserts
//===----------------------------------------------------------------------===//
/// These are just for performance and verification. If one needs to make
/// changes that cause the asserts the fire, please update them. The purpose is
/// to prevent these predicates from changing values by mistake.
static_assert(std::is_standard_layout<Projection>::value,
"Expected projection to be a standard layout type");
//===----------------------------------------------------------------------===//
// Utility
//===----------------------------------------------------------------------===//
/// Extract an integer index from a SILValue.
///
/// Return true if IndexVal is a constant index representable as unsigned
/// int. We do not support symbolic projections yet, only 32-bit unsigned
/// integers.
bool swift::getIntegerIndex(SILValue IndexVal, unsigned &IndexConst) {
if (auto *IndexLiteral = dyn_cast<IntegerLiteralInst>(IndexVal)) {
APInt ConstInt = IndexLiteral->getValue();
// IntegerLiterals are signed.
if (ConstInt.isIntN(32) && ConstInt.isNonNegative()) {
IndexConst = (unsigned)ConstInt.getSExtValue();
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// Projection
//===----------------------------------------------------------------------===//
Projection::Projection(SingleValueInstruction *I) : Value() {
if (!I)
return;
/// Initialize given the specific instruction type and verify with asserts
/// that we constructed it correctly.
switch (I->getKind()) {
// If we do not support this instruction kind, then just bail. Index will
// be None so the Projection will be invalid.
default:
return;
case SILInstructionKind::StructElementAddrInst: {
auto *SEAI = cast<StructElementAddrInst>(I);
Value = ValueTy(ProjectionKind::Struct, SEAI->getFieldNo());
assert(getKind() == ProjectionKind::Struct);
assert(getIndex() == SEAI->getFieldNo());
break;
}
case SILInstructionKind::StructExtractInst: {
auto *SEI = cast<StructExtractInst>(I);
Value = ValueTy(ProjectionKind::Struct, SEI->getFieldNo());
assert(getKind() == ProjectionKind::Struct);
assert(getIndex() == SEI->getFieldNo());
break;
}
case SILInstructionKind::RefElementAddrInst: {
auto *REAI = cast<RefElementAddrInst>(I);
Value = ValueTy(ProjectionKind::Class, REAI->getFieldNo());
assert(getKind() == ProjectionKind::Class);
assert(getIndex() == REAI->getFieldNo());
break;
}
case SILInstructionKind::RefTailAddrInst: {
auto *RTAI = cast<RefTailAddrInst>(I);
auto *Ty = RTAI->getTailType().getASTType().getPointer();
Value = ValueTy(ProjectionKind::TailElems, Ty);
assert(getKind() == ProjectionKind::TailElems);
break;
}
case SILInstructionKind::ProjectBoxInst: {
auto *PBI = cast<ProjectBoxInst>(I);
Value = ValueTy(ProjectionKind::Box, static_cast<uintptr_t>(0));
assert(getKind() == ProjectionKind::Box);
assert(getIndex() == 0);
(void) PBI;
break;
}
case SILInstructionKind::TupleExtractInst: {
auto *TEI = cast<TupleExtractInst>(I);
Value = ValueTy(ProjectionKind::Tuple, TEI->getFieldNo());
assert(getKind() == ProjectionKind::Tuple);
assert(getIndex() == TEI->getFieldNo());
break;
}
case SILInstructionKind::TupleElementAddrInst: {
auto *TEAI = cast<TupleElementAddrInst>(I);
Value = ValueTy(ProjectionKind::Tuple, TEAI->getFieldNo());
assert(getKind() == ProjectionKind::Tuple);
assert(getIndex() == TEAI->getFieldNo());
break;
}
case SILInstructionKind::UncheckedEnumDataInst: {
auto *UEDI = cast<UncheckedEnumDataInst>(I);
Value = ValueTy(ProjectionKind::Enum, UEDI->getElementNo());
assert(getKind() == ProjectionKind::Enum);
assert(getIndex() == UEDI->getElementNo());
break;
}
case SILInstructionKind::UncheckedTakeEnumDataAddrInst: {
auto *UTEDAI = cast<UncheckedTakeEnumDataAddrInst>(I);
Value = ValueTy(ProjectionKind::Enum, UTEDAI->getElementNo());
assert(getKind() == ProjectionKind::Enum);
assert(getIndex() == UTEDAI->getElementNo());
break;
}
case SILInstructionKind::IndexAddrInst: {
// We can represent all integers provided here since getIntegerIndex only
// returns 32 bit values. When that changes, this code will need to be
// updated and a MaxLargeIndex will need to be used here. Currently we
// represent large Indexes using a 64 bit integer, so we don't need to mess
// with anything.
unsigned NewIndex = 0;
auto *IAI = cast<IndexAddrInst>(I);
if (getIntegerIndex(IAI->getIndex(), NewIndex)) {
Value = ValueTy(ProjectionKind::Index, NewIndex);
assert(getKind() == ProjectionKind::Index);
assert(getIndex() == NewIndex);
}
break;
}
case SILInstructionKind::UpcastInst: {
auto *Ty = I->getType().getASTType().getPointer();
assert(Ty->isCanonical());
Value = ValueTy(ProjectionKind::Upcast, Ty);
assert(getKind() == ProjectionKind::Upcast);
break;
}
case SILInstructionKind::UncheckedRefCastInst: {
auto *Ty = I->getType().getASTType().getPointer();
assert(Ty->isCanonical());
Value = ValueTy(ProjectionKind::RefCast, Ty);
assert(getKind() == ProjectionKind::RefCast);
break;
}
case SILInstructionKind::UncheckedBitwiseCastInst:
case SILInstructionKind::UncheckedAddrCastInst: {
auto *Ty = I->getType().getASTType().getPointer();
assert(Ty->isCanonical());
Value = ValueTy(ProjectionKind::BitwiseCast, Ty);
assert(getKind() == ProjectionKind::BitwiseCast);
break;
}
}
}
/// Apply this projection to \p BaseType and return the relevant subfield's
/// SILType if BaseField has less subtypes than projection's offset.
///
/// WARNING: This is not a constant time operation because it is implemented
/// in terms of getVarDecl, which requests all BaseType's stored properties.
SILType Projection::getType(SILType BaseType, SILModule &M,
TypeExpansionContext context) const {
assert(isValid());
switch (getKind()) {
case ProjectionKind::Struct:
case ProjectionKind::Class:
return BaseType.getFieldType(getVarDecl(BaseType), M, context);
case ProjectionKind::Enum:
return BaseType.getEnumElementType(getEnumElementDecl(BaseType), M, context);
case ProjectionKind::Box:
return getSILBoxFieldType(context, BaseType.castTo<SILBoxType>(), M.Types,
getIndex());
case ProjectionKind::Tuple:
return BaseType.getTupleElementType(getIndex());
case ProjectionKind::Upcast:
case ProjectionKind::RefCast:
case ProjectionKind::BitwiseCast:
case ProjectionKind::TailElems:
return getCastType(BaseType);
case ProjectionKind::Index:
// Index types do not change the underlying type.
return BaseType;
}
llvm_unreachable("Unhandled ProjectionKind in switch.");
}
NullablePtr<SingleValueInstruction>
Projection::createObjectProjection(SILBuilder &B, SILLocation Loc,
SILValue Base) const {
SILType BaseTy = Base->getType();
// We can only create a value projection from an object.
if (!BaseTy.isObject())
return nullptr;
// Ok, we now know that the type of Base and the type represented by the base
// of this projection match and that this projection can be represented as
// value. Create the instruction if we can. Otherwise, return nullptr.
switch (getKind()) {
case ProjectionKind::Struct:
return B.createStructExtract(Loc, Base, getVarDecl(BaseTy));
case ProjectionKind::Tuple:
return B.createTupleExtract(Loc, Base, getIndex());
case ProjectionKind::Index:
return nullptr;
case ProjectionKind::Enum:
return B.createUncheckedEnumData(Loc, Base, getEnumElementDecl(BaseTy));
case ProjectionKind::Class:
return nullptr;
case ProjectionKind::TailElems:
return nullptr;
case ProjectionKind::Box:
return nullptr;
case ProjectionKind::Upcast:
return B.createUpcast(Loc, Base, getCastType(BaseTy));
case ProjectionKind::RefCast:
return B.createUncheckedRefCast(Loc, Base, getCastType(BaseTy));
case ProjectionKind::BitwiseCast:
return B.createUncheckedBitwiseCast(Loc, Base, getCastType(BaseTy));
}
llvm_unreachable("Unhandled ProjectionKind in switch.");
}
NullablePtr<SingleValueInstruction>
Projection::createAddressProjection(SILBuilder &B, SILLocation Loc,
SILValue Base) const {
SILType BaseTy = Base->getType();
// We can only create an address projection from an object, unless we have a
// class.
if (BaseTy.getClassOrBoundGenericClass() || !BaseTy.isAddress())
return nullptr;
// Ok, we now know that the type of Base and the type represented by the base
// of this projection match and that this projection can be represented as
// value. Create the instruction if we can. Otherwise, return nullptr.
switch (getKind()) {
case ProjectionKind::Struct:
return B.createStructElementAddr(Loc, Base, getVarDecl(BaseTy));
case ProjectionKind::Tuple:
return B.createTupleElementAddr(Loc, Base, getIndex());
case ProjectionKind::Index: {
auto IntLiteralTy =
SILType::getBuiltinIntegerType(64, B.getModule().getASTContext());
auto IntLiteralIndex =
B.createIntegerLiteral(Loc, IntLiteralTy, getIndex());
return B.createIndexAddr(Loc, Base, IntLiteralIndex);
}
case ProjectionKind::Enum:
return B.createUncheckedTakeEnumDataAddr(Loc, Base,
getEnumElementDecl(BaseTy));
case ProjectionKind::Class:
return B.createRefElementAddr(Loc, Base, getVarDecl(BaseTy));
case ProjectionKind::TailElems:
return B.createRefTailAddr(Loc, Base, getCastType(BaseTy));
case ProjectionKind::Box:
return B.createProjectBox(Loc, Base, getIndex());
case ProjectionKind::Upcast:
return B.createUpcast(Loc, Base, getCastType(BaseTy));
case ProjectionKind::RefCast:
case ProjectionKind::BitwiseCast:
return B.createUncheckedAddrCast(Loc, Base, getCastType(BaseTy));
}
llvm_unreachable("Unhandled ProjectionKind in switch.");
}
void Projection::getFirstLevelProjections(
SILType Ty, SILModule &Mod, TypeExpansionContext context,
llvm::SmallVectorImpl<Projection> &Out) {
if (auto *S = Ty.getStructOrBoundGenericStruct()) {
unsigned Count = 0;
for (auto *VDecl : S->getStoredProperties()) {
(void) VDecl;
Projection P(ProjectionKind::Struct, Count++);
LLVM_DEBUG(ProjectionPath X(Ty);
assert(X.getMostDerivedType(Mod, context) == Ty);
X.append(P);
assert(X.getMostDerivedType(Mod, context) ==
Ty.getFieldType(VDecl, Mod, context));
X.verify(Mod, context););
Out.push_back(P);
}
return;
}
if (auto TT = Ty.getAs<TupleType>()) {
for (unsigned i = 0, e = TT->getNumElements(); i != e; ++i) {
Projection P(ProjectionKind::Tuple, i);
LLVM_DEBUG(ProjectionPath X(Ty);
assert(X.getMostDerivedType(Mod, context) == Ty);
X.append(P);
assert(X.getMostDerivedType(Mod, context) ==
Ty.getTupleElementType(i));
X.verify(Mod, context););
Out.push_back(P);
}
return;
}
if (auto *C = Ty.getClassOrBoundGenericClass()) {
unsigned Count = 0;
for (auto *VDecl : C->getStoredProperties()) {
(void) VDecl;
Projection P(ProjectionKind::Class, Count++);
LLVM_DEBUG(ProjectionPath X(Ty);
assert(X.getMostDerivedType(Mod, context) == Ty);
X.append(P);
assert(X.getMostDerivedType(Mod, context) ==
Ty.getFieldType(VDecl, Mod, context));
X.verify(Mod, context););
Out.push_back(P);
}
return;
}
if (auto Box = Ty.getAs<SILBoxType>()) {
for (unsigned field : indices(Box->getLayout()->getFields())) {
Projection P(ProjectionKind::Box, field);
LLVM_DEBUG(ProjectionPath X(Ty);
assert(X.getMostDerivedType(Mod, context) == Ty); X.append(P);
assert(X.getMostDerivedType(Mod, context) ==
getSILBoxFieldType(context, Box, Mod.Types, field));
X.verify(Mod, context););
(void)Box;
Out.push_back(P);
}
return;
}
}
//===----------------------------------------------------------------------===//
// Projection Path
//===----------------------------------------------------------------------===//
Optional<ProjectionPath> ProjectionPath::getProjectionPath(SILValue Start,
SILValue End) {
ProjectionPath P(Start->getType(), End->getType());
// If Start == End, there is a "trivial" projection path in between the
// two. This is represented by returning an empty ProjectionPath.
if (Start == End)
return std::move(P);
// Do not inspect the body of types with unreferenced types such as bitfields
// and unions. This is currently only associated with structs.
if (Start->getType().aggregateHasUnreferenceableStorage() ||
End->getType().aggregateHasUnreferenceableStorage())
return llvm::NoneType::None;
auto Iter = End;
while (Start != Iter) {
Projection AP(Iter);
if (!AP.isValid())
break;
P.Path.push_back(AP);
Iter = cast<SingleValueInstruction>(*Iter).getOperand(0);
}
// Return None if we have an empty projection list or if Start == Iter.
// We do not worry about th implicit #0 in case of index_addr, as the
// ProjectionPath never allow paths to be compared as a list of indices.
// Only the encoded type+index pair will be compared.
if (P.empty() || Start != Iter)
return llvm::NoneType::None;
// Reverse to get a path from base to most-derived.
std::reverse(P.Path.begin(), P.Path.end());
// Otherwise, return P.
return std::move(P);
}
/// Returns true if the two paths have a non-empty symmetric difference.
///
/// This means that the two objects have the same base but access different
/// fields of the base object.
bool
ProjectionPath::hasNonEmptySymmetricDifference(const ProjectionPath &RHS) const{
// First make sure that both of our base types are the same.
if (BaseType != RHS.BaseType)
return false;
// Otherwise, we have a common base and perhaps some common subpath.
auto LHSIter = Path.begin();
auto RHSIter = RHS.Path.begin();
bool FoundDifferingProjections = false;
// For each index i until min path size...
unsigned i = 0;
for (unsigned e = std::min(size(), RHS.size()); i != e; ++i) {
// Grab the current projections.
const Projection &LHSProj = *LHSIter;
const Projection &RHSProj = *RHSIter;
// If we are accessing different fields of a common object, the two
// projection paths may have a non-empty symmetric difference. We check if
if (LHSProj != RHSProj) {
LLVM_DEBUG(llvm::dbgs() << " Path different at index: "
<< i << '\n');
FoundDifferingProjections = true;
break;
}
// Continue if we are accessing the same field.
LHSIter++;
RHSIter++;
}
// All path elements are the same. The symmetric difference is empty.
if (!FoundDifferingProjections)
return false;
// We found differing projections, but we need to make sure that there are no
// casts in the symmetric difference. To be conservative, we only wish to
// allow for casts to appear in the common parts of projections.
for (unsigned li = i, e = size(); li != e; ++li) {
if (LHSIter->isAliasingCast())
return false;
LHSIter++;
}
for (unsigned ri = i, e = RHS.size(); ri != e; ++ri) {
if (RHSIter->isAliasingCast())
return false;
RHSIter++;
}
// If we don't have any casts in our symmetric difference (i.e. only typed
// GEPs), then we can say that these actually have a symmetric difference we
// can understand. The fundamental issue here is that since we do not have any
// notion of size, we cannot know the effect of a cast + gep on the final
// location that we are reaching.
return true;
}
/// TODO: Integrate has empty non-symmetric difference into here.
SubSeqRelation_t
ProjectionPath::computeSubSeqRelation(const ProjectionPath &RHS) const {
// Make sure that both base types are the same. Otherwise, we can not compare
// the projections as sequences.
if (BaseType != RHS.BaseType)
return SubSeqRelation_t::Unknown;
// If both paths are empty, return Equal.
if (empty() && RHS.empty())
return SubSeqRelation_t::Equal;
auto LHSIter = begin();
auto RHSIter = RHS.begin();
unsigned MinPathSize = std::min(size(), RHS.size());
// For each index i until min path size...
for (unsigned i = 0; i != MinPathSize; ++i) {
// Grab the current projections.
const Projection &LHSProj = *LHSIter;
const Projection &RHSProj = *RHSIter;
// If the two projections do not equal exactly, return Unrelated.
//
// TODO: If Index equals zero, then we know that the two lists have nothing
// in common and should return unrelated. If Index is greater than zero,
// then we know that the two projection paths have a common base but a
// non-empty symmetric difference. For now we just return Unrelated since I
// can not remember why I had the special check in the
// hasNonEmptySymmetricDifference code.
if (LHSProj != RHSProj)
return SubSeqRelation_t::Unknown;
// Otherwise increment reverse iterators.
LHSIter++;
RHSIter++;
}
// Ok, we now know that one of the paths is a subsequence of the other. If
// both size() and RHS.size() equal then we know that the entire sequences
// equal.
if (size() == RHS.size())
return SubSeqRelation_t::Equal;
// If MinPathSize == size(), then we know that LHS is a strict subsequence of
// RHS.
if (MinPathSize == size())
return SubSeqRelation_t::LHSStrictSubSeqOfRHS;
// Otherwise, we know that MinPathSize must be RHS.size() and RHS must be a
// strict subsequence of LHS. Assert to check this and return.
assert(MinPathSize == RHS.size() &&
"Since LHS and RHS don't equal and size() != MinPathSize, RHS.size() "
"must equal MinPathSize");
return SubSeqRelation_t::RHSStrictSubSeqOfLHS;
}
Optional<ProjectionPath>
ProjectionPath::removePrefix(const ProjectionPath &Path,
const ProjectionPath &Prefix) {
// We can only subtract paths that have the same base.
if (Path.BaseType != Prefix.BaseType)
return llvm::NoneType::None;
// If Prefix is greater than or equal to Path in size, Prefix can not be a
// prefix of Path. Return None.
unsigned PrefixSize = Prefix.size();
unsigned PathSize = Path.size();
if (PrefixSize >= PathSize)
return llvm::NoneType::None;
// First make sure that the prefix matches.
Optional<ProjectionPath> P = ProjectionPath(Path.BaseType);
for (unsigned i = 0; i < PrefixSize; i++) {
if (Path.Path[i] != Prefix.Path[i]) {
P.reset();
return P;
}
}
// Add the rest of Path to P and return P.
for (unsigned i = PrefixSize, e = PathSize; i != e; ++i) {
P->Path.push_back(Path.Path[i]);
}
return P;
}
void Projection::print(raw_ostream &os, SILType baseType) const {
if (isNominalKind()) {
auto *Decl = getVarDecl(baseType);
os << "Field: ";
Decl->print(os);
return;
}
if (getKind() == ProjectionKind::Tuple) {
os << "Index: " << getIndex();
return;
}
if (getKind() == ProjectionKind::BitwiseCast) {
os << "BitwiseCast";
return;
}
if (getKind() == ProjectionKind::Index) {
os << "Index: " << getIndex();
return;
}
if (getKind() == ProjectionKind::Upcast) {
os << "UpCast";
return;
}
if (getKind() == ProjectionKind::RefCast) {
os << "RefCast";
return;
}
if (getKind() == ProjectionKind::Box) {
os << " Box over";
return;
}
if (getKind() == ProjectionKind::TailElems) {
os << " TailElems";
return;
}
os << "<unexpected projection>";
}
raw_ostream &ProjectionPath::print(raw_ostream &os, SILModule &M,
TypeExpansionContext context) const {
os << "Projection Path [";
SILType IterType = getBaseType();
for (const Projection &IterProj : Path) {
SILType BaseType = IterType;
IterType = IterProj.getType(IterType, M, context);
os << BaseType.getAddressType() << "\n ";
IterProj.print(os, BaseType);
os << " in: ";
}
os << IterType.getAddressType() << "]\n";
return os;
}
void ProjectionPath::dump(SILModule &M, TypeExpansionContext context) const {
print(llvm::dbgs(), M, context);
}
void ProjectionPath::verify(SILModule &M, TypeExpansionContext context) {
#ifndef NDEBUG
SILType IterTy = getBaseType();
assert(IterTy);
for (auto &Proj : Path) {
IterTy = Proj.getType(IterTy, M, context);
assert(IterTy);
}
#endif
}
void
ProjectionPath::expandTypeIntoLeafProjectionPaths(SILType B, SILModule *Mod,
TypeExpansionContext context,
ProjectionPathList &Paths) {
// Perform a BFS to expand the given type into projectionpath each of
// which contains 1 field from the type.
llvm::SmallVector<ProjectionPath, 8> Worklist;
llvm::SmallVector<Projection, 8> Projections;
// Push an empty projection path to get started.
ProjectionPath P(B);
Worklist.push_back(P);
do {
// Get the next level projections based on current projection's type.
ProjectionPath PP = Worklist.pop_back_val();
// Get the current type to process.
SILType Ty = PP.getMostDerivedType(*Mod, context);
LLVM_DEBUG(llvm::dbgs() << "Visiting type: " << Ty << "\n");
// If this is a class type, we have reached the end of the type
// tree for this type.
//
// We do not push its next level projection into the worklist,
// if we do that, we could run into an infinite loop, e.g.
//
// class SelfLoop {
// var p : SelfLoop
// }
//
// struct XYZ {
// var x : Int
// var y : SelfLoop
// }
//
// The worklist would never be empty in this case !.
//
if (Ty.getClassOrBoundGenericClass()) {
LLVM_DEBUG(llvm::dbgs() << " Found class. Finished projection list\n");
Paths.push_back(PP);
continue;
}
// Get the first level projection of the current type.
Projections.clear();
Projection::getFirstLevelProjections(Ty, *Mod, context, Projections);
// Reached the end of the projection tree, this field can not be expanded
// anymore.
if (Projections.empty()) {
LLVM_DEBUG(llvm::dbgs() << " No projections. "
"Finished projection list\n");
Paths.push_back(PP);
continue;
}
// Keep expanding the location.
for (auto &P : Projections) {
ProjectionPath X(B);
X.append(PP);
///assert(PP.getMostDerivedType(*Mod) == X.getMostDerivedType(*Mod));
X.append(P);
Worklist.push_back(X);
}
// Keep iterating if the worklist is not empty.
} while (!Worklist.empty());
}
bool ProjectionPath::hasUncoveredNonTrivials(SILType B, const SILFunction &F,
ProjectionPathSet &CPaths) {
auto &Mod = F.getModule();
llvm::SmallVector<ProjectionPath, 4> Worklist, Paths;
// Push an empty projection path to get started.
ProjectionPath P(B);
Worklist.push_back(P);
do {
// Get the next level projections based on current projection's type.
ProjectionPath PP = Worklist.pop_back_val();
// If this path is part of the covered path, then continue.
if (CPaths.find(PP) != CPaths.end())
continue;
// Get the current type to process.
SILType Ty = PP.getMostDerivedType(Mod, F.getTypeExpansionContext());
// Get the first level projection of the current type.
llvm::SmallVector<Projection, 4> Projections;
Projection::getFirstLevelProjections(Ty, Mod, F.getTypeExpansionContext(),
Projections);
// Reached the end of the projection tree, this field can not be expanded
// anymore.
if (Projections.empty()) {
Paths.push_back(PP);
continue;
}
// There is at least one projection path that leads to a type with
// reference semantics.
if (Ty.getClassOrBoundGenericClass()) {
Paths.push_back(PP);
continue;
}
// Keep expanding the location.
for (auto &P : Projections) {
ProjectionPath X(B);
X.append(PP);
assert(PP.getMostDerivedType(Mod, F.getTypeExpansionContext()) ==
X.getMostDerivedType(Mod, F.getTypeExpansionContext()));
X.append(P);
Worklist.push_back(X);
}
// Keep iterating if the worklist is not empty.
} while (!Worklist.empty());
// Check whether any path leads to a non-trivial type.
for (auto &X : Paths) {
if (!X.getMostDerivedType(Mod, F.getTypeExpansionContext()).isTrivial(F))
return true;
}
return false;
}
SILValue
ProjectionPath::
createExtract(SILValue Base, SILInstruction *Inst, bool IsVal) const {
// If we found a projection path, but there are no projections, then the two
// loads must be the same, return PrevLI.
if (Path.empty())
return Base;
// Ok, at this point we know that we can construct our aggregate projections
// from our list of address projections.
SILValue LastExtract = Base;
SILBuilder Builder(Inst);
Builder.setCurrentDebugScope(Inst->getFunction()->getDebugScope());
// We use an auto-generated SILLocation for now.
// TODO: make the sil location more precise.
SILLocation Loc = RegularLocation::getAutoGeneratedLocation();
// Construct the path!
for (auto PI = Path.begin(), PE = Path.end(); PI != PE; ++PI) {
if (IsVal) {
LastExtract =
PI->createObjectProjection(Builder, Loc, LastExtract).get();
continue;
}
LastExtract =
PI->createAddressProjection(Builder, Loc, LastExtract).get();
}
// Return the last extract we created.
return LastExtract;
}
bool
Projection::operator<(const Projection &Other) const {
// If we have a nominal kind...
if (isNominalKind()) {
// And Other is also nominal...
if (Other.isNominalKind()) {
// Just compare the value decl pointers.
return getIndex() < Other.getIndex();
}
// Otherwise if Other is not nominal, return true since we always sort
// decls before indices.
return true;
} else {
// If this is not a nominal kind and Other is nominal, return
// false. Nominal kinds are always sorted before non-nominal kinds.
if (Other.isNominalKind())
return false;
// Otherwise, we are both index projections. Compare the indices.
return getIndex() < Other.getIndex();
}
}
NullablePtr<SingleValueInstruction>
Projection::
createAggFromFirstLevelProjections(SILBuilder &B, SILLocation Loc,
SILType BaseType,
llvm::SmallVectorImpl<SILValue> &Values) {
if (BaseType.getStructOrBoundGenericStruct()) {
return B.createStruct(Loc, BaseType, Values);
}
if (BaseType.is<TupleType>()) {
return B.createTuple(Loc, BaseType, Values);
}
return nullptr;
}
SILValue Projection::getOperandForAggregate(SILInstruction *I) const {
switch (getKind()) {
case ProjectionKind::Struct:
if (isa<StructInst>(I))
return I->getOperand(getIndex());
break;
case ProjectionKind::Tuple:
if (isa<TupleInst>(I))
return I->getOperand(getIndex());
break;
case ProjectionKind::Index:
break;
case ProjectionKind::Enum:
if (auto *EI = dyn_cast<EnumInst>(I)) {
if (EI->getElement() == getEnumElementDecl(EI->getType())) {
assert(EI->hasOperand() && "expected data operand");
return EI->getOperand();
}
}
break;
case ProjectionKind::Class:
case ProjectionKind::TailElems:
case ProjectionKind::Box:
case ProjectionKind::Upcast:
case ProjectionKind::RefCast:
case ProjectionKind::BitwiseCast:
// There is no SIL instruction to create a class or box by aggregating
// values.
break;
}
return SILValue();
}
//===----------------------------------------------------------------------===//
// ProjectionTreeNode
//===----------------------------------------------------------------------===//
ProjectionTreeNode *
ProjectionTreeNode::getChildForProjection(ProjectionTree &Tree,
const Projection &P) {
for (unsigned Index : ChildProjections) {
ProjectionTreeNode *N = Tree.getNode(Index);
if (N->Proj && N->Proj.getValue() == P) {
return N;
}
}
return nullptr;
}
ProjectionTreeNode *
ProjectionTreeNode::getParent(ProjectionTree &Tree) {
if (!Parent)
return nullptr;
return Tree.getNode(Parent.getValue());
}
const ProjectionTreeNode *
ProjectionTreeNode::getParent(const ProjectionTree &Tree) const {
if (!Parent)
return nullptr;
return Tree.getNode(Parent.getValue());
}
NullablePtr<SingleValueInstruction>
ProjectionTreeNode::
createProjection(SILBuilder &B, SILLocation Loc, SILValue Arg) const {
if (!Proj)
return nullptr;
return Proj->createProjection(B, Loc, Arg);
}
// Projection tree only supports structs and tuples today.
static bool isSupportedProjection(const Projection &p) {
switch (p.getKind()) {
case ProjectionKind::Struct:
case ProjectionKind::Tuple:
return true;
case ProjectionKind::Class:
case ProjectionKind::Enum:
case ProjectionKind::Box:
case ProjectionKind::Upcast:
case ProjectionKind::RefCast:
case ProjectionKind::BitwiseCast:
case ProjectionKind::TailElems:
case ProjectionKind::Index:
return false;
}
llvm_unreachable("unhandled kind");
}
void
ProjectionTreeNode::
processUsersOfValue(ProjectionTree &Tree,
llvm::SmallVectorImpl<ValueNodePair> &Worklist,
SILValue Value) {
LLVM_DEBUG(llvm::dbgs() << " Looking at Users:\n");
// For all uses of V...
for (Operand *Op : getNonDebugUses(Value)) {
// Grab the User of V.
SILInstruction *User = Op->getUser();
LLVM_DEBUG(llvm::dbgs() << " " << *User);
// The projections we can handle are always single-value instructions.
auto projectionInst = dyn_cast<SingleValueInstruction>(User);
if (!projectionInst) {
LLVM_DEBUG(llvm::dbgs() << " Failed to create projection. "
"Adding to non projection user!\n");
addNonProjectionUser(Op);
continue;
}
auto P = Projection(projectionInst);
// If we fail to create a projection or this is a type of projection that we
// do not support, add User as a user to this node and continue.
if (!P.isValid() || !isSupportedProjection(P)) {
LLVM_DEBUG(llvm::dbgs() << " Failed to create projection. "
"Adding to non projection user!\n");
addNonProjectionUser(Op);
continue;
}
LLVM_DEBUG(llvm::dbgs() << " Created projection.\n");
// we have a projection to the next level children, create the next
// level children nodes lazily.
if (!Initialized)
createNextLevelChildren(
Tree, TypeExpansionContext(*projectionInst->getFunction()));
// Look up the Node for this projection add {User, ChildNode} to the
// worklist.
//
// *NOTE* This means that we will process ChildNode multiple times
// potentially with different projection users.
if (auto *ChildNode = getChildForProjection(Tree, P)) {
LLVM_DEBUG(llvm::dbgs() << " Found child for projection: "
<< ChildNode->getType() << "\n");
SILValue V = SILValue(projectionInst);
Worklist.push_back({V, ChildNode});
} else {
LLVM_DEBUG(llvm::dbgs() << " Did not find a child for "
"projection!. Adding to non projection user!\n");
// The only projection which we do not currently handle are enums since we
// may not know the correct case. This can be extended in the future.
// Is the user an epilogue release ?
addNonProjectionUser(Op);
}
}
}
void ProjectionTreeNode::createNextLevelChildrenForStruct(
ProjectionTree &Tree, TypeExpansionContext context, StructDecl *SD) {
SILModule &Mod = Tree.getModule();
unsigned ChildIndex = 0;
SILType Ty = getType();
for (VarDecl *VD : SD->getStoredProperties()) {
assert(Tree.getNode(Index) == this && "Node is not mapped to itself?");
SILType NodeTy = Ty.getFieldType(VD, Mod, context);
auto *Node = Tree.createChildForStruct(this, NodeTy, VD, ChildIndex++);
LLVM_DEBUG(llvm::dbgs() << " Creating child for: " <<NodeTy << "\n");
LLVM_DEBUG(llvm::dbgs() << " Projection: "
<< Node->getProjection().getValue().getIndex() << "\n");
ChildProjections.push_back(Node->getIndex());
assert(getChildForProjection(Tree, Node->getProjection().getValue()) == Node &&
"Child not matched to its projection in parent!");
assert(Node->getParent(Tree) == this && "Parent of Child is not Parent?!");
}
}
void
ProjectionTreeNode::
createNextLevelChildrenForTuple(ProjectionTree &Tree, TupleType *TT) {
SILType Ty = getType();
for (unsigned i = 0, e = TT->getNumElements(); i != e; ++i) {
assert(Tree.getNode(Index) == this && "Node is not mapped to itself?");
SILType NodeTy = Ty.getTupleElementType(i);
auto *Node = Tree.createChildForTuple(this, NodeTy, i);
LLVM_DEBUG(llvm::dbgs() << " Creating child for: " << NodeTy <<"\n");
LLVM_DEBUG(llvm::dbgs() << " Projection: "
<< Node->getProjection().getValue().getIndex() << "\n");
ChildProjections.push_back(Node->getIndex());
assert(getChildForProjection(Tree, Node->getProjection().getValue()) == Node &&
"Child not matched to its projection in parent!");
assert(Node->getParent(Tree) == this && "Parent of Child is not Parent?!");
}
}
void ProjectionTreeNode::createNextLevelChildren(ProjectionTree &Tree,
TypeExpansionContext context) {
LLVM_DEBUG(llvm::dbgs() << " Creating children for: " << getType() <<"\n");
if (Initialized) {
LLVM_DEBUG(llvm::dbgs() << " Already initialized! bailing!\n");
return;
}
Initialized = true;
SILType Ty = getType();
if (Ty.aggregateHasUnreferenceableStorage()) {
LLVM_DEBUG(llvm::dbgs() << " Has unreferenced storage bailing!\n");
return;
}
if (auto *SD = Ty.getStructOrBoundGenericStruct()) {
LLVM_DEBUG(llvm::dbgs() << " Found a struct!\n");
createNextLevelChildrenForStruct(Tree, context, SD);
return;
}
auto TT = Ty.getAs<TupleType>();
if (!TT) {
LLVM_DEBUG(llvm::dbgs() << " Did not find a tuple or struct, "
"bailing!\n");
return;
}
LLVM_DEBUG(llvm::dbgs() << " Found a tuple.");
createNextLevelChildrenForTuple(Tree, TT);
}
SingleValueInstruction *
ProjectionTreeNode::
createAggregate(SILBuilder &B, SILLocation Loc, ArrayRef<SILValue> Args) const {
assert(Initialized && "Node must be initialized to create aggregates");
SILType Ty = getType();
if (Ty.getStructOrBoundGenericStruct()) {
return B.createStruct(Loc, Ty, Args);
}
if (Ty.is<TupleType>()) {
return B.createTuple(Loc, Ty, Args);
}
llvm_unreachable("Unhandled type");
}
class ProjectionTreeNode::NewAggregateBuilder {
ProjectionTreeNode *Node;
SILBuilder &Builder;
SILLocation Loc;
llvm::SmallVector<SILValue, 8> Values;
// Did this aggregate already create an aggregate and thus is "invalidated".
bool Invalidated;
public:
NewAggregateBuilder(ProjectionTreeNode *N, SILBuilder &B, SILLocation L)
: Node(N), Builder(B), Loc(L), Values(), Invalidated(false) {
assert(N->Initialized && "N must be initialized since we are mapping Node "
"Children -> SILValues");
// Initialize the Values array with empty SILValues.
for (unsigned Child : N->ChildProjections) {
(void)Child;
Values.push_back(SILValue());
}
}
bool isInvalidated() const { return Invalidated; }
/// If all SILValues have been set, we are complete.
bool isComplete() const {
return std::all_of(Values.begin(), Values.end(), [](SILValue V) -> bool {
return V;
});
}
SingleValueInstruction *createInstruction() const {
assert(isComplete() && "Cannot create instruction until the aggregate is "
"complete");
assert(!Invalidated && "Must not be invalidated to create an instruction");
const_cast<NewAggregateBuilder *>(this)->Invalidated = true;
return Node->createAggregate(Builder, Loc, Values);
}
void setValueForChild(ProjectionTreeNode *Child, SILValue V) {
assert(!Invalidated && "Must not be invalidated to set value for child");
Values[Child->Proj.getValue().getIndex()] = V;
}
};
namespace {
using NewAggregateBuilder = ProjectionTreeNode::NewAggregateBuilder;
/// A wrapper around a MapVector with generalized operations on the map.
///
/// TODO: Replace this with a simple RPOT and use GraphUtils. Since we do not
/// look through enums or classes, in the current type system it should not be
/// possible to have a cycle implying that a RPOT should be fine.
class NewAggregateBuilderMap {
SILBuilder &Builder;
SILLocation Loc;
llvm::MapVector<ProjectionTreeNode *, NewAggregateBuilder> NodeBuilderMap;
public:
NewAggregateBuilderMap(SILBuilder &B, SILLocation Loc)
: Builder(B), Loc(Loc), NodeBuilderMap() {}
/// Get the NewAggregateBuilder associated with Node or if none is created,
/// create one for Node.
NewAggregateBuilder &getBuilder(ProjectionTreeNode *Node) {
auto I = NodeBuilderMap.find(Node);
if (I != NodeBuilderMap.end()) {
return I->second;
} else {
auto AggIt = NodeBuilderMap.insert({Node, NewAggregateBuilder(Node, Builder,
Loc)});
return AggIt.first->second;
}
}
/// Get the NewAggregateBuilder associated with Node. Assert on failure.
NewAggregateBuilder &get(ProjectionTreeNode *Node) {
auto It = NodeBuilderMap.find(Node);
assert(It != NodeBuilderMap.end() && "Every item in the worklist should have "
"an NewAggregateBuilder associated with it");
return It->second;
}
bool isComplete(ProjectionTreeNode *Node) {
return get(Node).isComplete();
}
bool isInvalidated(ProjectionTreeNode *Node) {
return get(Node).isInvalidated();
}
ProjectionTreeNode *
getNextValidNode(llvm::SmallVectorImpl<ProjectionTreeNode *> &Worklist,
bool CheckForDeadLock=false);
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ProjectionTree
//===----------------------------------------------------------------------===//
ProjectionTree::ProjectionTree(
SILModule &Mod, SILType BaseTy,
llvm::SpecificBumpPtrAllocator<ProjectionTreeNode> &Allocator)
: Mod(&Mod), Allocator(&Allocator) {
LLVM_DEBUG(llvm::dbgs() << "Constructing Projection Tree For : " << BaseTy
<< "\n");
// Create the root node of the tree with our base type.
createRoot(BaseTy);
// Create the rest of the type tree lazily based on uses.
}
ProjectionTree::~ProjectionTree() {
// Do nothing !. Eventually the all the projection tree nodes will be freed
// when the BPA allocator is free.
}
SILValue
ProjectionTree::computeExplodedArgumentValueInner(SILBuilder &Builder,
SILLocation Loc,
ProjectionTreeNode *Node,
LeafValueMapTy &LeafValues) {
// Use the child node value if the child is alive.
if (Node->ChildProjections.empty()) {
auto Iter = LeafValues.find(Node->getIndex());
if (Iter != LeafValues.end())
return Iter->second;
// Return undef for dead node.
return SILUndef::get(Node->getType(), Builder.getFunction());
}
// This is an aggregate node, construct its value from its children
// recursively.
//
// NOTE: We do not expect to have too many levels of nesting, so
// recursion should be fine.
llvm::SmallVector<SILValue, 8> ChildValues;
for (unsigned ChildIdx : Node->ChildProjections) {
ProjectionTreeNode *Child = getNode(ChildIdx);
ChildValues.push_back(computeExplodedArgumentValueInner(Builder, Loc, Child,
LeafValues));
}
// Form and return the aggregate.
NullablePtr<SingleValueInstruction> AI =
Projection::createAggFromFirstLevelProjections(Builder, Loc,
Node->getType(),
ChildValues);
assert(AI.get() && "Failed to get a part of value");
return SILValue(AI.get());
}
SILValue
ProjectionTree::computeExplodedArgumentValue(
SILBuilder &Builder, SILLocation Loc,
llvm::SmallVector<SILValue, 8> &LeafValues) {
// Construct the leaf index to leaf value map.
llvm::DenseMap<unsigned, SILValue> LeafIndexToValue;
for (unsigned i = 0; i < LeafValues.size(); ++i) {
LeafIndexToValue[LiveLeafIndices[i]] = LeafValues[i];
}
// Compute the full root node debug node by walking down the projection tree.
return computeExplodedArgumentValueInner(Builder, Loc, getRoot(),
LeafIndexToValue);
}
void
ProjectionTree::
computeUsesAndLiveness(SILValue Base) {
// Propagate liveness and users through the tree.
llvm::SmallVector<ProjectionTreeNode::ValueNodePair, 32> UseWorklist;
UseWorklist.push_back({Base, getRoot()});
// Then until the worklist is empty...
while (!UseWorklist.empty()) {
LLVM_DEBUG(llvm::dbgs() << "Current Worklist:\n");
LLVM_DEBUG(for (auto &T : UseWorklist) {
llvm::dbgs() << " Type: " << T.second->getType() << "; Value: ";
if (T.first) {
llvm::dbgs() << T.first;
} else {
llvm::dbgs() << "<null>\n";
}
});
SILValue Value;
ProjectionTreeNode *Node;
// Pop off the top type, value, and node.
std::tie(Value, Node) = UseWorklist.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << Node->getType() << "\n");
// If Value is not null, collate all users of Value the appropriate child
// nodes and add such items to the worklist.
if (Value) {
Node->processUsersOfValue(*this, UseWorklist, Value);
}
// If this node is live due to a non projection user, propagate down its
// liveness to its children and its children with an empty value to the
// worklist so we propagate liveness down to any further descendants.
if (Node->IsLive) {
LLVM_DEBUG(llvm::dbgs() << "Node Is Live. Marking Children Live!\n");
for (unsigned ChildIdx : Node->ChildProjections) {
ProjectionTreeNode *Child = getNode(ChildIdx);
Child->IsLive = true;
LLVM_DEBUG(llvm::dbgs() << " Marking child live: "
<< Child->getType() << "\n");
UseWorklist.push_back({SILValue(), Child});
}
}
}
// Then setup the leaf list by iterating through our Nodes looking for live
// leafs. We use a DFS order, always processing the left leafs first so that
// we match the order in which we will lay out arguments.
llvm::SmallVector<ProjectionTreeNode *, 8> Worklist;
Worklist.push_back(getRoot());
while (!Worklist.empty()) {
ProjectionTreeNode *Node = Worklist.pop_back_val();
// If node is not a leaf, add its children to the worklist and continue.
if (!Node->ChildProjections.empty()) {
for (unsigned ChildIdx : llvm::reverse(Node->ChildProjections)) {
Worklist.push_back(getNode(ChildIdx));
}
continue;
}
// If the node is a leaf and is not a live, continue.
if (!Node->IsLive)
continue;
// Otherwise we have a live leaf, add its index to our LiveLeafIndices list.
LiveLeafIndices.push_back(Node->getIndex());
}
#ifndef NDEBUG
LLVM_DEBUG(llvm::dbgs() << "Final Leafs: \n");
llvm::SmallVector<SILType, 8> LeafTypes;
getLiveLeafTypes(LeafTypes);
for (SILType Leafs : LeafTypes) {
LLVM_DEBUG(llvm::dbgs() << " " << Leafs << "\n");
}
#endif
}
void
ProjectionTree::
createTreeFromValue(SILBuilder &B, SILLocation Loc, SILValue NewBase,
llvm::SmallVectorImpl<SILValue> &Leafs) const {
LLVM_DEBUG(llvm::dbgs() << "Recreating tree from value: " << NewBase);
using WorklistEntry =
std::tuple<const ProjectionTreeNode *, SILValue>;
llvm::SmallVector<WorklistEntry, 32> Worklist;
// Start our worklist with NewBase and Root.
Worklist.push_back(std::make_tuple(getRoot(), NewBase));
// Then until our worklist is clear...
while (Worklist.size()) {
// Pop off the top of the list.
const ProjectionTreeNode *Node = std::get<0>(Worklist.back());
SILValue V = std::get<1>(Worklist.back());
Worklist.pop_back();
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << V->getType() << ": " << V);
// If we have any children...
unsigned NumChildren = Node->ChildProjections.size();
if (NumChildren) {
LLVM_DEBUG(llvm::dbgs() << " Not Leaf! Adding children to list.\n");
// Create projections for each one of them and the child node and
// projection to the worklist for processing.
for (unsigned ChildIdx : llvm::reverse(Node->ChildProjections)) {
const ProjectionTreeNode *ChildNode = getNode(ChildIdx);
auto I = ChildNode->createProjection(B, Loc, V).get();
LLVM_DEBUG(llvm::dbgs() << " Adding Child: " << I->getType() << ": "
<< *I);
Worklist.push_back(std::make_tuple(ChildNode, SILValue(I)));
}
} else {
// Otherwise, we have a leaf node. If the leaf node is not alive, do not
// add it to our leaf list.
if (!Node->IsLive)
continue;
// Otherwise add it to our leaf list.
LLVM_DEBUG(llvm::dbgs() << " Is a Leaf! Adding to leaf list\n");
Leafs.push_back(V);
}
}
}
ProjectionTreeNode *
NewAggregateBuilderMap::
getNextValidNode(llvm::SmallVectorImpl<ProjectionTreeNode *> &Worklist,
bool CheckForDeadLock) {
if (Worklist.empty())
return nullptr;
ProjectionTreeNode *Node = Worklist.back();
// If the Node is not complete, then we have reached a dead lock. This should
// never happen.
//
// TODO: Prove this and put the proof here.
if (CheckForDeadLock && !isComplete(Node)) {
llvm_unreachable("Algorithm Dead Locked!");
}
// This block of code, performs the pop back and also if the Node has been
// invalidated, skips until we find a non invalidated value.
while (isInvalidated(Node)) {
assert(isComplete(Node) && "Invalidated values must be complete");
// Pop Node off the back of the worklist.
Worklist.pop_back();
if (Worklist.empty())
return nullptr;
Node = Worklist.back();
}
return Node;
}
void
ProjectionTree::
replaceValueUsesWithLeafUses(SILBuilder &Builder, SILLocation Loc,
llvm::SmallVectorImpl<SILValue> &Leafs) {
assert(Leafs.size() == LiveLeafIndices.size() && "Leafs and leaf indices must "
"equal in size.");
NewAggregateBuilderMap AggBuilderMap(Builder, Loc);
llvm::SmallVector<ProjectionTreeNode *, 8> Worklist;
LLVM_DEBUG(llvm::dbgs() << "Replacing all uses in callee with leafs!\n");
// For each Leaf we have as input...
for (unsigned i = 0, e = Leafs.size(); i != e; ++i) {
SILValue Leaf = Leafs[i];
ProjectionTreeNode *Node = getNode(LiveLeafIndices[i]);
LLVM_DEBUG(llvm::dbgs() << " Visiting leaf: " << Leaf);
assert(Node->IsLive && "Unexpected dead node in LiveLeafIndices!");
// Otherwise replace all uses at this level of the tree with uses of the
// Leaf value.
LLVM_DEBUG(llvm::dbgs() << " Replacing operands with leaf!\n");
for (auto *Op : Node->NonProjUsers) {
LLVM_DEBUG(llvm::dbgs() << " User: " << *Op->getUser());
Op->set(Leaf);
}
// Grab the parent of this node.
ProjectionTreeNode *Parent = Node->getParent(*this);
// If the parent is dead, continue.
if (!Parent || !Parent->IsLive) {
LLVM_DEBUG(llvm::dbgs() << " Parent is dead... continuing.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << " Parent is alive! Adding to parent "
"builder\n");
// Otherwise either create an aggregate builder for the parent or reuse one
// that has already been created for it.
AggBuilderMap.getBuilder(Parent).setValueForChild(Node, Leaf);
LLVM_DEBUG(llvm::dbgs() << " Is parent complete: "
<< (AggBuilderMap.isComplete(Parent)? "yes" : "no") << "\n");
// Finally add the parent to the worklist.
Worklist.push_back(Parent);
}
// A utility array to add new Nodes to the list so we maintain while
// processing the current worklist we maintain only completed items at the end
// of the list.
llvm::SmallVector<ProjectionTreeNode *, 8> NewNodes;
LLVM_DEBUG(llvm::dbgs() << "Processing worklist!\n");
// Then until we have no work left...
while (!Worklist.empty()) {
// Sort the worklist so that complete items are first.
//
// TODO: Just change this into a partition method. Should be significantly
// faster.
std::sort(Worklist.begin(), Worklist.end(),
[&AggBuilderMap](ProjectionTreeNode *N1,
ProjectionTreeNode *N2) -> bool {
bool IsComplete1 = AggBuilderMap.isComplete(N1);
bool IsComplete2 = AggBuilderMap.isComplete(N2);
// Sort N1 after N2 if N1 is complete and N2 is not. This puts
// complete items at the end of our list.
return unsigned(IsComplete1) < unsigned(IsComplete2);
});
LLVM_DEBUG(llvm::dbgs() << " Current Worklist:\n");
#ifndef NDEBUG
for (auto *_work : Worklist) {
LLVM_DEBUG(llvm::dbgs() << " Type: " << _work->getType()
<< "; Complete: "
<< (AggBuilderMap.isComplete(_work)? "yes" : "no")
<< "; Invalidated: "
<< (AggBuilderMap.isInvalidated(_work)? "yes" : "no") << "\n");
}
#endif
// Find the first non invalidated node. If we have all invalidated nodes,
// this will return nullptr.
ProjectionTreeNode *Node = AggBuilderMap.getNextValidNode(Worklist, true);
// Then until we find a node that is not complete...
while (Node && AggBuilderMap.isComplete(Node)) {
// Create the aggregate for the current complete Node we are processing...
SILValue Agg = AggBuilderMap.get(Node).createInstruction();
// Replace all uses at this level of the tree with uses of the newly
// constructed aggregate.
for (auto *Op : Node->NonProjUsers) {
Op->set(Agg);
}
// If this node has a parent and that parent is alive...
ProjectionTreeNode *Parent = Node->getParentOrNull(*this);
if (Parent && Parent->IsLive) {
// Create or lookup the node builder for the parent and associate the
// newly created aggregate with this node.
AggBuilderMap.getBuilder(Parent).setValueForChild(Node, SILValue(Agg));
// Then add the parent to NewNodes to be added to our list.
NewNodes.push_back(Parent);
}
// Grab the next non-invalidated node for the next iteration. If we had
// all invalidated nodes, this will return nullptr.
Node = AggBuilderMap.getNextValidNode(Worklist);
}
// Copy NewNodes onto the back of our Worklist now that we have finished
// this iteration.
std::copy(NewNodes.begin(), NewNodes.end(), std::back_inserter(Worklist));
NewNodes.clear();
}
}
void ProjectionTree::getUsers(SmallPtrSetImpl<SILInstruction *> &users) const {
for (auto *node : ProjectionTreeNodes) {
for (auto *op : node->getNonProjUsers()) {
users.insert(op->getUser());
}
}
}